i915_gem.c 120.1 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84 85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107
	if (!i915_reset_in_progress(error))
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115
	ret = wait_event_interruptible_timeout(error->reset_queue,
116
					       !i915_reset_in_progress(error),
117
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123 124
	} else {
		return 0;
125
	}
126 127
}

128
int i915_mutex_lock_interruptible(struct drm_device *dev)
129
{
130
	struct drm_i915_private *dev_priv = to_i915(dev);
131 132
	int ret;

133
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 135 136 137 138 139 140 141 142
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
143

144 145
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146
			    struct drm_file *file)
147
{
148
	struct drm_i915_private *dev_priv = to_i915(dev);
149
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
150
	struct drm_i915_gem_get_aperture *args = data;
151
	struct i915_vma *vma;
152
	size_t pinned;
153

154
	pinned = 0;
155
	mutex_lock(&dev->struct_mutex);
156
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157
		if (i915_vma_is_pinned(vma))
158
			pinned += vma->node.size;
159
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	mutex_unlock(&dev->struct_mutex);
163

164
	args->aper_size = ggtt->base.total;
165
	args->aper_available_size = args->aper_size - pinned;
166

167 168 169
	return 0;
}

170 171
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172
{
173 174 175 176 177
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

195
		put_page(page);
196 197 198
		vaddr += PAGE_SIZE;
	}

199
	i915_gem_chipset_flush(to_i915(obj->base.dev));
200 201 202 203 204 205 206 207 208 209 210 211 212

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
213

214 215 216 217 218 219 220 221 222 223 224 225 226
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
227

228
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
229
	if (WARN_ON(ret)) {
230 231 232 233 234 235 236 237 238 239
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			put_page(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
int
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
	int ret;

	/* The vma will only be freed if it is marked as closed, and if we wait
	 * upon rendering to the vma, we may unbind anything in the list.
	 */
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 * @obj: i915 gem object
 * @readonly: waiting for just read access or read-write access
 */
int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
	struct reservation_object *resv;
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = i915_gem_object_get_active(obj);
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

	for_each_active(active_mask, idx) {
		int ret;

		ret = i915_gem_active_wait(&active[idx],
					   &obj->base.dev->struct_mutex);
		if (ret)
			return ret;
	}

	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

	return 0;
}

352 353 354
/* A nonblocking variant of the above wait. Must be called prior to
 * acquiring the mutex for the object, as the object state may change
 * during this call. A reference must be held by the caller for the object.
355 356
 */
static __must_check int
357 358 359
__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
			struct intel_rps_client *rps,
			bool readonly)
360 361 362
{
	struct i915_gem_active *active;
	unsigned long active_mask;
363
	int idx;
364

365
	active_mask = __I915_BO_ACTIVE(obj);
366 367 368 369 370 371 372 373 374 375
	if (!active_mask)
		return 0;

	if (!readonly) {
		active = obj->last_read;
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

376 377
	for_each_active(active_mask, idx) {
		int ret;
378

379 380 381 382
		ret = i915_gem_active_wait_unlocked(&active[idx],
						    true, NULL, rps);
		if (ret)
			return ret;
383 384
	}

385
	return 0;
386 387 388 389 390 391 392 393 394
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

395 396 397 398 399
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
400
	int ret;
401 402 403 404 405 406 407 408 409 410 411 412 413 414

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
415 416 417 418 419
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
420 421 422
	if (ret)
		return ret;

423 424 425 426 427 428
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
429 430 431
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
432 433 434 435 436 437 438 439 440
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
441
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
442
	int ret = 0;
443 444 445 446 447 448 449

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
450

451
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
452 453 454 455 456 457 458 459 460 461
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
462 463 464 465
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
466 467
	}

468
	drm_clflush_virt_range(vaddr, args->size);
469
	i915_gem_chipset_flush(to_i915(dev));
470 471

out:
472
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
473
	return ret;
474 475
}

476 477
void *i915_gem_object_alloc(struct drm_device *dev)
{
478
	struct drm_i915_private *dev_priv = to_i915(dev);
479
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
480 481 482 483
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
484
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
485
	kmem_cache_free(dev_priv->objects, obj);
486 487
}

488 489 490 491 492
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
493
{
494
	struct drm_i915_gem_object *obj;
495 496
	int ret;
	u32 handle;
497

498
	size = roundup(size, PAGE_SIZE);
499 500
	if (size == 0)
		return -EINVAL;
501 502

	/* Allocate the new object */
503
	obj = i915_gem_object_create(dev, size);
504 505
	if (IS_ERR(obj))
		return PTR_ERR(obj);
506

507
	ret = drm_gem_handle_create(file, &obj->base, &handle);
508
	/* drop reference from allocate - handle holds it now */
509
	i915_gem_object_put_unlocked(obj);
510 511
	if (ret)
		return ret;
512

513
	*handle_p = handle;
514 515 516
	return 0;
}

517 518 519 520 521 522
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
523
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
524 525
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
526
			       args->size, &args->handle);
527 528 529 530
}

/**
 * Creates a new mm object and returns a handle to it.
531 532 533
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
534 535 536 537 538 539
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
540

541
	return i915_gem_create(file, dev,
542
			       args->size, &args->handle);
543 544
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

571
static inline int
572 573
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

597 598 599 600 601 602 603 604 605 606 607 608
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

609
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
610 611
		return -EINVAL;

612 613 614 615
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

634 635 636
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
637
static int
638 639 640 641 642 643 644
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

645
	if (unlikely(page_do_bit17_swizzling))
646 647 648 649 650 651 652 653 654 655 656
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

657
	return ret ? -EFAULT : 0;
658 659
}

660 661 662 663
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
664
	if (unlikely(swizzled)) {
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

682 683 684 685 686 687 688 689 690 691 692 693
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
694 695 696
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
697 698 699 700 701 702 703 704 705 706 707

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

708
	return ret ? - EFAULT : 0;
709 710
}

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
738
	struct drm_i915_private *dev_priv = to_i915(dev);
739 740 741 742 743 744 745
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

746
	ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

847
static int
848 849 850 851
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
852
{
853
	char __user *user_data;
854
	ssize_t remain;
855
	loff_t offset;
856
	int shmem_page_offset, page_length, ret = 0;
857
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
858
	int prefaulted = 0;
859
	int needs_clflush = 0;
860
	struct sg_page_iter sg_iter;
861

862
	if (!i915_gem_object_has_struct_page(obj))
863 864
		return -ENODEV;

865
	user_data = u64_to_user_ptr(args->data_ptr);
866 867
	remain = args->size;

868
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
869

870
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
871 872 873
	if (ret)
		return ret;

874
	offset = args->offset;
875

876 877
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
878
		struct page *page = sg_page_iter_page(&sg_iter);
879 880 881 882

		if (remain <= 0)
			break;

883 884 885 886 887
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
888
		shmem_page_offset = offset_in_page(offset);
889 890 891 892
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

893 894 895
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

896 897 898 899 900
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
901 902 903

		mutex_unlock(&dev->struct_mutex);

904
		if (likely(!i915.prefault_disable) && !prefaulted) {
905
			ret = fault_in_multipages_writeable(user_data, remain);
906 907 908 909 910 911 912
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
913

914 915 916
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
917

918
		mutex_lock(&dev->struct_mutex);
919 920

		if (ret)
921 922
			goto out;

923
next_page:
924
		remain -= page_length;
925
		user_data += page_length;
926 927 928
		offset += page_length;
	}

929
out:
930 931
	i915_gem_object_unpin_pages(obj);

932 933 934
	return ret;
}

935 936
/**
 * Reads data from the object referenced by handle.
937 938 939
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
940 941 942 943 944
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
945
		     struct drm_file *file)
946 947
{
	struct drm_i915_gem_pread *args = data;
948
	struct drm_i915_gem_object *obj;
949
	int ret = 0;
950

951 952 953 954
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
955
		       u64_to_user_ptr(args->data_ptr),
956 957 958
		       args->size))
		return -EFAULT;

959
	obj = i915_gem_object_lookup(file, args->handle);
960 961
	if (!obj)
		return -ENOENT;
962

963
	/* Bounds check source.  */
964 965
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
966
		ret = -EINVAL;
967
		goto err;
C
Chris Wilson 已提交
968 969
	}

C
Chris Wilson 已提交
970 971
	trace_i915_gem_object_pread(obj, args->offset, args->size);

972 973 974 975 976 977 978 979
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err;

980
	ret = i915_gem_shmem_pread(dev, obj, args, file);
981

982
	/* pread for non shmem backed objects */
983 984
	if (ret == -EFAULT || ret == -ENODEV) {
		intel_runtime_pm_get(to_i915(dev));
985 986
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);
987 988
		intel_runtime_pm_put(to_i915(dev));
	}
989

990
	i915_gem_object_put(obj);
991
	mutex_unlock(&dev->struct_mutex);
992 993 994 995 996

	return ret;

err:
	i915_gem_object_put_unlocked(obj);
997
	return ret;
998 999
}

1000 1001
/* This is the fast write path which cannot handle
 * page faults in the source data
1002
 */
1003 1004 1005 1006 1007 1008

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
1009
{
1010 1011
	void __iomem *vaddr_atomic;
	void *vaddr;
1012
	unsigned long unwritten;
1013

P
Peter Zijlstra 已提交
1014
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1015 1016 1017
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
1018
						      user_data, length);
P
Peter Zijlstra 已提交
1019
	io_mapping_unmap_atomic(vaddr_atomic);
1020
	return unwritten;
1021 1022
}

1023 1024 1025
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1026
 * @i915: i915 device private data
1027 1028 1029
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
1030
 */
1031
static int
1032
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1033
			 struct drm_i915_gem_object *obj,
1034
			 struct drm_i915_gem_pwrite *args,
1035
			 struct drm_file *file)
1036
{
1037
	struct i915_ggtt *ggtt = &i915->ggtt;
1038
	struct drm_device *dev = obj->base.dev;
1039 1040
	struct drm_mm_node node;
	uint64_t remain, offset;
1041
	char __user *user_data;
1042
	int ret;
1043 1044 1045 1046
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
1047

1048 1049
	ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
1065 1066 1067
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
1068
	}
D
Daniel Vetter 已提交
1069 1070 1071 1072 1073

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1074
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
1075
	obj->dirty = true;
1076

1077 1078 1079 1080
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1081 1082
		/* Operation in this page
		 *
1083 1084 1085
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1086
		 */
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1100
		/* If we get a fault while copying data, then (presumably) our
1101 1102
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1103 1104
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1105
		 */
1106
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1107
				    page_offset, user_data, page_length)) {
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1120
		}
1121

1122 1123 1124
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1125 1126
	}

1127
out_flush:
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1141
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1142
out_unpin:
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1153
out:
1154
	return ret;
1155 1156
}

1157 1158 1159 1160
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1161
static int
1162 1163 1164 1165 1166
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1167
{
1168
	char *vaddr;
1169
	int ret;
1170

1171
	if (unlikely(page_do_bit17_swizzling))
1172
		return -EINVAL;
1173

1174 1175 1176 1177
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1178 1179
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1180 1181 1182 1183
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1184

1185
	return ret ? -EFAULT : 0;
1186 1187
}

1188 1189
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1190
static int
1191 1192 1193 1194 1195
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1196
{
1197 1198
	char *vaddr;
	int ret;
1199

1200
	vaddr = kmap(page);
1201
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1202 1203 1204
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1205 1206
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1207 1208
						user_data,
						page_length);
1209 1210 1211 1212 1213
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1214 1215 1216
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1217
	kunmap(page);
1218

1219
	return ret ? -EFAULT : 0;
1220 1221 1222
}

static int
1223 1224 1225 1226
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1227 1228
{
	ssize_t remain;
1229 1230
	loff_t offset;
	char __user *user_data;
1231
	int shmem_page_offset, page_length, ret = 0;
1232
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1233
	int hit_slowpath = 0;
1234 1235
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1236
	struct sg_page_iter sg_iter;
1237

1238
	user_data = u64_to_user_ptr(args->data_ptr);
1239 1240
	remain = args->size;

1241
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1242

1243 1244 1245 1246
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

1247 1248 1249 1250 1251
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1252
		needs_clflush_after = cpu_write_needs_clflush(obj);
1253
	}
1254 1255 1256 1257 1258
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1259

1260 1261 1262 1263
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1264
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1265

1266 1267
	i915_gem_object_pin_pages(obj);

1268
	offset = args->offset;
1269
	obj->dirty = 1;
1270

1271 1272
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1273
		struct page *page = sg_page_iter_page(&sg_iter);
1274
		int partial_cacheline_write;
1275

1276 1277 1278
		if (remain <= 0)
			break;

1279 1280 1281 1282 1283
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1284
		shmem_page_offset = offset_in_page(offset);
1285 1286 1287 1288 1289

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1290 1291 1292 1293 1294 1295 1296
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1297 1298 1299
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1300 1301 1302 1303 1304 1305
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1306 1307 1308

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1309 1310 1311 1312
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1313

1314
		mutex_lock(&dev->struct_mutex);
1315 1316

		if (ret)
1317 1318
			goto out;

1319
next_page:
1320
		remain -= page_length;
1321
		user_data += page_length;
1322
		offset += page_length;
1323 1324
	}

1325
out:
1326 1327
	i915_gem_object_unpin_pages(obj);

1328
	if (hit_slowpath) {
1329 1330 1331 1332 1333 1334 1335
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1336
			if (i915_gem_clflush_object(obj, obj->pin_display))
1337
				needs_clflush_after = true;
1338
		}
1339
	}
1340

1341
	if (needs_clflush_after)
1342
		i915_gem_chipset_flush(to_i915(dev));
1343 1344
	else
		obj->cache_dirty = true;
1345

1346
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1347
	return ret;
1348 1349 1350 1351
}

/**
 * Writes data to the object referenced by handle.
1352 1353 1354
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1355 1356 1357 1358 1359
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1360
		      struct drm_file *file)
1361
{
1362
	struct drm_i915_private *dev_priv = to_i915(dev);
1363
	struct drm_i915_gem_pwrite *args = data;
1364
	struct drm_i915_gem_object *obj;
1365 1366 1367 1368 1369 1370
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1371
		       u64_to_user_ptr(args->data_ptr),
1372 1373 1374
		       args->size))
		return -EFAULT;

1375
	if (likely(!i915.prefault_disable)) {
1376
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1377 1378 1379 1380
						   args->size);
		if (ret)
			return -EFAULT;
	}
1381

1382
	obj = i915_gem_object_lookup(file, args->handle);
1383 1384
	if (!obj)
		return -ENOENT;
1385

1386
	/* Bounds check destination. */
1387 1388
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1389
		ret = -EINVAL;
1390
		goto err;
C
Chris Wilson 已提交
1391 1392
	}

C
Chris Wilson 已提交
1393 1394
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
	if (ret)
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;

D
Daniel Vetter 已提交
1405
	ret = -EFAULT;
1406 1407 1408 1409 1410 1411
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1412 1413
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1414
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1415 1416 1417
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1418
	}
1419

1420
	if (ret == -EFAULT || ret == -ENOSPC) {
1421 1422
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1423
		else if (i915_gem_object_has_struct_page(obj))
1424
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1425 1426
		else
			ret = -ENODEV;
1427
	}
1428

1429
	i915_gem_object_put(obj);
1430
	mutex_unlock(&dev->struct_mutex);
1431 1432
	intel_runtime_pm_put(dev_priv);

1433
	return ret;
1434 1435 1436 1437 1438 1439

err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1440 1441
}

1442 1443 1444 1445 1446 1447 1448
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1449
/**
1450 1451
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1452 1453 1454
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1455 1456 1457
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1458
			  struct drm_file *file)
1459 1460
{
	struct drm_i915_gem_set_domain *args = data;
1461
	struct drm_i915_gem_object *obj;
1462 1463
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1464 1465
	int ret;

1466
	/* Only handle setting domains to types used by the CPU. */
1467
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1468 1469 1470 1471 1472 1473 1474 1475
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1476
	obj = i915_gem_object_lookup(file, args->handle);
1477 1478
	if (!obj)
		return -ENOENT;
1479

1480 1481 1482 1483
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1484 1485 1486 1487 1488
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
1489
	if (ret)
1490
		goto err;
1491

1492
	if (read_domains & I915_GEM_DOMAIN_GTT)
1493
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1494
	else
1495
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1496

1497
	if (write_domain != 0)
1498
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1499

1500
	i915_gem_object_put(obj);
1501 1502
	mutex_unlock(&dev->struct_mutex);
	return ret;
1503 1504 1505 1506

err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1507 1508 1509 1510
}

/**
 * Called when user space has done writes to this buffer
1511 1512 1513
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1514 1515 1516
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1517
			 struct drm_file *file)
1518 1519
{
	struct drm_i915_gem_sw_finish *args = data;
1520
	struct drm_i915_gem_object *obj;
1521 1522
	int ret = 0;

1523
	ret = i915_mutex_lock_interruptible(dev);
1524
	if (ret)
1525
		return ret;
1526

1527 1528
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1529 1530
		ret = -ENOENT;
		goto unlock;
1531 1532 1533
	}

	/* Pinned buffers may be scanout, so flush the cache */
1534
	if (obj->pin_display)
1535
		i915_gem_object_flush_cpu_write_domain(obj);
1536

1537
	i915_gem_object_put(obj);
1538
unlock:
1539 1540 1541 1542 1543
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1544 1545 1546 1547 1548
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1549 1550 1551
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1562 1563 1564
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1565
		    struct drm_file *file)
1566 1567
{
	struct drm_i915_gem_mmap *args = data;
1568
	struct drm_i915_gem_object *obj;
1569 1570
	unsigned long addr;

1571 1572 1573
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1574
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1575 1576
		return -ENODEV;

1577 1578
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1579
		return -ENOENT;
1580

1581 1582 1583
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1584
	if (!obj->base.filp) {
1585
		i915_gem_object_put_unlocked(obj);
1586 1587 1588
		return -EINVAL;
	}

1589
	addr = vm_mmap(obj->base.filp, 0, args->size,
1590 1591
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1592 1593 1594 1595
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1596
		if (down_write_killable(&mm->mmap_sem)) {
1597
			i915_gem_object_put_unlocked(obj);
1598 1599
			return -EINTR;
		}
1600 1601 1602 1603 1604 1605 1606
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1607 1608

		/* This may race, but that's ok, it only gets set */
1609
		WRITE_ONCE(obj->has_wc_mmap, true);
1610
	}
1611
	i915_gem_object_put_unlocked(obj);
1612 1613 1614 1615 1616 1617 1618 1619
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1620 1621
/**
 * i915_gem_fault - fault a page into the GTT
1622 1623
 * @vma: VMA in question
 * @vmf: fault info
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1638 1639
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1640 1641
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1642
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1643
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1644 1645
	pgoff_t page_offset;
	unsigned long pfn;
1646
	int ret;
1647

1648 1649 1650 1651
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

C
Chris Wilson 已提交
1652 1653
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1654
	/* Try to flush the object off the GPU first without holding the lock.
1655
	 * Upon acquiring the lock, we will perform our sanity checks and then
1656 1657 1658
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1659
	ret = __unsafe_wait_rendering(obj, NULL, !write);
1660
	if (ret)
1661 1662 1663 1664 1665 1666 1667
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1668

1669 1670
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1671
		ret = -EFAULT;
1672
		goto err_unlock;
1673 1674
	}

1675
	/* Use a partial view if the object is bigger than the aperture. */
1676
	if (obj->base.size >= ggtt->mappable_end &&
1677
	    obj->tiling_mode == I915_TILING_NONE) {
1678
		static const unsigned int chunk_size = 256; // 1 MiB
1679

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
1691
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1692
	if (ret)
1693
		goto err_unlock;
1694

1695 1696
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1697
		goto err_unpin;
1698

1699
	ret = i915_gem_object_get_fence(obj);
1700
	if (ret)
1701
		goto err_unpin;
1702

1703
	/* Finally, remap it using the new GTT offset */
1704
	pfn = ggtt->mappable_base +
1705
		i915_gem_obj_ggtt_offset_view(obj, &view);
1706
	pfn >>= PAGE_SHIFT;
1707

1708 1709 1710 1711 1712 1713 1714 1715 1716
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1717

1718 1719
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1720 1721 1722 1723 1724
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1746
err_unpin:
1747
	i915_gem_object_ggtt_unpin_view(obj, &view);
1748
err_unlock:
1749
	mutex_unlock(&dev->struct_mutex);
1750 1751 1752
err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
1753
	switch (ret) {
1754
	case -EIO:
1755 1756 1757 1758 1759 1760 1761
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1762 1763 1764
			ret = VM_FAULT_SIGBUS;
			break;
		}
1765
	case -EAGAIN:
D
Daniel Vetter 已提交
1766 1767 1768 1769
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1770
		 */
1771 1772
	case 0:
	case -ERESTARTSYS:
1773
	case -EINTR:
1774 1775 1776 1777 1778
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1779 1780
		ret = VM_FAULT_NOPAGE;
		break;
1781
	case -ENOMEM:
1782 1783
		ret = VM_FAULT_OOM;
		break;
1784
	case -ENOSPC:
1785
	case -EFAULT:
1786 1787
		ret = VM_FAULT_SIGBUS;
		break;
1788
	default:
1789
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1790 1791
		ret = VM_FAULT_SIGBUS;
		break;
1792
	}
1793
	return ret;
1794 1795
}

1796 1797 1798 1799
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1800
 * Preserve the reservation of the mmapping with the DRM core code, but
1801 1802 1803 1804 1805 1806 1807 1808 1809
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1810
void
1811
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1812
{
1813 1814 1815 1816 1817 1818
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1819 1820
	if (!obj->fault_mappable)
		return;
1821

1822 1823
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1834
	obj->fault_mappable = false;
1835 1836
}

1837 1838 1839 1840 1841 1842 1843 1844 1845
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1846 1847
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1848
 * @dev_priv: i915 device
1849 1850 1851 1852 1853 1854
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
1855 1856
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
1857
{
1858
	u64 ggtt_size;
1859

1860 1861
	GEM_BUG_ON(size == 0);

1862
	if (INTEL_GEN(dev_priv) >= 4 ||
1863 1864
	    tiling_mode == I915_TILING_NONE)
		return size;
1865 1866

	/* Previous chips need a power-of-two fence region when tiling */
1867
	if (IS_GEN3(dev_priv))
1868
		ggtt_size = 1024*1024;
1869
	else
1870
		ggtt_size = 512*1024;
1871

1872 1873
	while (ggtt_size < size)
		ggtt_size <<= 1;
1874

1875
	return ggtt_size;
1876 1877
}

1878
/**
1879
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
1880
 * @dev_priv: i915 device
1881 1882
 * @size: object size
 * @tiling_mode: tiling mode
1883
 * @fenced: is fenced alignment required or not
1884
 *
1885
 * Return the required global GTT alignment for an object, taking into account
1886
 * potential fence register mapping.
1887
 */
1888
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1889
				int tiling_mode, bool fenced)
1890
{
1891 1892
	GEM_BUG_ON(size == 0);

1893 1894 1895 1896
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1897
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
1898
	    tiling_mode == I915_TILING_NONE)
1899 1900
		return 4096;

1901 1902 1903 1904
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1905
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
1906 1907
}

1908 1909
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1910
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1911
	int err;
1912

1913 1914 1915
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
1916

1917 1918 1919
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
1920
	 */
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	err = i915_gem_wait_for_idle(dev_priv, true);
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
1931

1932
	return err;
1933 1934 1935 1936 1937 1938 1939
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1940
int
1941 1942
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1943
		  uint32_t handle,
1944
		  uint64_t *offset)
1945
{
1946
	struct drm_i915_gem_object *obj;
1947 1948
	int ret;

1949
	obj = i915_gem_object_lookup(file, handle);
1950 1951
	if (!obj)
		return -ENOENT;
1952

1953
	ret = i915_gem_object_create_mmap_offset(obj);
1954 1955
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1956

1957
	i915_gem_object_put_unlocked(obj);
1958
	return ret;
1959 1960
}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1982
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1983 1984
}

D
Daniel Vetter 已提交
1985 1986 1987
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1988
{
1989
	i915_gem_object_free_mmap_offset(obj);
1990

1991 1992
	if (obj->base.filp == NULL)
		return;
1993

D
Daniel Vetter 已提交
1994 1995 1996 1997 1998
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1999
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2000 2001
	obj->madv = __I915_MADV_PURGED;
}
2002

2003 2004 2005
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2006
{
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2021 2022
}

2023
static void
2024
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2025
{
2026 2027
	struct sgt_iter sgt_iter;
	struct page *page;
2028
	int ret;
2029

2030
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2031

C
Chris Wilson 已提交
2032
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2033
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2034 2035 2036
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2037
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2038 2039 2040
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2041 2042
	i915_gem_gtt_finish_object(obj);

2043
	if (i915_gem_object_needs_bit17_swizzle(obj))
2044 2045
		i915_gem_object_save_bit_17_swizzle(obj);

2046 2047
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2048

2049
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2050
		if (obj->dirty)
2051
			set_page_dirty(page);
2052

2053
		if (obj->madv == I915_MADV_WILLNEED)
2054
			mark_page_accessed(page);
2055

2056
		put_page(page);
2057
	}
2058
	obj->dirty = 0;
2059

2060 2061
	sg_free_table(obj->pages);
	kfree(obj->pages);
2062
}
C
Chris Wilson 已提交
2063

2064
int
2065 2066 2067 2068
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2069
	if (obj->pages == NULL)
2070 2071
		return 0;

2072 2073 2074
	if (obj->pages_pin_count)
		return -EBUSY;

2075
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2076

2077 2078 2079
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2080
	list_del(&obj->global_list);
2081

2082
	if (obj->mapping) {
2083 2084 2085 2086
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2087 2088 2089
		obj->mapping = NULL;
	}

2090
	ops->put_pages(obj);
2091
	obj->pages = NULL;
2092

2093
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2094 2095 2096 2097

	return 0;
}

2098
static int
C
Chris Wilson 已提交
2099
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2100
{
2101
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2102 2103
	int page_count, i;
	struct address_space *mapping;
2104 2105
	struct sg_table *st;
	struct scatterlist *sg;
2106
	struct sgt_iter sgt_iter;
2107
	struct page *page;
2108
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2109
	int ret;
C
Chris Wilson 已提交
2110
	gfp_t gfp;
2111

C
Chris Wilson 已提交
2112 2113 2114 2115 2116 2117 2118
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2119 2120 2121 2122
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2123
	page_count = obj->base.size / PAGE_SIZE;
2124 2125
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2126
		return -ENOMEM;
2127
	}
2128

2129 2130 2131 2132 2133
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2134
	mapping = file_inode(obj->base.filp)->i_mapping;
2135
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2136
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2137 2138 2139
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2140 2141
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2142 2143 2144 2145 2146
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2147 2148 2149 2150 2151 2152 2153 2154
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2155
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2156 2157
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2158
				goto err_pages;
I
Imre Deak 已提交
2159
			}
C
Chris Wilson 已提交
2160
		}
2161 2162 2163 2164 2165 2166 2167 2168
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2169 2170 2171 2172 2173 2174 2175 2176 2177
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2178 2179 2180

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2181
	}
2182 2183 2184 2185
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2186 2187
	obj->pages = st;

I
Imre Deak 已提交
2188 2189 2190 2191
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2192
	if (i915_gem_object_needs_bit17_swizzle(obj))
2193 2194
		i915_gem_object_do_bit_17_swizzle(obj);

2195 2196 2197 2198
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2199 2200 2201
	return 0;

err_pages:
2202
	sg_mark_end(sg);
2203 2204
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2205 2206
	sg_free_table(st);
	kfree(st);
2207 2208 2209 2210 2211 2212 2213 2214 2215

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2216 2217 2218 2219
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2220 2221
}

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2232
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2233 2234 2235
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2236
	if (obj->pages)
2237 2238
		return 0;

2239
	if (obj->madv != I915_MADV_WILLNEED) {
2240
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2241
		return -EFAULT;
2242 2243
	}

2244 2245
	BUG_ON(obj->pages_pin_count);

2246 2247 2248 2249
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2250
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2251 2252 2253 2254

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2255
	return 0;
2256 2257
}

2258 2259 2260 2261 2262
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2263 2264
	struct sgt_iter sgt_iter;
	struct page *page;
2265 2266
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2267 2268 2269 2270 2271 2272 2273
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2274 2275 2276 2277 2278 2279
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2280

2281 2282
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2283 2284 2285 2286 2287 2288

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2289 2290
	if (pages != stack_pages)
		drm_free_large(pages);
2291 2292 2293 2294 2295

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2308 2309 2310
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2311 2312 2313 2314 2315 2316 2317 2318
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2319
static void
2320 2321
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2322
{
2323 2324
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2325

2326
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2327 2328
}

2329
static void
2330 2331
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2332
{
2333 2334 2335
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2336

2337
	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2338

2339 2340
	i915_gem_object_clear_active(obj, idx);
	if (i915_gem_object_is_active(obj))
2341
		return;
2342

2343 2344 2345 2346
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2347 2348 2349
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2350

2351
	i915_gem_object_put(obj);
2352 2353
}

2354
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2355
{
2356
	unsigned long elapsed;
2357

2358
	if (ctx->hang_stats.banned)
2359 2360
		return true;

2361
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2362 2363
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2364 2365
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2366 2367 2368 2369 2370
	}

	return false;
}

2371
static void i915_set_reset_status(struct i915_gem_context *ctx,
2372
				  const bool guilty)
2373
{
2374
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2375 2376

	if (guilty) {
2377
		hs->banned = i915_context_is_banned(ctx);
2378 2379 2380 2381
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2382 2383 2384
	}
}

2385
struct drm_i915_gem_request *
2386
i915_gem_find_active_request(struct intel_engine_cs *engine)
2387
{
2388 2389
	struct drm_i915_gem_request *request;

2390 2391 2392 2393 2394 2395 2396 2397
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2398
	list_for_each_entry(request, &engine->request_list, link) {
2399
		if (i915_gem_request_completed(request))
2400
			continue;
2401

2402
		return request;
2403
	}
2404 2405 2406 2407

	return NULL;
}

2408
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2409 2410 2411 2412
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2413
	request = i915_gem_find_active_request(engine);
2414 2415 2416
	if (request == NULL)
		return;

2417
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2418

2419
	i915_set_reset_status(request->ctx, ring_hung);
2420
	list_for_each_entry_continue(request, &engine->request_list, link)
2421
		i915_set_reset_status(request->ctx, false);
2422
}
2423

2424
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2425
{
2426
	struct drm_i915_gem_request *request;
2427
	struct intel_ring *ring;
2428

2429 2430 2431
	request = i915_gem_active_peek(&engine->last_request,
				       &engine->i915->drm.struct_mutex);

2432 2433 2434 2435
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2436 2437
	if (request)
		intel_engine_init_seqno(engine, request->fence.seqno);
2438

2439 2440 2441 2442 2443 2444
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2445
	if (i915.enable_execlists) {
2446 2447
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2448

2449
		intel_execlists_cancel_requests(engine);
2450 2451
	}

2452 2453 2454 2455 2456 2457 2458
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2459
	if (request)
2460
		i915_gem_request_retire_upto(request);
2461
	GEM_BUG_ON(intel_engine_is_active(engine));
2462 2463 2464 2465 2466 2467 2468 2469

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2470 2471 2472
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2473
	}
2474

2475
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2476 2477
}

2478
void i915_gem_reset(struct drm_device *dev)
2479
{
2480
	struct drm_i915_private *dev_priv = to_i915(dev);
2481
	struct intel_engine_cs *engine;
2482

2483 2484 2485 2486 2487
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2488
	for_each_engine(engine, dev_priv)
2489
		i915_gem_reset_engine_status(engine);
2490

2491
	for_each_engine(engine, dev_priv)
2492
		i915_gem_reset_engine_cleanup(engine);
2493
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2494

2495 2496
	i915_gem_context_reset(dev);

2497
	i915_gem_restore_fences(dev);
2498 2499
}

2500
static void
2501 2502
i915_gem_retire_work_handler(struct work_struct *work)
{
2503
	struct drm_i915_private *dev_priv =
2504
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2505
	struct drm_device *dev = &dev_priv->drm;
2506

2507
	/* Come back later if the device is busy... */
2508
	if (mutex_trylock(&dev->struct_mutex)) {
2509
		i915_gem_retire_requests(dev_priv);
2510
		mutex_unlock(&dev->struct_mutex);
2511
	}
2512 2513 2514 2515 2516

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2517 2518
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2519 2520
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2521
				   round_jiffies_up_relative(HZ));
2522
	}
2523
}
2524

2525 2526 2527 2528
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2529
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2530
	struct drm_device *dev = &dev_priv->drm;
2531
	struct intel_engine_cs *engine;
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
	unsigned int stuck_engines;
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2554

2555
	for_each_engine(engine, dev_priv)
2556
		i915_gem_batch_pool_fini(&engine->batch_pool);
2557

2558 2559 2560
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2561

2562 2563 2564 2565
	/* As we have disabled hangcheck, we need to unstick any waiters still
	 * hanging around. However, as we may be racing against the interrupt
	 * handler or the waiters themselves, we skip enabling the fake-irq.
	 */
2566
	stuck_engines = intel_kick_waiters(dev_priv);
2567 2568 2569
	if (unlikely(stuck_engines))
		DRM_DEBUG_DRIVER("kicked stuck waiters (%x)...missed irq?\n",
				 stuck_engines);
2570

2571 2572 2573 2574 2575
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2576

2577 2578 2579 2580
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2581
	}
2582 2583
}

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2597 2598
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2599 2600 2601
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
2625
	struct intel_rps_client *rps = to_rps_client(file);
2626
	struct drm_i915_gem_object *obj;
2627 2628
	unsigned long active;
	int idx, ret = 0;
2629

2630 2631 2632
	if (args->flags != 0)
		return -EINVAL;

2633
	obj = i915_gem_object_lookup(file, args->bo_handle);
2634
	if (!obj)
2635 2636
		return -ENOENT;

2637 2638 2639 2640 2641 2642 2643
	active = __I915_BO_ACTIVE(obj);
	for_each_active(active, idx) {
		s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
		ret = i915_gem_active_wait_unlocked(&obj->last_read[idx], true,
						    timeout, rps);
		if (ret)
			break;
2644 2645
	}

2646
	i915_gem_object_put_unlocked(obj);
2647
	return ret;
2648 2649
}

2650
static int
2651
__i915_gem_object_sync(struct drm_i915_gem_request *to,
2652
		       struct drm_i915_gem_request *from)
2653 2654 2655
{
	int ret;

2656
	if (to->engine == from->engine)
2657 2658
		return 0;

2659
	if (!i915.semaphores) {
2660 2661 2662 2663
		ret = i915_wait_request(from,
					from->i915->mm.interruptible,
					NULL,
					NO_WAITBOOST);
2664 2665 2666
		if (ret)
			return ret;
	} else {
2667
		int idx = intel_engine_sync_index(from->engine, to->engine);
2668
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2669 2670
			return 0;

2671
		trace_i915_gem_ring_sync_to(to, from);
2672
		ret = to->engine->semaphore.sync_to(to, from);
2673 2674 2675
		if (ret)
			return ret;

2676
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2677 2678 2679 2680 2681
	}

	return 0;
}

2682 2683 2684 2685
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2686
 * @to: request we are wishing to use
2687 2688
 *
 * This code is meant to abstract object synchronization with the GPU.
2689 2690 2691
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2692 2693 2694 2695 2696 2697 2698
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2699 2700 2701
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2702 2703
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2704
		     struct drm_i915_gem_request *to)
2705
{
C
Chris Wilson 已提交
2706 2707 2708
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;
2709

C
Chris Wilson 已提交
2710
	lockdep_assert_held(&obj->base.dev->struct_mutex);
2711

2712
	active_mask = i915_gem_object_get_active(obj);
C
Chris Wilson 已提交
2713 2714
	if (!active_mask)
		return 0;
2715

C
Chris Wilson 已提交
2716 2717
	if (obj->base.pending_write_domain) {
		active = obj->last_read;
2718
	} else {
C
Chris Wilson 已提交
2719 2720
		active_mask = 1;
		active = &obj->last_write;
2721
	}
C
Chris Wilson 已提交
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731

	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
		int ret;

		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

2732
		ret = __i915_gem_object_sync(to, request);
2733 2734 2735
		if (ret)
			return ret;
	}
2736

2737
	return 0;
2738 2739
}

2740 2741 2742 2743 2744 2745 2746
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2747 2748 2749
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2761 2762
static void __i915_vma_iounmap(struct i915_vma *vma)
{
2763
	GEM_BUG_ON(i915_vma_is_pinned(vma));
2764 2765 2766 2767 2768 2769 2770 2771

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2772
int i915_vma_unbind(struct i915_vma *vma)
2773
{
2774
	struct drm_i915_gem_object *obj = vma->obj;
2775
	unsigned long active;
2776
	int ret;
2777

2778 2779 2780 2781
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2782
	if (active) {
2783 2784
		int idx;

2785 2786 2787 2788 2789
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
2790
		__i915_vma_pin(vma);
2791

2792 2793 2794 2795
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2796
				break;
2797 2798
		}

2799
		__i915_vma_unpin(vma);
2800 2801 2802
		if (ret)
			return ret;

2803 2804 2805
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

2806
	if (i915_vma_is_pinned(vma))
2807 2808
		return -EBUSY;

2809 2810
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2811

2812 2813
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2814

2815 2816
	if (i915_vma_is_ggtt(vma) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2817
		i915_gem_object_finish_gtt(obj);
2818

2819 2820 2821 2822
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
2823 2824

		__i915_vma_iounmap(vma);
2825
	}
2826

2827 2828 2829 2830
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
2831
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2832

2833 2834 2835
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

2836
	if (i915_vma_is_ggtt(vma)) {
2837 2838 2839 2840 2841 2842
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
2843
		vma->ggtt_view.pages = NULL;
2844
	}
2845

B
Ben Widawsky 已提交
2846
	/* Since the unbound list is global, only move to that list if
2847
	 * no more VMAs exist. */
2848 2849 2850
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
2851

2852 2853 2854 2855 2856 2857
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2858
destroy:
2859
	if (unlikely(i915_vma_is_closed(vma)))
2860 2861
		i915_vma_destroy(vma);

2862
	return 0;
2863 2864
}

2865 2866
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
			   bool interruptible)
2867
{
2868
	struct intel_engine_cs *engine;
2869
	int ret;
2870

2871
	for_each_engine(engine, dev_priv) {
2872 2873 2874
		if (engine->last_context == NULL)
			continue;

2875
		ret = intel_engine_idle(engine, interruptible);
2876 2877 2878
		if (ret)
			return ret;
	}
2879

2880
	return 0;
2881 2882
}

2883
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2884 2885
				     unsigned long cache_level)
{
2886
	struct drm_mm_node *gtt_space = &vma->node;
2887 2888
	struct drm_mm_node *other;

2889 2890 2891 2892 2893 2894
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
2895
	 */
2896
	if (vma->vm->mm.color_adjust == NULL)
2897 2898
		return true;

2899
	if (!drm_mm_node_allocated(gtt_space))
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

2916
/**
2917 2918
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
2919
 * @size: requested size in bytes (can be larger than the VMA)
2920
 * @alignment: required alignment
2921
 * @flags: mask of PIN_* flags to use
2922 2923 2924 2925 2926 2927 2928
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
2929
 */
2930 2931
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
2932
{
2933 2934
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
2935 2936
	u64 start, end;
	u64 min_alignment;
2937
	int ret;
2938

2939
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
2940
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
		size = i915_gem_get_ggtt_size(dev_priv, size, obj->tiling_mode);

	min_alignment =
		i915_gem_get_ggtt_alignment(dev_priv, size, obj->tiling_mode,
					    flags & PIN_MAPPABLE);
	if (alignment == 0)
		alignment = min_alignment;
	if (alignment & (min_alignment - 1)) {
		DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
			  alignment, min_alignment);
2954
		return -EINVAL;
2955
	}
2956

2957
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
2958 2959

	end = vma->vm->total;
2960
	if (flags & PIN_MAPPABLE)
2961
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
2962
	if (flags & PIN_ZONE_4G)
2963
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
2964

2965 2966 2967
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
2968
	 */
2969
	if (size > end) {
2970
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
2971
			  size, obj->base.size,
2972
			  flags & PIN_MAPPABLE ? "mappable" : "total",
2973
			  end);
2974
		return -E2BIG;
2975 2976
	}

2977
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
2978
	if (ret)
2979
		return ret;
C
Chris Wilson 已提交
2980

2981 2982
	i915_gem_object_pin_pages(obj);

2983
	if (flags & PIN_OFFSET_FIXED) {
2984
		u64 offset = flags & PIN_OFFSET_MASK;
2985
		if (offset & (alignment - 1) || offset > end - size) {
2986
			ret = -EINVAL;
2987
			goto err_unpin;
2988
		}
2989

2990 2991 2992
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
2993
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
2994 2995 2996
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
2997 2998 2999
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3000
		}
3001
	} else {
3002 3003
		u32 search_flag, alloc_flag;

3004 3005 3006 3007 3008 3009 3010
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3011

3012 3013 3014 3015 3016 3017 3018 3019 3020
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3021
search_free:
3022 3023
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3024 3025 3026 3027 3028 3029
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3030
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3031 3032 3033 3034 3035
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3036

3037
			goto err_unpin;
3038
		}
3039
	}
3040
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3041

3042
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3043
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3044
	obj->bind_count++;
3045

3046
	return 0;
B
Ben Widawsky 已提交
3047

3048
err_unpin:
B
Ben Widawsky 已提交
3049
	i915_gem_object_unpin_pages(obj);
3050
	return ret;
3051 3052
}

3053
bool
3054 3055
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3056 3057 3058 3059 3060
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3061
	if (obj->pages == NULL)
3062
		return false;
3063

3064 3065 3066 3067
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3068
	if (obj->stolen || obj->phys_handle)
3069
		return false;
3070

3071 3072 3073 3074 3075 3076 3077 3078
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3079 3080
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3081
		return false;
3082
	}
3083

C
Chris Wilson 已提交
3084
	trace_i915_gem_object_clflush(obj);
3085
	drm_clflush_sg(obj->pages);
3086
	obj->cache_dirty = false;
3087 3088

	return true;
3089 3090 3091 3092
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3093
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3094
{
C
Chris Wilson 已提交
3095 3096
	uint32_t old_write_domain;

3097
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3098 3099
		return;

3100
	/* No actual flushing is required for the GTT write domain.  Writes
3101 3102
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3103 3104 3105 3106
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3107
	 */
3108 3109
	wmb();

3110 3111
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3112

3113
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3114

C
Chris Wilson 已提交
3115
	trace_i915_gem_object_change_domain(obj,
3116
					    obj->base.read_domains,
C
Chris Wilson 已提交
3117
					    old_write_domain);
3118 3119 3120 3121
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3122
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3123
{
C
Chris Wilson 已提交
3124
	uint32_t old_write_domain;
3125

3126
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3127 3128
		return;

3129
	if (i915_gem_clflush_object(obj, obj->pin_display))
3130
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3131

3132 3133
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3134

3135
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3136

C
Chris Wilson 已提交
3137
	trace_i915_gem_object_change_domain(obj,
3138
					    obj->base.read_domains,
C
Chris Wilson 已提交
3139
					    old_write_domain);
3140 3141
}

3142 3143
/**
 * Moves a single object to the GTT read, and possibly write domain.
3144 3145
 * @obj: object to act on
 * @write: ask for write access or read only
3146 3147 3148 3149
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3150
int
3151
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3152
{
C
Chris Wilson 已提交
3153
	uint32_t old_write_domain, old_read_domains;
3154
	struct i915_vma *vma;
3155
	int ret;
3156

3157
	ret = i915_gem_object_wait_rendering(obj, !write);
3158 3159 3160
	if (ret)
		return ret;

3161 3162 3163
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3176
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3177

3178 3179 3180 3181 3182 3183 3184
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3185 3186
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3187

3188 3189 3190
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3191 3192
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3193
	if (write) {
3194 3195 3196
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3197 3198
	}

C
Chris Wilson 已提交
3199 3200 3201 3202
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3203
	/* And bump the LRU for this access */
3204
	vma = i915_gem_obj_to_ggtt(obj);
3205 3206 3207 3208
	if (vma &&
	    drm_mm_node_allocated(&vma->node) &&
	    !i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3209

3210 3211 3212
	return 0;
}

3213 3214
/**
 * Changes the cache-level of an object across all VMA.
3215 3216
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3228 3229 3230
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3231
	struct i915_vma *vma;
3232
	int ret = 0;
3233 3234

	if (obj->cache_level == cache_level)
3235
		goto out;
3236

3237 3238 3239 3240 3241
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3242 3243
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3244 3245 3246
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3247
		if (i915_vma_is_pinned(vma)) {
3248 3249 3250 3251
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3264 3265
	}

3266 3267 3268 3269 3270 3271 3272
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3273
	if (obj->bind_count) {
3274 3275 3276 3277
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3278
		ret = i915_gem_object_wait_rendering(obj, false);
3279 3280 3281
		if (ret)
			return ret;

3282
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3299 3300 3301
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3302 3303 3304 3305 3306 3307 3308 3309
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3310 3311
		}

3312
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3313 3314 3315 3316 3317 3318 3319
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3320 3321
	}

3322
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3323 3324 3325
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3326
out:
3327 3328 3329 3330
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3331
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3332
		if (i915_gem_clflush_object(obj, true))
3333
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3334 3335 3336 3337 3338
	}

	return 0;
}

B
Ben Widawsky 已提交
3339 3340
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3341
{
B
Ben Widawsky 已提交
3342
	struct drm_i915_gem_caching *args = data;
3343 3344
	struct drm_i915_gem_object *obj;

3345 3346
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3347
		return -ENOENT;
3348

3349 3350 3351 3352 3353 3354
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3355 3356 3357 3358
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3359 3360 3361 3362
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3363

3364
	i915_gem_object_put_unlocked(obj);
3365
	return 0;
3366 3367
}

B
Ben Widawsky 已提交
3368 3369
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3370
{
3371
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3372
	struct drm_i915_gem_caching *args = data;
3373 3374 3375 3376
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3377 3378
	switch (args->caching) {
	case I915_CACHING_NONE:
3379 3380
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3381
	case I915_CACHING_CACHED:
3382 3383 3384 3385 3386 3387
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3388
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3389 3390
			return -ENODEV;

3391 3392
		level = I915_CACHE_LLC;
		break;
3393 3394 3395
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3396 3397 3398 3399
	default:
		return -EINVAL;
	}

3400 3401
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3402 3403
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3404
		goto rpm_put;
B
Ben Widawsky 已提交
3405

3406 3407
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3408 3409 3410 3411 3412 3413
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3414
	i915_gem_object_put(obj);
3415 3416
unlock:
	mutex_unlock(&dev->struct_mutex);
3417 3418 3419
rpm_put:
	intel_runtime_pm_put(dev_priv);

3420 3421 3422
	return ret;
}

3423
/*
3424 3425 3426
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3427 3428
 */
int
3429 3430
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3431
				     const struct i915_ggtt_view *view)
3432
{
3433
	u32 old_read_domains, old_write_domain;
3434 3435
	int ret;

3436 3437 3438
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3439
	obj->pin_display++;
3440

3441 3442 3443 3444 3445 3446 3447 3448 3449
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3450 3451
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3452
	if (ret)
3453
		goto err_unpin_display;
3454

3455 3456 3457 3458
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3459
	ret = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3460 3461
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3462
	if (ret)
3463
		goto err_unpin_display;
3464

3465
	i915_gem_object_flush_cpu_write_domain(obj);
3466

3467
	old_write_domain = obj->base.write_domain;
3468
	old_read_domains = obj->base.read_domains;
3469 3470 3471 3472

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3473
	obj->base.write_domain = 0;
3474
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3475 3476 3477

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3478
					    old_write_domain);
3479 3480

	return 0;
3481 3482

err_unpin_display:
3483
	obj->pin_display--;
3484 3485 3486 3487
	return ret;
}

void
3488 3489
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3490
{
3491 3492 3493
	if (WARN_ON(obj->pin_display == 0))
		return;

3494 3495
	i915_gem_object_ggtt_unpin_view(obj, view);

3496
	obj->pin_display--;
3497 3498
}

3499 3500
/**
 * Moves a single object to the CPU read, and possibly write domain.
3501 3502
 * @obj: object to act on
 * @write: requesting write or read-only access
3503 3504 3505 3506
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3507
int
3508
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3509
{
C
Chris Wilson 已提交
3510
	uint32_t old_write_domain, old_read_domains;
3511 3512
	int ret;

3513
	ret = i915_gem_object_wait_rendering(obj, !write);
3514 3515 3516
	if (ret)
		return ret;

3517 3518 3519
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3520
	i915_gem_object_flush_gtt_write_domain(obj);
3521

3522 3523
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3524

3525
	/* Flush the CPU cache if it's still invalid. */
3526
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3527
		i915_gem_clflush_object(obj, false);
3528

3529
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3530 3531 3532 3533 3534
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3535
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3536 3537 3538 3539 3540

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3541 3542
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3543
	}
3544

C
Chris Wilson 已提交
3545 3546 3547 3548
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3549 3550 3551
	return 0;
}

3552 3553 3554
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3555 3556 3557 3558
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3559 3560 3561
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3562
static int
3563
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3564
{
3565
	struct drm_i915_private *dev_priv = to_i915(dev);
3566
	struct drm_i915_file_private *file_priv = file->driver_priv;
3567
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3568
	struct drm_i915_gem_request *request, *target = NULL;
3569
	int ret;
3570

3571 3572 3573 3574
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3575 3576 3577
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3578

3579
	spin_lock(&file_priv->mm.lock);
3580
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3581 3582
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3583

3584 3585 3586 3587 3588 3589 3590
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3591
		target = request;
3592
	}
3593
	if (target)
3594
		i915_gem_request_get(target);
3595
	spin_unlock(&file_priv->mm.lock);
3596

3597
	if (target == NULL)
3598
		return 0;
3599

3600
	ret = i915_wait_request(target, true, NULL, NULL);
3601
	i915_gem_request_put(target);
3602

3603 3604 3605
	return ret;
}

3606
static bool
3607
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3608 3609 3610
{
	struct drm_i915_gem_object *obj = vma->obj;

3611 3612 3613
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3614 3615 3616 3617
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3618 3619 3620 3621 3622 3623 3624 3625 3626
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3627 3628 3629 3630
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3631 3632 3633
	return false;
}

3634 3635 3636
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3637
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3638 3639 3640
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3641
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3642 3643
					    obj->base.size,
					    obj->tiling_mode);
3644
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3645 3646 3647
						      obj->base.size,
						      obj->tiling_mode,
						      true);
3648 3649 3650 3651 3652

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3653
		    dev_priv->ggtt.mappable_end);
3654 3655 3656 3657

	obj->map_and_fenceable = mappable && fenceable;
}

3658 3659
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3660
{
3661
	unsigned int bound = vma->flags;
3662 3663
	int ret;

3664
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3665
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3666

3667 3668 3669 3670
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3671

3672
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3673 3674 3675
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3676
	}
3677

3678
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3679
	if (ret)
3680
		goto err;
3681

3682
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3683
		__i915_vma_set_map_and_fenceable(vma);
3684

3685
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3686 3687
	return 0;

3688 3689 3690
err:
	__i915_vma_unpin(vma);
	return ret;
3691 3692 3693 3694 3695
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3696
			 u64 size,
3697 3698
			 u64 alignment,
			 u64 flags)
3699
{
3700 3701
	struct i915_vma *vma;
	int ret;
3702

3703 3704
	if (!view)
		view = &i915_ggtt_view_normal;
3705

3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
	vma = i915_gem_obj_lookup_or_create_ggtt_vma(obj, view);
	if (IS_ERR(vma))
		return PTR_ERR(vma);

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
			return -ENOSPC;

		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
		     " offset=%08x %08x, req.alignment=%llx, req.map_and_fenceable=%d,"
		     " obj->map_and_fenceable=%d\n",
		     upper_32_bits(vma->node.start),
		     lower_32_bits(vma->node.start),
		     alignment,
		     !!(flags & PIN_MAPPABLE),
		     obj->map_and_fenceable);
		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;
	}

	return i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3730 3731
}

3732
void
3733 3734
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
3735
{
3736
	i915_vma_unpin(i915_gem_obj_to_ggtt_view(obj, view));
3737 3738 3739 3740
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3741
		    struct drm_file *file)
3742 3743
{
	struct drm_i915_gem_busy *args = data;
3744
	struct drm_i915_gem_object *obj;
3745 3746
	int ret;

3747
	ret = i915_mutex_lock_interruptible(dev);
3748
	if (ret)
3749
		return ret;
3750

3751 3752
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3753 3754
		ret = -ENOENT;
		goto unlock;
3755
	}
3756

3757 3758
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
3759
	 * become non-busy without any further actions.
3760
	 */
3761
	args->busy = 0;
3762
	if (i915_gem_object_is_active(obj)) {
3763
		struct drm_i915_gem_request *req;
3764 3765
		int i;

3766
		for (i = 0; i < I915_NUM_ENGINES; i++) {
3767 3768
			req = i915_gem_active_peek(&obj->last_read[i],
						   &obj->base.dev->struct_mutex);
3769
			if (req)
3770
				args->busy |= 1 << (16 + req->engine->exec_id);
3771
		}
3772 3773
		req = i915_gem_active_peek(&obj->last_write,
					   &obj->base.dev->struct_mutex);
3774 3775
		if (req)
			args->busy |= req->engine->exec_id;
3776
	}
3777

3778
	i915_gem_object_put(obj);
3779
unlock:
3780
	mutex_unlock(&dev->struct_mutex);
3781
	return ret;
3782 3783 3784 3785 3786 3787
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3788
	return i915_gem_ring_throttle(dev, file_priv);
3789 3790
}

3791 3792 3793 3794
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3795
	struct drm_i915_private *dev_priv = to_i915(dev);
3796
	struct drm_i915_gem_madvise *args = data;
3797
	struct drm_i915_gem_object *obj;
3798
	int ret;
3799 3800 3801 3802 3803 3804 3805 3806 3807

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3808 3809 3810 3811
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3812 3813
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
3814 3815
		ret = -ENOENT;
		goto unlock;
3816 3817
	}

B
Ben Widawsky 已提交
3818
	if (i915_gem_obj_is_pinned(obj)) {
3819 3820
		ret = -EINVAL;
		goto out;
3821 3822
	}

3823 3824 3825 3826 3827 3828 3829 3830 3831
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

3832 3833
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3834

C
Chris Wilson 已提交
3835
	/* if the object is no longer attached, discard its backing storage */
3836
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
3837 3838
		i915_gem_object_truncate(obj);

3839
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3840

3841
out:
3842
	i915_gem_object_put(obj);
3843
unlock:
3844
	mutex_unlock(&dev->struct_mutex);
3845
	return ret;
3846 3847
}

3848 3849
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3850
{
3851 3852
	int i;

3853
	INIT_LIST_HEAD(&obj->global_list);
3854
	for (i = 0; i < I915_NUM_ENGINES; i++)
3855 3856 3857 3858 3859
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
	init_request_active(&obj->last_fence, NULL);
3860
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3861
	INIT_LIST_HEAD(&obj->vma_list);
3862
	INIT_LIST_HEAD(&obj->batch_pool_link);
3863

3864 3865
	obj->ops = ops;

3866 3867 3868
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

3869
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3870 3871
}

3872
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3873
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
3874 3875 3876 3877
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3878
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3879
						  size_t size)
3880
{
3881
	struct drm_i915_gem_object *obj;
3882
	struct address_space *mapping;
D
Daniel Vetter 已提交
3883
	gfp_t mask;
3884
	int ret;
3885

3886
	obj = i915_gem_object_alloc(dev);
3887
	if (obj == NULL)
3888
		return ERR_PTR(-ENOMEM);
3889

3890 3891 3892
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
3893

3894 3895 3896 3897 3898 3899 3900
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
3901
	mapping = file_inode(obj->base.filp)->i_mapping;
3902
	mapping_set_gfp_mask(mapping, mask);
3903

3904
	i915_gem_object_init(obj, &i915_gem_object_ops);
3905

3906 3907
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3908

3909 3910
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3926 3927
	trace_i915_gem_object_create(obj);

3928
	return obj;
3929 3930 3931 3932 3933

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
3934 3935
}

3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

3960
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3961
{
3962
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3963
	struct drm_device *dev = obj->base.dev;
3964
	struct drm_i915_private *dev_priv = to_i915(dev);
3965
	struct i915_vma *vma, *next;
3966

3967 3968
	intel_runtime_pm_get(dev_priv);

3969 3970
	trace_i915_gem_object_destroy(obj);

3971 3972 3973 3974 3975 3976 3977
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
3978
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3979
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
3980
		GEM_BUG_ON(i915_vma_is_active(vma));
3981
		vma->flags &= ~I915_VMA_PIN_MASK;
3982
		i915_vma_close(vma);
3983
	}
3984
	GEM_BUG_ON(obj->bind_count);
3985

B
Ben Widawsky 已提交
3986 3987 3988 3989 3990
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

3991
	WARN_ON(atomic_read(&obj->frontbuffer_bits));
3992

3993 3994 3995 3996 3997
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
3998 3999
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4000
	if (discard_backing_storage(obj))
4001
		obj->madv = I915_MADV_DONTNEED;
4002
	i915_gem_object_put_pages(obj);
4003

4004 4005
	BUG_ON(obj->pages);

4006 4007
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4008

4009 4010 4011
	if (obj->ops->release)
		obj->ops->release(obj);

4012 4013
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4014

4015
	kfree(obj->bit_17);
4016
	i915_gem_object_free(obj);
4017 4018

	intel_runtime_pm_put(dev_priv);
4019 4020
}

4021 4022
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4023 4024
{
	struct i915_vma *vma;
4025
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4026 4027
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4028
			return vma;
4029 4030 4031 4032 4033 4034 4035 4036
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4037

4038
	GEM_BUG_ON(!view);
4039

4040
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4041 4042
		if (i915_vma_is_ggtt(vma) &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4043
			return vma;
4044 4045 4046
	return NULL;
}

4047
int i915_gem_suspend(struct drm_device *dev)
4048
{
4049
	struct drm_i915_private *dev_priv = to_i915(dev);
4050
	int ret;
4051

4052 4053
	intel_suspend_gt_powersave(dev_priv);

4054
	mutex_lock(&dev->struct_mutex);
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4068
	ret = i915_gem_wait_for_idle(dev_priv, true);
4069
	if (ret)
4070
		goto err;
4071

4072
	i915_gem_retire_requests(dev_priv);
4073

4074
	i915_gem_context_lost(dev_priv);
4075 4076
	mutex_unlock(&dev->struct_mutex);

4077
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4078 4079
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4080

4081 4082 4083
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4084
	WARN_ON(dev_priv->gt.awake);
4085

4086
	return 0;
4087 4088 4089 4090

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4091 4092
}

4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4110 4111
void i915_gem_init_swizzling(struct drm_device *dev)
{
4112
	struct drm_i915_private *dev_priv = to_i915(dev);
4113

4114
	if (INTEL_INFO(dev)->gen < 5 ||
4115 4116 4117 4118 4119 4120
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4121 4122 4123
	if (IS_GEN5(dev))
		return;

4124 4125
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4126
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4127
	else if (IS_GEN7(dev))
4128
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4129 4130
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4131 4132
	else
		BUG();
4133
}
D
Daniel Vetter 已提交
4134

4135 4136
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4137
	struct drm_i915_private *dev_priv = to_i915(dev);
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4162 4163 4164
int
i915_gem_init_hw(struct drm_device *dev)
{
4165
	struct drm_i915_private *dev_priv = to_i915(dev);
4166
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4167
	int ret;
4168

4169 4170 4171
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4172
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4173
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4174

4175 4176 4177
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4178

4179
	if (HAS_PCH_NOP(dev)) {
4180 4181 4182 4183 4184 4185 4186 4187 4188
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4189 4190
	}

4191 4192
	i915_gem_init_swizzling(dev);

4193 4194 4195 4196 4197 4198 4199 4200
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4201
	BUG_ON(!dev_priv->kernel_context);
4202

4203 4204 4205 4206 4207 4208 4209
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4210
	for_each_engine(engine, dev_priv) {
4211
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4212
		if (ret)
4213
			goto out;
D
Daniel Vetter 已提交
4214
	}
4215

4216 4217
	intel_mocs_init_l3cc_table(dev);

4218
	/* We can't enable contexts until all firmware is loaded */
4219 4220 4221
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4222

4223 4224
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4225
	return ret;
4226 4227
}

4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4249 4250
int i915_gem_init(struct drm_device *dev)
{
4251
	struct drm_i915_private *dev_priv = to_i915(dev);
4252 4253 4254
	int ret;

	mutex_lock(&dev->struct_mutex);
4255

4256
	if (!i915.enable_execlists) {
4257
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4258
	} else {
4259
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4260 4261
	}

4262 4263 4264 4265 4266 4267 4268 4269
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4270
	i915_gem_init_userptr(dev_priv);
4271 4272 4273 4274

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4275

4276
	ret = i915_gem_context_init(dev);
4277 4278
	if (ret)
		goto out_unlock;
4279

4280
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4281
	if (ret)
4282
		goto out_unlock;
4283

4284
	ret = i915_gem_init_hw(dev);
4285
	if (ret == -EIO) {
4286
		/* Allow engine initialisation to fail by marking the GPU as
4287 4288 4289 4290
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4291
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4292
		ret = 0;
4293
	}
4294 4295

out_unlock:
4296
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4297
	mutex_unlock(&dev->struct_mutex);
4298

4299
	return ret;
4300 4301
}

4302
void
4303
i915_gem_cleanup_engines(struct drm_device *dev)
4304
{
4305
	struct drm_i915_private *dev_priv = to_i915(dev);
4306
	struct intel_engine_cs *engine;
4307

4308
	for_each_engine(engine, dev_priv)
4309
		dev_priv->gt.cleanup_engine(engine);
4310 4311
}

4312
static void
4313
init_engine_lists(struct intel_engine_cs *engine)
4314
{
4315
	INIT_LIST_HEAD(&engine->request_list);
4316 4317
}

4318 4319 4320
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4321
	struct drm_device *dev = &dev_priv->drm;
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4332
	if (intel_vgpu_active(dev_priv))
4333 4334 4335 4336 4337 4338 4339 4340 4341
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4342
void
4343
i915_gem_load_init(struct drm_device *dev)
4344
{
4345
	struct drm_i915_private *dev_priv = to_i915(dev);
4346 4347
	int i;

4348
	dev_priv->objects =
4349 4350 4351 4352
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4353 4354 4355 4356 4357
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4358 4359 4360
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
4361 4362 4363
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_DESTROY_BY_RCU,
4364
				  NULL);
4365

4366
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4367 4368
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4369
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4370 4371
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4372
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4373
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4374
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4375
			  i915_gem_retire_work_handler);
4376
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4377
			  i915_gem_idle_work_handler);
4378
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4379
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4380

4381 4382
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4383
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4384

4385
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4386

4387 4388
	dev_priv->mm.interruptible = true;

4389
	spin_lock_init(&dev_priv->fb_tracking.lock);
4390
}
4391

4392 4393 4394 4395 4396 4397 4398
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4399 4400 4401

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4402 4403
}

4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4432
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4433
{
4434
	struct drm_i915_file_private *file_priv = file->driver_priv;
4435
	struct drm_i915_gem_request *request;
4436 4437 4438 4439 4440

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4441
	spin_lock(&file_priv->mm.lock);
4442
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4443
		request->file_priv = NULL;
4444
	spin_unlock(&file_priv->mm.lock);
4445

4446
	if (!list_empty(&file_priv->rps.link)) {
4447
		spin_lock(&to_i915(dev)->rps.client_lock);
4448
		list_del(&file_priv->rps.link);
4449
		spin_unlock(&to_i915(dev)->rps.client_lock);
4450
	}
4451 4452 4453 4454 4455
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4456
	int ret;
4457 4458 4459 4460 4461 4462 4463 4464

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4465
	file_priv->dev_priv = to_i915(dev);
4466
	file_priv->file = file;
4467
	INIT_LIST_HEAD(&file_priv->rps.link);
4468 4469 4470 4471

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4472
	file_priv->bsd_engine = -1;
4473

4474 4475 4476
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4477

4478
	return ret;
4479 4480
}

4481 4482
/**
 * i915_gem_track_fb - update frontbuffer tracking
4483 4484 4485
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4486 4487 4488 4489
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4490 4491 4492 4493
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4494 4495 4496 4497 4498 4499 4500 4501 4502
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4503
	if (old) {
4504 4505
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4506 4507 4508
	}

	if (new) {
4509 4510
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4511 4512 4513
	}
}

4514
/* All the new VM stuff */
4515 4516
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
4517
{
4518
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
4519 4520
	struct i915_vma *vma;

4521
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4522

4523
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4524
		if (i915_vma_is_ggtt(vma) &&
4525 4526 4527
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4528 4529
			return vma->node.start;
	}
4530

4531 4532
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4533 4534 4535
	return -1;
}

4536 4537
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
4538 4539 4540
{
	struct i915_vma *vma;

4541
	list_for_each_entry(vma, &o->vma_list, obj_link)
4542 4543
		if (i915_vma_is_ggtt(vma) &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4544 4545
			return vma->node.start;

4546
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
4547 4548 4549 4550 4551 4552 4553 4554
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

4555
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4556
		if (i915_vma_is_ggtt(vma) &&
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
4567
				  const struct i915_ggtt_view *view)
4568 4569 4570
{
	struct i915_vma *vma;

4571
	list_for_each_entry(vma, &o->vma_list, obj_link)
4572
		if (i915_vma_is_ggtt(vma) &&
4573
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
4574
		    drm_mm_node_allocated(&vma->node))
4575 4576 4577 4578 4579
			return true;

	return false;
}

4580
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
4581 4582 4583
{
	struct i915_vma *vma;

4584
	GEM_BUG_ON(list_empty(&o->vma_list));
4585

4586
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4587
		if (i915_vma_is_ggtt(vma) &&
4588
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
4589
			return vma->node.size;
4590
	}
4591

4592 4593 4594
	return 0;
}

4595
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
4596 4597
{
	struct i915_vma *vma;
4598
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4599
		if (i915_vma_is_pinned(vma))
4600
			return true;
4601

4602
	return false;
4603
}
4604

4605 4606 4607 4608 4609 4610 4611
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4612
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4613 4614 4615 4616 4617 4618 4619
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4630
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4631
	if (IS_ERR(obj))
4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4645
	obj->dirty = 1;		/* Backing store is now out of date */
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4657
	i915_gem_object_put(obj);
4658 4659
	return ERR_PTR(ret);
}