i915_gem.c 123.1 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84 85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107
	if (!i915_reset_in_progress(error))
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115
	ret = wait_event_interruptible_timeout(error->reset_queue,
116
					       !i915_reset_in_progress(error),
117
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123 124
	} else {
		return 0;
125
	}
126 127
}

128
int i915_mutex_lock_interruptible(struct drm_device *dev)
129
{
130
	struct drm_i915_private *dev_priv = to_i915(dev);
131 132
	int ret;

133
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 135 136 137 138 139 140 141 142
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
143

144 145
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146
			    struct drm_file *file)
147
{
148
	struct drm_i915_private *dev_priv = to_i915(dev);
149
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
150
	struct drm_i915_gem_get_aperture *args = data;
151
	struct i915_vma *vma;
152
	size_t pinned;
153

154
	pinned = 0;
155
	mutex_lock(&dev->struct_mutex);
156
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157
		if (i915_vma_is_pinned(vma))
158
			pinned += vma->node.size;
159
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	mutex_unlock(&dev->struct_mutex);
163

164
	args->aper_size = ggtt->base.total;
165
	args->aper_available_size = args->aper_size - pinned;
166

167 168 169
	return 0;
}

170 171
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172
{
173
	struct address_space *mapping = obj->base.filp->f_mapping;
174 175 176 177
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

195
		put_page(page);
196 197 198
		vaddr += PAGE_SIZE;
	}

199
	i915_gem_chipset_flush(to_i915(obj->base.dev));
200 201 202 203 204 205 206 207 208 209 210 211 212

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
213

214 215 216 217 218 219 220 221 222 223 224 225 226
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
227

228
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
229
	if (WARN_ON(ret)) {
230 231 232 233 234 235 236 237 238 239
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = obj->base.filp->f_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			put_page(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

282
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 284 285
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
286 287 288
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
289

290 291 292 293
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
294
	 */
295 296 297 298 299 300
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

301 302 303 304 305 306 307 308 309 310 311 312 313
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 * @obj: i915 gem object
 * @readonly: waiting for just read access or read-write access
 */
int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
	struct reservation_object *resv;
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = i915_gem_object_get_active(obj);
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

	for_each_active(active_mask, idx) {
		int ret;

		ret = i915_gem_active_wait(&active[idx],
					   &obj->base.dev->struct_mutex);
		if (ret)
			return ret;
	}

	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

	return 0;
}

361 362 363
/* A nonblocking variant of the above wait. Must be called prior to
 * acquiring the mutex for the object, as the object state may change
 * during this call. A reference must be held by the caller for the object.
364 365
 */
static __must_check int
366 367 368
__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
			struct intel_rps_client *rps,
			bool readonly)
369 370 371
{
	struct i915_gem_active *active;
	unsigned long active_mask;
372
	int idx;
373

374
	active_mask = __I915_BO_ACTIVE(obj);
375 376 377 378 379 380 381 382 383 384
	if (!active_mask)
		return 0;

	if (!readonly) {
		active = obj->last_read;
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

385 386
	for_each_active(active_mask, idx) {
		int ret;
387

388 389 390 391
		ret = i915_gem_active_wait_unlocked(&active[idx],
						    true, NULL, rps);
		if (ret)
			return ret;
392 393
	}

394
	return 0;
395 396 397 398 399 400 401 402 403
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

404 405 406 407 408
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
409
	int ret;
410 411 412 413 414 415 416 417 418 419 420 421 422 423

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
424 425 426 427 428
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
429 430 431
	if (ret)
		return ret;

432 433 434 435 436 437
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
438 439 440
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
441 442 443 444 445 446 447 448 449
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
450
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
451
	int ret = 0;
452 453 454 455 456 457 458

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
459

460
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
461 462 463 464 465 466 467 468 469 470
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
471 472 473 474
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
475 476
	}

477
	drm_clflush_virt_range(vaddr, args->size);
478
	i915_gem_chipset_flush(to_i915(dev));
479 480

out:
481
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
482
	return ret;
483 484
}

485 486
void *i915_gem_object_alloc(struct drm_device *dev)
{
487
	struct drm_i915_private *dev_priv = to_i915(dev);
488
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
489 490 491 492
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
493
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
494
	kmem_cache_free(dev_priv->objects, obj);
495 496
}

497 498 499 500 501
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
502
{
503
	struct drm_i915_gem_object *obj;
504 505
	int ret;
	u32 handle;
506

507
	size = roundup(size, PAGE_SIZE);
508 509
	if (size == 0)
		return -EINVAL;
510 511

	/* Allocate the new object */
512
	obj = i915_gem_object_create(dev, size);
513 514
	if (IS_ERR(obj))
		return PTR_ERR(obj);
515

516
	ret = drm_gem_handle_create(file, &obj->base, &handle);
517
	/* drop reference from allocate - handle holds it now */
518
	i915_gem_object_put_unlocked(obj);
519 520
	if (ret)
		return ret;
521

522
	*handle_p = handle;
523 524 525
	return 0;
}

526 527 528 529 530 531
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
532
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
533 534
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
535
			       args->size, &args->handle);
536 537 538 539
}

/**
 * Creates a new mm object and returns a handle to it.
540 541 542
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
543 544 545 546 547 548
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
549

550
	return i915_gem_create(file, dev,
551
			       args->size, &args->handle);
552 553
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

580
static inline int
581 582
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

606 607 608 609 610 611 612 613 614 615 616 617
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

618
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
619 620
		return -EINVAL;

621 622 623 624
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

643 644 645
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
646
static int
647 648 649 650 651 652 653
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

654
	if (unlikely(page_do_bit17_swizzling))
655 656 657 658 659 660 661 662 663 664 665
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

666
	return ret ? -EFAULT : 0;
667 668
}

669 670 671 672
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
673
	if (unlikely(swizzled)) {
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

691 692 693 694 695 696 697 698 699 700 701 702
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
703 704 705
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
706 707 708 709 710 711 712 713 714 715 716

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

717
	return ret ? - EFAULT : 0;
718 719
}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
747
	struct drm_i915_private *dev_priv = to_i915(dev);
748
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
749
	struct i915_vma *vma;
750 751 752 753 754 755
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

C
Chris Wilson 已提交
756 757
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
	if (IS_ERR(vma)) {
758 759 760 761 762 763 764 765 766 767 768 769
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
770
		node.start = i915_ggtt_offset(vma);
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
851
		i915_vma_unpin(vma);
852 853 854 855 856
	}
out:
	return ret;
}

857
static int
858 859 860 861
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
862
{
863
	char __user *user_data;
864
	ssize_t remain;
865
	loff_t offset;
866
	int shmem_page_offset, page_length, ret = 0;
867
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
868
	int prefaulted = 0;
869
	int needs_clflush = 0;
870
	struct sg_page_iter sg_iter;
871

872
	if (!i915_gem_object_has_struct_page(obj))
873 874
		return -ENODEV;

875
	user_data = u64_to_user_ptr(args->data_ptr);
876 877
	remain = args->size;

878
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
879

880
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
881 882 883
	if (ret)
		return ret;

884
	offset = args->offset;
885

886 887
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
888
		struct page *page = sg_page_iter_page(&sg_iter);
889 890 891 892

		if (remain <= 0)
			break;

893 894 895 896 897
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
898
		shmem_page_offset = offset_in_page(offset);
899 900 901 902
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

903 904 905
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

906 907 908 909 910
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
911 912 913

		mutex_unlock(&dev->struct_mutex);

914
		if (likely(!i915.prefault_disable) && !prefaulted) {
915
			ret = fault_in_multipages_writeable(user_data, remain);
916 917 918 919 920 921 922
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
923

924 925 926
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
927

928
		mutex_lock(&dev->struct_mutex);
929 930

		if (ret)
931 932
			goto out;

933
next_page:
934
		remain -= page_length;
935
		user_data += page_length;
936 937 938
		offset += page_length;
	}

939
out:
940 941
	i915_gem_object_unpin_pages(obj);

942 943 944
	return ret;
}

945 946
/**
 * Reads data from the object referenced by handle.
947 948 949
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
950 951 952 953 954
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
955
		     struct drm_file *file)
956 957
{
	struct drm_i915_gem_pread *args = data;
958
	struct drm_i915_gem_object *obj;
959
	int ret = 0;
960

961 962 963 964
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
965
		       u64_to_user_ptr(args->data_ptr),
966 967 968
		       args->size))
		return -EFAULT;

969
	obj = i915_gem_object_lookup(file, args->handle);
970 971
	if (!obj)
		return -ENOENT;
972

973
	/* Bounds check source.  */
974 975
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
976
		ret = -EINVAL;
977
		goto err;
C
Chris Wilson 已提交
978 979
	}

C
Chris Wilson 已提交
980 981
	trace_i915_gem_object_pread(obj, args->offset, args->size);

982 983 984 985 986 987 988 989
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err;

990
	ret = i915_gem_shmem_pread(dev, obj, args, file);
991

992
	/* pread for non shmem backed objects */
993 994
	if (ret == -EFAULT || ret == -ENODEV) {
		intel_runtime_pm_get(to_i915(dev));
995 996
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);
997 998
		intel_runtime_pm_put(to_i915(dev));
	}
999

1000
	i915_gem_object_put(obj);
1001
	mutex_unlock(&dev->struct_mutex);
1002 1003 1004 1005 1006

	return ret;

err:
	i915_gem_object_put_unlocked(obj);
1007
	return ret;
1008 1009
}

1010 1011
/* This is the fast write path which cannot handle
 * page faults in the source data
1012
 */
1013 1014 1015 1016 1017 1018

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
1019
{
1020 1021
	void __iomem *vaddr_atomic;
	void *vaddr;
1022
	unsigned long unwritten;
1023

P
Peter Zijlstra 已提交
1024
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1025 1026 1027
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
1028
						      user_data, length);
P
Peter Zijlstra 已提交
1029
	io_mapping_unmap_atomic(vaddr_atomic);
1030
	return unwritten;
1031 1032
}

1033 1034 1035
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1036
 * @i915: i915 device private data
1037 1038 1039
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
1040
 */
1041
static int
1042
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1043
			 struct drm_i915_gem_object *obj,
1044
			 struct drm_i915_gem_pwrite *args,
1045
			 struct drm_file *file)
1046
{
1047
	struct i915_ggtt *ggtt = &i915->ggtt;
1048
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
1049
	struct i915_vma *vma;
1050 1051
	struct drm_mm_node node;
	uint64_t remain, offset;
1052
	char __user *user_data;
1053
	int ret;
1054 1055
	bool hit_slow_path = false;

1056
	if (i915_gem_object_is_tiled(obj))
1057
		return -EFAULT;
D
Daniel Vetter 已提交
1058

C
Chris Wilson 已提交
1059
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1060
				       PIN_MAPPABLE | PIN_NONBLOCK);
C
Chris Wilson 已提交
1061
	if (IS_ERR(vma)) {
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
1074
		node.start = i915_ggtt_offset(vma);
1075
		node.allocated = false;
1076 1077 1078
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
1079
	}
D
Daniel Vetter 已提交
1080 1081 1082 1083 1084

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1085
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1086
	obj->dirty = true;
1087

1088 1089 1090 1091
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1092 1093
		/* Operation in this page
		 *
1094 1095 1096
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1097
		 */
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1111
		/* If we get a fault while copying data, then (presumably) our
1112 1113
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1114 1115
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1116
		 */
1117
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1118
				    page_offset, user_data, page_length)) {
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1131
		}
1132

1133 1134 1135
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1136 1137
	}

1138
out_flush:
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1152
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
D
Daniel Vetter 已提交
1153
out_unpin:
1154 1155 1156 1157 1158 1159 1160 1161
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1162
		i915_vma_unpin(vma);
1163
	}
D
Daniel Vetter 已提交
1164
out:
1165
	return ret;
1166 1167
}

1168 1169 1170 1171
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1172
static int
1173 1174 1175 1176 1177
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1178
{
1179
	char *vaddr;
1180
	int ret;
1181

1182
	if (unlikely(page_do_bit17_swizzling))
1183
		return -EINVAL;
1184

1185 1186 1187 1188
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1189 1190
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1191 1192 1193 1194
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1195

1196
	return ret ? -EFAULT : 0;
1197 1198
}

1199 1200
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1201
static int
1202 1203 1204 1205 1206
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1207
{
1208 1209
	char *vaddr;
	int ret;
1210

1211
	vaddr = kmap(page);
1212
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1213 1214 1215
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1216 1217
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1218 1219
						user_data,
						page_length);
1220 1221 1222 1223 1224
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1225 1226 1227
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1228
	kunmap(page);
1229

1230
	return ret ? -EFAULT : 0;
1231 1232 1233
}

static int
1234 1235 1236 1237
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1238 1239
{
	ssize_t remain;
1240 1241
	loff_t offset;
	char __user *user_data;
1242
	int shmem_page_offset, page_length, ret = 0;
1243
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1244
	int hit_slowpath = 0;
1245 1246
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1247
	struct sg_page_iter sg_iter;
1248

1249
	user_data = u64_to_user_ptr(args->data_ptr);
1250 1251
	remain = args->size;

1252
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1253

1254 1255 1256 1257
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

1258 1259 1260 1261 1262
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1263
		needs_clflush_after = cpu_write_needs_clflush(obj);
1264
	}
1265 1266 1267 1268 1269
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1270

1271 1272 1273 1274
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1275
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1276

1277 1278
	i915_gem_object_pin_pages(obj);

1279
	offset = args->offset;
1280
	obj->dirty = 1;
1281

1282 1283
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1284
		struct page *page = sg_page_iter_page(&sg_iter);
1285
		int partial_cacheline_write;
1286

1287 1288 1289
		if (remain <= 0)
			break;

1290 1291 1292 1293 1294
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1295
		shmem_page_offset = offset_in_page(offset);
1296 1297 1298 1299 1300

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1301 1302 1303 1304 1305 1306 1307
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1308 1309 1310
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1311 1312 1313 1314 1315 1316
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1317 1318 1319

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1320 1321 1322 1323
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1324

1325
		mutex_lock(&dev->struct_mutex);
1326 1327

		if (ret)
1328 1329
			goto out;

1330
next_page:
1331
		remain -= page_length;
1332
		user_data += page_length;
1333
		offset += page_length;
1334 1335
	}

1336
out:
1337 1338
	i915_gem_object_unpin_pages(obj);

1339
	if (hit_slowpath) {
1340 1341 1342 1343 1344 1345 1346
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1347
			if (i915_gem_clflush_object(obj, obj->pin_display))
1348
				needs_clflush_after = true;
1349
		}
1350
	}
1351

1352
	if (needs_clflush_after)
1353
		i915_gem_chipset_flush(to_i915(dev));
1354 1355
	else
		obj->cache_dirty = true;
1356

1357
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1358
	return ret;
1359 1360 1361 1362
}

/**
 * Writes data to the object referenced by handle.
1363 1364 1365
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1366 1367 1368 1369 1370
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1371
		      struct drm_file *file)
1372
{
1373
	struct drm_i915_private *dev_priv = to_i915(dev);
1374
	struct drm_i915_gem_pwrite *args = data;
1375
	struct drm_i915_gem_object *obj;
1376 1377 1378 1379 1380 1381
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1382
		       u64_to_user_ptr(args->data_ptr),
1383 1384 1385
		       args->size))
		return -EFAULT;

1386
	if (likely(!i915.prefault_disable)) {
1387
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1388 1389 1390 1391
						   args->size);
		if (ret)
			return -EFAULT;
	}
1392

1393
	obj = i915_gem_object_lookup(file, args->handle);
1394 1395
	if (!obj)
		return -ENOENT;
1396

1397
	/* Bounds check destination. */
1398 1399
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1400
		ret = -EINVAL;
1401
		goto err;
C
Chris Wilson 已提交
1402 1403
	}

C
Chris Wilson 已提交
1404 1405
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
	if (ret)
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;

D
Daniel Vetter 已提交
1416
	ret = -EFAULT;
1417 1418 1419 1420 1421 1422
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1423 1424
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1425
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1426 1427 1428
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1429
	}
1430

1431
	if (ret == -EFAULT || ret == -ENOSPC) {
1432 1433
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1434
		else if (i915_gem_object_has_struct_page(obj))
1435
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1436 1437
		else
			ret = -ENODEV;
1438
	}
1439

1440
	i915_gem_object_put(obj);
1441
	mutex_unlock(&dev->struct_mutex);
1442 1443
	intel_runtime_pm_put(dev_priv);

1444
	return ret;
1445 1446 1447 1448 1449 1450

err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1451 1452
}

1453
static inline enum fb_op_origin
1454 1455 1456 1457 1458 1459
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1460
/**
1461 1462
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1463 1464 1465
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1466 1467 1468
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1469
			  struct drm_file *file)
1470 1471
{
	struct drm_i915_gem_set_domain *args = data;
1472
	struct drm_i915_gem_object *obj;
1473 1474
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1475 1476
	int ret;

1477
	/* Only handle setting domains to types used by the CPU. */
1478
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1479 1480 1481 1482 1483 1484 1485 1486
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1487
	obj = i915_gem_object_lookup(file, args->handle);
1488 1489
	if (!obj)
		return -ENOENT;
1490

1491 1492 1493 1494
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1495 1496 1497 1498 1499
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
1500
	if (ret)
1501
		goto err;
1502

1503
	if (read_domains & I915_GEM_DOMAIN_GTT)
1504
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1505
	else
1506
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1507

1508
	if (write_domain != 0)
1509
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1510

1511
	i915_gem_object_put(obj);
1512 1513
	mutex_unlock(&dev->struct_mutex);
	return ret;
1514 1515 1516 1517

err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1518 1519 1520 1521
}

/**
 * Called when user space has done writes to this buffer
1522 1523 1524
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1525 1526 1527
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1528
			 struct drm_file *file)
1529 1530
{
	struct drm_i915_gem_sw_finish *args = data;
1531
	struct drm_i915_gem_object *obj;
1532
	int err = 0;
1533

1534
	obj = i915_gem_object_lookup(file, args->handle);
1535 1536
	if (!obj)
		return -ENOENT;
1537 1538

	/* Pinned buffers may be scanout, so flush the cache */
1539 1540 1541 1542 1543 1544 1545
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1546

1547 1548
	i915_gem_object_put_unlocked(obj);
	return err;
1549 1550 1551
}

/**
1552 1553 1554 1555 1556
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1557 1558 1559
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1570 1571 1572
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1573
		    struct drm_file *file)
1574 1575
{
	struct drm_i915_gem_mmap *args = data;
1576
	struct drm_i915_gem_object *obj;
1577 1578
	unsigned long addr;

1579 1580 1581
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1582
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1583 1584
		return -ENODEV;

1585 1586
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1587
		return -ENOENT;
1588

1589 1590 1591
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1592
	if (!obj->base.filp) {
1593
		i915_gem_object_put_unlocked(obj);
1594 1595 1596
		return -EINVAL;
	}

1597
	addr = vm_mmap(obj->base.filp, 0, args->size,
1598 1599
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1600 1601 1602 1603
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1604
		if (down_write_killable(&mm->mmap_sem)) {
1605
			i915_gem_object_put_unlocked(obj);
1606 1607
			return -EINTR;
		}
1608 1609 1610 1611 1612 1613 1614
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1615 1616

		/* This may race, but that's ok, it only gets set */
1617
		WRITE_ONCE(obj->has_wc_mmap, true);
1618
	}
1619
	i915_gem_object_put_unlocked(obj);
1620 1621 1622 1623 1624 1625 1626 1627
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1628 1629
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1630
 * @area: CPU VMA in question
1631
 * @vmf: fault info
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
C
Chris Wilson 已提交
1644
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1645
{
C
Chris Wilson 已提交
1646
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1647
	struct drm_device *dev = obj->base.dev;
1648 1649
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1650
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1651
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1652
	struct i915_vma *vma;
1653 1654
	pgoff_t page_offset;
	unsigned long pfn;
1655
	int ret;
1656

1657
	/* We don't use vmf->pgoff since that has the fake offset */
C
Chris Wilson 已提交
1658
	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1659 1660
		PAGE_SHIFT;

C
Chris Wilson 已提交
1661 1662
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1663
	/* Try to flush the object off the GPU first without holding the lock.
1664
	 * Upon acquiring the lock, we will perform our sanity checks and then
1665 1666 1667
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1668
	ret = __unsafe_wait_rendering(obj, NULL, !write);
1669
	if (ret)
1670 1671 1672 1673 1674 1675 1676
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1677

1678 1679
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1680
		ret = -EFAULT;
1681
		goto err_unlock;
1682 1683
	}

1684
	/* Use a partial view if the object is bigger than the aperture. */
1685
	if (obj->base.size >= ggtt->mappable_end &&
1686
	    !i915_gem_object_is_tiled(obj)) {
1687
		static const unsigned int chunk_size = 256; // 1 MiB
1688

1689 1690 1691 1692 1693 1694
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
C
Chris Wilson 已提交
1695
			      (area->vm_end - area->vm_start) / PAGE_SIZE -
1696 1697 1698 1699
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
C
Chris Wilson 已提交
1700 1701 1702
	vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1703
		goto err_unlock;
C
Chris Wilson 已提交
1704
	}
1705

1706 1707
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1708
		goto err_unpin;
1709

1710
	ret = i915_gem_object_get_fence(obj);
1711
	if (ret)
1712
		goto err_unpin;
1713

1714
	/* Finally, remap it using the new GTT offset */
1715
	pfn = ggtt->mappable_base + i915_ggtt_offset(vma);
1716
	pfn >>= PAGE_SHIFT;
1717

1718 1719 1720 1721 1722 1723
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
C
Chris Wilson 已提交
1724
		unsigned long base = area->vm_start +
1725 1726
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1727

1728
		for (i = 0; i < view.params.partial.size; i++) {
C
Chris Wilson 已提交
1729 1730 1731
			ret = vm_insert_pfn(area,
					    base + i * PAGE_SIZE,
					    pfn + i);
1732 1733 1734 1735 1736
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1737 1738
	} else {
		if (!obj->fault_mappable) {
C
Chris Wilson 已提交
1739 1740 1741 1742 1743
			unsigned long size =
				min_t(unsigned long,
				      area->vm_end - area->vm_start,
				      obj->base.size) >> PAGE_SHIFT;
			unsigned long base = area->vm_start;
1744 1745
			int i;

C
Chris Wilson 已提交
1746 1747 1748
			for (i = 0; i < size; i++) {
				ret = vm_insert_pfn(area,
						    base + i * PAGE_SIZE,
1749 1750 1751 1752 1753 1754 1755
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
C
Chris Wilson 已提交
1756
			ret = vm_insert_pfn(area,
1757 1758 1759
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1760
err_unpin:
C
Chris Wilson 已提交
1761
	__i915_vma_unpin(vma);
1762
err_unlock:
1763
	mutex_unlock(&dev->struct_mutex);
1764 1765 1766
err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
1767
	switch (ret) {
1768
	case -EIO:
1769 1770 1771 1772 1773 1774 1775
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1776 1777 1778
			ret = VM_FAULT_SIGBUS;
			break;
		}
1779
	case -EAGAIN:
D
Daniel Vetter 已提交
1780 1781 1782 1783
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1784
		 */
1785 1786
	case 0:
	case -ERESTARTSYS:
1787
	case -EINTR:
1788 1789 1790 1791 1792
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1793 1794
		ret = VM_FAULT_NOPAGE;
		break;
1795
	case -ENOMEM:
1796 1797
		ret = VM_FAULT_OOM;
		break;
1798
	case -ENOSPC:
1799
	case -EFAULT:
1800 1801
		ret = VM_FAULT_SIGBUS;
		break;
1802
	default:
1803
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1804 1805
		ret = VM_FAULT_SIGBUS;
		break;
1806
	}
1807
	return ret;
1808 1809
}

1810 1811 1812 1813
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1814
 * Preserve the reservation of the mmapping with the DRM core code, but
1815 1816 1817 1818 1819 1820 1821 1822 1823
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1824
void
1825
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1826
{
1827 1828 1829 1830 1831 1832
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1833 1834
	if (!obj->fault_mappable)
		return;
1835

1836 1837
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1848
	obj->fault_mappable = false;
1849 1850
}

1851 1852 1853 1854 1855 1856 1857 1858 1859
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1860 1861
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1862
 * @dev_priv: i915 device
1863 1864 1865 1866 1867 1868
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
1869 1870
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
1871
{
1872
	u64 ggtt_size;
1873

1874 1875
	GEM_BUG_ON(size == 0);

1876
	if (INTEL_GEN(dev_priv) >= 4 ||
1877 1878
	    tiling_mode == I915_TILING_NONE)
		return size;
1879 1880

	/* Previous chips need a power-of-two fence region when tiling */
1881
	if (IS_GEN3(dev_priv))
1882
		ggtt_size = 1024*1024;
1883
	else
1884
		ggtt_size = 512*1024;
1885

1886 1887
	while (ggtt_size < size)
		ggtt_size <<= 1;
1888

1889
	return ggtt_size;
1890 1891
}

1892
/**
1893
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
1894
 * @dev_priv: i915 device
1895 1896
 * @size: object size
 * @tiling_mode: tiling mode
1897
 * @fenced: is fenced alignment required or not
1898
 *
1899
 * Return the required global GTT alignment for an object, taking into account
1900
 * potential fence register mapping.
1901
 */
1902
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1903
				int tiling_mode, bool fenced)
1904
{
1905 1906
	GEM_BUG_ON(size == 0);

1907 1908 1909 1910
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1911
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
1912
	    tiling_mode == I915_TILING_NONE)
1913 1914
		return 4096;

1915 1916 1917 1918
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1919
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
1920 1921
}

1922 1923
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1924
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1925
	int err;
1926

1927 1928 1929
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
1930

1931 1932 1933
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
1934
	 */
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	err = i915_gem_wait_for_idle(dev_priv, true);
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
1945

1946
	return err;
1947 1948 1949 1950 1951 1952 1953
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1954
int
1955 1956
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1957
		  uint32_t handle,
1958
		  uint64_t *offset)
1959
{
1960
	struct drm_i915_gem_object *obj;
1961 1962
	int ret;

1963
	obj = i915_gem_object_lookup(file, handle);
1964 1965
	if (!obj)
		return -ENOENT;
1966

1967
	ret = i915_gem_object_create_mmap_offset(obj);
1968 1969
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1970

1971
	i915_gem_object_put_unlocked(obj);
1972
	return ret;
1973 1974
}

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1996
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1997 1998
}

D
Daniel Vetter 已提交
1999 2000 2001
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2002
{
2003
	i915_gem_object_free_mmap_offset(obj);
2004

2005 2006
	if (obj->base.filp == NULL)
		return;
2007

D
Daniel Vetter 已提交
2008 2009 2010 2011 2012
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2013
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2014 2015
	obj->madv = __I915_MADV_PURGED;
}
2016

2017 2018 2019
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2020
{
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2033
	mapping = obj->base.filp->f_mapping,
2034
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2035 2036
}

2037
static void
2038
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2039
{
2040 2041
	struct sgt_iter sgt_iter;
	struct page *page;
2042
	int ret;
2043

2044
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2045

C
Chris Wilson 已提交
2046
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2047
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2048 2049 2050
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2051
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2052 2053 2054
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2055 2056
	i915_gem_gtt_finish_object(obj);

2057
	if (i915_gem_object_needs_bit17_swizzle(obj))
2058 2059
		i915_gem_object_save_bit_17_swizzle(obj);

2060 2061
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2062

2063
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2064
		if (obj->dirty)
2065
			set_page_dirty(page);
2066

2067
		if (obj->madv == I915_MADV_WILLNEED)
2068
			mark_page_accessed(page);
2069

2070
		put_page(page);
2071
	}
2072
	obj->dirty = 0;
2073

2074 2075
	sg_free_table(obj->pages);
	kfree(obj->pages);
2076
}
C
Chris Wilson 已提交
2077

2078
int
2079 2080 2081 2082
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2083
	if (obj->pages == NULL)
2084 2085
		return 0;

2086 2087 2088
	if (obj->pages_pin_count)
		return -EBUSY;

2089
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2090

2091 2092 2093
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2094
	list_del(&obj->global_list);
2095

2096
	if (obj->mapping) {
2097 2098 2099 2100 2101
		void *ptr;

		ptr = ptr_mask_bits(obj->mapping);
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2102
		else
2103 2104
			kunmap(kmap_to_page(ptr));

2105 2106 2107
		obj->mapping = NULL;
	}

2108
	ops->put_pages(obj);
2109
	obj->pages = NULL;
2110

2111
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2112 2113 2114 2115

	return 0;
}

2116
static int
C
Chris Wilson 已提交
2117
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2118
{
2119
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2120 2121
	int page_count, i;
	struct address_space *mapping;
2122 2123
	struct sg_table *st;
	struct scatterlist *sg;
2124
	struct sgt_iter sgt_iter;
2125
	struct page *page;
2126
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2127
	int ret;
C
Chris Wilson 已提交
2128
	gfp_t gfp;
2129

C
Chris Wilson 已提交
2130 2131 2132 2133 2134 2135 2136
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2137 2138 2139 2140
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2141
	page_count = obj->base.size / PAGE_SIZE;
2142 2143
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2144
		return -ENOMEM;
2145
	}
2146

2147 2148 2149 2150 2151
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2152
	mapping = obj->base.filp->f_mapping;
2153
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2154
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2155 2156 2157
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2158 2159
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2160 2161 2162 2163 2164
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2165 2166 2167 2168 2169 2170 2171 2172
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2173
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2174 2175
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2176
				goto err_pages;
I
Imre Deak 已提交
2177
			}
C
Chris Wilson 已提交
2178
		}
2179 2180 2181 2182 2183 2184 2185 2186
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2187 2188 2189 2190 2191 2192 2193 2194 2195
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2196 2197 2198

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2199
	}
2200 2201 2202 2203
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2204 2205
	obj->pages = st;

I
Imre Deak 已提交
2206 2207 2208 2209
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2210
	if (i915_gem_object_needs_bit17_swizzle(obj))
2211 2212
		i915_gem_object_do_bit_17_swizzle(obj);

2213
	if (i915_gem_object_is_tiled(obj) &&
2214 2215 2216
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2217 2218 2219
	return 0;

err_pages:
2220
	sg_mark_end(sg);
2221 2222
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2223 2224
	sg_free_table(st);
	kfree(st);
2225 2226 2227 2228 2229 2230 2231 2232 2233

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2234 2235 2236 2237
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2238 2239
}

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2250
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2251 2252 2253
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2254
	if (obj->pages)
2255 2256
		return 0;

2257
	if (obj->madv != I915_MADV_WILLNEED) {
2258
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2259
		return -EFAULT;
2260 2261
	}

2262 2263
	BUG_ON(obj->pages_pin_count);

2264 2265 2266 2267
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2268
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2269 2270 2271 2272

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2273
	return 0;
2274 2275
}

2276
/* The 'mapping' part of i915_gem_object_pin_map() below */
2277 2278
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2279 2280 2281
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2282 2283
	struct sgt_iter sgt_iter;
	struct page *page;
2284 2285
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2286
	unsigned long i = 0;
2287
	pgprot_t pgprot;
2288 2289 2290
	void *addr;

	/* A single page can always be kmapped */
2291
	if (n_pages == 1 && type == I915_MAP_WB)
2292 2293
		return kmap(sg_page(sgt->sgl));

2294 2295 2296 2297 2298 2299
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2300

2301 2302
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2303 2304 2305 2306

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2307 2308 2309 2310 2311 2312 2313 2314 2315
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2316

2317 2318
	if (pages != stack_pages)
		drm_free_large(pages);
2319 2320 2321 2322 2323

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2324 2325
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2326
{
2327 2328 2329
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2330 2331 2332
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
2333
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2334 2335 2336 2337 2338 2339

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);
2340
	pinned = obj->pages_pin_count > 1;
2341

2342 2343 2344 2345 2346
	ptr = ptr_unpack_bits(obj->mapping, has_type);
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
			goto err;
2347
		}
2348 2349 2350 2351 2352 2353 2354

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

		ptr = obj->mapping = NULL;
2355 2356
	}

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
			goto err;
		}

		obj->mapping = ptr_pack_bits(ptr, type);
	}

	return ptr;

err:
	i915_gem_object_unpin_pages(obj);
	return ERR_PTR(ret);
2372 2373
}

2374
static void
2375 2376
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2377
{
2378 2379
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2380

2381
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2382 2383
}

2384
static void
2385 2386
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2387
{
2388 2389 2390
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2391

2392
	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2393

2394 2395
	i915_gem_object_clear_active(obj, idx);
	if (i915_gem_object_is_active(obj))
2396
		return;
2397

2398 2399 2400 2401
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2402 2403 2404
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2405

2406
	i915_gem_object_put(obj);
2407 2408
}

2409
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2410
{
2411
	unsigned long elapsed;
2412

2413
	if (ctx->hang_stats.banned)
2414 2415
		return true;

2416
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2417 2418
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2419 2420
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2421 2422 2423 2424 2425
	}

	return false;
}

2426
static void i915_set_reset_status(struct i915_gem_context *ctx,
2427
				  const bool guilty)
2428
{
2429
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2430 2431

	if (guilty) {
2432
		hs->banned = i915_context_is_banned(ctx);
2433 2434 2435 2436
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2437 2438 2439
	}
}

2440
struct drm_i915_gem_request *
2441
i915_gem_find_active_request(struct intel_engine_cs *engine)
2442
{
2443 2444
	struct drm_i915_gem_request *request;

2445 2446 2447 2448 2449 2450 2451 2452
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2453
	list_for_each_entry(request, &engine->request_list, link) {
2454
		if (i915_gem_request_completed(request))
2455
			continue;
2456

2457
		return request;
2458
	}
2459 2460 2461 2462

	return NULL;
}

2463
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2464 2465 2466 2467
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2468
	request = i915_gem_find_active_request(engine);
2469 2470 2471
	if (request == NULL)
		return;

2472
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2473

2474
	i915_set_reset_status(request->ctx, ring_hung);
2475
	list_for_each_entry_continue(request, &engine->request_list, link)
2476
		i915_set_reset_status(request->ctx, false);
2477
}
2478

2479
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2480
{
2481
	struct drm_i915_gem_request *request;
2482
	struct intel_ring *ring;
2483

2484 2485 2486 2487
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2488
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2489

2490 2491 2492 2493 2494 2495
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2496
	if (i915.enable_execlists) {
2497 2498
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2499

2500
		intel_execlists_cancel_requests(engine);
2501 2502
	}

2503 2504 2505 2506 2507 2508 2509
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2510 2511
	request = i915_gem_active_raw(&engine->last_request,
				      &engine->i915->drm.struct_mutex);
2512
	if (request)
2513
		i915_gem_request_retire_upto(request);
2514
	GEM_BUG_ON(intel_engine_is_active(engine));
2515 2516 2517 2518 2519 2520 2521 2522

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2523 2524 2525
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2526
	}
2527

2528
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2529 2530
}

2531
void i915_gem_reset(struct drm_device *dev)
2532
{
2533
	struct drm_i915_private *dev_priv = to_i915(dev);
2534
	struct intel_engine_cs *engine;
2535

2536 2537 2538 2539 2540
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2541
	for_each_engine(engine, dev_priv)
2542
		i915_gem_reset_engine_status(engine);
2543

2544
	for_each_engine(engine, dev_priv)
2545
		i915_gem_reset_engine_cleanup(engine);
2546
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2547

2548 2549
	i915_gem_context_reset(dev);

2550
	i915_gem_restore_fences(dev);
2551 2552
}

2553
static void
2554 2555
i915_gem_retire_work_handler(struct work_struct *work)
{
2556
	struct drm_i915_private *dev_priv =
2557
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2558
	struct drm_device *dev = &dev_priv->drm;
2559

2560
	/* Come back later if the device is busy... */
2561
	if (mutex_trylock(&dev->struct_mutex)) {
2562
		i915_gem_retire_requests(dev_priv);
2563
		mutex_unlock(&dev->struct_mutex);
2564
	}
2565 2566 2567 2568 2569

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2570 2571
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2572 2573
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2574
				   round_jiffies_up_relative(HZ));
2575
	}
2576
}
2577

2578 2579 2580 2581
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2582
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2583
	struct drm_device *dev = &dev_priv->drm;
2584
	struct intel_engine_cs *engine;
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2606

2607
	for_each_engine(engine, dev_priv)
2608
		i915_gem_batch_pool_fini(&engine->batch_pool);
2609

2610 2611 2612
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2613

2614 2615 2616 2617 2618
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2619

2620 2621 2622 2623
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2624
	}
2625 2626
}

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2640 2641
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2642 2643 2644
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
2668
	struct intel_rps_client *rps = to_rps_client(file);
2669
	struct drm_i915_gem_object *obj;
2670 2671
	unsigned long active;
	int idx, ret = 0;
2672

2673 2674 2675
	if (args->flags != 0)
		return -EINVAL;

2676
	obj = i915_gem_object_lookup(file, args->bo_handle);
2677
	if (!obj)
2678 2679
		return -ENOENT;

2680 2681 2682 2683 2684 2685 2686
	active = __I915_BO_ACTIVE(obj);
	for_each_active(active, idx) {
		s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
		ret = i915_gem_active_wait_unlocked(&obj->last_read[idx], true,
						    timeout, rps);
		if (ret)
			break;
2687 2688
	}

2689
	i915_gem_object_put_unlocked(obj);
2690
	return ret;
2691 2692
}

2693
static int
2694
__i915_gem_object_sync(struct drm_i915_gem_request *to,
2695
		       struct drm_i915_gem_request *from)
2696 2697 2698
{
	int ret;

2699
	if (to->engine == from->engine)
2700 2701
		return 0;

2702
	if (!i915.semaphores) {
2703 2704 2705 2706
		ret = i915_wait_request(from,
					from->i915->mm.interruptible,
					NULL,
					NO_WAITBOOST);
2707 2708 2709
		if (ret)
			return ret;
	} else {
2710
		int idx = intel_engine_sync_index(from->engine, to->engine);
2711
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2712 2713
			return 0;

2714
		trace_i915_gem_ring_sync_to(to, from);
2715
		ret = to->engine->semaphore.sync_to(to, from);
2716 2717 2718
		if (ret)
			return ret;

2719
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2720 2721 2722 2723 2724
	}

	return 0;
}

2725 2726 2727 2728
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2729
 * @to: request we are wishing to use
2730 2731
 *
 * This code is meant to abstract object synchronization with the GPU.
2732 2733 2734
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2735 2736 2737 2738 2739 2740 2741
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2742 2743 2744
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2745 2746
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2747
		     struct drm_i915_gem_request *to)
2748
{
C
Chris Wilson 已提交
2749 2750 2751
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;
2752

C
Chris Wilson 已提交
2753
	lockdep_assert_held(&obj->base.dev->struct_mutex);
2754

2755
	active_mask = i915_gem_object_get_active(obj);
C
Chris Wilson 已提交
2756 2757
	if (!active_mask)
		return 0;
2758

C
Chris Wilson 已提交
2759 2760
	if (obj->base.pending_write_domain) {
		active = obj->last_read;
2761
	} else {
C
Chris Wilson 已提交
2762 2763
		active_mask = 1;
		active = &obj->last_write;
2764
	}
C
Chris Wilson 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774

	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
		int ret;

		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

2775
		ret = __i915_gem_object_sync(to, request);
2776 2777 2778
		if (ret)
			return ret;
	}
2779

2780
	return 0;
2781 2782
}

2783 2784 2785 2786 2787 2788 2789
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2790 2791 2792
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2804 2805
static void __i915_vma_iounmap(struct i915_vma *vma)
{
2806
	GEM_BUG_ON(i915_vma_is_pinned(vma));
2807 2808 2809 2810 2811 2812 2813 2814

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2815
int i915_vma_unbind(struct i915_vma *vma)
2816
{
2817
	struct drm_i915_gem_object *obj = vma->obj;
2818
	unsigned long active;
2819
	int ret;
2820

2821 2822 2823 2824
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2825
	if (active) {
2826 2827
		int idx;

2828 2829 2830 2831 2832
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
2833
		__i915_vma_pin(vma);
2834

2835 2836 2837 2838
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2839
				break;
2840 2841
		}

2842
		__i915_vma_unpin(vma);
2843 2844 2845
		if (ret)
			return ret;

2846 2847 2848
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

2849
	if (i915_vma_is_pinned(vma))
2850 2851
		return -EBUSY;

2852 2853
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2854

2855 2856
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2857

2858 2859
	if (i915_vma_is_ggtt(vma) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2860
		i915_gem_object_finish_gtt(obj);
2861

2862 2863 2864 2865
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
2866 2867

		__i915_vma_iounmap(vma);
2868
	}
2869

2870 2871 2872 2873
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
2874
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2875

2876 2877 2878
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

2879
	if (i915_vma_is_ggtt(vma)) {
2880 2881
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
2882 2883 2884
		} else if (vma->pages) {
			sg_free_table(vma->pages);
			kfree(vma->pages);
2885 2886
		}
	}
2887
	vma->pages = NULL;
2888

B
Ben Widawsky 已提交
2889
	/* Since the unbound list is global, only move to that list if
2890
	 * no more VMAs exist. */
2891 2892 2893
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
2894

2895 2896 2897 2898 2899 2900
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2901
destroy:
2902
	if (unlikely(i915_vma_is_closed(vma)))
2903 2904
		i915_vma_destroy(vma);

2905
	return 0;
2906 2907
}

2908 2909
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
			   bool interruptible)
2910
{
2911
	struct intel_engine_cs *engine;
2912
	int ret;
2913

2914
	for_each_engine(engine, dev_priv) {
2915 2916 2917
		if (engine->last_context == NULL)
			continue;

2918
		ret = intel_engine_idle(engine, interruptible);
2919 2920 2921
		if (ret)
			return ret;
	}
2922

2923
	return 0;
2924 2925
}

2926
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2927 2928
				     unsigned long cache_level)
{
2929
	struct drm_mm_node *gtt_space = &vma->node;
2930 2931
	struct drm_mm_node *other;

2932 2933 2934 2935 2936 2937
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
2938
	 */
2939
	if (vma->vm->mm.color_adjust == NULL)
2940 2941
		return true;

2942
	if (!drm_mm_node_allocated(gtt_space))
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

2959
/**
2960 2961
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
2962
 * @size: requested size in bytes (can be larger than the VMA)
2963
 * @alignment: required alignment
2964
 * @flags: mask of PIN_* flags to use
2965 2966 2967 2968 2969 2970 2971
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
2972
 */
2973 2974
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
2975
{
2976 2977
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
2978 2979
	u64 start, end;
	u64 min_alignment;
2980
	int ret;
2981

2982
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
2983
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
2984 2985 2986

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
2987 2988
		size = i915_gem_get_ggtt_size(dev_priv, size,
					      i915_gem_object_get_tiling(obj));
2989 2990

	min_alignment =
2991 2992
		i915_gem_get_ggtt_alignment(dev_priv, size,
					    i915_gem_object_get_tiling(obj),
2993 2994 2995 2996 2997 2998
					    flags & PIN_MAPPABLE);
	if (alignment == 0)
		alignment = min_alignment;
	if (alignment & (min_alignment - 1)) {
		DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
			  alignment, min_alignment);
2999
		return -EINVAL;
3000
	}
3001

3002
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3003 3004

	end = vma->vm->total;
3005
	if (flags & PIN_MAPPABLE)
3006
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3007
	if (flags & PIN_ZONE_4G)
3008
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3009

3010 3011 3012
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3013
	 */
3014
	if (size > end) {
3015
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3016
			  size, obj->base.size,
3017
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3018
			  end);
3019
		return -E2BIG;
3020 3021
	}

3022
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3023
	if (ret)
3024
		return ret;
C
Chris Wilson 已提交
3025

3026 3027
	i915_gem_object_pin_pages(obj);

3028
	if (flags & PIN_OFFSET_FIXED) {
3029
		u64 offset = flags & PIN_OFFSET_MASK;
3030
		if (offset & (alignment - 1) || offset > end - size) {
3031
			ret = -EINVAL;
3032
			goto err_unpin;
3033
		}
3034

3035 3036 3037
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3038
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3039 3040 3041
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3042 3043 3044
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3045
		}
3046
	} else {
3047 3048
		u32 search_flag, alloc_flag;

3049 3050 3051 3052 3053 3054 3055
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3056

3057 3058 3059 3060 3061 3062 3063 3064 3065
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3066
search_free:
3067 3068
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3069 3070 3071 3072 3073 3074
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3075
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3076 3077 3078 3079 3080
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3081

3082
			goto err_unpin;
3083
		}
3084
	}
3085
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3086

3087
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3088
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3089
	obj->bind_count++;
3090

3091
	return 0;
B
Ben Widawsky 已提交
3092

3093
err_unpin:
B
Ben Widawsky 已提交
3094
	i915_gem_object_unpin_pages(obj);
3095
	return ret;
3096 3097
}

3098
bool
3099 3100
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3101 3102 3103 3104 3105
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3106
	if (obj->pages == NULL)
3107
		return false;
3108

3109 3110 3111 3112
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3113
	if (obj->stolen || obj->phys_handle)
3114
		return false;
3115

3116 3117 3118 3119 3120 3121 3122 3123
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3124 3125
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3126
		return false;
3127
	}
3128

C
Chris Wilson 已提交
3129
	trace_i915_gem_object_clflush(obj);
3130
	drm_clflush_sg(obj->pages);
3131
	obj->cache_dirty = false;
3132 3133

	return true;
3134 3135 3136 3137
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3138
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3139
{
C
Chris Wilson 已提交
3140 3141
	uint32_t old_write_domain;

3142
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3143 3144
		return;

3145
	/* No actual flushing is required for the GTT write domain.  Writes
3146 3147
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3148 3149 3150 3151
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3152
	 */
3153 3154
	wmb();

3155 3156
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3157

3158
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3159

C
Chris Wilson 已提交
3160
	trace_i915_gem_object_change_domain(obj,
3161
					    obj->base.read_domains,
C
Chris Wilson 已提交
3162
					    old_write_domain);
3163 3164 3165 3166
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3167
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3168
{
C
Chris Wilson 已提交
3169
	uint32_t old_write_domain;
3170

3171
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3172 3173
		return;

3174
	if (i915_gem_clflush_object(obj, obj->pin_display))
3175
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3176

3177 3178
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3179

3180
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3181

C
Chris Wilson 已提交
3182
	trace_i915_gem_object_change_domain(obj,
3183
					    obj->base.read_domains,
C
Chris Wilson 已提交
3184
					    old_write_domain);
3185 3186
}

3187 3188
/**
 * Moves a single object to the GTT read, and possibly write domain.
3189 3190
 * @obj: object to act on
 * @write: ask for write access or read only
3191 3192 3193 3194
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3195
int
3196
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3197
{
C
Chris Wilson 已提交
3198
	uint32_t old_write_domain, old_read_domains;
3199
	struct i915_vma *vma;
3200
	int ret;
3201

3202
	ret = i915_gem_object_wait_rendering(obj, !write);
3203 3204 3205
	if (ret)
		return ret;

3206 3207 3208
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3221
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3222

3223 3224 3225 3226 3227 3228 3229
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3230 3231
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3232

3233 3234 3235
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3236 3237
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3238
	if (write) {
3239 3240 3241
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3242 3243
	}

C
Chris Wilson 已提交
3244 3245 3246 3247
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3248
	/* And bump the LRU for this access */
C
Chris Wilson 已提交
3249
	vma = i915_gem_object_to_ggtt(obj, NULL);
3250 3251 3252 3253
	if (vma &&
	    drm_mm_node_allocated(&vma->node) &&
	    !i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3254

3255 3256 3257
	return 0;
}

3258 3259
/**
 * Changes the cache-level of an object across all VMA.
3260 3261
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3273 3274 3275
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3276
	struct i915_vma *vma;
3277
	int ret = 0;
3278 3279

	if (obj->cache_level == cache_level)
3280
		goto out;
3281

3282 3283 3284 3285 3286
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3287 3288
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3289 3290 3291
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3292
		if (i915_vma_is_pinned(vma)) {
3293 3294 3295 3296
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3309 3310
	}

3311 3312 3313 3314 3315 3316 3317
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3318
	if (obj->bind_count) {
3319 3320 3321 3322
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3323
		ret = i915_gem_object_wait_rendering(obj, false);
3324 3325 3326
		if (ret)
			return ret;

3327
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3344 3345 3346
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3347 3348 3349 3350 3351 3352 3353 3354
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3355 3356
		}

3357
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3358 3359 3360 3361 3362 3363 3364
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3365 3366
	}

3367
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3368 3369 3370
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3371
out:
3372 3373 3374 3375
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3376
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3377
		if (i915_gem_clflush_object(obj, true))
3378
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3379 3380 3381 3382 3383
	}

	return 0;
}

B
Ben Widawsky 已提交
3384 3385
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3386
{
B
Ben Widawsky 已提交
3387
	struct drm_i915_gem_caching *args = data;
3388 3389
	struct drm_i915_gem_object *obj;

3390 3391
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3392
		return -ENOENT;
3393

3394 3395 3396 3397 3398 3399
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3400 3401 3402 3403
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3404 3405 3406 3407
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3408

3409
	i915_gem_object_put_unlocked(obj);
3410
	return 0;
3411 3412
}

B
Ben Widawsky 已提交
3413 3414
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3415
{
3416
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3417
	struct drm_i915_gem_caching *args = data;
3418 3419 3420 3421
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3422 3423
	switch (args->caching) {
	case I915_CACHING_NONE:
3424 3425
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3426
	case I915_CACHING_CACHED:
3427 3428 3429 3430 3431 3432
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3433
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3434 3435
			return -ENODEV;

3436 3437
		level = I915_CACHE_LLC;
		break;
3438 3439 3440
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3441 3442 3443 3444
	default:
		return -EINVAL;
	}

3445 3446
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3447 3448
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3449
		goto rpm_put;
B
Ben Widawsky 已提交
3450

3451 3452
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3453 3454 3455 3456 3457 3458
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3459
	i915_gem_object_put(obj);
3460 3461
unlock:
	mutex_unlock(&dev->struct_mutex);
3462 3463 3464
rpm_put:
	intel_runtime_pm_put(dev_priv);

3465 3466 3467
	return ret;
}

3468
/*
3469 3470 3471
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3472
 */
C
Chris Wilson 已提交
3473
struct i915_vma *
3474 3475
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3476
				     const struct i915_ggtt_view *view)
3477
{
C
Chris Wilson 已提交
3478
	struct i915_vma *vma;
3479
	u32 old_read_domains, old_write_domain;
3480 3481
	int ret;

3482 3483 3484
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3485
	obj->pin_display++;
3486

3487 3488 3489 3490 3491 3492 3493 3494 3495
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3496 3497
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3498 3499
	if (ret) {
		vma = ERR_PTR(ret);
3500
		goto err_unpin_display;
C
Chris Wilson 已提交
3501
	}
3502

3503 3504 3505 3506
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
C
Chris Wilson 已提交
3507
	vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3508 3509
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
C
Chris Wilson 已提交
3510
	if (IS_ERR(vma))
3511
		goto err_unpin_display;
3512

C
Chris Wilson 已提交
3513 3514
	WARN_ON(obj->pin_display > i915_vma_pin_count(vma));

3515
	i915_gem_object_flush_cpu_write_domain(obj);
3516

3517
	old_write_domain = obj->base.write_domain;
3518
	old_read_domains = obj->base.read_domains;
3519 3520 3521 3522

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3523
	obj->base.write_domain = 0;
3524
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3525 3526 3527

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3528
					    old_write_domain);
3529

C
Chris Wilson 已提交
3530
	return vma;
3531 3532

err_unpin_display:
3533
	obj->pin_display--;
C
Chris Wilson 已提交
3534
	return vma;
3535 3536 3537
}

void
C
Chris Wilson 已提交
3538
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3539
{
C
Chris Wilson 已提交
3540
	if (WARN_ON(vma->obj->pin_display == 0))
3541 3542
		return;

C
Chris Wilson 已提交
3543
	vma->obj->pin_display--;
3544

C
Chris Wilson 已提交
3545 3546
	i915_vma_unpin(vma);
	WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma));
3547 3548
}

3549 3550
/**
 * Moves a single object to the CPU read, and possibly write domain.
3551 3552
 * @obj: object to act on
 * @write: requesting write or read-only access
3553 3554 3555 3556
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3557
int
3558
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3559
{
C
Chris Wilson 已提交
3560
	uint32_t old_write_domain, old_read_domains;
3561 3562
	int ret;

3563
	ret = i915_gem_object_wait_rendering(obj, !write);
3564 3565 3566
	if (ret)
		return ret;

3567 3568 3569
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3570
	i915_gem_object_flush_gtt_write_domain(obj);
3571

3572 3573
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3574

3575
	/* Flush the CPU cache if it's still invalid. */
3576
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3577
		i915_gem_clflush_object(obj, false);
3578

3579
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3580 3581 3582 3583 3584
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3585
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3586 3587 3588 3589 3590

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3591 3592
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3593
	}
3594

C
Chris Wilson 已提交
3595 3596 3597 3598
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3599 3600 3601
	return 0;
}

3602 3603 3604
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3605 3606 3607 3608
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3609 3610 3611
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3612
static int
3613
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3614
{
3615
	struct drm_i915_private *dev_priv = to_i915(dev);
3616
	struct drm_i915_file_private *file_priv = file->driver_priv;
3617
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3618
	struct drm_i915_gem_request *request, *target = NULL;
3619
	int ret;
3620

3621 3622 3623 3624
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3625 3626 3627
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3628

3629
	spin_lock(&file_priv->mm.lock);
3630
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3631 3632
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3633

3634 3635 3636 3637 3638 3639 3640
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3641
		target = request;
3642
	}
3643
	if (target)
3644
		i915_gem_request_get(target);
3645
	spin_unlock(&file_priv->mm.lock);
3646

3647
	if (target == NULL)
3648
		return 0;
3649

3650
	ret = i915_wait_request(target, true, NULL, NULL);
3651
	i915_gem_request_put(target);
3652

3653 3654 3655
	return ret;
}

3656
static bool
3657
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3658 3659 3660
{
	struct drm_i915_gem_object *obj = vma->obj;

3661 3662 3663
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3664 3665 3666 3667
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3668 3669 3670 3671 3672 3673 3674 3675 3676
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3677 3678 3679 3680
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3681 3682 3683
	return false;
}

3684 3685 3686
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3687
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3688 3689 3690
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3691
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3692
					    obj->base.size,
3693
					    i915_gem_object_get_tiling(obj));
3694
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3695
						      obj->base.size,
3696
						      i915_gem_object_get_tiling(obj),
3697
						      true);
3698 3699 3700 3701 3702

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3703
		    dev_priv->ggtt.mappable_end);
3704 3705 3706 3707

	obj->map_and_fenceable = mappable && fenceable;
}

3708 3709
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3710
{
3711
	unsigned int bound = vma->flags;
3712 3713
	int ret;

3714
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3715
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3716

3717 3718 3719 3720
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3721

3722
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3723 3724 3725
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3726
	}
3727

3728
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3729
	if (ret)
3730
		goto err;
3731

3732
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3733
		__i915_vma_set_map_and_fenceable(vma);
3734

3735
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3736 3737
	return 0;

3738 3739 3740
err:
	__i915_vma_unpin(vma);
	return ret;
3741 3742
}

C
Chris Wilson 已提交
3743
struct i915_vma *
3744 3745
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3746
			 u64 size,
3747 3748
			 u64 alignment,
			 u64 flags)
3749
{
C
Chris Wilson 已提交
3750
	struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base;
3751 3752
	struct i915_vma *vma;
	int ret;
3753

C
Chris Wilson 已提交
3754
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3755
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3756
		return vma;
3757 3758 3759 3760

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3761
			return ERR_PTR(-ENOSPC);
3762 3763 3764

		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3765
		     " offset=%08x, req.alignment=%llx, req.map_and_fenceable=%d,"
3766
		     " obj->map_and_fenceable=%d\n",
3767
		     i915_ggtt_offset(vma),
3768 3769 3770 3771 3772
		     alignment,
		     !!(flags & PIN_MAPPABLE),
		     obj->map_and_fenceable);
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3773
			return ERR_PTR(ret);
3774 3775
	}

C
Chris Wilson 已提交
3776 3777 3778
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3779

C
Chris Wilson 已提交
3780
	return vma;
3781 3782
}

3783
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3798 3799 3800 3801 3802 3803 3804 3805 3806
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3807 3808
}

3809
static __always_inline unsigned int
3810 3811 3812
__busy_set_if_active(const struct i915_gem_active *active,
		     unsigned int (*flag)(unsigned int id))
{
3813
	struct drm_i915_gem_request *request;
3814

3815 3816 3817
	request = rcu_dereference(active->request);
	if (!request || i915_gem_request_completed(request))
		return 0;
3818

3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
	/* This is racy. See __i915_gem_active_get_rcu() for an in detail
	 * discussion of how to handle the race correctly, but for reporting
	 * the busy state we err on the side of potentially reporting the
	 * wrong engine as being busy (but we guarantee that the result
	 * is at least self-consistent).
	 *
	 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
	 * whilst we are inspecting it, even under the RCU read lock as we are.
	 * This means that there is a small window for the engine and/or the
	 * seqno to have been overwritten. The seqno will always be in the
	 * future compared to the intended, and so we know that if that
	 * seqno is idle (on whatever engine) our request is idle and the
	 * return 0 above is correct.
	 *
	 * The issue is that if the engine is switched, it is just as likely
	 * to report that it is busy (but since the switch happened, we know
	 * the request should be idle). So there is a small chance that a busy
	 * result is actually the wrong engine.
	 *
	 * So why don't we care?
	 *
	 * For starters, the busy ioctl is a heuristic that is by definition
	 * racy. Even with perfect serialisation in the driver, the hardware
	 * state is constantly advancing - the state we report to the user
	 * is stale.
	 *
	 * The critical information for the busy-ioctl is whether the object
	 * is idle as userspace relies on that to detect whether its next
	 * access will stall, or if it has missed submitting commands to
	 * the hardware allowing the GPU to stall. We never generate a
	 * false-positive for idleness, thus busy-ioctl is reliable at the
	 * most fundamental level, and we maintain the guarantee that a
	 * busy object left to itself will eventually become idle (and stay
	 * idle!).
	 *
	 * We allow ourselves the leeway of potentially misreporting the busy
	 * state because that is an optimisation heuristic that is constantly
	 * in flux. Being quickly able to detect the busy/idle state is much
	 * more important than accurate logging of exactly which engines were
	 * busy.
	 *
	 * For accuracy in reporting the engine, we could use
	 *
	 *	result = 0;
	 *	request = __i915_gem_active_get_rcu(active);
	 *	if (request) {
	 *		if (!i915_gem_request_completed(request))
	 *			result = flag(request->engine->exec_id);
	 *		i915_gem_request_put(request);
	 *	}
	 *
	 * but that still remains susceptible to both hardware and userspace
	 * races. So we accept making the result of that race slightly worse,
	 * given the rarity of the race and its low impact on the result.
	 */
	return flag(READ_ONCE(request->engine->exec_id));
3875 3876
}

3877
static __always_inline unsigned int
3878 3879 3880 3881 3882
busy_check_reader(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_read_flag);
}

3883
static __always_inline unsigned int
3884 3885 3886 3887 3888
busy_check_writer(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_write_id);
}

3889 3890
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3891
		    struct drm_file *file)
3892 3893
{
	struct drm_i915_gem_busy *args = data;
3894
	struct drm_i915_gem_object *obj;
3895
	unsigned long active;
3896

3897
	obj = i915_gem_object_lookup(file, args->handle);
3898 3899
	if (!obj)
		return -ENOENT;
3900

3901
	args->busy = 0;
3902 3903 3904
	active = __I915_BO_ACTIVE(obj);
	if (active) {
		int idx;
3905

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
		/* Yes, the lookups are intentionally racy.
		 *
		 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
		 * to regard the value as stale and as our ABI guarantees
		 * forward progress, we confirm the status of each active
		 * request with the hardware.
		 *
		 * Even though we guard the pointer lookup by RCU, that only
		 * guarantees that the pointer and its contents remain
		 * dereferencable and does *not* mean that the request we
		 * have is the same as the one being tracked by the object.
		 *
		 * Consider that we lookup the request just as it is being
		 * retired and freed. We take a local copy of the pointer,
		 * but before we add its engine into the busy set, the other
		 * thread reallocates it and assigns it to a task on another
3922 3923 3924 3925 3926 3927
		 * engine with a fresh and incomplete seqno. Guarding against
		 * that requires careful serialisation and reference counting,
		 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
		 * instead we expect that if the result is busy, which engines
		 * are busy is not completely reliable - we only guarantee
		 * that the object was busy.
3928 3929 3930 3931 3932 3933 3934
		 */
		rcu_read_lock();

		for_each_active(active, idx)
			args->busy |= busy_check_reader(&obj->last_read[idx]);

		/* For ABI sanity, we only care that the write engine is in
3935 3936 3937 3938 3939
		 * the set of read engines. This should be ensured by the
		 * ordering of setting last_read/last_write in
		 * i915_vma_move_to_active(), and then in reverse in retire.
		 * However, for good measure, we always report the last_write
		 * request as a busy read as well as being a busy write.
3940 3941 3942 3943 3944 3945 3946 3947 3948
		 *
		 * We don't care that the set of active read/write engines
		 * may change during construction of the result, as it is
		 * equally liable to change before userspace can inspect
		 * the result.
		 */
		args->busy |= busy_check_writer(&obj->last_write);

		rcu_read_unlock();
3949
	}
3950

3951 3952
	i915_gem_object_put_unlocked(obj);
	return 0;
3953 3954 3955 3956 3957 3958
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3959
	return i915_gem_ring_throttle(dev, file_priv);
3960 3961
}

3962 3963 3964 3965
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3966
	struct drm_i915_private *dev_priv = to_i915(dev);
3967
	struct drm_i915_gem_madvise *args = data;
3968
	struct drm_i915_gem_object *obj;
3969
	int ret;
3970 3971 3972 3973 3974 3975 3976 3977 3978

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3979 3980 3981 3982
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3983 3984
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
3985 3986
		ret = -ENOENT;
		goto unlock;
3987 3988
	}

3989
	if (obj->pages &&
3990
	    i915_gem_object_is_tiled(obj) &&
3991 3992 3993 3994 3995 3996 3997
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

3998 3999
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4000

C
Chris Wilson 已提交
4001
	/* if the object is no longer attached, discard its backing storage */
4002
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4003 4004
		i915_gem_object_truncate(obj);

4005
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4006

4007
	i915_gem_object_put(obj);
4008
unlock:
4009
	mutex_unlock(&dev->struct_mutex);
4010
	return ret;
4011 4012
}

4013 4014
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4015
{
4016 4017
	int i;

4018
	INIT_LIST_HEAD(&obj->global_list);
4019
	for (i = 0; i < I915_NUM_ENGINES; i++)
4020 4021 4022 4023 4024
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
	init_request_active(&obj->last_fence, NULL);
4025
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4026
	INIT_LIST_HEAD(&obj->vma_list);
4027
	INIT_LIST_HEAD(&obj->batch_pool_link);
4028

4029 4030
	obj->ops = ops;

4031 4032 4033
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

4034
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4035 4036
}

4037
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4038
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4039 4040 4041 4042
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4043
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4044
						  size_t size)
4045
{
4046
	struct drm_i915_gem_object *obj;
4047
	struct address_space *mapping;
D
Daniel Vetter 已提交
4048
	gfp_t mask;
4049
	int ret;
4050

4051
	obj = i915_gem_object_alloc(dev);
4052
	if (obj == NULL)
4053
		return ERR_PTR(-ENOMEM);
4054

4055 4056 4057
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4058

4059 4060 4061 4062 4063 4064 4065
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4066
	mapping = obj->base.filp->f_mapping;
4067
	mapping_set_gfp_mask(mapping, mask);
4068

4069
	i915_gem_object_init(obj, &i915_gem_object_ops);
4070

4071 4072
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4073

4074 4075
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4091 4092
	trace_i915_gem_object_create(obj);

4093
	return obj;
4094 4095 4096 4097 4098

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4099 4100
}

4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4125
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4126
{
4127
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4128
	struct drm_device *dev = obj->base.dev;
4129
	struct drm_i915_private *dev_priv = to_i915(dev);
4130
	struct i915_vma *vma, *next;
4131

4132 4133
	intel_runtime_pm_get(dev_priv);

4134 4135
	trace_i915_gem_object_destroy(obj);

4136 4137 4138 4139 4140 4141 4142
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4143
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4144
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4145
		GEM_BUG_ON(i915_vma_is_active(vma));
4146
		vma->flags &= ~I915_VMA_PIN_MASK;
4147
		i915_vma_close(vma);
4148
	}
4149
	GEM_BUG_ON(obj->bind_count);
4150

B
Ben Widawsky 已提交
4151 4152 4153 4154 4155
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4156
	WARN_ON(atomic_read(&obj->frontbuffer_bits));
4157

4158 4159
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4160
	    i915_gem_object_is_tiled(obj))
4161 4162
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4163 4164
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4165
	if (discard_backing_storage(obj))
4166
		obj->madv = I915_MADV_DONTNEED;
4167
	i915_gem_object_put_pages(obj);
4168

4169 4170
	BUG_ON(obj->pages);

4171 4172
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4173

4174 4175 4176
	if (obj->ops->release)
		obj->ops->release(obj);

4177 4178
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4179

4180
	kfree(obj->bit_17);
4181
	i915_gem_object_free(obj);
4182 4183

	intel_runtime_pm_put(dev_priv);
4184 4185
}

4186
int i915_gem_suspend(struct drm_device *dev)
4187
{
4188
	struct drm_i915_private *dev_priv = to_i915(dev);
4189
	int ret;
4190

4191 4192
	intel_suspend_gt_powersave(dev_priv);

4193
	mutex_lock(&dev->struct_mutex);
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4207
	ret = i915_gem_wait_for_idle(dev_priv, true);
4208
	if (ret)
4209
		goto err;
4210

4211
	i915_gem_retire_requests(dev_priv);
4212

4213
	i915_gem_context_lost(dev_priv);
4214 4215
	mutex_unlock(&dev->struct_mutex);

4216
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4217 4218
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4219

4220 4221 4222
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4223
	WARN_ON(dev_priv->gt.awake);
4224

4225
	return 0;
4226 4227 4228 4229

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4230 4231
}

4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4249 4250
void i915_gem_init_swizzling(struct drm_device *dev)
{
4251
	struct drm_i915_private *dev_priv = to_i915(dev);
4252

4253
	if (INTEL_INFO(dev)->gen < 5 ||
4254 4255 4256 4257 4258 4259
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4260 4261 4262
	if (IS_GEN5(dev))
		return;

4263 4264
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4265
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4266
	else if (IS_GEN7(dev))
4267
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4268 4269
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4270 4271
	else
		BUG();
4272
}
D
Daniel Vetter 已提交
4273

4274 4275
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4276
	struct drm_i915_private *dev_priv = to_i915(dev);
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4301 4302 4303
int
i915_gem_init_hw(struct drm_device *dev)
{
4304
	struct drm_i915_private *dev_priv = to_i915(dev);
4305
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4306
	int ret;
4307

4308 4309 4310
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4311
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4312
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4313

4314 4315 4316
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4317

4318
	if (HAS_PCH_NOP(dev)) {
4319 4320 4321 4322 4323 4324 4325 4326 4327
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4328 4329
	}

4330 4331
	i915_gem_init_swizzling(dev);

4332 4333 4334 4335 4336 4337 4338 4339
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4340
	BUG_ON(!dev_priv->kernel_context);
4341

4342 4343 4344 4345 4346 4347 4348
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4349
	for_each_engine(engine, dev_priv) {
4350
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4351
		if (ret)
4352
			goto out;
D
Daniel Vetter 已提交
4353
	}
4354

4355 4356
	intel_mocs_init_l3cc_table(dev);

4357
	/* We can't enable contexts until all firmware is loaded */
4358 4359 4360
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4361

4362 4363
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4364
	return ret;
4365 4366
}

4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4388 4389
int i915_gem_init(struct drm_device *dev)
{
4390
	struct drm_i915_private *dev_priv = to_i915(dev);
4391 4392 4393
	int ret;

	mutex_lock(&dev->struct_mutex);
4394

4395
	if (!i915.enable_execlists) {
4396
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4397
	} else {
4398
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4399 4400
	}

4401 4402 4403 4404 4405 4406 4407 4408
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4409
	i915_gem_init_userptr(dev_priv);
4410 4411 4412 4413

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4414

4415
	ret = i915_gem_context_init(dev);
4416 4417
	if (ret)
		goto out_unlock;
4418

4419
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4420
	if (ret)
4421
		goto out_unlock;
4422

4423
	ret = i915_gem_init_hw(dev);
4424
	if (ret == -EIO) {
4425
		/* Allow engine initialisation to fail by marking the GPU as
4426 4427 4428 4429
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4430
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4431
		ret = 0;
4432
	}
4433 4434

out_unlock:
4435
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4436
	mutex_unlock(&dev->struct_mutex);
4437

4438
	return ret;
4439 4440
}

4441
void
4442
i915_gem_cleanup_engines(struct drm_device *dev)
4443
{
4444
	struct drm_i915_private *dev_priv = to_i915(dev);
4445
	struct intel_engine_cs *engine;
4446

4447
	for_each_engine(engine, dev_priv)
4448
		dev_priv->gt.cleanup_engine(engine);
4449 4450
}

4451
static void
4452
init_engine_lists(struct intel_engine_cs *engine)
4453
{
4454
	INIT_LIST_HEAD(&engine->request_list);
4455 4456
}

4457 4458 4459
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4460
	struct drm_device *dev = &dev_priv->drm;
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4471
	if (intel_vgpu_active(dev_priv))
4472 4473 4474 4475 4476 4477 4478 4479 4480
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4481
void
4482
i915_gem_load_init(struct drm_device *dev)
4483
{
4484
	struct drm_i915_private *dev_priv = to_i915(dev);
4485 4486
	int i;

4487
	dev_priv->objects =
4488 4489 4490 4491
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4492 4493 4494 4495 4496
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4497 4498 4499
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
4500 4501 4502
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_DESTROY_BY_RCU,
4503
				  NULL);
4504

4505
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4506 4507
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4508
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4509 4510
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4511
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4512
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4513
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4514
			  i915_gem_retire_work_handler);
4515
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4516
			  i915_gem_idle_work_handler);
4517
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4518
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4519

4520 4521
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4522
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4523

4524
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4525

4526 4527
	dev_priv->mm.interruptible = true;

4528
	spin_lock_init(&dev_priv->fb_tracking.lock);
4529
}
4530

4531 4532 4533 4534 4535 4536 4537
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4538 4539 4540

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4541 4542
}

4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4571
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4572
{
4573
	struct drm_i915_file_private *file_priv = file->driver_priv;
4574
	struct drm_i915_gem_request *request;
4575 4576 4577 4578 4579

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4580
	spin_lock(&file_priv->mm.lock);
4581
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4582
		request->file_priv = NULL;
4583
	spin_unlock(&file_priv->mm.lock);
4584

4585
	if (!list_empty(&file_priv->rps.link)) {
4586
		spin_lock(&to_i915(dev)->rps.client_lock);
4587
		list_del(&file_priv->rps.link);
4588
		spin_unlock(&to_i915(dev)->rps.client_lock);
4589
	}
4590 4591 4592 4593 4594
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4595
	int ret;
4596 4597 4598 4599 4600 4601 4602 4603

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4604
	file_priv->dev_priv = to_i915(dev);
4605
	file_priv->file = file;
4606
	INIT_LIST_HEAD(&file_priv->rps.link);
4607 4608 4609 4610

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4611
	file_priv->bsd_engine = -1;
4612

4613 4614 4615
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4616

4617
	return ret;
4618 4619
}

4620 4621
/**
 * i915_gem_track_fb - update frontbuffer tracking
4622 4623 4624
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4625 4626 4627 4628
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4629 4630 4631 4632
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4633 4634 4635 4636 4637 4638 4639 4640 4641
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4642
	if (old) {
4643 4644
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4645 4646 4647
	}

	if (new) {
4648 4649
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4650 4651 4652
	}
}

4653 4654 4655 4656 4657 4658 4659
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4660
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4661 4662 4663 4664 4665 4666 4667
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4678
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4679
	if (IS_ERR(obj))
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4693
	obj->dirty = 1;		/* Backing store is now out of date */
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4705
	i915_gem_object_put(obj);
4706 4707
	return ERR_PTR(ret);
}