i915_gem.c 134.2 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_frontbuffer.h"
36
#include "intel_mocs.h"
37
#include <linux/dma-fence-array.h>
38
#include <linux/kthread.h>
39
#include <linux/reservation.h>
40
#include <linux/shmem_fs.h>
41
#include <linux/slab.h>
42
#include <linux/stop_machine.h>
43
#include <linux/swap.h>
J
Jesse Barnes 已提交
44
#include <linux/pci.h>
45
#include <linux/dma-buf.h>
46

47
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
48
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
49
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
50

51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
54
	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
55 56
}

57 58
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
59 60 61
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

62 63 64 65 66 67
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

68
static int
69
insert_mappable_node(struct i915_ggtt *ggtt,
70 71 72
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
73 74 75 76
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
77 78 79 80 81 82 83 84
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
87
				  u64 size)
88
{
89
	spin_lock(&dev_priv->mm.object_stat_lock);
90 91
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
92
	spin_unlock(&dev_priv->mm.object_stat_lock);
93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
96
				     u64 size)
97
{
98
	spin_lock(&dev_priv->mm.object_stat_lock);
99 100
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
101
	spin_unlock(&dev_priv->mm.object_stat_lock);
102 103
}

104
static int
105
i915_gem_wait_for_error(struct i915_gpu_error *error)
106 107 108
{
	int ret;

109 110
	might_sleep();

111
	if (!i915_reset_in_progress(error))
112 113
		return 0;

114 115 116 117 118
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
119
	ret = wait_event_interruptible_timeout(error->reset_queue,
120
					       !i915_reset_in_progress(error),
121
					       I915_RESET_TIMEOUT);
122 123 124 125
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
126
		return ret;
127 128
	} else {
		return 0;
129
	}
130 131
}

132
int i915_mutex_lock_interruptible(struct drm_device *dev)
133
{
134
	struct drm_i915_private *dev_priv = to_i915(dev);
135 136
	int ret;

137
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
138 139 140 141 142 143 144 145 146
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
147

148 149
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
150
			    struct drm_file *file)
151
{
152
	struct drm_i915_private *dev_priv = to_i915(dev);
153
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
154
	struct drm_i915_gem_get_aperture *args = data;
155
	struct i915_vma *vma;
156
	size_t pinned;
157

158
	pinned = 0;
159
	mutex_lock(&dev->struct_mutex);
160
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
161
		if (i915_vma_is_pinned(vma))
162
			pinned += vma->node.size;
163
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
164
		if (i915_vma_is_pinned(vma))
165
			pinned += vma->node.size;
166
	mutex_unlock(&dev->struct_mutex);
167

168
	args->aper_size = ggtt->base.total;
169
	args->aper_available_size = args->aper_size - pinned;
170

171 172 173
	return 0;
}

174
static struct sg_table *
175
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
176
{
177
	struct address_space *mapping = obj->base.filp->f_mapping;
178
	drm_dma_handle_t *phys;
179 180
	struct sg_table *st;
	struct scatterlist *sg;
181
	char *vaddr;
182
	int i;
183

184
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
185
		return ERR_PTR(-EINVAL);
186

187 188 189 190 191 192 193 194 195 196 197
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
198 199 200 201 202
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
203 204 205 206
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
207 208 209 210 211 212

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

213
		put_page(page);
214 215 216
		vaddr += PAGE_SIZE;
	}

217
	i915_gem_chipset_flush(to_i915(obj->base.dev));
218 219

	st = kmalloc(sizeof(*st), GFP_KERNEL);
220 221 222 223
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
224 225 226

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
227 228
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
229 230 231 232 233
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
234

235
	sg_dma_address(sg) = phys->busaddr;
236 237
	sg_dma_len(sg) = obj->base.size;

238 239 240 241 242
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
243
	return st;
244 245 246
}

static void
247
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
248 249
				struct sg_table *pages,
				bool needs_clflush)
250
{
C
Chris Wilson 已提交
251
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
252

C
Chris Wilson 已提交
253 254
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
255

256 257
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
258
	    !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
259
		drm_clflush_sg(pages);
260 261 262 263 264 265 266 267 268

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
269
	__i915_gem_object_release_shmem(obj, pages, false);
270

C
Chris Wilson 已提交
271
	if (obj->mm.dirty) {
272
		struct address_space *mapping = obj->base.filp->f_mapping;
273
		char *vaddr = obj->phys_handle->vaddr;
274 275 276
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
277 278 279 280 281 282 283 284 285 286 287 288 289
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
290
			if (obj->mm.madv == I915_MADV_WILLNEED)
291
				mark_page_accessed(page);
292
			put_page(page);
293 294
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
295
		obj->mm.dirty = false;
296 297
	}

298 299
	sg_free_table(pages);
	kfree(pages);
300 301

	drm_pci_free(obj->base.dev, obj->phys_handle);
302 303 304 305 306
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
307
	i915_gem_object_unpin_pages(obj);
308 309 310 311 312 313 314 315
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

316
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
317 318 319
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
320 321 322
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
323

324 325 326 327
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
328
	 */
329 330 331 332 333 334
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
335 336 337 338 339
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

340 341 342 343 344 345 346 347 348 349 350 351 352
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

353 354 355 356 357
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
358
{
359
	struct drm_i915_gem_request *rq;
360

361
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
362

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
395 396
	}

397 398 399 400 401 402
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

403
	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
433 434
		int ret;

435 436
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
437 438 439
		if (ret)
			return ret;

440 441 442 443 444 445
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
			if (timeout <= 0)
				break;
446

447 448 449 450 451 452 453 454
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
455 456
	}

457 458 459 460 461 462
	if (excl && timeout > 0)
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
463 464
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

529 530 531 532 533 534
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
535
 */
536 537 538 539 540
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
541
{
542 543 544 545 546 547 548
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
549

550 551 552
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
553
	return timeout < 0 ? timeout : 0;
554 555 556 557 558 559 560 561 562
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

563 564 565 566
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
567
	int ret;
568

569 570
	if (align > obj->base.size)
		return -EINVAL;
571

572
	if (obj->ops == &i915_gem_phys_ops)
573 574
		return 0;

C
Chris Wilson 已提交
575
	if (obj->mm.madv != I915_MADV_WILLNEED)
576 577 578 579 580
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
581 582 583 584
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

585
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
586 587
	if (obj->mm.pages)
		return -EBUSY;
588 589 590

	obj->ops = &i915_gem_phys_ops;

C
Chris Wilson 已提交
591
	return i915_gem_object_pin_pages(obj);
592 593 594 595 596
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
597
		     struct drm_file *file)
598 599
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
600
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
601 602 603 604

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
605
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
606 607
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
608

609
	drm_clflush_virt_range(vaddr, args->size);
610
	i915_gem_chipset_flush(to_i915(obj->base.dev));
611

612
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
613
	return 0;
614 615
}

616
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
617
{
618
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
619 620 621 622
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
623
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
624
	kmem_cache_free(dev_priv->objects, obj);
625 626
}

627 628
static int
i915_gem_create(struct drm_file *file,
629
		struct drm_i915_private *dev_priv,
630 631
		uint64_t size,
		uint32_t *handle_p)
632
{
633
	struct drm_i915_gem_object *obj;
634 635
	int ret;
	u32 handle;
636

637
	size = roundup(size, PAGE_SIZE);
638 639
	if (size == 0)
		return -EINVAL;
640 641

	/* Allocate the new object */
642
	obj = i915_gem_object_create(dev_priv, size);
643 644
	if (IS_ERR(obj))
		return PTR_ERR(obj);
645

646
	ret = drm_gem_handle_create(file, &obj->base, &handle);
647
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
648
	i915_gem_object_put(obj);
649 650
	if (ret)
		return ret;
651

652
	*handle_p = handle;
653 654 655
	return 0;
}

656 657 658 659 660 661
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
662
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
663
	args->size = args->pitch * args->height;
664
	return i915_gem_create(file, to_i915(dev),
665
			       args->size, &args->handle);
666 667 668 669
}

/**
 * Creates a new mm object and returns a handle to it.
670 671 672
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
673 674 675 676 677
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
678
	struct drm_i915_private *dev_priv = to_i915(dev);
679
	struct drm_i915_gem_create *args = data;
680

681
	i915_gem_flush_free_objects(dev_priv);
682

683
	return i915_gem_create(file, dev_priv,
684
			       args->size, &args->handle);
685 686
}

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

713
static inline int
714 715
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

739 740 741 742 743 744
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
745
				    unsigned int *needs_clflush)
746 747 748
{
	int ret;

749
	lockdep_assert_held(&obj->base.dev->struct_mutex);
750

751
	*needs_clflush = 0;
752 753
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
754

755 756 757 758 759
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
760 761 762
	if (ret)
		return ret;

C
Chris Wilson 已提交
763
	ret = i915_gem_object_pin_pages(obj);
764 765 766
	if (ret)
		return ret;

767 768
	i915_gem_object_flush_gtt_write_domain(obj);

769 770 771 772 773 774
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
775 776
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
777 778 779

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
780 781 782
		if (ret)
			goto err_unpin;

783
		*needs_clflush = 0;
784 785
	}

786
	/* return with the pages pinned */
787
	return 0;
788 789 790 791

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
792 793 794 795 796 797 798
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

799 800
	lockdep_assert_held(&obj->base.dev->struct_mutex);

801 802 803 804
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

805 806 807 808 809 810
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
811 812 813
	if (ret)
		return ret;

C
Chris Wilson 已提交
814
	ret = i915_gem_object_pin_pages(obj);
815 816 817
	if (ret)
		return ret;

818 819
	i915_gem_object_flush_gtt_write_domain(obj);

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
837 838 839
		if (ret)
			goto err_unpin;

840 841 842 843 844 845 846
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
847
	obj->mm.dirty = true;
848
	/* return with the pages pinned */
849
	return 0;
850 851 852 853

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
854 855
}

856 857 858 859
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
860
	if (unlikely(swizzled)) {
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

878 879 880
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
881
shmem_pread_slow(struct page *page, int offset, int length,
882 883 884 885 886 887 888 889
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
890
		shmem_clflush_swizzled_range(vaddr + offset, length,
891
					     page_do_bit17_swizzling);
892 893

	if (page_do_bit17_swizzling)
894
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
895
	else
896
		ret = __copy_to_user(user_data, vaddr + offset, length);
897 898
	kunmap(page);

899
	return ret ? - EFAULT : 0;
900 901
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
978 979
{
	void *vaddr;
980
	unsigned long unwritten;
981 982

	/* We can use the cpu mem copy function because this is X86. */
983 984 985 986 987 988 989 990 991
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
992 993 994 995
	return unwritten;
}

static int
996 997
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
998
{
999 1000
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1001
	struct drm_mm_node node;
1002 1003 1004
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1005 1006
	int ret;

1007 1008 1009 1010 1011 1012 1013
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1014 1015 1016
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1017
		ret = i915_vma_put_fence(vma);
1018 1019 1020 1021 1022
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1023
	if (IS_ERR(vma)) {
1024
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1025
		if (ret)
1026 1027
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1028 1029 1030 1031 1032 1033
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1034
	mutex_unlock(&i915->drm.struct_mutex);
1035

1036 1037 1038
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1055
					       node.start, I915_CACHE_NONE, 0);
1056 1057 1058 1059
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1060 1061 1062

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1063 1064 1065 1066 1067 1068 1069 1070 1071
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1072
	mutex_lock(&i915->drm.struct_mutex);
1073 1074 1075 1076
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1077
				       node.start, node.size);
1078 1079
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1080
		i915_vma_unpin(vma);
1081
	}
1082 1083 1084
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1085

1086 1087 1088
	return ret;
}

1089 1090
/**
 * Reads data from the object referenced by handle.
1091 1092 1093
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1094 1095 1096 1097 1098
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1099
		     struct drm_file *file)
1100 1101
{
	struct drm_i915_gem_pread *args = data;
1102
	struct drm_i915_gem_object *obj;
1103
	int ret;
1104

1105 1106 1107 1108
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1109
		       u64_to_user_ptr(args->data_ptr),
1110 1111 1112
		       args->size))
		return -EFAULT;

1113
	obj = i915_gem_object_lookup(file, args->handle);
1114 1115
	if (!obj)
		return -ENOENT;
1116

1117
	/* Bounds check source.  */
1118
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1119
		ret = -EINVAL;
1120
		goto out;
C
Chris Wilson 已提交
1121 1122
	}

C
Chris Wilson 已提交
1123 1124
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1125 1126 1127 1128
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1129
	if (ret)
1130
		goto out;
1131

1132
	ret = i915_gem_object_pin_pages(obj);
1133
	if (ret)
1134
		goto out;
1135

1136
	ret = i915_gem_shmem_pread(obj, args);
1137
	if (ret == -EFAULT || ret == -ENODEV)
1138
		ret = i915_gem_gtt_pread(obj, args);
1139

1140 1141
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1142
	i915_gem_object_put(obj);
1143
	return ret;
1144 1145
}

1146 1147
/* This is the fast write path which cannot handle
 * page faults in the source data
1148
 */
1149

1150 1151 1152 1153
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1154
{
1155
	void *vaddr;
1156
	unsigned long unwritten;
1157

1158
	/* We can use the cpu mem copy function because this is X86. */
1159 1160
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1161
						      user_data, length);
1162 1163 1164 1165 1166 1167 1168
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1169 1170 1171 1172

	return unwritten;
}

1173 1174 1175
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1176
 * @obj: i915 GEM object
1177
 * @args: pwrite arguments structure
1178
 */
1179
static int
1180 1181
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1182
{
1183
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1184 1185
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1186 1187 1188
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1189
	int ret;
1190

1191 1192 1193
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1194

1195
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1196
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1197
				       PIN_MAPPABLE | PIN_NONBLOCK);
1198 1199 1200
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1201
		ret = i915_vma_put_fence(vma);
1202 1203 1204 1205 1206
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1207
	if (IS_ERR(vma)) {
1208
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1209
		if (ret)
1210 1211
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1212
	}
D
Daniel Vetter 已提交
1213 1214 1215 1216 1217

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1218 1219
	mutex_unlock(&i915->drm.struct_mutex);

1220
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1221

1222 1223 1224 1225
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1226 1227
		/* Operation in this page
		 *
1228 1229 1230
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1231
		 */
1232
		u32 page_base = node.start;
1233 1234
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1245
		/* If we get a fault while copying data, then (presumably) our
1246 1247
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1248 1249
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1250
		 */
1251 1252 1253 1254
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1255
		}
1256

1257 1258 1259
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1260
	}
1261
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1262 1263

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1264
out_unpin:
1265 1266 1267
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1268
				       node.start, node.size);
1269 1270
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1271
		i915_vma_unpin(vma);
1272
	}
1273
out_unlock:
1274
	intel_runtime_pm_put(i915);
1275
	mutex_unlock(&i915->drm.struct_mutex);
1276
	return ret;
1277 1278
}

1279
static int
1280
shmem_pwrite_slow(struct page *page, int offset, int length,
1281 1282 1283 1284
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1285
{
1286 1287
	char *vaddr;
	int ret;
1288

1289
	vaddr = kmap(page);
1290
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1291
		shmem_clflush_swizzled_range(vaddr + offset, length,
1292
					     page_do_bit17_swizzling);
1293
	if (page_do_bit17_swizzling)
1294 1295
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1296
	else
1297
		ret = __copy_from_user(vaddr + offset, user_data, length);
1298
	if (needs_clflush_after)
1299
		shmem_clflush_swizzled_range(vaddr + offset, length,
1300
					     page_do_bit17_swizzling);
1301
	kunmap(page);
1302

1303
	return ret ? -EFAULT : 0;
1304 1305
}

1306 1307 1308 1309 1310
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1311
static int
1312 1313 1314 1315
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1316
{
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1349
	unsigned int needs_clflush;
1350 1351
	unsigned int offset, idx;
	int ret;
1352

1353
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1354 1355 1356
	if (ret)
		return ret;

1357 1358 1359 1360
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1361

1362 1363 1364
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1365

1366 1367 1368 1369 1370 1371 1372
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1373

1374 1375 1376 1377 1378 1379
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1380

1381 1382 1383
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1384

1385 1386 1387 1388
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1389
		if (ret)
1390
			break;
1391

1392 1393 1394
		remain -= length;
		user_data += length;
		offset = 0;
1395
	}
1396

1397
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1398
	i915_gem_obj_finish_shmem_access(obj);
1399
	return ret;
1400 1401 1402 1403
}

/**
 * Writes data to the object referenced by handle.
1404 1405 1406
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1407 1408 1409 1410 1411
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1412
		      struct drm_file *file)
1413 1414
{
	struct drm_i915_gem_pwrite *args = data;
1415
	struct drm_i915_gem_object *obj;
1416 1417 1418 1419 1420 1421
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1422
		       u64_to_user_ptr(args->data_ptr),
1423 1424 1425
		       args->size))
		return -EFAULT;

1426
	obj = i915_gem_object_lookup(file, args->handle);
1427 1428
	if (!obj)
		return -ENOENT;
1429

1430
	/* Bounds check destination. */
1431
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1432
		ret = -EINVAL;
1433
		goto err;
C
Chris Wilson 已提交
1434 1435
	}

C
Chris Wilson 已提交
1436 1437
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1438 1439 1440 1441 1442
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1443 1444 1445
	if (ret)
		goto err;

1446
	ret = i915_gem_object_pin_pages(obj);
1447
	if (ret)
1448
		goto err;
1449

D
Daniel Vetter 已提交
1450
	ret = -EFAULT;
1451 1452 1453 1454 1455 1456
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1457
	if (!i915_gem_object_has_struct_page(obj) ||
1458
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1459 1460
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1461 1462
		 * textures). Fallback to the shmem path in that case.
		 */
1463
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1464

1465
	if (ret == -EFAULT || ret == -ENOSPC) {
1466 1467
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1468
		else
1469
			ret = i915_gem_shmem_pwrite(obj, args);
1470
	}
1471

1472
	i915_gem_object_unpin_pages(obj);
1473
err:
C
Chris Wilson 已提交
1474
	i915_gem_object_put(obj);
1475
	return ret;
1476 1477
}

1478
static inline enum fb_op_origin
1479 1480
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1481 1482
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1483 1484
}

1485 1486 1487 1488 1489 1490 1491 1492
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1493
			break;
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1506
	list_move_tail(&obj->global_link, list);
1507 1508
}

1509
/**
1510 1511
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1512 1513 1514
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1515 1516 1517
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1518
			  struct drm_file *file)
1519 1520
{
	struct drm_i915_gem_set_domain *args = data;
1521
	struct drm_i915_gem_object *obj;
1522 1523
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1524
	int err;
1525

1526
	/* Only handle setting domains to types used by the CPU. */
1527
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1528 1529 1530 1531 1532 1533 1534 1535
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1536
	obj = i915_gem_object_lookup(file, args->handle);
1537 1538
	if (!obj)
		return -ENOENT;
1539

1540 1541 1542 1543
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1544
	err = i915_gem_object_wait(obj,
1545 1546 1547 1548
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1549
	if (err)
C
Chris Wilson 已提交
1550
		goto out;
1551

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1562
		goto out;
1563 1564 1565

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1566
		goto out_unpin;
1567

1568
	if (read_domains & I915_GEM_DOMAIN_GTT)
1569
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1570
	else
1571
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1572

1573 1574
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1575

1576
	mutex_unlock(&dev->struct_mutex);
1577

1578 1579 1580
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1581
out_unpin:
1582
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1583 1584
out:
	i915_gem_object_put(obj);
1585
	return err;
1586 1587 1588 1589
}

/**
 * Called when user space has done writes to this buffer
1590 1591 1592
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1593 1594 1595
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1596
			 struct drm_file *file)
1597 1598
{
	struct drm_i915_gem_sw_finish *args = data;
1599
	struct drm_i915_gem_object *obj;
1600
	int err = 0;
1601

1602
	obj = i915_gem_object_lookup(file, args->handle);
1603 1604
	if (!obj)
		return -ENOENT;
1605 1606

	/* Pinned buffers may be scanout, so flush the cache */
1607 1608 1609 1610 1611 1612 1613
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1614

C
Chris Wilson 已提交
1615
	i915_gem_object_put(obj);
1616
	return err;
1617 1618 1619
}

/**
1620 1621 1622 1623 1624
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1625 1626 1627
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1638 1639 1640
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1641
		    struct drm_file *file)
1642 1643
{
	struct drm_i915_gem_mmap *args = data;
1644
	struct drm_i915_gem_object *obj;
1645 1646
	unsigned long addr;

1647 1648 1649
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1650
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1651 1652
		return -ENODEV;

1653 1654
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1655
		return -ENOENT;
1656

1657 1658 1659
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1660
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1661
		i915_gem_object_put(obj);
1662 1663 1664
		return -EINVAL;
	}

1665
	addr = vm_mmap(obj->base.filp, 0, args->size,
1666 1667
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1668 1669 1670 1671
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1672
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1673
			i915_gem_object_put(obj);
1674 1675
			return -EINTR;
		}
1676 1677 1678 1679 1680 1681 1682
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1683 1684

		/* This may race, but that's ok, it only gets set */
1685
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1686
	}
C
Chris Wilson 已提交
1687
	i915_gem_object_put(obj);
1688 1689 1690 1691 1692 1693 1694 1695
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1696 1697
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1698
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1699 1700
}

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1762 1763
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1764
		min_t(unsigned int, chunk,
1765
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1766 1767 1768 1769 1770 1771 1772 1773

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1774 1775
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1776
 * @area: CPU VMA in question
1777
 * @vmf: fault info
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1789 1790 1791
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1792
 */
C
Chris Wilson 已提交
1793
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1794
{
1795
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1796
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1797
	struct drm_device *dev = obj->base.dev;
1798 1799
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1800
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1801
	struct i915_vma *vma;
1802
	pgoff_t page_offset;
1803
	unsigned int flags;
1804
	int ret;
1805

1806
	/* We don't use vmf->pgoff since that has the fake offset */
1807
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1808

C
Chris Wilson 已提交
1809 1810
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1811
	/* Try to flush the object off the GPU first without holding the lock.
1812
	 * Upon acquiring the lock, we will perform our sanity checks and then
1813 1814 1815
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1816 1817 1818 1819
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1820
	if (ret)
1821 1822
		goto err;

1823 1824 1825 1826
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1827 1828 1829 1830 1831
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1832

1833
	/* Access to snoopable pages through the GTT is incoherent. */
1834
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1835
		ret = -EFAULT;
1836
		goto err_unlock;
1837 1838
	}

1839 1840 1841 1842 1843 1844 1845 1846
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1847
	/* Now pin it into the GTT as needed */
1848
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1849 1850
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1851
		struct i915_ggtt_view view =
1852
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1853

1854 1855 1856 1857 1858
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1859 1860
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1861 1862
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1863
		goto err_unlock;
C
Chris Wilson 已提交
1864
	}
1865

1866 1867
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1868
		goto err_unpin;
1869

1870
	ret = i915_vma_get_fence(vma);
1871
	if (ret)
1872
		goto err_unpin;
1873

1874
	/* Mark as being mmapped into userspace for later revocation */
1875
	assert_rpm_wakelock_held(dev_priv);
1876 1877 1878
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1879
	/* Finally, remap it using the new GTT offset */
1880
	ret = remap_io_mapping(area,
1881
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1882 1883 1884
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1885

1886
err_unpin:
C
Chris Wilson 已提交
1887
	__i915_vma_unpin(vma);
1888
err_unlock:
1889
	mutex_unlock(&dev->struct_mutex);
1890 1891
err_rpm:
	intel_runtime_pm_put(dev_priv);
1892
	i915_gem_object_unpin_pages(obj);
1893
err:
1894
	switch (ret) {
1895
	case -EIO:
1896 1897 1898 1899 1900 1901 1902
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1903 1904 1905
			ret = VM_FAULT_SIGBUS;
			break;
		}
1906
	case -EAGAIN:
D
Daniel Vetter 已提交
1907 1908 1909 1910
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1911
		 */
1912 1913
	case 0:
	case -ERESTARTSYS:
1914
	case -EINTR:
1915 1916 1917 1918 1919
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1920 1921
		ret = VM_FAULT_NOPAGE;
		break;
1922
	case -ENOMEM:
1923 1924
		ret = VM_FAULT_OOM;
		break;
1925
	case -ENOSPC:
1926
	case -EFAULT:
1927 1928
		ret = VM_FAULT_SIGBUS;
		break;
1929
	default:
1930
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1931 1932
		ret = VM_FAULT_SIGBUS;
		break;
1933
	}
1934
	return ret;
1935 1936
}

1937 1938 1939 1940
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1941
 * Preserve the reservation of the mmapping with the DRM core code, but
1942 1943 1944 1945 1946 1947 1948 1949 1950
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1951
void
1952
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1953
{
1954 1955
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1956 1957 1958
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1959 1960 1961 1962
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1963
	 */
1964
	lockdep_assert_held(&i915->drm.struct_mutex);
1965
	intel_runtime_pm_get(i915);
1966

1967
	if (list_empty(&obj->userfault_link))
1968
		goto out;
1969

1970
	list_del_init(&obj->userfault_link);
1971 1972
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1973 1974 1975 1976 1977 1978 1979 1980 1981

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
1982 1983 1984

out:
	intel_runtime_pm_put(i915);
1985 1986
}

1987
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1988
{
1989
	struct drm_i915_gem_object *obj, *on;
1990
	int i;
1991

1992 1993 1994 1995 1996 1997
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
1998

1999 2000 2001
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2002 2003 2004
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2005 2006 2007 2008 2009 2010 2011 2012

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2023 2024 2025 2026 2027 2028 2029

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2030 2031
}

2032 2033
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2034
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2035
	int err;
2036

2037
	err = drm_gem_create_mmap_offset(&obj->base);
2038
	if (likely(!err))
2039
		return 0;
2040

2041 2042 2043 2044 2045
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2046

2047
		i915_gem_drain_freed_objects(dev_priv);
2048
		err = drm_gem_create_mmap_offset(&obj->base);
2049 2050 2051 2052
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2053

2054
	return err;
2055 2056 2057 2058 2059 2060 2061
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2062
int
2063 2064
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2065
		  uint32_t handle,
2066
		  uint64_t *offset)
2067
{
2068
	struct drm_i915_gem_object *obj;
2069 2070
	int ret;

2071
	obj = i915_gem_object_lookup(file, handle);
2072 2073
	if (!obj)
		return -ENOENT;
2074

2075
	ret = i915_gem_object_create_mmap_offset(obj);
2076 2077
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2078

C
Chris Wilson 已提交
2079
	i915_gem_object_put(obj);
2080
	return ret;
2081 2082
}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2104
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2105 2106
}

D
Daniel Vetter 已提交
2107 2108 2109
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2110
{
2111
	i915_gem_object_free_mmap_offset(obj);
2112

2113 2114
	if (obj->base.filp == NULL)
		return;
2115

D
Daniel Vetter 已提交
2116 2117 2118 2119 2120
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2121
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2122
	obj->mm.madv = __I915_MADV_PURGED;
D
Daniel Vetter 已提交
2123
}
2124

2125
/* Try to discard unwanted pages */
2126
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2127
{
2128 2129
	struct address_space *mapping;

2130 2131 2132
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2133
	switch (obj->mm.madv) {
2134 2135 2136 2137 2138 2139 2140 2141 2142
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2143
	mapping = obj->base.filp->f_mapping,
2144
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2145 2146
}

2147
static void
2148 2149
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2150
{
2151 2152
	struct sgt_iter sgt_iter;
	struct page *page;
2153

2154
	__i915_gem_object_release_shmem(obj, pages, true);
2155

2156
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2157

2158
	if (i915_gem_object_needs_bit17_swizzle(obj))
2159
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2160

2161
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2162
		if (obj->mm.dirty)
2163
			set_page_dirty(page);
2164

C
Chris Wilson 已提交
2165
		if (obj->mm.madv == I915_MADV_WILLNEED)
2166
			mark_page_accessed(page);
2167

2168
		put_page(page);
2169
	}
C
Chris Wilson 已提交
2170
	obj->mm.dirty = false;
2171

2172 2173
	sg_free_table(pages);
	kfree(pages);
2174
}
C
Chris Wilson 已提交
2175

2176 2177 2178 2179 2180
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2181 2182
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2183 2184
}

2185 2186
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2187
{
2188
	struct sg_table *pages;
2189

C
Chris Wilson 已提交
2190
	if (i915_gem_object_has_pinned_pages(obj))
2191
		return;
2192

2193
	GEM_BUG_ON(obj->bind_count);
2194 2195 2196 2197
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2198
	mutex_lock_nested(&obj->mm.lock, subclass);
2199 2200
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2201

2202 2203 2204
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2205 2206
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2207

C
Chris Wilson 已提交
2208
	if (obj->mm.mapping) {
2209 2210
		void *ptr;

C
Chris Wilson 已提交
2211
		ptr = ptr_mask_bits(obj->mm.mapping);
2212 2213
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2214
		else
2215 2216
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2217
		obj->mm.mapping = NULL;
2218 2219
	}

2220 2221
	__i915_gem_object_reset_page_iter(obj);

2222
	obj->ops->put_pages(obj, pages);
2223 2224
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2225 2226
}

2227 2228 2229 2230 2231 2232 2233 2234 2235
static void i915_sg_trim(struct sg_table *orig_st)
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
		return;

2236
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2237 2238 2239 2240 2241 2242 2243 2244
		return;

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2245
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2246 2247 2248 2249 2250 2251

	sg_free_table(orig_st);

	*orig_st = new_st;
}

2252
static struct sg_table *
C
Chris Wilson 已提交
2253
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2254
{
2255
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2256 2257
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2258
	struct address_space *mapping;
2259 2260
	struct sg_table *st;
	struct scatterlist *sg;
2261
	struct sgt_iter sgt_iter;
2262
	struct page *page;
2263
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2264
	unsigned int max_segment;
I
Imre Deak 已提交
2265
	int ret;
C
Chris Wilson 已提交
2266
	gfp_t gfp;
2267

C
Chris Wilson 已提交
2268 2269 2270 2271
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2272 2273
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2274

2275
	max_segment = swiotlb_max_segment();
2276
	if (!max_segment)
2277
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2278

2279 2280
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2281
		return ERR_PTR(-ENOMEM);
2282

2283
rebuild_st:
2284 2285
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2286
		return ERR_PTR(-ENOMEM);
2287
	}
2288

2289 2290 2291 2292 2293
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2294
	mapping = obj->base.filp->f_mapping;
2295
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2296
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2297 2298 2299
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2300 2301
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2302 2303 2304 2305 2306
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2307 2308 2309 2310 2311 2312 2313
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2314
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2315 2316
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
2317
				goto err_sg;
I
Imre Deak 已提交
2318
			}
C
Chris Wilson 已提交
2319
		}
2320 2321 2322
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2323 2324 2325 2326 2327 2328 2329 2330
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2331 2332 2333

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2334
	}
2335
	if (sg) /* loop terminated early; short sg table */
2336
		sg_mark_end(sg);
2337

2338 2339 2340
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2341
	ret = i915_gem_gtt_prepare_pages(obj, st);
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2361

2362
	if (i915_gem_object_needs_bit17_swizzle(obj))
2363
		i915_gem_object_do_bit_17_swizzle(obj, st);
2364

2365
	return st;
2366

2367
err_sg:
2368
	sg_mark_end(sg);
2369
err_pages:
2370 2371
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2372 2373
	sg_free_table(st);
	kfree(st);
2374 2375 2376 2377 2378 2379 2380 2381 2382

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2383 2384 2385
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2386 2387 2388 2389 2390 2391
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2392
	lockdep_assert_held(&obj->mm.lock);
2393 2394 2395 2396 2397

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2398 2399 2400 2401 2402 2403 2404

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2405 2406 2407 2408 2409 2410
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2411 2412
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2424 2425
}

2426
/* Ensure that the associated pages are gathered from the backing storage
2427
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2428
 * multiple times before they are released by a single call to
2429
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2430 2431 2432
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2433
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2434
{
2435
	int err;
2436

2437 2438 2439
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2440

2441 2442 2443 2444
	if (unlikely(!obj->mm.pages)) {
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2445

2446 2447 2448
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2449

2450 2451
unlock:
	mutex_unlock(&obj->mm.lock);
2452
	return err;
2453 2454
}

2455
/* The 'mapping' part of i915_gem_object_pin_map() below */
2456 2457
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2458 2459
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2460
	struct sg_table *sgt = obj->mm.pages;
2461 2462
	struct sgt_iter sgt_iter;
	struct page *page;
2463 2464
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2465
	unsigned long i = 0;
2466
	pgprot_t pgprot;
2467 2468 2469
	void *addr;

	/* A single page can always be kmapped */
2470
	if (n_pages == 1 && type == I915_MAP_WB)
2471 2472
		return kmap(sg_page(sgt->sgl));

2473 2474 2475 2476 2477 2478
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2479

2480 2481
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2482 2483 2484 2485

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2486 2487 2488 2489 2490 2491 2492 2493 2494
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2495

2496 2497
	if (pages != stack_pages)
		drm_free_large(pages);
2498 2499 2500 2501 2502

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2503 2504
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2505
{
2506 2507 2508
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2509 2510
	int ret;

2511
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2512

2513
	ret = mutex_lock_interruptible(&obj->mm.lock);
2514 2515 2516
	if (ret)
		return ERR_PTR(ret);

2517 2518
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2519 2520 2521 2522
		if (unlikely(!obj->mm.pages)) {
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2523

2524 2525 2526
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2527 2528 2529
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2530

C
Chris Wilson 已提交
2531
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2532 2533 2534
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2535
			goto err_unpin;
2536
		}
2537 2538 2539 2540 2541 2542

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2543
		ptr = obj->mm.mapping = NULL;
2544 2545
	}

2546 2547 2548 2549
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2550
			goto err_unpin;
2551 2552
		}

C
Chris Wilson 已提交
2553
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2554 2555
	}

2556 2557
out_unlock:
	mutex_unlock(&obj->mm.lock);
2558 2559
	return ptr;

2560 2561 2562 2563 2564
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2565 2566
}

2567
static bool ban_context(const struct i915_gem_context *ctx)
2568
{
2569 2570
	return (i915_gem_context_is_bannable(ctx) &&
		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2571 2572
}

2573
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2574
{
2575
	ctx->guilty_count++;
2576 2577 2578
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
	if (ban_context(ctx))
		i915_gem_context_set_banned(ctx);
2579 2580

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2581
			 ctx->name, ctx->ban_score,
2582
			 yesno(i915_gem_context_is_banned(ctx)));
2583

2584
	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2585 2586
		return;

2587 2588 2589
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2590 2591 2592 2593
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2594
	ctx->active_count++;
2595 2596
}

2597
struct drm_i915_gem_request *
2598
i915_gem_find_active_request(struct intel_engine_cs *engine)
2599
{
2600 2601
	struct drm_i915_gem_request *request;

2602 2603 2604 2605 2606 2607 2608 2609
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2610
	list_for_each_entry(request, &engine->timeline->requests, link) {
C
Chris Wilson 已提交
2611
		if (__i915_gem_request_completed(request))
2612
			continue;
2613

2614
		GEM_BUG_ON(request->engine != engine);
2615 2616
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2617
		return request;
2618
	}
2619 2620 2621 2622

	return NULL;
}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2637
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2638 2639 2640
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
2641
	int err = 0;
2642 2643

	/* Ensure irq handler finishes, and not run again. */
2644 2645 2646
	for_each_engine(engine, dev_priv, id) {
		struct drm_i915_gem_request *request;

2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
		/* Prevent the signaler thread from updating the request
		 * state (by calling dma_fence_signal) as we are processing
		 * the reset. The write from the GPU of the seqno is
		 * asynchronous and the signaler thread may see a different
		 * value to us and declare the request complete, even though
		 * the reset routine have picked that request as the active
		 * (incomplete) request. This conflict is not handled
		 * gracefully!
		 */
		kthread_park(engine->breadcrumbs.signaler);

2658 2659 2660 2661 2662 2663 2664 2665
		/* Prevent request submission to the hardware until we have
		 * completed the reset in i915_gem_reset_finish(). If a request
		 * is completed by one engine, it may then queue a request
		 * to a second via its engine->irq_tasklet *just* as we are
		 * calling engine->init_hw() and also writing the ELSP.
		 * Turning off the engine->irq_tasklet until the reset is over
		 * prevents the race.
		 */
2666
		tasklet_kill(&engine->irq_tasklet);
2667
		tasklet_disable(&engine->irq_tasklet);
2668

2669 2670 2671
		if (engine->irq_seqno_barrier)
			engine->irq_seqno_barrier(engine);

2672 2673 2674 2675 2676 2677 2678
		if (engine_stalled(engine)) {
			request = i915_gem_find_active_request(engine);
			if (request && request->fence.error == -EIO)
				err = -EIO; /* Previous reset failed! */
		}
	}

2679
	i915_gem_revoke_fences(dev_priv);
2680 2681

	return err;
2682 2683
}

2684
static void skip_request(struct drm_i915_gem_request *request)
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2699 2700

	dma_fence_set_error(&request->fence, -EIO);
2701 2702
}

2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2726 2727 2728 2729 2730 2731
/* Returns true if the request was guilty of hang */
static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
{
	/* Read once and return the resolution */
	const bool guilty = engine_stalled(request->engine);

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
	if (guilty) {
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
	} else {
		i915_gem_context_mark_innocent(request->ctx);
		dma_fence_set_error(&request->fence, -EAGAIN);
	}

	return guilty;
}

2764
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2765 2766 2767
{
	struct drm_i915_gem_request *request;

2768
	request = i915_gem_find_active_request(engine);
2769 2770 2771
	if (request && i915_gem_reset_request(request)) {
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
2772

2773 2774 2775 2776
		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
	}
2777 2778 2779

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2780
}
2781

2782
void i915_gem_reset(struct drm_i915_private *dev_priv)
2783
{
2784
	struct intel_engine_cs *engine;
2785
	enum intel_engine_id id;
2786

2787 2788
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2789 2790
	i915_gem_retire_requests(dev_priv);

2791
	for_each_engine(engine, dev_priv, id)
2792 2793
		i915_gem_reset_engine(engine);

2794
	i915_gem_restore_fences(dev_priv);
2795 2796 2797 2798 2799 2800 2801

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2802 2803
}

2804 2805
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
2806 2807 2808
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

2809
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2810

2811
	for_each_engine(engine, dev_priv, id) {
2812
		tasklet_enable(&engine->irq_tasklet);
2813 2814
		kthread_unpark(engine->breadcrumbs.signaler);
	}
2815 2816
}

2817 2818
static void nop_submit_request(struct drm_i915_gem_request *request)
{
2819
	dma_fence_set_error(&request->fence, -EIO);
2820 2821
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2822 2823
}

2824
static void engine_set_wedged(struct intel_engine_cs *engine)
2825
{
2826 2827 2828
	struct drm_i915_gem_request *request;
	unsigned long flags;

2829 2830 2831 2832 2833 2834
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
2835
	engine->submit_request = nop_submit_request;
2836

2837 2838 2839 2840 2841 2842
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
		dma_fence_set_error(&request->fence, -EIO);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

2843 2844 2845 2846
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2847
	intel_engine_init_global_seqno(engine,
2848
				       intel_engine_last_submit(engine));
2849

2850 2851 2852 2853 2854 2855
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2856
	if (i915.enable_execlists) {
2857 2858 2859 2860
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline->lock, flags);

2861 2862 2863
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2864 2865
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
2866 2867

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2868
	}
2869 2870
}

2871
static int __i915_gem_set_wedged_BKL(void *data)
2872
{
2873
	struct drm_i915_private *i915 = data;
2874
	struct intel_engine_cs *engine;
2875
	enum intel_engine_id id;
2876

2877
	for_each_engine(engine, i915, id)
2878
		engine_set_wedged(engine);
2879 2880 2881 2882 2883 2884

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
2885 2886
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2887

2888
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2889

2890
	i915_gem_context_lost(dev_priv);
2891
	i915_gem_retire_requests(dev_priv);
2892 2893

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2894 2895
}

2896
static void
2897 2898
i915_gem_retire_work_handler(struct work_struct *work)
{
2899
	struct drm_i915_private *dev_priv =
2900
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2901
	struct drm_device *dev = &dev_priv->drm;
2902

2903
	/* Come back later if the device is busy... */
2904
	if (mutex_trylock(&dev->struct_mutex)) {
2905
		i915_gem_retire_requests(dev_priv);
2906
		mutex_unlock(&dev->struct_mutex);
2907
	}
2908 2909 2910 2911 2912

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2913 2914
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2915 2916
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2917
				   round_jiffies_up_relative(HZ));
2918
	}
2919
}
2920

2921 2922 2923 2924
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2925
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2926
	struct drm_device *dev = &dev_priv->drm;
2927
	struct intel_engine_cs *engine;
2928
	enum intel_engine_id id;
2929 2930 2931 2932 2933
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

2934 2935 2936 2937 2938 2939 2940
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
		 intel_execlists_idle(dev_priv), 10);

2941
	if (READ_ONCE(dev_priv->gt.active_requests))
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2955 2956 2957 2958 2959 2960 2961
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

2962
	if (dev_priv->gt.active_requests)
2963
		goto out_unlock;
2964

2965 2966 2967
	if (wait_for(intel_execlists_idle(dev_priv), 10))
		DRM_ERROR("Timeout waiting for engines to idle\n");

2968
	for_each_engine(engine, dev_priv, id)
2969
		i915_gem_batch_pool_fini(&engine->batch_pool);
2970

2971 2972 2973
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2974

2975 2976 2977 2978 2979
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2980

2981 2982 2983 2984
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2985
	}
2986 2987
}

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
2998 2999 3000 3001 3002 3003

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
3004 3005 3006
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3018 3019
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3020 3021 3022
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3047 3048
	ktime_t start;
	long ret;
3049

3050 3051 3052
	if (args->flags != 0)
		return -EINVAL;

3053
	obj = i915_gem_object_lookup(file, args->bo_handle);
3054
	if (!obj)
3055 3056
		return -ENOENT;

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3068 3069
	}

C
Chris Wilson 已提交
3070
	i915_gem_object_put(obj);
3071
	return ret;
3072 3073
}

3074
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3075
{
3076
	int ret, i;
3077

3078 3079 3080 3081 3082
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3083

3084 3085 3086 3087 3088 3089 3090
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3103 3104 3105
		if (ret)
			return ret;
	}
3106

3107
	return 0;
3108 3109
}

3110 3111
void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			     bool force)
3112 3113 3114 3115 3116
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
C
Chris Wilson 已提交
3117
	if (!obj->mm.pages)
3118
		return;
3119

3120 3121 3122 3123
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3124
	if (obj->stolen || obj->phys_handle)
3125
		return;
3126

3127 3128 3129 3130 3131 3132 3133 3134
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3135 3136
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3137
		return;
3138
	}
3139

C
Chris Wilson 已提交
3140
	trace_i915_gem_object_clflush(obj);
C
Chris Wilson 已提交
3141
	drm_clflush_sg(obj->mm.pages);
3142
	obj->cache_dirty = false;
3143 3144 3145 3146
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3147
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3148
{
3149
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3150

3151
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3152 3153
		return;

3154
	/* No actual flushing is required for the GTT write domain.  Writes
3155
	 * to it "immediately" go to main memory as far as we know, so there's
3156
	 * no chipset flush.  It also doesn't land in render cache.
3157 3158 3159 3160
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3161 3162 3163 3164 3165 3166 3167
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3168
	 */
3169
	wmb();
3170
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3171
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3172

3173
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3174

3175
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3176
	trace_i915_gem_object_change_domain(obj,
3177
					    obj->base.read_domains,
3178
					    I915_GEM_DOMAIN_GTT);
3179 3180 3181 3182
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3183
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3184
{
3185
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3186 3187
		return;

3188
	i915_gem_clflush_object(obj, obj->pin_display);
3189
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3190

3191
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3192
	trace_i915_gem_object_change_domain(obj,
3193
					    obj->base.read_domains,
3194
					    I915_GEM_DOMAIN_CPU);
3195 3196
}

3197 3198
/**
 * Moves a single object to the GTT read, and possibly write domain.
3199 3200
 * @obj: object to act on
 * @write: ask for write access or read only
3201 3202 3203 3204
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3205
int
3206
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3207
{
C
Chris Wilson 已提交
3208
	uint32_t old_write_domain, old_read_domains;
3209
	int ret;
3210

3211
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3212

3213 3214 3215 3216 3217 3218
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3219 3220 3221
	if (ret)
		return ret;

3222 3223 3224
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3225 3226 3227 3228 3229 3230 3231 3232
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3233
	ret = i915_gem_object_pin_pages(obj);
3234 3235 3236
	if (ret)
		return ret;

3237
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3238

3239 3240 3241 3242 3243 3244 3245
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3246 3247
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3248

3249 3250 3251
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3252
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3253
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3254
	if (write) {
3255 3256
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3257
		obj->mm.dirty = true;
3258 3259
	}

C
Chris Wilson 已提交
3260 3261 3262 3263
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

C
Chris Wilson 已提交
3264
	i915_gem_object_unpin_pages(obj);
3265 3266 3267
	return 0;
}

3268 3269
/**
 * Changes the cache-level of an object across all VMA.
3270 3271
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3283 3284 3285
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3286
	struct i915_vma *vma;
3287
	int ret;
3288

3289 3290
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3291
	if (obj->cache_level == cache_level)
3292
		return 0;
3293

3294 3295 3296 3297 3298
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3299 3300
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3301 3302 3303
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3304
		if (i915_vma_is_pinned(vma)) {
3305 3306 3307 3308
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3321 3322
	}

3323 3324 3325 3326 3327 3328 3329
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3330
	if (obj->bind_count) {
3331 3332 3333 3334
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3335 3336 3337 3338 3339 3340
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3341 3342 3343
		if (ret)
			return ret;

3344 3345
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3362 3363 3364 3365 3366
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3367 3368 3369 3370 3371 3372 3373 3374
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3375 3376
		}

3377
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3378 3379 3380 3381 3382 3383 3384
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3385 3386
	}

3387 3388 3389 3390
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
	    cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		obj->cache_dirty = true;

3391
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3392 3393 3394
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3395 3396 3397
	return 0;
}

B
Ben Widawsky 已提交
3398 3399
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3400
{
B
Ben Widawsky 已提交
3401
	struct drm_i915_gem_caching *args = data;
3402
	struct drm_i915_gem_object *obj;
3403
	int err = 0;
3404

3405 3406 3407 3408 3409 3410
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3411

3412 3413 3414 3415 3416 3417
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3418 3419 3420 3421
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3422 3423 3424 3425
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3426 3427 3428
out:
	rcu_read_unlock();
	return err;
3429 3430
}

B
Ben Widawsky 已提交
3431 3432
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3433
{
3434
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3435
	struct drm_i915_gem_caching *args = data;
3436 3437
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3438
	int ret = 0;
3439

B
Ben Widawsky 已提交
3440 3441
	switch (args->caching) {
	case I915_CACHING_NONE:
3442 3443
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3444
	case I915_CACHING_CACHED:
3445 3446 3447 3448 3449 3450
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3451
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3452 3453
			return -ENODEV;

3454 3455
		level = I915_CACHE_LLC;
		break;
3456
	case I915_CACHING_DISPLAY:
3457
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3458
		break;
3459 3460 3461 3462
	default:
		return -EINVAL;
	}

3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3474
	if (ret)
3475
		goto out;
B
Ben Widawsky 已提交
3476

3477 3478 3479
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3480 3481 3482

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3483 3484 3485

out:
	i915_gem_object_put(obj);
3486 3487 3488
	return ret;
}

3489
/*
3490 3491 3492
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3493
 */
C
Chris Wilson 已提交
3494
struct i915_vma *
3495 3496
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3497
				     const struct i915_ggtt_view *view)
3498
{
C
Chris Wilson 已提交
3499
	struct i915_vma *vma;
3500
	u32 old_read_domains, old_write_domain;
3501 3502
	int ret;

3503 3504
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3505 3506 3507
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3508
	obj->pin_display++;
3509

3510 3511 3512 3513 3514 3515 3516 3517 3518
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3519
	ret = i915_gem_object_set_cache_level(obj,
3520 3521
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3522 3523
	if (ret) {
		vma = ERR_PTR(ret);
3524
		goto err_unpin_display;
C
Chris Wilson 已提交
3525
	}
3526

3527 3528
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3529 3530 3531 3532
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3533
	 */
3534
	vma = ERR_PTR(-ENOSPC);
3535
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3536 3537
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3554
	if (IS_ERR(vma))
3555
		goto err_unpin_display;
3556

3557 3558
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3559
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3560
	if (obj->cache_dirty || obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3561 3562 3563
		i915_gem_clflush_object(obj, true);
		intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
	}
3564

3565
	old_write_domain = obj->base.write_domain;
3566
	old_read_domains = obj->base.read_domains;
3567 3568 3569 3570

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3571
	obj->base.write_domain = 0;
3572
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3573 3574 3575

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3576
					    old_write_domain);
3577

C
Chris Wilson 已提交
3578
	return vma;
3579 3580

err_unpin_display:
3581
	obj->pin_display--;
C
Chris Wilson 已提交
3582
	return vma;
3583 3584 3585
}

void
C
Chris Wilson 已提交
3586
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3587
{
3588
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3589

C
Chris Wilson 已提交
3590
	if (WARN_ON(vma->obj->pin_display == 0))
3591 3592
		return;

3593
	if (--vma->obj->pin_display == 0)
3594
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3595

3596
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3597
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3598

C
Chris Wilson 已提交
3599
	i915_vma_unpin(vma);
3600 3601
}

3602 3603
/**
 * Moves a single object to the CPU read, and possibly write domain.
3604 3605
 * @obj: object to act on
 * @write: requesting write or read-only access
3606 3607 3608 3609
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3610
int
3611
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3612
{
C
Chris Wilson 已提交
3613
	uint32_t old_write_domain, old_read_domains;
3614 3615
	int ret;

3616
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3617

3618 3619 3620 3621 3622 3623
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3624 3625 3626
	if (ret)
		return ret;

3627 3628 3629
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3630
	i915_gem_object_flush_gtt_write_domain(obj);
3631

3632 3633
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3634

3635
	/* Flush the CPU cache if it's still invalid. */
3636
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3637
		i915_gem_clflush_object(obj, false);
3638

3639
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3640 3641 3642 3643 3644
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3645
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3646 3647 3648 3649 3650

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3651 3652
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3653
	}
3654

C
Chris Wilson 已提交
3655 3656 3657 3658
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3659 3660 3661
	return 0;
}

3662 3663 3664
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3665 3666 3667 3668
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3669 3670 3671
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3672
static int
3673
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3674
{
3675
	struct drm_i915_private *dev_priv = to_i915(dev);
3676
	struct drm_i915_file_private *file_priv = file->driver_priv;
3677
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3678
	struct drm_i915_gem_request *request, *target = NULL;
3679
	long ret;
3680

3681 3682 3683
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3684

3685
	spin_lock(&file_priv->mm.lock);
3686
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3687 3688
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3689

3690 3691 3692 3693 3694 3695 3696
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3697
		target = request;
3698
	}
3699
	if (target)
3700
		i915_gem_request_get(target);
3701
	spin_unlock(&file_priv->mm.lock);
3702

3703
	if (target == NULL)
3704
		return 0;
3705

3706 3707 3708
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3709
	i915_gem_request_put(target);
3710

3711
	return ret < 0 ? ret : 0;
3712 3713
}

C
Chris Wilson 已提交
3714
struct i915_vma *
3715 3716
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3717
			 u64 size,
3718 3719
			 u64 alignment,
			 u64 flags)
3720
{
3721 3722
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3723 3724
	struct i915_vma *vma;
	int ret;
3725

3726 3727
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3728
	vma = i915_vma_instance(obj, vm, view);
3729
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3730
		return vma;
3731 3732 3733 3734

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3735
			return ERR_PTR(-ENOSPC);
3736

3737 3738 3739 3740 3741 3742 3743 3744
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
3745
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
3764
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3765 3766 3767
				return ERR_PTR(-ENOSPC);
		}

3768 3769
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3770 3771 3772
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3773
		     !!(flags & PIN_MAPPABLE),
3774
		     i915_vma_is_map_and_fenceable(vma));
3775 3776
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3777
			return ERR_PTR(ret);
3778 3779
	}

C
Chris Wilson 已提交
3780 3781 3782
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3783

C
Chris Wilson 已提交
3784
	return vma;
3785 3786
}

3787
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3802 3803 3804 3805 3806 3807 3808 3809 3810
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3811 3812
}

3813
static __always_inline unsigned int
3814
__busy_set_if_active(const struct dma_fence *fence,
3815 3816
		     unsigned int (*flag)(unsigned int id))
{
3817
	struct drm_i915_gem_request *rq;
3818

3819 3820 3821 3822
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3823
	 *
3824
	 * Note we only report on the status of native fences.
3825
	 */
3826 3827 3828 3829 3830 3831 3832 3833 3834
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
3835 3836
}

3837
static __always_inline unsigned int
3838
busy_check_reader(const struct dma_fence *fence)
3839
{
3840
	return __busy_set_if_active(fence, __busy_read_flag);
3841 3842
}

3843
static __always_inline unsigned int
3844
busy_check_writer(const struct dma_fence *fence)
3845
{
3846 3847 3848 3849
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3850 3851
}

3852 3853
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3854
		    struct drm_file *file)
3855 3856
{
	struct drm_i915_gem_busy *args = data;
3857
	struct drm_i915_gem_object *obj;
3858 3859
	struct reservation_object_list *list;
	unsigned int seq;
3860
	int err;
3861

3862
	err = -ENOENT;
3863 3864
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3865
	if (!obj)
3866
		goto out;
3867

3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3886

3887 3888
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3889

3890 3891 3892 3893
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3894

3895 3896 3897 3898 3899 3900
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3901
	}
3902

3903 3904 3905 3906
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3907 3908 3909
out:
	rcu_read_unlock();
	return err;
3910 3911 3912 3913 3914 3915
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3916
	return i915_gem_ring_throttle(dev, file_priv);
3917 3918
}

3919 3920 3921 3922
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3923
	struct drm_i915_private *dev_priv = to_i915(dev);
3924
	struct drm_i915_gem_madvise *args = data;
3925
	struct drm_i915_gem_object *obj;
3926
	int err;
3927 3928 3929 3930 3931 3932 3933 3934 3935

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3936
	obj = i915_gem_object_lookup(file_priv, args->handle);
3937 3938 3939 3940 3941 3942
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
3943

C
Chris Wilson 已提交
3944
	if (obj->mm.pages &&
3945
	    i915_gem_object_is_tiled(obj) &&
3946
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3947 3948
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
3949
			__i915_gem_object_unpin_pages(obj);
3950 3951 3952
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
3953
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
3954
			__i915_gem_object_pin_pages(obj);
3955 3956
			obj->mm.quirked = true;
		}
3957 3958
	}

C
Chris Wilson 已提交
3959 3960
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
3961

C
Chris Wilson 已提交
3962
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
3963
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3964 3965
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
3966
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3967
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
3968

3969
out:
3970
	i915_gem_object_put(obj);
3971
	return err;
3972 3973
}

3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

	intel_fb_obj_flush(obj, true, ORIGIN_CS);
}

3984 3985
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3986
{
3987 3988
	mutex_init(&obj->mm.lock);

3989
	INIT_LIST_HEAD(&obj->global_link);
3990
	INIT_LIST_HEAD(&obj->userfault_link);
3991
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3992
	INIT_LIST_HEAD(&obj->vma_list);
3993
	INIT_LIST_HEAD(&obj->batch_pool_link);
3994

3995 3996
	obj->ops = ops;

3997 3998 3999
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4000
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4001
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4002 4003 4004 4005

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4006

4007
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4008 4009
}

4010
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4011 4012
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4013 4014 4015 4016
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4017
struct drm_i915_gem_object *
4018
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4019
{
4020
	struct drm_i915_gem_object *obj;
4021
	struct address_space *mapping;
D
Daniel Vetter 已提交
4022
	gfp_t mask;
4023
	int ret;
4024

4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4036
	obj = i915_gem_object_alloc(dev_priv);
4037
	if (obj == NULL)
4038
		return ERR_PTR(-ENOMEM);
4039

4040
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4041 4042
	if (ret)
		goto fail;
4043

4044
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4045
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4046 4047 4048 4049 4050
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4051
	mapping = obj->base.filp->f_mapping;
4052
	mapping_set_gfp_mask(mapping, mask);
4053

4054
	i915_gem_object_init(obj, &i915_gem_object_ops);
4055

4056 4057
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4058

4059
	if (HAS_LLC(dev_priv)) {
4060
		/* On some devices, we can have the GPU use the LLC (the CPU
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4076 4077
	trace_i915_gem_object_create(obj);

4078
	return obj;
4079 4080 4081 4082

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4083 4084
}

4085 4086 4087 4088 4089 4090 4091 4092
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4093
	if (obj->mm.madv != I915_MADV_WILLNEED)
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4109 4110
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4111
{
4112
	struct drm_i915_gem_object *obj, *on;
4113

4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4129 4130
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4131

4132
		list_del(&obj->global_link);
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4143

4144 4145
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4146
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4147 4148 4149 4150 4151
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4152
		reservation_object_fini(&obj->__builtin_resv);
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4175

4176 4177 4178 4179 4180 4181 4182
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4183

4184 4185 4186
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4187

4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4202

4203 4204 4205
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4206

4207 4208 4209
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4210
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4211
		obj->mm.madv = I915_MADV_DONTNEED;
4212

4213 4214 4215 4216 4217 4218
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4219 4220
}

4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4232 4233 4234 4235 4236 4237
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4238 4239
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4240 4241
}

4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
void i915_gem_sanitize(struct drm_i915_private *i915)
{
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
	 * of the reset, so we only reset recent machines with logical
	 * context support (that must be reset to remove any stray contexts).
	 */
	if (HAS_HW_CONTEXTS(i915)) {
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4259
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4260
{
4261
	struct drm_device *dev = &dev_priv->drm;
4262
	int ret;
4263

4264 4265
	intel_suspend_gt_powersave(dev_priv);

4266
	mutex_lock(&dev->struct_mutex);
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4280 4281 4282
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4283
	if (ret)
4284
		goto err;
4285

4286
	i915_gem_retire_requests(dev_priv);
4287
	GEM_BUG_ON(dev_priv->gt.active_requests);
4288

4289
	assert_kernel_context_is_current(dev_priv);
4290
	i915_gem_context_lost(dev_priv);
4291 4292
	mutex_unlock(&dev->struct_mutex);

4293
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4294
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4295 4296 4297 4298 4299 4300 4301 4302

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

	i915_gem_drain_freed_objects(dev_priv);
4303

4304 4305 4306
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4307
	WARN_ON(dev_priv->gt.awake);
4308
	WARN_ON(!intel_execlists_idle(dev_priv));
4309

4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4329
	i915_gem_sanitize(dev_priv);
4330

4331
	return 0;
4332 4333 4334 4335

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4336 4337
}

4338
void i915_gem_resume(struct drm_i915_private *dev_priv)
4339
{
4340
	struct drm_device *dev = &dev_priv->drm;
4341

4342 4343
	WARN_ON(dev_priv->gt.awake);

4344
	mutex_lock(&dev->struct_mutex);
4345
	i915_gem_restore_gtt_mappings(dev_priv);
4346 4347 4348 4349 4350

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4351
	dev_priv->gt.resume(dev_priv);
4352 4353 4354 4355

	mutex_unlock(&dev->struct_mutex);
}

4356
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4357
{
4358
	if (INTEL_GEN(dev_priv) < 5 ||
4359 4360 4361 4362 4363 4364
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4365
	if (IS_GEN5(dev_priv))
4366 4367
		return;

4368
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4369
	if (IS_GEN6(dev_priv))
4370
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4371
	else if (IS_GEN7(dev_priv))
4372
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4373
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4374
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4375 4376
	else
		BUG();
4377
}
D
Daniel Vetter 已提交
4378

4379
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4380 4381 4382 4383 4384 4385 4386
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4387
static void init_unused_rings(struct drm_i915_private *dev_priv)
4388
{
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4401 4402 4403
	}
}

4404
static int __i915_gem_restart_engines(void *data)
4405
{
4406
	struct drm_i915_private *i915 = data;
4407
	struct intel_engine_cs *engine;
4408
	enum intel_engine_id id;
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4422
	int ret;
4423

4424 4425
	dev_priv->gt.last_init_time = ktime_get();

4426 4427 4428
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4429
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4430
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4431

4432
	if (IS_HASWELL(dev_priv))
4433
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4434
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4435

4436
	if (HAS_PCH_NOP(dev_priv)) {
4437
		if (IS_IVYBRIDGE(dev_priv)) {
4438 4439 4440
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4441
		} else if (INTEL_GEN(dev_priv) >= 7) {
4442 4443 4444 4445
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4446 4447
	}

4448
	i915_gem_init_swizzling(dev_priv);
4449

4450 4451 4452 4453 4454 4455
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4456
	init_unused_rings(dev_priv);
4457

4458
	BUG_ON(!dev_priv->kernel_context);
4459

4460
	ret = i915_ppgtt_init_hw(dev_priv);
4461 4462 4463 4464 4465 4466
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4467 4468 4469
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4470

4471
	intel_mocs_init_l3cc_table(dev_priv);
4472

4473
	/* We can't enable contexts until all firmware is loaded */
4474
	ret = intel_guc_setup(dev_priv);
4475 4476
	if (ret)
		goto out;
4477

4478 4479
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4480
	return ret;
4481 4482
}

4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4504
int i915_gem_init(struct drm_i915_private *dev_priv)
4505 4506 4507
{
	int ret;

4508
	mutex_lock(&dev_priv->drm.struct_mutex);
4509

4510
	if (!i915.enable_execlists) {
4511
		dev_priv->gt.resume = intel_legacy_submission_resume;
4512
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4513
	} else {
4514
		dev_priv->gt.resume = intel_lr_context_resume;
4515
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4516 4517
	}

4518 4519 4520 4521 4522 4523 4524 4525
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4526
	i915_gem_init_userptr(dev_priv);
4527 4528 4529 4530

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4531

4532
	ret = i915_gem_context_init(dev_priv);
4533 4534
	if (ret)
		goto out_unlock;
4535

4536
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4537
	if (ret)
4538
		goto out_unlock;
4539

4540
	ret = i915_gem_init_hw(dev_priv);
4541
	if (ret == -EIO) {
4542
		/* Allow engine initialisation to fail by marking the GPU as
4543 4544 4545 4546
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4547
		i915_gem_set_wedged(dev_priv);
4548
		ret = 0;
4549
	}
4550 4551

out_unlock:
4552
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4553
	mutex_unlock(&dev_priv->drm.struct_mutex);
4554

4555
	return ret;
4556 4557
}

4558 4559 4560 4561 4562
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4563
void
4564
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4565
{
4566
	struct intel_engine_cs *engine;
4567
	enum intel_engine_id id;
4568

4569
	for_each_engine(engine, dev_priv, id)
4570
		dev_priv->gt.cleanup_engine(engine);
4571 4572
}

4573 4574 4575
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4576
	int i;
4577 4578 4579 4580

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4581 4582 4583
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4584 4585 4586 4587
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4588
	if (intel_vgpu_active(dev_priv))
4589 4590 4591 4592
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4593 4594 4595 4596 4597 4598 4599
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4600
	i915_gem_restore_fences(dev_priv);
4601

4602
	i915_gem_detect_bit_6_swizzle(dev_priv);
4603 4604
}

4605
int
4606
i915_gem_load_init(struct drm_i915_private *dev_priv)
4607
{
4608
	int err = -ENOMEM;
4609

4610 4611
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4612 4613
		goto err_out;

4614 4615
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4616 4617
		goto err_objects;

4618 4619 4620 4621 4622
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4623 4624
		goto err_vmas;

4625 4626 4627 4628 4629 4630
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4631 4632
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4633
	err = i915_gem_timeline_init__global(dev_priv);
4634 4635
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4636
		goto err_dependencies;
4637

4638
	INIT_LIST_HEAD(&dev_priv->context_list);
4639 4640
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4641 4642
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4643
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4644
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4645
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4646
			  i915_gem_retire_work_handler);
4647
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4648
			  i915_gem_idle_work_handler);
4649
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4650
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4651

4652 4653
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4654
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4655

4656 4657
	dev_priv->mm.interruptible = true;

4658 4659
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4660
	spin_lock_init(&dev_priv->fb_tracking.lock);
4661 4662 4663

	return 0;

4664 4665
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4666 4667 4668 4669 4670 4671 4672 4673
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4674
}
4675

4676
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4677
{
4678
	i915_gem_drain_freed_objects(dev_priv);
4679
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4680
	WARN_ON(dev_priv->mm.object_count);
4681

4682 4683 4684 4685 4686
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4687
	kmem_cache_destroy(dev_priv->dependencies);
4688 4689 4690
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4691 4692 4693

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4694 4695
}

4696 4697 4698 4699 4700 4701 4702 4703 4704
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;
}

4705 4706 4707
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4708 4709 4710 4711 4712
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4723 4724 4725
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4726 4727
	 */

4728 4729
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4730

4731
	for (p = phases; *p; p++) {
4732
		list_for_each_entry(obj, *p, global_link) {
4733 4734 4735
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4736
	}
4737
	mutex_unlock(&dev_priv->drm.struct_mutex);
4738 4739 4740 4741

	return 0;
}

4742
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4743
{
4744
	struct drm_i915_file_private *file_priv = file->driver_priv;
4745
	struct drm_i915_gem_request *request;
4746 4747 4748 4749 4750

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4751
	spin_lock(&file_priv->mm.lock);
4752
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4753
		request->file_priv = NULL;
4754
	spin_unlock(&file_priv->mm.lock);
4755

4756
	if (!list_empty(&file_priv->rps.link)) {
4757
		spin_lock(&to_i915(dev)->rps.client_lock);
4758
		list_del(&file_priv->rps.link);
4759
		spin_unlock(&to_i915(dev)->rps.client_lock);
4760
	}
4761 4762 4763 4764 4765
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4766
	int ret;
4767

4768
	DRM_DEBUG("\n");
4769 4770 4771 4772 4773 4774

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4775
	file_priv->dev_priv = to_i915(dev);
4776
	file_priv->file = file;
4777
	INIT_LIST_HEAD(&file_priv->rps.link);
4778 4779 4780 4781

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4782
	file_priv->bsd_engine = -1;
4783

4784 4785 4786
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4787

4788
	return ret;
4789 4790
}

4791 4792
/**
 * i915_gem_track_fb - update frontbuffer tracking
4793 4794 4795
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4796 4797 4798 4799
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4800 4801 4802 4803
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4804 4805 4806 4807 4808 4809 4810 4811 4812
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4813
	if (old) {
4814 4815
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4816 4817 4818
	}

	if (new) {
4819 4820
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4821 4822 4823
	}
}

4824 4825
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
4826
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4827 4828 4829 4830 4831 4832 4833
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4834
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4835
	if (IS_ERR(obj))
4836 4837 4838 4839 4840 4841
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4842
	ret = i915_gem_object_pin_pages(obj);
4843 4844 4845
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4846
	sg = obj->mm.pages;
4847
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
4848
	obj->mm.dirty = true; /* Backing store is now out of date */
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4860
	i915_gem_object_put(obj);
4861 4862
	return ERR_PTR(ret);
}
4863 4864 4865 4866 4867 4868

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
4869
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4870 4871 4872 4873 4874
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
4875
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5000
	if (!obj->mm.dirty)
5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}