i915_gem.c 124.4 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84 85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107
	if (!i915_reset_in_progress(error))
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115
	ret = wait_event_interruptible_timeout(error->reset_queue,
116
					       !i915_reset_in_progress(error),
117
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123 124
	} else {
		return 0;
125
	}
126 127
}

128
int i915_mutex_lock_interruptible(struct drm_device *dev)
129
{
130
	struct drm_i915_private *dev_priv = to_i915(dev);
131 132
	int ret;

133
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 135 136 137 138 139 140 141 142
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
143

144 145
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146
			    struct drm_file *file)
147
{
148
	struct drm_i915_private *dev_priv = to_i915(dev);
149
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
150
	struct drm_i915_gem_get_aperture *args = data;
151
	struct i915_vma *vma;
152
	size_t pinned;
153

154
	pinned = 0;
155
	mutex_lock(&dev->struct_mutex);
156
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157
		if (i915_vma_is_pinned(vma))
158
			pinned += vma->node.size;
159
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	mutex_unlock(&dev->struct_mutex);
163

164
	args->aper_size = ggtt->base.total;
165
	args->aper_available_size = args->aper_size - pinned;
166

167 168 169
	return 0;
}

170 171
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172
{
173 174 175 176 177
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

195
		put_page(page);
196 197 198
		vaddr += PAGE_SIZE;
	}

199
	i915_gem_chipset_flush(to_i915(obj->base.dev));
200 201 202 203 204 205 206 207 208 209 210 211 212

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
213

214 215 216 217 218 219 220 221 222 223 224 225 226
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
227

228
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
229
	if (WARN_ON(ret)) {
230 231 232 233 234 235 236 237 238 239
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			put_page(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

282
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 284 285
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
286
	int ret = 0;
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

	/* The vma will only be freed if it is marked as closed, and if we wait
	 * upon rendering to the vma, we may unbind anything in the list.
	 */
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 * @obj: i915 gem object
 * @readonly: waiting for just read access or read-write access
 */
int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
	struct reservation_object *resv;
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = i915_gem_object_get_active(obj);
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

	for_each_active(active_mask, idx) {
		int ret;

		ret = i915_gem_active_wait(&active[idx],
					   &obj->base.dev->struct_mutex);
		if (ret)
			return ret;
	}

	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

	return 0;
}

351 352 353
/* A nonblocking variant of the above wait. Must be called prior to
 * acquiring the mutex for the object, as the object state may change
 * during this call. A reference must be held by the caller for the object.
354 355
 */
static __must_check int
356 357 358
__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
			struct intel_rps_client *rps,
			bool readonly)
359 360 361
{
	struct i915_gem_active *active;
	unsigned long active_mask;
362
	int idx;
363

364
	active_mask = __I915_BO_ACTIVE(obj);
365 366 367 368 369 370 371 372 373 374
	if (!active_mask)
		return 0;

	if (!readonly) {
		active = obj->last_read;
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

375 376
	for_each_active(active_mask, idx) {
		int ret;
377

378 379 380 381
		ret = i915_gem_active_wait_unlocked(&active[idx],
						    true, NULL, rps);
		if (ret)
			return ret;
382 383
	}

384
	return 0;
385 386 387 388 389 390 391 392 393
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

394 395 396 397 398
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
399
	int ret;
400 401 402 403 404 405 406 407 408 409 410 411 412 413

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
414 415 416 417 418
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
419 420 421
	if (ret)
		return ret;

422 423 424 425 426 427
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
428 429 430
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
431 432 433 434 435 436 437 438 439
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
440
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
441
	int ret = 0;
442 443 444 445 446 447 448

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
449

450
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
451 452 453 454 455 456 457 458 459 460
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
461 462 463 464
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
465 466
	}

467
	drm_clflush_virt_range(vaddr, args->size);
468
	i915_gem_chipset_flush(to_i915(dev));
469 470

out:
471
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
472
	return ret;
473 474
}

475 476
void *i915_gem_object_alloc(struct drm_device *dev)
{
477
	struct drm_i915_private *dev_priv = to_i915(dev);
478
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
479 480 481 482
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
483
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
484
	kmem_cache_free(dev_priv->objects, obj);
485 486
}

487 488 489 490 491
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
492
{
493
	struct drm_i915_gem_object *obj;
494 495
	int ret;
	u32 handle;
496

497
	size = roundup(size, PAGE_SIZE);
498 499
	if (size == 0)
		return -EINVAL;
500 501

	/* Allocate the new object */
502
	obj = i915_gem_object_create(dev, size);
503 504
	if (IS_ERR(obj))
		return PTR_ERR(obj);
505

506
	ret = drm_gem_handle_create(file, &obj->base, &handle);
507
	/* drop reference from allocate - handle holds it now */
508
	i915_gem_object_put_unlocked(obj);
509 510
	if (ret)
		return ret;
511

512
	*handle_p = handle;
513 514 515
	return 0;
}

516 517 518 519 520 521
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
522
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
523 524
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
525
			       args->size, &args->handle);
526 527 528 529
}

/**
 * Creates a new mm object and returns a handle to it.
530 531 532
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
533 534 535 536 537 538
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
539

540
	return i915_gem_create(file, dev,
541
			       args->size, &args->handle);
542 543
}

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

570
static inline int
571 572
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

596 597 598 599 600 601 602 603 604 605 606 607
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

608
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
609 610
		return -EINVAL;

611 612 613 614
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

633 634 635
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
636
static int
637 638 639 640 641 642 643
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

644
	if (unlikely(page_do_bit17_swizzling))
645 646 647 648 649 650 651 652 653 654 655
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

656
	return ret ? -EFAULT : 0;
657 658
}

659 660 661 662
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
663
	if (unlikely(swizzled)) {
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

681 682 683 684 685 686 687 688 689 690 691 692
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
693 694 695
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
696 697 698 699 700 701 702 703 704 705 706

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

707
	return ret ? - EFAULT : 0;
708 709
}

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
737
	struct drm_i915_private *dev_priv = to_i915(dev);
738 739 740 741 742 743 744
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

745
	ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

846
static int
847 848 849 850
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
851
{
852
	char __user *user_data;
853
	ssize_t remain;
854
	loff_t offset;
855
	int shmem_page_offset, page_length, ret = 0;
856
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
857
	int prefaulted = 0;
858
	int needs_clflush = 0;
859
	struct sg_page_iter sg_iter;
860

861
	if (!i915_gem_object_has_struct_page(obj))
862 863
		return -ENODEV;

864
	user_data = u64_to_user_ptr(args->data_ptr);
865 866
	remain = args->size;

867
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
868

869
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
870 871 872
	if (ret)
		return ret;

873
	offset = args->offset;
874

875 876
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
877
		struct page *page = sg_page_iter_page(&sg_iter);
878 879 880 881

		if (remain <= 0)
			break;

882 883 884 885 886
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
887
		shmem_page_offset = offset_in_page(offset);
888 889 890 891
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

892 893 894
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

895 896 897 898 899
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
900 901 902

		mutex_unlock(&dev->struct_mutex);

903
		if (likely(!i915.prefault_disable) && !prefaulted) {
904
			ret = fault_in_multipages_writeable(user_data, remain);
905 906 907 908 909 910 911
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
912

913 914 915
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
916

917
		mutex_lock(&dev->struct_mutex);
918 919

		if (ret)
920 921
			goto out;

922
next_page:
923
		remain -= page_length;
924
		user_data += page_length;
925 926 927
		offset += page_length;
	}

928
out:
929 930
	i915_gem_object_unpin_pages(obj);

931 932 933
	return ret;
}

934 935
/**
 * Reads data from the object referenced by handle.
936 937 938
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
939 940 941 942 943
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
944
		     struct drm_file *file)
945 946
{
	struct drm_i915_gem_pread *args = data;
947
	struct drm_i915_gem_object *obj;
948
	int ret = 0;
949

950 951 952 953
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
954
		       u64_to_user_ptr(args->data_ptr),
955 956 957
		       args->size))
		return -EFAULT;

958
	obj = i915_gem_object_lookup(file, args->handle);
959 960
	if (!obj)
		return -ENOENT;
961

962
	/* Bounds check source.  */
963 964
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
965
		ret = -EINVAL;
966
		goto err;
C
Chris Wilson 已提交
967 968
	}

C
Chris Wilson 已提交
969 970
	trace_i915_gem_object_pread(obj, args->offset, args->size);

971 972 973 974 975 976 977 978
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err;

979
	ret = i915_gem_shmem_pread(dev, obj, args, file);
980

981
	/* pread for non shmem backed objects */
982 983
	if (ret == -EFAULT || ret == -ENODEV) {
		intel_runtime_pm_get(to_i915(dev));
984 985
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);
986 987
		intel_runtime_pm_put(to_i915(dev));
	}
988

989
	i915_gem_object_put(obj);
990
	mutex_unlock(&dev->struct_mutex);
991 992 993 994 995

	return ret;

err:
	i915_gem_object_put_unlocked(obj);
996
	return ret;
997 998
}

999 1000
/* This is the fast write path which cannot handle
 * page faults in the source data
1001
 */
1002 1003 1004 1005 1006 1007

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
1008
{
1009 1010
	void __iomem *vaddr_atomic;
	void *vaddr;
1011
	unsigned long unwritten;
1012

P
Peter Zijlstra 已提交
1013
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1014 1015 1016
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
1017
						      user_data, length);
P
Peter Zijlstra 已提交
1018
	io_mapping_unmap_atomic(vaddr_atomic);
1019
	return unwritten;
1020 1021
}

1022 1023 1024
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1025
 * @i915: i915 device private data
1026 1027 1028
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
1029
 */
1030
static int
1031
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1032
			 struct drm_i915_gem_object *obj,
1033
			 struct drm_i915_gem_pwrite *args,
1034
			 struct drm_file *file)
1035
{
1036
	struct i915_ggtt *ggtt = &i915->ggtt;
1037
	struct drm_device *dev = obj->base.dev;
1038 1039
	struct drm_mm_node node;
	uint64_t remain, offset;
1040
	char __user *user_data;
1041
	int ret;
1042 1043
	bool hit_slow_path = false;

1044
	if (i915_gem_object_is_tiled(obj))
1045
		return -EFAULT;
D
Daniel Vetter 已提交
1046

1047 1048
	ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
1064 1065 1066
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
1067
	}
D
Daniel Vetter 已提交
1068 1069 1070 1071 1072

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1073
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
1074
	obj->dirty = true;
1075

1076 1077 1078 1079
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1080 1081
		/* Operation in this page
		 *
1082 1083 1084
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1085
		 */
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1099
		/* If we get a fault while copying data, then (presumably) our
1100 1101
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1102 1103
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1104
		 */
1105
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1106
				    page_offset, user_data, page_length)) {
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1119
		}
1120

1121 1122 1123
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1124 1125
	}

1126
out_flush:
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1140
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1141
out_unpin:
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1152
out:
1153
	return ret;
1154 1155
}

1156 1157 1158 1159
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1160
static int
1161 1162 1163 1164 1165
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1166
{
1167
	char *vaddr;
1168
	int ret;
1169

1170
	if (unlikely(page_do_bit17_swizzling))
1171
		return -EINVAL;
1172

1173 1174 1175 1176
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1177 1178
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1179 1180 1181 1182
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1183

1184
	return ret ? -EFAULT : 0;
1185 1186
}

1187 1188
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1189
static int
1190 1191 1192 1193 1194
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1195
{
1196 1197
	char *vaddr;
	int ret;
1198

1199
	vaddr = kmap(page);
1200
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1201 1202 1203
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1204 1205
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1206 1207
						user_data,
						page_length);
1208 1209 1210 1211 1212
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1213 1214 1215
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1216
	kunmap(page);
1217

1218
	return ret ? -EFAULT : 0;
1219 1220 1221
}

static int
1222 1223 1224 1225
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1226 1227
{
	ssize_t remain;
1228 1229
	loff_t offset;
	char __user *user_data;
1230
	int shmem_page_offset, page_length, ret = 0;
1231
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1232
	int hit_slowpath = 0;
1233 1234
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1235
	struct sg_page_iter sg_iter;
1236

1237
	user_data = u64_to_user_ptr(args->data_ptr);
1238 1239
	remain = args->size;

1240
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1241

1242 1243 1244 1245
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

1246 1247 1248 1249 1250
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1251
		needs_clflush_after = cpu_write_needs_clflush(obj);
1252
	}
1253 1254 1255 1256 1257
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1258

1259 1260 1261 1262
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1263
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1264

1265 1266
	i915_gem_object_pin_pages(obj);

1267
	offset = args->offset;
1268
	obj->dirty = 1;
1269

1270 1271
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1272
		struct page *page = sg_page_iter_page(&sg_iter);
1273
		int partial_cacheline_write;
1274

1275 1276 1277
		if (remain <= 0)
			break;

1278 1279 1280 1281 1282
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1283
		shmem_page_offset = offset_in_page(offset);
1284 1285 1286 1287 1288

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1289 1290 1291 1292 1293 1294 1295
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1296 1297 1298
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1299 1300 1301 1302 1303 1304
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1305 1306 1307

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1308 1309 1310 1311
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1312

1313
		mutex_lock(&dev->struct_mutex);
1314 1315

		if (ret)
1316 1317
			goto out;

1318
next_page:
1319
		remain -= page_length;
1320
		user_data += page_length;
1321
		offset += page_length;
1322 1323
	}

1324
out:
1325 1326
	i915_gem_object_unpin_pages(obj);

1327
	if (hit_slowpath) {
1328 1329 1330 1331 1332 1333 1334
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1335
			if (i915_gem_clflush_object(obj, obj->pin_display))
1336
				needs_clflush_after = true;
1337
		}
1338
	}
1339

1340
	if (needs_clflush_after)
1341
		i915_gem_chipset_flush(to_i915(dev));
1342 1343
	else
		obj->cache_dirty = true;
1344

1345
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1346
	return ret;
1347 1348 1349 1350
}

/**
 * Writes data to the object referenced by handle.
1351 1352 1353
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1354 1355 1356 1357 1358
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1359
		      struct drm_file *file)
1360
{
1361
	struct drm_i915_private *dev_priv = to_i915(dev);
1362
	struct drm_i915_gem_pwrite *args = data;
1363
	struct drm_i915_gem_object *obj;
1364 1365 1366 1367 1368 1369
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1370
		       u64_to_user_ptr(args->data_ptr),
1371 1372 1373
		       args->size))
		return -EFAULT;

1374
	if (likely(!i915.prefault_disable)) {
1375
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1376 1377 1378 1379
						   args->size);
		if (ret)
			return -EFAULT;
	}
1380

1381
	obj = i915_gem_object_lookup(file, args->handle);
1382 1383
	if (!obj)
		return -ENOENT;
1384

1385
	/* Bounds check destination. */
1386 1387
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1388
		ret = -EINVAL;
1389
		goto err;
C
Chris Wilson 已提交
1390 1391
	}

C
Chris Wilson 已提交
1392 1393
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
	if (ret)
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;

D
Daniel Vetter 已提交
1404
	ret = -EFAULT;
1405 1406 1407 1408 1409 1410
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1411 1412
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1413
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1414 1415 1416
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1417
	}
1418

1419
	if (ret == -EFAULT || ret == -ENOSPC) {
1420 1421
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1422
		else if (i915_gem_object_has_struct_page(obj))
1423
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1424 1425
		else
			ret = -ENODEV;
1426
	}
1427

1428
	i915_gem_object_put(obj);
1429
	mutex_unlock(&dev->struct_mutex);
1430 1431
	intel_runtime_pm_put(dev_priv);

1432
	return ret;
1433 1434 1435 1436 1437 1438

err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1439 1440
}

1441 1442 1443 1444 1445 1446 1447
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1448
/**
1449 1450
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1451 1452 1453
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1454 1455 1456
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1457
			  struct drm_file *file)
1458 1459
{
	struct drm_i915_gem_set_domain *args = data;
1460
	struct drm_i915_gem_object *obj;
1461 1462
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1463 1464
	int ret;

1465
	/* Only handle setting domains to types used by the CPU. */
1466
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1467 1468 1469 1470 1471 1472 1473 1474
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1475
	obj = i915_gem_object_lookup(file, args->handle);
1476 1477
	if (!obj)
		return -ENOENT;
1478

1479 1480 1481 1482
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1483 1484 1485 1486 1487
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
1488
	if (ret)
1489
		goto err;
1490

1491
	if (read_domains & I915_GEM_DOMAIN_GTT)
1492
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1493
	else
1494
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1495

1496
	if (write_domain != 0)
1497
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1498

1499
	i915_gem_object_put(obj);
1500 1501
	mutex_unlock(&dev->struct_mutex);
	return ret;
1502 1503 1504 1505

err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1506 1507 1508 1509
}

/**
 * Called when user space has done writes to this buffer
1510 1511 1512
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1513 1514 1515
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1516
			 struct drm_file *file)
1517 1518
{
	struct drm_i915_gem_sw_finish *args = data;
1519
	struct drm_i915_gem_object *obj;
1520
	int err = 0;
1521

1522
	obj = i915_gem_object_lookup(file, args->handle);
1523 1524
	if (!obj)
		return -ENOENT;
1525 1526

	/* Pinned buffers may be scanout, so flush the cache */
1527 1528 1529 1530 1531 1532 1533
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1534

1535 1536
	i915_gem_object_put_unlocked(obj);
	return err;
1537 1538 1539
}

/**
1540 1541 1542 1543 1544
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1545 1546 1547
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1558 1559 1560
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1561
		    struct drm_file *file)
1562 1563
{
	struct drm_i915_gem_mmap *args = data;
1564
	struct drm_i915_gem_object *obj;
1565 1566
	unsigned long addr;

1567 1568 1569
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1570
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1571 1572
		return -ENODEV;

1573 1574
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1575
		return -ENOENT;
1576

1577 1578 1579
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1580
	if (!obj->base.filp) {
1581
		i915_gem_object_put_unlocked(obj);
1582 1583 1584
		return -EINVAL;
	}

1585
	addr = vm_mmap(obj->base.filp, 0, args->size,
1586 1587
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1588 1589 1590 1591
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1592
		if (down_write_killable(&mm->mmap_sem)) {
1593
			i915_gem_object_put_unlocked(obj);
1594 1595
			return -EINTR;
		}
1596 1597 1598 1599 1600 1601 1602
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1603 1604

		/* This may race, but that's ok, it only gets set */
1605
		WRITE_ONCE(obj->has_wc_mmap, true);
1606
	}
1607
	i915_gem_object_put_unlocked(obj);
1608 1609 1610 1611 1612 1613 1614 1615
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1616 1617
/**
 * i915_gem_fault - fault a page into the GTT
1618 1619
 * @vma: VMA in question
 * @vmf: fault info
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1634 1635
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1636 1637
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1638
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1639
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1640 1641
	pgoff_t page_offset;
	unsigned long pfn;
1642
	int ret;
1643

1644 1645 1646 1647
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

C
Chris Wilson 已提交
1648 1649
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1650
	/* Try to flush the object off the GPU first without holding the lock.
1651
	 * Upon acquiring the lock, we will perform our sanity checks and then
1652 1653 1654
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1655
	ret = __unsafe_wait_rendering(obj, NULL, !write);
1656
	if (ret)
1657 1658 1659 1660 1661 1662 1663
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1664

1665 1666
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1667
		ret = -EFAULT;
1668
		goto err_unlock;
1669 1670
	}

1671
	/* Use a partial view if the object is bigger than the aperture. */
1672
	if (obj->base.size >= ggtt->mappable_end &&
1673
	    !i915_gem_object_is_tiled(obj)) {
1674
		static const unsigned int chunk_size = 256; // 1 MiB
1675

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
1687
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1688
	if (ret)
1689
		goto err_unlock;
1690

1691 1692
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1693
		goto err_unpin;
1694

1695
	ret = i915_gem_object_get_fence(obj);
1696
	if (ret)
1697
		goto err_unpin;
1698

1699
	/* Finally, remap it using the new GTT offset */
1700
	pfn = ggtt->mappable_base +
1701
		i915_gem_obj_ggtt_offset_view(obj, &view);
1702
	pfn >>= PAGE_SHIFT;
1703

1704 1705 1706 1707 1708 1709 1710 1711 1712
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1713

1714 1715
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1716 1717 1718 1719 1720
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1742
err_unpin:
1743
	i915_gem_object_ggtt_unpin_view(obj, &view);
1744
err_unlock:
1745
	mutex_unlock(&dev->struct_mutex);
1746 1747 1748
err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
1749
	switch (ret) {
1750
	case -EIO:
1751 1752 1753 1754 1755 1756 1757
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1758 1759 1760
			ret = VM_FAULT_SIGBUS;
			break;
		}
1761
	case -EAGAIN:
D
Daniel Vetter 已提交
1762 1763 1764 1765
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1766
		 */
1767 1768
	case 0:
	case -ERESTARTSYS:
1769
	case -EINTR:
1770 1771 1772 1773 1774
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1775 1776
		ret = VM_FAULT_NOPAGE;
		break;
1777
	case -ENOMEM:
1778 1779
		ret = VM_FAULT_OOM;
		break;
1780
	case -ENOSPC:
1781
	case -EFAULT:
1782 1783
		ret = VM_FAULT_SIGBUS;
		break;
1784
	default:
1785
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1786 1787
		ret = VM_FAULT_SIGBUS;
		break;
1788
	}
1789
	return ret;
1790 1791
}

1792 1793 1794 1795
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1796
 * Preserve the reservation of the mmapping with the DRM core code, but
1797 1798 1799 1800 1801 1802 1803 1804 1805
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1806
void
1807
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1808
{
1809 1810 1811 1812 1813 1814
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1815 1816
	if (!obj->fault_mappable)
		return;
1817

1818 1819
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1830
	obj->fault_mappable = false;
1831 1832
}

1833 1834 1835 1836 1837 1838 1839 1840 1841
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1842 1843
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1844
 * @dev_priv: i915 device
1845 1846 1847 1848 1849 1850
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
1851 1852
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
1853
{
1854
	u64 ggtt_size;
1855

1856 1857
	GEM_BUG_ON(size == 0);

1858
	if (INTEL_GEN(dev_priv) >= 4 ||
1859 1860
	    tiling_mode == I915_TILING_NONE)
		return size;
1861 1862

	/* Previous chips need a power-of-two fence region when tiling */
1863
	if (IS_GEN3(dev_priv))
1864
		ggtt_size = 1024*1024;
1865
	else
1866
		ggtt_size = 512*1024;
1867

1868 1869
	while (ggtt_size < size)
		ggtt_size <<= 1;
1870

1871
	return ggtt_size;
1872 1873
}

1874
/**
1875
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
1876
 * @dev_priv: i915 device
1877 1878
 * @size: object size
 * @tiling_mode: tiling mode
1879
 * @fenced: is fenced alignment required or not
1880
 *
1881
 * Return the required global GTT alignment for an object, taking into account
1882
 * potential fence register mapping.
1883
 */
1884
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1885
				int tiling_mode, bool fenced)
1886
{
1887 1888
	GEM_BUG_ON(size == 0);

1889 1890 1891 1892
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1893
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
1894
	    tiling_mode == I915_TILING_NONE)
1895 1896
		return 4096;

1897 1898 1899 1900
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1901
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
1902 1903
}

1904 1905
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1906
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1907
	int err;
1908

1909 1910 1911
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
1912

1913 1914 1915
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
1916
	 */
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
	err = i915_gem_wait_for_idle(dev_priv, true);
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
1927

1928
	return err;
1929 1930 1931 1932 1933 1934 1935
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1936
int
1937 1938
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1939
		  uint32_t handle,
1940
		  uint64_t *offset)
1941
{
1942
	struct drm_i915_gem_object *obj;
1943 1944
	int ret;

1945
	obj = i915_gem_object_lookup(file, handle);
1946 1947
	if (!obj)
		return -ENOENT;
1948

1949
	ret = i915_gem_object_create_mmap_offset(obj);
1950 1951
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1952

1953
	i915_gem_object_put_unlocked(obj);
1954
	return ret;
1955 1956
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1978
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1979 1980
}

D
Daniel Vetter 已提交
1981 1982 1983
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1984
{
1985
	i915_gem_object_free_mmap_offset(obj);
1986

1987 1988
	if (obj->base.filp == NULL)
		return;
1989

D
Daniel Vetter 已提交
1990 1991 1992 1993 1994
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1995
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1996 1997
	obj->madv = __I915_MADV_PURGED;
}
1998

1999 2000 2001
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2002
{
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2017 2018
}

2019
static void
2020
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2021
{
2022 2023
	struct sgt_iter sgt_iter;
	struct page *page;
2024
	int ret;
2025

2026
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2027

C
Chris Wilson 已提交
2028
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2029
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2030 2031 2032
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2033
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2034 2035 2036
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2037 2038
	i915_gem_gtt_finish_object(obj);

2039
	if (i915_gem_object_needs_bit17_swizzle(obj))
2040 2041
		i915_gem_object_save_bit_17_swizzle(obj);

2042 2043
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2044

2045
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2046
		if (obj->dirty)
2047
			set_page_dirty(page);
2048

2049
		if (obj->madv == I915_MADV_WILLNEED)
2050
			mark_page_accessed(page);
2051

2052
		put_page(page);
2053
	}
2054
	obj->dirty = 0;
2055

2056 2057
	sg_free_table(obj->pages);
	kfree(obj->pages);
2058
}
C
Chris Wilson 已提交
2059

2060
int
2061 2062 2063 2064
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2065
	if (obj->pages == NULL)
2066 2067
		return 0;

2068 2069 2070
	if (obj->pages_pin_count)
		return -EBUSY;

2071
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2072

2073 2074 2075
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2076
	list_del(&obj->global_list);
2077

2078
	if (obj->mapping) {
2079
		/* low bits are ignored by is_vmalloc_addr and kmap_to_page */
2080 2081 2082 2083
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2084 2085 2086
		obj->mapping = NULL;
	}

2087
	ops->put_pages(obj);
2088
	obj->pages = NULL;
2089

2090
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2091 2092 2093 2094

	return 0;
}

2095
static int
C
Chris Wilson 已提交
2096
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2097
{
2098
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2099 2100
	int page_count, i;
	struct address_space *mapping;
2101 2102
	struct sg_table *st;
	struct scatterlist *sg;
2103
	struct sgt_iter sgt_iter;
2104
	struct page *page;
2105
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2106
	int ret;
C
Chris Wilson 已提交
2107
	gfp_t gfp;
2108

C
Chris Wilson 已提交
2109 2110 2111 2112 2113 2114 2115
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2116 2117 2118 2119
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2120
	page_count = obj->base.size / PAGE_SIZE;
2121 2122
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2123
		return -ENOMEM;
2124
	}
2125

2126 2127 2128 2129 2130
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2131
	mapping = file_inode(obj->base.filp)->i_mapping;
2132
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2133
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2134 2135 2136
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2137 2138
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2139 2140 2141 2142 2143
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2144 2145 2146 2147 2148 2149 2150 2151
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2152
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2153 2154
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2155
				goto err_pages;
I
Imre Deak 已提交
2156
			}
C
Chris Wilson 已提交
2157
		}
2158 2159 2160 2161 2162 2163 2164 2165
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2166 2167 2168 2169 2170 2171 2172 2173 2174
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2175 2176 2177

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2178
	}
2179 2180 2181 2182
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2183 2184
	obj->pages = st;

I
Imre Deak 已提交
2185 2186 2187 2188
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2189
	if (i915_gem_object_needs_bit17_swizzle(obj))
2190 2191
		i915_gem_object_do_bit_17_swizzle(obj);

2192
	if (i915_gem_object_is_tiled(obj) &&
2193 2194 2195
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2196 2197 2198
	return 0;

err_pages:
2199
	sg_mark_end(sg);
2200 2201
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2202 2203
	sg_free_table(st);
	kfree(st);
2204 2205 2206 2207 2208 2209 2210 2211 2212

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2213 2214 2215 2216
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2217 2218
}

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2229
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2230 2231 2232
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2233
	if (obj->pages)
2234 2235
		return 0;

2236
	if (obj->madv != I915_MADV_WILLNEED) {
2237
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2238
		return -EFAULT;
2239 2240
	}

2241 2242
	BUG_ON(obj->pages_pin_count);

2243 2244 2245 2246
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2247
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2248 2249 2250 2251

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2252
	return 0;
2253 2254
}

2255
/* The 'mapping' part of i915_gem_object_pin_map() below */
2256 2257
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2258 2259 2260
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2261 2262
	struct sgt_iter sgt_iter;
	struct page *page;
2263 2264
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2265
	unsigned long i = 0;
2266
	pgprot_t pgprot;
2267 2268 2269
	void *addr;

	/* A single page can always be kmapped */
2270
	if (n_pages == 1 && type == I915_MAP_WB)
2271 2272
		return kmap(sg_page(sgt->sgl));

2273 2274 2275 2276 2277 2278
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2279

2280 2281
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2282 2283 2284 2285

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2286 2287 2288 2289 2290 2291 2292 2293 2294
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2295

2296 2297
	if (pages != stack_pages)
		drm_free_large(pages);
2298 2299 2300 2301 2302

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2303 2304
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2305
{
2306 2307 2308
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2309 2310 2311
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
2312
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2313 2314 2315 2316 2317 2318

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);
2319
	pinned = obj->pages_pin_count > 1;
2320

2321 2322 2323 2324 2325
	ptr = ptr_unpack_bits(obj->mapping, has_type);
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
			goto err;
2326
		}
2327 2328 2329 2330 2331 2332 2333

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

		ptr = obj->mapping = NULL;
2334 2335
	}

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
			goto err;
		}

		obj->mapping = ptr_pack_bits(ptr, type);
	}

	return ptr;

err:
	i915_gem_object_unpin_pages(obj);
	return ERR_PTR(ret);
2351 2352
}

2353
static void
2354 2355
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2356
{
2357 2358
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2359

2360
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2361 2362
}

2363
static void
2364 2365
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2366
{
2367 2368 2369
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2370

2371
	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2372

2373 2374
	i915_gem_object_clear_active(obj, idx);
	if (i915_gem_object_is_active(obj))
2375
		return;
2376

2377 2378 2379 2380
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2381 2382 2383
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2384

2385
	i915_gem_object_put(obj);
2386 2387
}

2388
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2389
{
2390
	unsigned long elapsed;
2391

2392
	if (ctx->hang_stats.banned)
2393 2394
		return true;

2395
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2396 2397
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2398 2399
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2400 2401 2402 2403 2404
	}

	return false;
}

2405
static void i915_set_reset_status(struct i915_gem_context *ctx,
2406
				  const bool guilty)
2407
{
2408
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2409 2410

	if (guilty) {
2411
		hs->banned = i915_context_is_banned(ctx);
2412 2413 2414 2415
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2416 2417 2418
	}
}

2419
struct drm_i915_gem_request *
2420
i915_gem_find_active_request(struct intel_engine_cs *engine)
2421
{
2422 2423
	struct drm_i915_gem_request *request;

2424 2425 2426 2427 2428 2429 2430 2431
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2432
	list_for_each_entry(request, &engine->request_list, link) {
2433
		if (i915_gem_request_completed(request))
2434
			continue;
2435

2436
		return request;
2437
	}
2438 2439 2440 2441

	return NULL;
}

2442
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2443 2444 2445 2446
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2447
	request = i915_gem_find_active_request(engine);
2448 2449 2450
	if (request == NULL)
		return;

2451
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2452

2453
	i915_set_reset_status(request->ctx, ring_hung);
2454
	list_for_each_entry_continue(request, &engine->request_list, link)
2455
		i915_set_reset_status(request->ctx, false);
2456
}
2457

2458
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2459
{
2460
	struct drm_i915_gem_request *request;
2461
	struct intel_ring *ring;
2462

2463 2464 2465 2466
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2467
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2468

2469 2470 2471 2472 2473 2474
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2475
	if (i915.enable_execlists) {
2476 2477
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2478

2479
		intel_execlists_cancel_requests(engine);
2480 2481
	}

2482 2483 2484 2485 2486 2487 2488
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2489 2490
	request = i915_gem_active_raw(&engine->last_request,
				      &engine->i915->drm.struct_mutex);
2491
	if (request)
2492
		i915_gem_request_retire_upto(request);
2493
	GEM_BUG_ON(intel_engine_is_active(engine));
2494 2495 2496 2497 2498 2499 2500 2501

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2502 2503 2504
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2505
	}
2506

2507
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2508 2509
}

2510
void i915_gem_reset(struct drm_device *dev)
2511
{
2512
	struct drm_i915_private *dev_priv = to_i915(dev);
2513
	struct intel_engine_cs *engine;
2514

2515 2516 2517 2518 2519
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2520
	for_each_engine(engine, dev_priv)
2521
		i915_gem_reset_engine_status(engine);
2522

2523
	for_each_engine(engine, dev_priv)
2524
		i915_gem_reset_engine_cleanup(engine);
2525
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2526

2527 2528
	i915_gem_context_reset(dev);

2529
	i915_gem_restore_fences(dev);
2530 2531
}

2532
static void
2533 2534
i915_gem_retire_work_handler(struct work_struct *work)
{
2535
	struct drm_i915_private *dev_priv =
2536
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2537
	struct drm_device *dev = &dev_priv->drm;
2538

2539
	/* Come back later if the device is busy... */
2540
	if (mutex_trylock(&dev->struct_mutex)) {
2541
		i915_gem_retire_requests(dev_priv);
2542
		mutex_unlock(&dev->struct_mutex);
2543
	}
2544 2545 2546 2547 2548

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2549 2550
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2551 2552
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2553
				   round_jiffies_up_relative(HZ));
2554
	}
2555
}
2556

2557 2558 2559 2560
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2561
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2562
	struct drm_device *dev = &dev_priv->drm;
2563
	struct intel_engine_cs *engine;
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2585

2586
	for_each_engine(engine, dev_priv)
2587
		i915_gem_batch_pool_fini(&engine->batch_pool);
2588

2589 2590 2591
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2592

2593 2594 2595 2596 2597
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2598

2599 2600 2601 2602
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2603
	}
2604 2605
}

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2619 2620
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2621 2622 2623
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
2647
	struct intel_rps_client *rps = to_rps_client(file);
2648
	struct drm_i915_gem_object *obj;
2649 2650
	unsigned long active;
	int idx, ret = 0;
2651

2652 2653 2654
	if (args->flags != 0)
		return -EINVAL;

2655
	obj = i915_gem_object_lookup(file, args->bo_handle);
2656
	if (!obj)
2657 2658
		return -ENOENT;

2659 2660 2661 2662 2663 2664 2665
	active = __I915_BO_ACTIVE(obj);
	for_each_active(active, idx) {
		s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
		ret = i915_gem_active_wait_unlocked(&obj->last_read[idx], true,
						    timeout, rps);
		if (ret)
			break;
2666 2667
	}

2668
	i915_gem_object_put_unlocked(obj);
2669
	return ret;
2670 2671
}

2672
static int
2673
__i915_gem_object_sync(struct drm_i915_gem_request *to,
2674
		       struct drm_i915_gem_request *from)
2675 2676 2677
{
	int ret;

2678
	if (to->engine == from->engine)
2679 2680
		return 0;

2681
	if (!i915.semaphores) {
2682 2683 2684 2685
		ret = i915_wait_request(from,
					from->i915->mm.interruptible,
					NULL,
					NO_WAITBOOST);
2686 2687 2688
		if (ret)
			return ret;
	} else {
2689
		int idx = intel_engine_sync_index(from->engine, to->engine);
2690
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2691 2692
			return 0;

2693
		trace_i915_gem_ring_sync_to(to, from);
2694
		ret = to->engine->semaphore.sync_to(to, from);
2695 2696 2697
		if (ret)
			return ret;

2698
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2699 2700 2701 2702 2703
	}

	return 0;
}

2704 2705 2706 2707
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2708
 * @to: request we are wishing to use
2709 2710
 *
 * This code is meant to abstract object synchronization with the GPU.
2711 2712 2713
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2714 2715 2716 2717 2718 2719 2720
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2721 2722 2723
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2724 2725
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2726
		     struct drm_i915_gem_request *to)
2727
{
C
Chris Wilson 已提交
2728 2729 2730
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;
2731

C
Chris Wilson 已提交
2732
	lockdep_assert_held(&obj->base.dev->struct_mutex);
2733

2734
	active_mask = i915_gem_object_get_active(obj);
C
Chris Wilson 已提交
2735 2736
	if (!active_mask)
		return 0;
2737

C
Chris Wilson 已提交
2738 2739
	if (obj->base.pending_write_domain) {
		active = obj->last_read;
2740
	} else {
C
Chris Wilson 已提交
2741 2742
		active_mask = 1;
		active = &obj->last_write;
2743
	}
C
Chris Wilson 已提交
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753

	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
		int ret;

		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

2754
		ret = __i915_gem_object_sync(to, request);
2755 2756 2757
		if (ret)
			return ret;
	}
2758

2759
	return 0;
2760 2761
}

2762 2763 2764 2765 2766 2767 2768
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2769 2770 2771
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2783 2784
static void __i915_vma_iounmap(struct i915_vma *vma)
{
2785
	GEM_BUG_ON(i915_vma_is_pinned(vma));
2786 2787 2788 2789 2790 2791 2792 2793

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2794
int i915_vma_unbind(struct i915_vma *vma)
2795
{
2796
	struct drm_i915_gem_object *obj = vma->obj;
2797
	unsigned long active;
2798
	int ret;
2799

2800 2801 2802 2803
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2804
	if (active) {
2805 2806
		int idx;

2807 2808 2809 2810 2811
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
2812
		__i915_vma_pin(vma);
2813

2814 2815 2816 2817
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2818
				break;
2819 2820
		}

2821
		__i915_vma_unpin(vma);
2822 2823 2824
		if (ret)
			return ret;

2825 2826 2827
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

2828
	if (i915_vma_is_pinned(vma))
2829 2830
		return -EBUSY;

2831 2832
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2833

2834 2835
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2836

2837 2838
	if (i915_vma_is_ggtt(vma) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2839
		i915_gem_object_finish_gtt(obj);
2840

2841 2842 2843 2844
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
2845 2846

		__i915_vma_iounmap(vma);
2847
	}
2848

2849 2850 2851 2852
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
2853
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2854

2855 2856 2857
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

2858
	if (i915_vma_is_ggtt(vma)) {
2859 2860 2861 2862 2863 2864
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
2865
		vma->ggtt_view.pages = NULL;
2866
	}
2867

B
Ben Widawsky 已提交
2868
	/* Since the unbound list is global, only move to that list if
2869
	 * no more VMAs exist. */
2870 2871 2872
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
2873

2874 2875 2876 2877 2878 2879
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2880
destroy:
2881
	if (unlikely(i915_vma_is_closed(vma)))
2882 2883
		i915_vma_destroy(vma);

2884
	return 0;
2885 2886
}

2887 2888
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
			   bool interruptible)
2889
{
2890
	struct intel_engine_cs *engine;
2891
	int ret;
2892

2893
	for_each_engine(engine, dev_priv) {
2894 2895 2896
		if (engine->last_context == NULL)
			continue;

2897
		ret = intel_engine_idle(engine, interruptible);
2898 2899 2900
		if (ret)
			return ret;
	}
2901

2902
	return 0;
2903 2904
}

2905
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2906 2907
				     unsigned long cache_level)
{
2908
	struct drm_mm_node *gtt_space = &vma->node;
2909 2910
	struct drm_mm_node *other;

2911 2912 2913 2914 2915 2916
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
2917
	 */
2918
	if (vma->vm->mm.color_adjust == NULL)
2919 2920
		return true;

2921
	if (!drm_mm_node_allocated(gtt_space))
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

2938
/**
2939 2940
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
2941
 * @size: requested size in bytes (can be larger than the VMA)
2942
 * @alignment: required alignment
2943
 * @flags: mask of PIN_* flags to use
2944 2945 2946 2947 2948 2949 2950
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
2951
 */
2952 2953
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
2954
{
2955 2956
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
2957 2958
	u64 start, end;
	u64 min_alignment;
2959
	int ret;
2960

2961
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
2962
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
2963 2964 2965

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
2966 2967
		size = i915_gem_get_ggtt_size(dev_priv, size,
					      i915_gem_object_get_tiling(obj));
2968 2969

	min_alignment =
2970 2971
		i915_gem_get_ggtt_alignment(dev_priv, size,
					    i915_gem_object_get_tiling(obj),
2972 2973 2974 2975 2976 2977
					    flags & PIN_MAPPABLE);
	if (alignment == 0)
		alignment = min_alignment;
	if (alignment & (min_alignment - 1)) {
		DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
			  alignment, min_alignment);
2978
		return -EINVAL;
2979
	}
2980

2981
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
2982 2983

	end = vma->vm->total;
2984
	if (flags & PIN_MAPPABLE)
2985
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
2986
	if (flags & PIN_ZONE_4G)
2987
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
2988

2989 2990 2991
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
2992
	 */
2993
	if (size > end) {
2994
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
2995
			  size, obj->base.size,
2996
			  flags & PIN_MAPPABLE ? "mappable" : "total",
2997
			  end);
2998
		return -E2BIG;
2999 3000
	}

3001
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3002
	if (ret)
3003
		return ret;
C
Chris Wilson 已提交
3004

3005 3006
	i915_gem_object_pin_pages(obj);

3007
	if (flags & PIN_OFFSET_FIXED) {
3008
		u64 offset = flags & PIN_OFFSET_MASK;
3009
		if (offset & (alignment - 1) || offset > end - size) {
3010
			ret = -EINVAL;
3011
			goto err_unpin;
3012
		}
3013

3014 3015 3016
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3017
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3018 3019 3020
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3021 3022 3023
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3024
		}
3025
	} else {
3026 3027
		u32 search_flag, alloc_flag;

3028 3029 3030 3031 3032 3033 3034
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3035

3036 3037 3038 3039 3040 3041 3042 3043 3044
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3045
search_free:
3046 3047
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3048 3049 3050 3051 3052 3053
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3054
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3055 3056 3057 3058 3059
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3060

3061
			goto err_unpin;
3062
		}
3063
	}
3064
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3065

3066
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3067
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3068
	obj->bind_count++;
3069

3070
	return 0;
B
Ben Widawsky 已提交
3071

3072
err_unpin:
B
Ben Widawsky 已提交
3073
	i915_gem_object_unpin_pages(obj);
3074
	return ret;
3075 3076
}

3077
bool
3078 3079
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3080 3081 3082 3083 3084
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3085
	if (obj->pages == NULL)
3086
		return false;
3087

3088 3089 3090 3091
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3092
	if (obj->stolen || obj->phys_handle)
3093
		return false;
3094

3095 3096 3097 3098 3099 3100 3101 3102
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3103 3104
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3105
		return false;
3106
	}
3107

C
Chris Wilson 已提交
3108
	trace_i915_gem_object_clflush(obj);
3109
	drm_clflush_sg(obj->pages);
3110
	obj->cache_dirty = false;
3111 3112

	return true;
3113 3114 3115 3116
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3117
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3118
{
C
Chris Wilson 已提交
3119 3120
	uint32_t old_write_domain;

3121
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3122 3123
		return;

3124
	/* No actual flushing is required for the GTT write domain.  Writes
3125 3126
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3127 3128 3129 3130
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3131
	 */
3132 3133
	wmb();

3134 3135
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3136

3137
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3138

C
Chris Wilson 已提交
3139
	trace_i915_gem_object_change_domain(obj,
3140
					    obj->base.read_domains,
C
Chris Wilson 已提交
3141
					    old_write_domain);
3142 3143 3144 3145
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3146
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3147
{
C
Chris Wilson 已提交
3148
	uint32_t old_write_domain;
3149

3150
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3151 3152
		return;

3153
	if (i915_gem_clflush_object(obj, obj->pin_display))
3154
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3155

3156 3157
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3158

3159
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3160

C
Chris Wilson 已提交
3161
	trace_i915_gem_object_change_domain(obj,
3162
					    obj->base.read_domains,
C
Chris Wilson 已提交
3163
					    old_write_domain);
3164 3165
}

3166 3167
/**
 * Moves a single object to the GTT read, and possibly write domain.
3168 3169
 * @obj: object to act on
 * @write: ask for write access or read only
3170 3171 3172 3173
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3174
int
3175
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3176
{
C
Chris Wilson 已提交
3177
	uint32_t old_write_domain, old_read_domains;
3178
	struct i915_vma *vma;
3179
	int ret;
3180

3181
	ret = i915_gem_object_wait_rendering(obj, !write);
3182 3183 3184
	if (ret)
		return ret;

3185 3186 3187
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3200
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3201

3202 3203 3204 3205 3206 3207 3208
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3209 3210
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3211

3212 3213 3214
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3215 3216
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3217
	if (write) {
3218 3219 3220
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3221 3222
	}

C
Chris Wilson 已提交
3223 3224 3225 3226
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3227
	/* And bump the LRU for this access */
3228
	vma = i915_gem_obj_to_ggtt(obj);
3229 3230 3231 3232
	if (vma &&
	    drm_mm_node_allocated(&vma->node) &&
	    !i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3233

3234 3235 3236
	return 0;
}

3237 3238
/**
 * Changes the cache-level of an object across all VMA.
3239 3240
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3252 3253 3254
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3255
	struct i915_vma *vma;
3256
	int ret = 0;
3257 3258

	if (obj->cache_level == cache_level)
3259
		goto out;
3260

3261 3262 3263 3264 3265
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3266 3267
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3268 3269 3270
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3271
		if (i915_vma_is_pinned(vma)) {
3272 3273 3274 3275
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3288 3289
	}

3290 3291 3292 3293 3294 3295 3296
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3297
	if (obj->bind_count) {
3298 3299 3300 3301
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3302
		ret = i915_gem_object_wait_rendering(obj, false);
3303 3304 3305
		if (ret)
			return ret;

3306
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3323 3324 3325
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3326 3327 3328 3329 3330 3331 3332 3333
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3334 3335
		}

3336
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3337 3338 3339 3340 3341 3342 3343
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3344 3345
	}

3346
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3347 3348 3349
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3350
out:
3351 3352 3353 3354
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3355
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3356
		if (i915_gem_clflush_object(obj, true))
3357
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3358 3359 3360 3361 3362
	}

	return 0;
}

B
Ben Widawsky 已提交
3363 3364
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3365
{
B
Ben Widawsky 已提交
3366
	struct drm_i915_gem_caching *args = data;
3367 3368
	struct drm_i915_gem_object *obj;

3369 3370
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3371
		return -ENOENT;
3372

3373 3374 3375 3376 3377 3378
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3379 3380 3381 3382
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3383 3384 3385 3386
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3387

3388
	i915_gem_object_put_unlocked(obj);
3389
	return 0;
3390 3391
}

B
Ben Widawsky 已提交
3392 3393
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3394
{
3395
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3396
	struct drm_i915_gem_caching *args = data;
3397 3398 3399 3400
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3401 3402
	switch (args->caching) {
	case I915_CACHING_NONE:
3403 3404
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3405
	case I915_CACHING_CACHED:
3406 3407 3408 3409 3410 3411
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3412
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3413 3414
			return -ENODEV;

3415 3416
		level = I915_CACHE_LLC;
		break;
3417 3418 3419
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3420 3421 3422 3423
	default:
		return -EINVAL;
	}

3424 3425
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3426 3427
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3428
		goto rpm_put;
B
Ben Widawsky 已提交
3429

3430 3431
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3432 3433 3434 3435 3436 3437
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3438
	i915_gem_object_put(obj);
3439 3440
unlock:
	mutex_unlock(&dev->struct_mutex);
3441 3442 3443
rpm_put:
	intel_runtime_pm_put(dev_priv);

3444 3445 3446
	return ret;
}

3447
/*
3448 3449 3450
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3451 3452
 */
int
3453 3454
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3455
				     const struct i915_ggtt_view *view)
3456
{
3457
	u32 old_read_domains, old_write_domain;
3458 3459
	int ret;

3460 3461 3462
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3463
	obj->pin_display++;
3464

3465 3466 3467 3468 3469 3470 3471 3472 3473
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3474 3475
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3476
	if (ret)
3477
		goto err_unpin_display;
3478

3479 3480 3481 3482
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3483
	ret = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3484 3485
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3486
	if (ret)
3487
		goto err_unpin_display;
3488

3489
	i915_gem_object_flush_cpu_write_domain(obj);
3490

3491
	old_write_domain = obj->base.write_domain;
3492
	old_read_domains = obj->base.read_domains;
3493 3494 3495 3496

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3497
	obj->base.write_domain = 0;
3498
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3499 3500 3501

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3502
					    old_write_domain);
3503 3504

	return 0;
3505 3506

err_unpin_display:
3507
	obj->pin_display--;
3508 3509 3510 3511
	return ret;
}

void
3512 3513
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3514
{
3515 3516 3517
	if (WARN_ON(obj->pin_display == 0))
		return;

3518 3519
	i915_gem_object_ggtt_unpin_view(obj, view);

3520
	obj->pin_display--;
3521 3522
}

3523 3524
/**
 * Moves a single object to the CPU read, and possibly write domain.
3525 3526
 * @obj: object to act on
 * @write: requesting write or read-only access
3527 3528 3529 3530
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3531
int
3532
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3533
{
C
Chris Wilson 已提交
3534
	uint32_t old_write_domain, old_read_domains;
3535 3536
	int ret;

3537
	ret = i915_gem_object_wait_rendering(obj, !write);
3538 3539 3540
	if (ret)
		return ret;

3541 3542 3543
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3544
	i915_gem_object_flush_gtt_write_domain(obj);
3545

3546 3547
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3548

3549
	/* Flush the CPU cache if it's still invalid. */
3550
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3551
		i915_gem_clflush_object(obj, false);
3552

3553
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3554 3555 3556 3557 3558
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3559
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3560 3561 3562 3563 3564

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3565 3566
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3567
	}
3568

C
Chris Wilson 已提交
3569 3570 3571 3572
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3573 3574 3575
	return 0;
}

3576 3577 3578
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3579 3580 3581 3582
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3583 3584 3585
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3586
static int
3587
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3588
{
3589
	struct drm_i915_private *dev_priv = to_i915(dev);
3590
	struct drm_i915_file_private *file_priv = file->driver_priv;
3591
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3592
	struct drm_i915_gem_request *request, *target = NULL;
3593
	int ret;
3594

3595 3596 3597 3598
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3599 3600 3601
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3602

3603
	spin_lock(&file_priv->mm.lock);
3604
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3605 3606
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3607

3608 3609 3610 3611 3612 3613 3614
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3615
		target = request;
3616
	}
3617
	if (target)
3618
		i915_gem_request_get(target);
3619
	spin_unlock(&file_priv->mm.lock);
3620

3621
	if (target == NULL)
3622
		return 0;
3623

3624
	ret = i915_wait_request(target, true, NULL, NULL);
3625
	i915_gem_request_put(target);
3626

3627 3628 3629
	return ret;
}

3630
static bool
3631
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3632 3633 3634
{
	struct drm_i915_gem_object *obj = vma->obj;

3635 3636 3637
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3638 3639 3640 3641
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3642 3643 3644 3645 3646 3647 3648 3649 3650
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3651 3652 3653 3654
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3655 3656 3657
	return false;
}

3658 3659 3660
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3661
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3662 3663 3664
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3665
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3666
					    obj->base.size,
3667
					    i915_gem_object_get_tiling(obj));
3668
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3669
						      obj->base.size,
3670
						      i915_gem_object_get_tiling(obj),
3671
						      true);
3672 3673 3674 3675 3676

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3677
		    dev_priv->ggtt.mappable_end);
3678 3679 3680 3681

	obj->map_and_fenceable = mappable && fenceable;
}

3682 3683
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3684
{
3685
	unsigned int bound = vma->flags;
3686 3687
	int ret;

3688
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3689
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3690

3691 3692 3693 3694
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3695

3696
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3697 3698 3699
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3700
	}
3701

3702
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3703
	if (ret)
3704
		goto err;
3705

3706
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3707
		__i915_vma_set_map_and_fenceable(vma);
3708

3709
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3710 3711
	return 0;

3712 3713 3714
err:
	__i915_vma_unpin(vma);
	return ret;
3715 3716 3717 3718 3719
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3720
			 u64 size,
3721 3722
			 u64 alignment,
			 u64 flags)
3723
{
3724 3725
	struct i915_vma *vma;
	int ret;
3726

3727 3728
	if (!view)
		view = &i915_ggtt_view_normal;
3729

3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
	vma = i915_gem_obj_lookup_or_create_ggtt_vma(obj, view);
	if (IS_ERR(vma))
		return PTR_ERR(vma);

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
			return -ENOSPC;

		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
		     " offset=%08x %08x, req.alignment=%llx, req.map_and_fenceable=%d,"
		     " obj->map_and_fenceable=%d\n",
		     upper_32_bits(vma->node.start),
		     lower_32_bits(vma->node.start),
		     alignment,
		     !!(flags & PIN_MAPPABLE),
		     obj->map_and_fenceable);
		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;
	}

	return i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3754 3755
}

3756
void
3757 3758
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
3759
{
3760
	i915_vma_unpin(i915_gem_obj_to_ggtt_view(obj, view));
3761 3762
}

3763
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3778 3779 3780 3781 3782 3783 3784 3785 3786
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3787 3788
}

3789
static __always_inline unsigned int
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
__busy_set_if_active(const struct i915_gem_active *active,
		     unsigned int (*flag)(unsigned int id))
{
	/* For more discussion about the barriers and locking concerns,
	 * see __i915_gem_active_get_rcu().
	 */
	do {
		struct drm_i915_gem_request *request;
		unsigned int id;

		request = rcu_dereference(active->request);
		if (!request || i915_gem_request_completed(request))
			return 0;

		id = request->engine->exec_id;

3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
		/* Check that the pointer wasn't reassigned and overwritten.
		 *
		 * In __i915_gem_active_get_rcu(), we enforce ordering between
		 * the first rcu pointer dereference (imposing a
		 * read-dependency only on access through the pointer) and
		 * the second lockless access through the memory barrier
		 * following a successful atomic_inc_not_zero(). Here there
		 * is no such barrier, and so we must manually insert an
		 * explicit read barrier to ensure that the following
		 * access occurs after all the loads through the first
		 * pointer.
		 *
		 * It is worth comparing this sequence with
		 * raw_write_seqcount_latch() which operates very similarly.
		 * The challenge here is the visibility of the other CPU
		 * writes to the reallocated request vs the local CPU ordering.
		 * Before the other CPU can overwrite the request, it will
		 * have updated our active->request and gone through a wmb.
		 * During the read here, we want to make sure that the values
		 * we see have not been overwritten as we do so - and we do
		 * that by serialising the second pointer check with the writes
		 * on other other CPUs.
		 *
		 * The corresponding write barrier is part of
		 * rcu_assign_pointer().
		 */
		smp_rmb();
3833 3834 3835 3836 3837
		if (request == rcu_access_pointer(active->request))
			return flag(id);
	} while (1);
}

3838
static __always_inline unsigned int
3839 3840 3841 3842 3843
busy_check_reader(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_read_flag);
}

3844
static __always_inline unsigned int
3845 3846 3847 3848 3849
busy_check_writer(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_write_id);
}

3850 3851
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3852
		    struct drm_file *file)
3853 3854
{
	struct drm_i915_gem_busy *args = data;
3855
	struct drm_i915_gem_object *obj;
3856
	unsigned long active;
3857

3858
	obj = i915_gem_object_lookup(file, args->handle);
3859 3860
	if (!obj)
		return -ENOENT;
3861

3862
	args->busy = 0;
3863 3864 3865
	active = __I915_BO_ACTIVE(obj);
	if (active) {
		int idx;
3866

3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
		/* Yes, the lookups are intentionally racy.
		 *
		 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
		 * to regard the value as stale and as our ABI guarantees
		 * forward progress, we confirm the status of each active
		 * request with the hardware.
		 *
		 * Even though we guard the pointer lookup by RCU, that only
		 * guarantees that the pointer and its contents remain
		 * dereferencable and does *not* mean that the request we
		 * have is the same as the one being tracked by the object.
		 *
		 * Consider that we lookup the request just as it is being
		 * retired and freed. We take a local copy of the pointer,
		 * but before we add its engine into the busy set, the other
		 * thread reallocates it and assigns it to a task on another
		 * engine with a fresh and incomplete seqno.
		 *
		 * So after we lookup the engine's id, we double check that
		 * the active request is the same and only then do we add it
		 * into the busy set.
		 */
		rcu_read_lock();

		for_each_active(active, idx)
			args->busy |= busy_check_reader(&obj->last_read[idx]);

		/* For ABI sanity, we only care that the write engine is in
3895 3896 3897 3898 3899
		 * the set of read engines. This should be ensured by the
		 * ordering of setting last_read/last_write in
		 * i915_vma_move_to_active(), and then in reverse in retire.
		 * However, for good measure, we always report the last_write
		 * request as a busy read as well as being a busy write.
3900 3901 3902 3903 3904 3905 3906 3907 3908
		 *
		 * We don't care that the set of active read/write engines
		 * may change during construction of the result, as it is
		 * equally liable to change before userspace can inspect
		 * the result.
		 */
		args->busy |= busy_check_writer(&obj->last_write);

		rcu_read_unlock();
3909
	}
3910

3911 3912
	i915_gem_object_put_unlocked(obj);
	return 0;
3913 3914 3915 3916 3917 3918
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3919
	return i915_gem_ring_throttle(dev, file_priv);
3920 3921
}

3922 3923 3924 3925
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3926
	struct drm_i915_private *dev_priv = to_i915(dev);
3927
	struct drm_i915_gem_madvise *args = data;
3928
	struct drm_i915_gem_object *obj;
3929
	int ret;
3930 3931 3932 3933 3934 3935 3936 3937 3938

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3939 3940 3941 3942
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3943 3944
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
3945 3946
		ret = -ENOENT;
		goto unlock;
3947 3948
	}

3949
	if (obj->pages &&
3950
	    i915_gem_object_is_tiled(obj) &&
3951 3952 3953 3954 3955 3956 3957
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

3958 3959
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3960

C
Chris Wilson 已提交
3961
	/* if the object is no longer attached, discard its backing storage */
3962
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
3963 3964
		i915_gem_object_truncate(obj);

3965
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3966

3967
	i915_gem_object_put(obj);
3968
unlock:
3969
	mutex_unlock(&dev->struct_mutex);
3970
	return ret;
3971 3972
}

3973 3974
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3975
{
3976 3977
	int i;

3978
	INIT_LIST_HEAD(&obj->global_list);
3979
	for (i = 0; i < I915_NUM_ENGINES; i++)
3980 3981 3982 3983 3984
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
	init_request_active(&obj->last_fence, NULL);
3985
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3986
	INIT_LIST_HEAD(&obj->vma_list);
3987
	INIT_LIST_HEAD(&obj->batch_pool_link);
3988

3989 3990
	obj->ops = ops;

3991 3992 3993
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

3994
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3995 3996
}

3997
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3998
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
3999 4000 4001 4002
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4003
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4004
						  size_t size)
4005
{
4006
	struct drm_i915_gem_object *obj;
4007
	struct address_space *mapping;
D
Daniel Vetter 已提交
4008
	gfp_t mask;
4009
	int ret;
4010

4011
	obj = i915_gem_object_alloc(dev);
4012
	if (obj == NULL)
4013
		return ERR_PTR(-ENOMEM);
4014

4015 4016 4017
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4018

4019 4020 4021 4022 4023 4024 4025
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4026
	mapping = file_inode(obj->base.filp)->i_mapping;
4027
	mapping_set_gfp_mask(mapping, mask);
4028

4029
	i915_gem_object_init(obj, &i915_gem_object_ops);
4030

4031 4032
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4033

4034 4035
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4051 4052
	trace_i915_gem_object_create(obj);

4053
	return obj;
4054 4055 4056 4057 4058

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4059 4060
}

4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4085
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4086
{
4087
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4088
	struct drm_device *dev = obj->base.dev;
4089
	struct drm_i915_private *dev_priv = to_i915(dev);
4090
	struct i915_vma *vma, *next;
4091

4092 4093
	intel_runtime_pm_get(dev_priv);

4094 4095
	trace_i915_gem_object_destroy(obj);

4096 4097 4098 4099 4100 4101 4102
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4103
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4104
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4105
		GEM_BUG_ON(i915_vma_is_active(vma));
4106
		vma->flags &= ~I915_VMA_PIN_MASK;
4107
		i915_vma_close(vma);
4108
	}
4109
	GEM_BUG_ON(obj->bind_count);
4110

B
Ben Widawsky 已提交
4111 4112 4113 4114 4115
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4116
	WARN_ON(atomic_read(&obj->frontbuffer_bits));
4117

4118 4119
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4120
	    i915_gem_object_is_tiled(obj))
4121 4122
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4123 4124
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4125
	if (discard_backing_storage(obj))
4126
		obj->madv = I915_MADV_DONTNEED;
4127
	i915_gem_object_put_pages(obj);
4128

4129 4130
	BUG_ON(obj->pages);

4131 4132
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4133

4134 4135 4136
	if (obj->ops->release)
		obj->ops->release(obj);

4137 4138
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4139

4140
	kfree(obj->bit_17);
4141
	i915_gem_object_free(obj);
4142 4143

	intel_runtime_pm_put(dev_priv);
4144 4145
}

4146 4147
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4148 4149
{
	struct i915_vma *vma;
4150
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4151 4152
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4153
			return vma;
4154 4155 4156 4157 4158 4159 4160 4161
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4162

4163
	GEM_BUG_ON(!view);
4164

4165
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4166 4167
		if (i915_vma_is_ggtt(vma) &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4168
			return vma;
4169 4170 4171
	return NULL;
}

4172
int i915_gem_suspend(struct drm_device *dev)
4173
{
4174
	struct drm_i915_private *dev_priv = to_i915(dev);
4175
	int ret;
4176

4177 4178
	intel_suspend_gt_powersave(dev_priv);

4179
	mutex_lock(&dev->struct_mutex);
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4193
	ret = i915_gem_wait_for_idle(dev_priv, true);
4194
	if (ret)
4195
		goto err;
4196

4197
	i915_gem_retire_requests(dev_priv);
4198

4199
	i915_gem_context_lost(dev_priv);
4200 4201
	mutex_unlock(&dev->struct_mutex);

4202
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4203 4204
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4205

4206 4207 4208
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4209
	WARN_ON(dev_priv->gt.awake);
4210

4211
	return 0;
4212 4213 4214 4215

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4216 4217
}

4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4235 4236
void i915_gem_init_swizzling(struct drm_device *dev)
{
4237
	struct drm_i915_private *dev_priv = to_i915(dev);
4238

4239
	if (INTEL_INFO(dev)->gen < 5 ||
4240 4241 4242 4243 4244 4245
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4246 4247 4248
	if (IS_GEN5(dev))
		return;

4249 4250
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4251
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4252
	else if (IS_GEN7(dev))
4253
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4254 4255
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4256 4257
	else
		BUG();
4258
}
D
Daniel Vetter 已提交
4259

4260 4261
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4262
	struct drm_i915_private *dev_priv = to_i915(dev);
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4287 4288 4289
int
i915_gem_init_hw(struct drm_device *dev)
{
4290
	struct drm_i915_private *dev_priv = to_i915(dev);
4291
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4292
	int ret;
4293

4294 4295 4296
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4297
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4298
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4299

4300 4301 4302
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4303

4304
	if (HAS_PCH_NOP(dev)) {
4305 4306 4307 4308 4309 4310 4311 4312 4313
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4314 4315
	}

4316 4317
	i915_gem_init_swizzling(dev);

4318 4319 4320 4321 4322 4323 4324 4325
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4326
	BUG_ON(!dev_priv->kernel_context);
4327

4328 4329 4330 4331 4332 4333 4334
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4335
	for_each_engine(engine, dev_priv) {
4336
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4337
		if (ret)
4338
			goto out;
D
Daniel Vetter 已提交
4339
	}
4340

4341 4342
	intel_mocs_init_l3cc_table(dev);

4343
	/* We can't enable contexts until all firmware is loaded */
4344 4345 4346
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4347

4348 4349
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4350
	return ret;
4351 4352
}

4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4374 4375
int i915_gem_init(struct drm_device *dev)
{
4376
	struct drm_i915_private *dev_priv = to_i915(dev);
4377 4378 4379
	int ret;

	mutex_lock(&dev->struct_mutex);
4380

4381
	if (!i915.enable_execlists) {
4382
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4383
	} else {
4384
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4385 4386
	}

4387 4388 4389 4390 4391 4392 4393 4394
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4395
	i915_gem_init_userptr(dev_priv);
4396 4397 4398 4399

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4400

4401
	ret = i915_gem_context_init(dev);
4402 4403
	if (ret)
		goto out_unlock;
4404

4405
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4406
	if (ret)
4407
		goto out_unlock;
4408

4409
	ret = i915_gem_init_hw(dev);
4410
	if (ret == -EIO) {
4411
		/* Allow engine initialisation to fail by marking the GPU as
4412 4413 4414 4415
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4416
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4417
		ret = 0;
4418
	}
4419 4420

out_unlock:
4421
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4422
	mutex_unlock(&dev->struct_mutex);
4423

4424
	return ret;
4425 4426
}

4427
void
4428
i915_gem_cleanup_engines(struct drm_device *dev)
4429
{
4430
	struct drm_i915_private *dev_priv = to_i915(dev);
4431
	struct intel_engine_cs *engine;
4432

4433
	for_each_engine(engine, dev_priv)
4434
		dev_priv->gt.cleanup_engine(engine);
4435 4436
}

4437
static void
4438
init_engine_lists(struct intel_engine_cs *engine)
4439
{
4440
	INIT_LIST_HEAD(&engine->request_list);
4441 4442
}

4443 4444 4445
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4446
	struct drm_device *dev = &dev_priv->drm;
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4457
	if (intel_vgpu_active(dev_priv))
4458 4459 4460 4461 4462 4463 4464 4465 4466
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4467
void
4468
i915_gem_load_init(struct drm_device *dev)
4469
{
4470
	struct drm_i915_private *dev_priv = to_i915(dev);
4471 4472
	int i;

4473
	dev_priv->objects =
4474 4475 4476 4477
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4478 4479 4480 4481 4482
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4483 4484 4485
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
4486 4487 4488
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_DESTROY_BY_RCU,
4489
				  NULL);
4490

4491
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4492 4493
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4494
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4495 4496
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4497
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4498
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4499
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4500
			  i915_gem_retire_work_handler);
4501
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4502
			  i915_gem_idle_work_handler);
4503
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4504
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4505

4506 4507
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4508
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4509

4510
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4511

4512 4513
	dev_priv->mm.interruptible = true;

4514
	spin_lock_init(&dev_priv->fb_tracking.lock);
4515
}
4516

4517 4518 4519 4520 4521 4522 4523
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4524 4525 4526

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4527 4528
}

4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4557
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4558
{
4559
	struct drm_i915_file_private *file_priv = file->driver_priv;
4560
	struct drm_i915_gem_request *request;
4561 4562 4563 4564 4565

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4566
	spin_lock(&file_priv->mm.lock);
4567
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4568
		request->file_priv = NULL;
4569
	spin_unlock(&file_priv->mm.lock);
4570

4571
	if (!list_empty(&file_priv->rps.link)) {
4572
		spin_lock(&to_i915(dev)->rps.client_lock);
4573
		list_del(&file_priv->rps.link);
4574
		spin_unlock(&to_i915(dev)->rps.client_lock);
4575
	}
4576 4577 4578 4579 4580
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4581
	int ret;
4582 4583 4584 4585 4586 4587 4588 4589

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4590
	file_priv->dev_priv = to_i915(dev);
4591
	file_priv->file = file;
4592
	INIT_LIST_HEAD(&file_priv->rps.link);
4593 4594 4595 4596

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4597
	file_priv->bsd_engine = -1;
4598

4599 4600 4601
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4602

4603
	return ret;
4604 4605
}

4606 4607
/**
 * i915_gem_track_fb - update frontbuffer tracking
4608 4609 4610
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4611 4612 4613 4614
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4615 4616 4617 4618
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4619 4620 4621 4622 4623 4624 4625 4626 4627
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4628
	if (old) {
4629 4630
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4631 4632 4633
	}

	if (new) {
4634 4635
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4636 4637 4638
	}
}

4639
/* All the new VM stuff */
4640 4641
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
4642
{
4643
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
4644 4645
	struct i915_vma *vma;

4646
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4647

4648
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4649
		if (i915_vma_is_ggtt(vma) &&
4650 4651 4652
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4653 4654
			return vma->node.start;
	}
4655

4656 4657
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4658 4659 4660
	return -1;
}

4661 4662
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
4663 4664 4665
{
	struct i915_vma *vma;

4666
	list_for_each_entry(vma, &o->vma_list, obj_link)
4667 4668
		if (i915_vma_is_ggtt(vma) &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4669 4670
			return vma->node.start;

4671
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
4672 4673 4674 4675 4676 4677 4678 4679
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

4680
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4681
		if (i915_vma_is_ggtt(vma) &&
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
4692
				  const struct i915_ggtt_view *view)
4693 4694 4695
{
	struct i915_vma *vma;

4696
	list_for_each_entry(vma, &o->vma_list, obj_link)
4697
		if (i915_vma_is_ggtt(vma) &&
4698
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
4699
		    drm_mm_node_allocated(&vma->node))
4700 4701 4702 4703 4704
			return true;

	return false;
}

4705
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
4706 4707 4708
{
	struct i915_vma *vma;

4709
	GEM_BUG_ON(list_empty(&o->vma_list));
4710

4711
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4712
		if (i915_vma_is_ggtt(vma) &&
4713
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
4714
			return vma->node.size;
4715
	}
4716

4717 4718 4719
	return 0;
}

4720
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
4721 4722
{
	struct i915_vma *vma;
4723
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4724
		if (i915_vma_is_pinned(vma))
4725
			return true;
4726

4727
	return false;
4728
}
4729

4730 4731 4732 4733 4734 4735 4736
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4737
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4738 4739 4740 4741 4742 4743 4744
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4755
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4756
	if (IS_ERR(obj))
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4770
	obj->dirty = 1;		/* Backing store is now out of date */
4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4782
	i915_gem_object_put(obj);
4783 4784
	return ERR_PTR(ret);
}