i915_gem.c 163.6 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include "intel_workarounds.h"
M
Matthew Auld 已提交
39
#include "i915_gemfs.h"
40
#include <linux/dma-fence-array.h>
41
#include <linux/kthread.h>
42
#include <linux/reservation.h>
43
#include <linux/shmem_fs.h>
44
#include <linux/slab.h>
45
#include <linux/stop_machine.h>
46
#include <linux/swap.h>
J
Jesse Barnes 已提交
47
#include <linux/pci.h>
48
#include <linux/dma-buf.h>
49

50
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51

52 53
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
54
	if (obj->cache_dirty)
55 56
		return false;

57
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 59
		return true;

60
	return obj->pin_global; /* currently in use by HW, keep flushed */
61 62
}

63
static int
64
insert_mappable_node(struct i915_ggtt *ggtt,
65 66 67
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
68
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69 70 71
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
72 73 74 75 76 77 78 79
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82
				  u64 size)
83
{
84
	spin_lock(&dev_priv->mm.object_stat_lock);
85 86
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
87
	spin_unlock(&dev_priv->mm.object_stat_lock);
88 89 90
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91
				     u64 size)
92
{
93
	spin_lock(&dev_priv->mm.object_stat_lock);
94 95
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
96
	spin_unlock(&dev_priv->mm.object_stat_lock);
97 98
}

99
static int
100
i915_gem_wait_for_error(struct i915_gpu_error *error)
101 102 103
{
	int ret;

104 105
	might_sleep();

106 107 108 109 110
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
111
	ret = wait_event_interruptible_timeout(error->reset_queue,
112
					       !i915_reset_backoff(error),
113
					       I915_RESET_TIMEOUT);
114 115 116 117
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
118
		return ret;
119 120
	} else {
		return 0;
121
	}
122 123
}

124
int i915_mutex_lock_interruptible(struct drm_device *dev)
125
{
126
	struct drm_i915_private *dev_priv = to_i915(dev);
127 128
	int ret;

129
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 131 132 133 134 135 136 137 138
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
139

140 141
static u32 __i915_gem_park(struct drm_i915_private *i915)
{
142 143
	GEM_TRACE("\n");

144 145
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
146
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

	if (!i915->gt.awake)
		return I915_EPOCH_INVALID;

	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
167
	i915_timelines_park(i915);
168 169

	i915_pmu_gt_parked(i915);
170
	i915_vma_parked(i915);
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

	i915->gt.awake = false;

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);

	intel_runtime_pm_put(i915);

	return i915->gt.epoch;
}

void i915_gem_park(struct drm_i915_private *i915)
{
186 187
	GEM_TRACE("\n");

188 189 190 191 192 193 194 195 196 197 198 199
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
200 201
	GEM_TRACE("\n");

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);

	if (i915->gt.awake)
		return;

	intel_runtime_pm_get_noresume(i915);

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);

	i915->gt.awake = true;
	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
		i915->gt.epoch = 1;

	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

242 243
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
244
			    struct drm_file *file)
245
{
246
	struct drm_i915_private *dev_priv = to_i915(dev);
247
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
248
	struct drm_i915_gem_get_aperture *args = data;
249
	struct i915_vma *vma;
250
	u64 pinned;
251

252
	pinned = ggtt->vm.reserved;
253
	mutex_lock(&dev->struct_mutex);
254
	list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
255
		if (i915_vma_is_pinned(vma))
256
			pinned += vma->node.size;
257
	list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
258
		if (i915_vma_is_pinned(vma))
259
			pinned += vma->node.size;
260
	mutex_unlock(&dev->struct_mutex);
261

262
	args->aper_size = ggtt->vm.total;
263
	args->aper_available_size = args->aper_size - pinned;
264

265 266 267
	return 0;
}

268
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269
{
270
	struct address_space *mapping = obj->base.filp->f_mapping;
271
	drm_dma_handle_t *phys;
272 273
	struct sg_table *st;
	struct scatterlist *sg;
274
	char *vaddr;
275
	int i;
276
	int err;
277

278
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279
		return -EINVAL;
280

281 282 283 284 285
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
286
			     roundup_pow_of_two(obj->base.size),
287 288
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
289
		return -ENOMEM;
290 291

	vaddr = phys->vaddr;
292 293 294 295 296
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
297
		if (IS_ERR(page)) {
298
			err = PTR_ERR(page);
299 300
			goto err_phys;
		}
301 302 303 304 305 306

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

307
		put_page(page);
308 309 310
		vaddr += PAGE_SIZE;
	}

311
	i915_gem_chipset_flush(to_i915(obj->base.dev));
312 313

	st = kmalloc(sizeof(*st), GFP_KERNEL);
314
	if (!st) {
315
		err = -ENOMEM;
316 317
		goto err_phys;
	}
318 319 320

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
321
		err = -ENOMEM;
322
		goto err_phys;
323 324 325 326 327
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
328

329
	sg_dma_address(sg) = phys->busaddr;
330 331
	sg_dma_len(sg) = obj->base.size;

332
	obj->phys_handle = phys;
333

334
	__i915_gem_object_set_pages(obj, st, sg->length);
335 336

	return 0;
337 338 339

err_phys:
	drm_pci_free(obj->base.dev, phys);
340 341

	return err;
342 343
}

344 345
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
346 347
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
348 349 350 351
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

352
static void
353
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354 355
				struct sg_table *pages,
				bool needs_clflush)
356
{
C
Chris Wilson 已提交
357
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358

C
Chris Wilson 已提交
359 360
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
361

362
	if (needs_clflush &&
363
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365
		drm_clflush_sg(pages);
366

367
	__start_cpu_write(obj);
368 369 370 371 372 373
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
374
	__i915_gem_object_release_shmem(obj, pages, false);
375

C
Chris Wilson 已提交
376
	if (obj->mm.dirty) {
377
		struct address_space *mapping = obj->base.filp->f_mapping;
378
		char *vaddr = obj->phys_handle->vaddr;
379 380 381
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382 383 384 385 386 387 388 389 390 391 392 393 394
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
395
			if (obj->mm.madv == I915_MADV_WILLNEED)
396
				mark_page_accessed(page);
397
			put_page(page);
398 399
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
400
		obj->mm.dirty = false;
401 402
	}

403 404
	sg_free_table(pages);
	kfree(pages);
405 406

	drm_pci_free(obj->base.dev, obj->phys_handle);
407 408 409 410 411
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
412
	i915_gem_object_unpin_pages(obj);
413 414 415 416 417 418 419 420
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

421 422
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

423
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 425 426
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
427 428 429
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
430

431 432 433 434
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
435
	 */
436
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
437 438 439
	if (ret)
		return ret;

440 441 442 443 444 445 446 447 448 449 450 451 452
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

453 454 455 456
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
457
			   struct intel_rps_client *rps_client)
458
{
459
	struct i915_request *rq;
460

461
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
462

463 464 465 466 467 468 469 470 471
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
472
	if (i915_request_completed(rq))
473 474
		goto out;

475 476
	/*
	 * This client is about to stall waiting for the GPU. In many cases
477 478 479 480 481 482 483 484 485 486 487 488 489 490
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
491
	if (rps_client && !i915_request_started(rq)) {
492
		if (INTEL_GEN(rq->i915) >= 6)
493
			gen6_rps_boost(rq, rps_client);
494 495
	}

496
	timeout = i915_request_wait(rq, flags, timeout);
497 498

out:
499 500
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
501 502 503 504 505 506 507 508

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
509
				 struct intel_rps_client *rps_client)
510
{
511
	unsigned int seq = __read_seqcount_begin(&resv->seq);
512
	struct dma_fence *excl;
513
	bool prune_fences = false;
514 515 516 517

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
518 519
		int ret;

520 521
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
522 523 524
		if (ret)
			return ret;

525 526 527
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
528
							     rps_client);
529
			if (timeout < 0)
530
				break;
531

532 533 534 535 536 537
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
538

539 540 541 542 543 544 545 546 547
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
548
		prune_fences = count && timeout >= 0;
549 550
	} else {
		excl = reservation_object_get_excl_rcu(resv);
551 552
	}

553
	if (excl && timeout >= 0)
554 555
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
556 557 558

	dma_fence_put(excl);

559 560
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
561 562 563
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
564
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
565 566 567 568 569
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
570 571
	}

572
	return timeout;
573 574
}

575 576
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
577
{
578
	struct i915_request *rq;
579 580
	struct intel_engine_cs *engine;

581
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
582 583 584 585 586
		return;

	rq = to_request(fence);
	engine = rq->engine;

587 588
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
589
	if (engine->schedule)
590
		engine->schedule(rq, attr);
591
	rcu_read_unlock();
592
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
593 594
}

595 596
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
597 598 599 600 601 602 603
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
604
			__fence_set_priority(array->fences[i], attr);
605
	} else {
606
		__fence_set_priority(fence, attr);
607 608 609 610 611 612
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
613
			      const struct i915_sched_attr *attr)
614 615 616 617 618 619 620 621 622 623 624 625 626 627
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
628
			fence_set_priority(shared[i], attr);
629 630 631 632 633 634 635 636 637
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
638
		fence_set_priority(excl, attr);
639 640 641 642 643
		dma_fence_put(excl);
	}
	return 0;
}

644 645 646 647 648
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
649
 * @rps_client: client (user process) to charge for any waitboosting
650
 */
651 652 653 654
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
655
		     struct intel_rps_client *rps_client)
656
{
657 658 659 660 661 662 663
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
664

665 666
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
667
						   rps_client);
668
	return timeout < 0 ? timeout : 0;
669 670 671 672 673 674
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

675
	return &fpriv->rps_client;
676 677
}

678 679 680
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
681
		     struct drm_file *file)
682 683
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
684
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
685 686 687 688

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
689
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
690 691
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
692

693
	drm_clflush_virt_range(vaddr, args->size);
694
	i915_gem_chipset_flush(to_i915(obj->base.dev));
695

696
	intel_fb_obj_flush(obj, ORIGIN_CPU);
697
	return 0;
698 699
}

700
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
701
{
702
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
703 704 705 706
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
707
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
708
	kmem_cache_free(dev_priv->objects, obj);
709 710
}

711 712
static int
i915_gem_create(struct drm_file *file,
713
		struct drm_i915_private *dev_priv,
714 715
		uint64_t size,
		uint32_t *handle_p)
716
{
717
	struct drm_i915_gem_object *obj;
718 719
	int ret;
	u32 handle;
720

721
	size = roundup(size, PAGE_SIZE);
722 723
	if (size == 0)
		return -EINVAL;
724 725

	/* Allocate the new object */
726
	obj = i915_gem_object_create(dev_priv, size);
727 728
	if (IS_ERR(obj))
		return PTR_ERR(obj);
729

730
	ret = drm_gem_handle_create(file, &obj->base, &handle);
731
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
732
	i915_gem_object_put(obj);
733 734
	if (ret)
		return ret;
735

736
	*handle_p = handle;
737 738 739
	return 0;
}

740 741 742 743 744 745
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
746
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
747
	args->size = args->pitch * args->height;
748
	return i915_gem_create(file, to_i915(dev),
749
			       args->size, &args->handle);
750 751
}

752 753 754 755 756 757
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

758 759
/**
 * Creates a new mm object and returns a handle to it.
760 761 762
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
763 764 765 766 767
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
768
	struct drm_i915_private *dev_priv = to_i915(dev);
769
	struct drm_i915_gem_create *args = data;
770

771
	i915_gem_flush_free_objects(dev_priv);
772

773
	return i915_gem_create(file, dev_priv,
774
			       args->size, &args->handle);
775 776
}

777 778 779 780 781 782 783
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

784
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
785
{
786 787 788 789 790
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
791 792 793 794 795 796 797 798 799 800
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
801 802
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
803
	 */
804

805 806
	wmb();

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	intel_runtime_pm_get(dev_priv);
	spin_lock_irq(&dev_priv->uncore.lock);

	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));

	spin_unlock_irq(&dev_priv->uncore.lock);
	intel_runtime_pm_put(dev_priv);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

822
	if (!(obj->write_domain & flush_domains))
823 824
		return;

825
	switch (obj->write_domain) {
826
	case I915_GEM_DOMAIN_GTT:
827
		i915_gem_flush_ggtt_writes(dev_priv);
828 829 830

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
831

832
		for_each_ggtt_vma(vma, obj) {
833 834 835 836 837
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
838 839 840 841 842
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
843 844 845 846 847

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
848 849
	}

850
	obj->write_domain = 0;
851 852
}

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

879
static inline int
880 881
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

905 906 907 908 909 910
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
911
				    unsigned int *needs_clflush)
912 913 914
{
	int ret;

915
	lockdep_assert_held(&obj->base.dev->struct_mutex);
916

917
	*needs_clflush = 0;
918 919
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
920

921 922 923 924 925
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
926 927 928
	if (ret)
		return ret;

C
Chris Wilson 已提交
929
	ret = i915_gem_object_pin_pages(obj);
930 931 932
	if (ret)
		return ret;

933 934
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
935 936 937 938 939 940 941
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

942
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
943

944 945 946 947 948
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
949
	if (!obj->cache_dirty &&
950
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
951
		*needs_clflush = CLFLUSH_BEFORE;
952

953
out:
954
	/* return with the pages pinned */
955
	return 0;
956 957 958 959

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
960 961 962 963 964 965 966
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

967 968
	lockdep_assert_held(&obj->base.dev->struct_mutex);

969 970 971 972
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

973 974 975 976 977 978
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
979 980 981
	if (ret)
		return ret;

C
Chris Wilson 已提交
982
	ret = i915_gem_object_pin_pages(obj);
983 984 985
	if (ret)
		return ret;

986 987
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
988 989 990 991 992 993 994
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

995
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
996

997 998 999 1000 1001
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
1002
	if (!obj->cache_dirty) {
1003
		*needs_clflush |= CLFLUSH_AFTER;
1004

1005 1006 1007 1008
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
1009
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1010 1011
			*needs_clflush |= CLFLUSH_BEFORE;
	}
1012

1013
out:
1014
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
1015
	obj->mm.dirty = true;
1016
	/* return with the pages pinned */
1017
	return 0;
1018 1019 1020 1021

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
1022 1023
}

1024 1025 1026 1027
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
1028
	if (unlikely(swizzled)) {
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

1046 1047 1048
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
1049
shmem_pread_slow(struct page *page, int offset, int length,
1050 1051 1052 1053 1054 1055 1056 1057
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
1058
		shmem_clflush_swizzled_range(vaddr + offset, length,
1059
					     page_do_bit17_swizzling);
1060 1061

	if (page_do_bit17_swizzling)
1062
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1063
	else
1064
		ret = __copy_to_user(user_data, vaddr + offset, length);
1065 1066
	kunmap(page);

1067
	return ret ? - EFAULT : 0;
1068 1069
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1146
{
1147
	void __iomem *vaddr;
1148
	unsigned long unwritten;
1149 1150

	/* We can use the cpu mem copy function because this is X86. */
1151 1152 1153 1154
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1155 1156
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1157 1158 1159 1160
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1161 1162
		io_mapping_unmap(vaddr);
	}
1163 1164 1165 1166
	return unwritten;
}

static int
1167 1168
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1169
{
1170 1171
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1172
	struct drm_mm_node node;
1173 1174 1175
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1176 1177
	int ret;

1178 1179 1180 1181 1182 1183
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1184 1185 1186
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1187 1188 1189
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1190
		ret = i915_vma_put_fence(vma);
1191 1192 1193 1194 1195
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1196
	if (IS_ERR(vma)) {
1197
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1198
		if (ret)
1199 1200
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1201 1202 1203 1204 1205 1206
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1207
	mutex_unlock(&i915->drm.struct_mutex);
1208

1209 1210 1211
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
1226 1227 1228
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1229 1230 1231 1232
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1233

1234
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1235
				  user_data, page_length)) {
1236 1237 1238 1239 1240 1241 1242 1243 1244
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1245
	mutex_lock(&i915->drm.struct_mutex);
1246 1247 1248
out_unpin:
	if (node.allocated) {
		wmb();
1249
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1250 1251
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1252
		i915_vma_unpin(vma);
1253
	}
1254 1255 1256
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1257

1258 1259 1260
	return ret;
}

1261 1262
/**
 * Reads data from the object referenced by handle.
1263 1264 1265
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1266 1267 1268 1269 1270
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1271
		     struct drm_file *file)
1272 1273
{
	struct drm_i915_gem_pread *args = data;
1274
	struct drm_i915_gem_object *obj;
1275
	int ret;
1276

1277 1278 1279 1280
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1281
		       u64_to_user_ptr(args->data_ptr),
1282 1283 1284
		       args->size))
		return -EFAULT;

1285
	obj = i915_gem_object_lookup(file, args->handle);
1286 1287
	if (!obj)
		return -ENOENT;
1288

1289
	/* Bounds check source.  */
1290
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1291
		ret = -EINVAL;
1292
		goto out;
C
Chris Wilson 已提交
1293 1294
	}

C
Chris Wilson 已提交
1295 1296
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1297 1298 1299 1300
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1301
	if (ret)
1302
		goto out;
1303

1304
	ret = i915_gem_object_pin_pages(obj);
1305
	if (ret)
1306
		goto out;
1307

1308
	ret = i915_gem_shmem_pread(obj, args);
1309
	if (ret == -EFAULT || ret == -ENODEV)
1310
		ret = i915_gem_gtt_pread(obj, args);
1311

1312 1313
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1314
	i915_gem_object_put(obj);
1315
	return ret;
1316 1317
}

1318 1319
/* This is the fast write path which cannot handle
 * page faults in the source data
1320
 */
1321

1322 1323 1324 1325
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1326
{
1327
	void __iomem *vaddr;
1328
	unsigned long unwritten;
1329

1330
	/* We can use the cpu mem copy function because this is X86. */
1331 1332
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1333
						      user_data, length);
1334 1335
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1336 1337 1338
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1339 1340
		io_mapping_unmap(vaddr);
	}
1341 1342 1343 1344

	return unwritten;
}

1345 1346 1347
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1348
 * @obj: i915 GEM object
1349
 * @args: pwrite arguments structure
1350
 */
1351
static int
1352 1353
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1354
{
1355
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1356 1357
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1358 1359 1360
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1361
	int ret;
1362

1363 1364 1365
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
		if (!intel_runtime_pm_get_if_in_use(i915)) {
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
		intel_runtime_pm_get(i915);
	}

C
Chris Wilson 已提交
1384
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1385 1386 1387
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1388 1389 1390
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1391
		ret = i915_vma_put_fence(vma);
1392 1393 1394 1395 1396
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1397
	if (IS_ERR(vma)) {
1398
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1399
		if (ret)
1400
			goto out_rpm;
1401
		GEM_BUG_ON(!node.allocated);
1402
	}
D
Daniel Vetter 已提交
1403 1404 1405 1406 1407

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1408 1409
	mutex_unlock(&i915->drm.struct_mutex);

1410
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1411

1412 1413 1414 1415
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1416 1417
		/* Operation in this page
		 *
1418 1419 1420
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1421
		 */
1422
		u32 page_base = node.start;
1423 1424
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1425 1426 1427
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
1428 1429 1430
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1431 1432 1433 1434
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1435
		/* If we get a fault while copying data, then (presumably) our
1436 1437
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1438 1439
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1440
		 */
1441
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1442 1443 1444
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1445
		}
1446

1447 1448 1449
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1450
	}
1451
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1452 1453

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1454
out_unpin:
1455 1456
	if (node.allocated) {
		wmb();
1457
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1458 1459
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1460
		i915_vma_unpin(vma);
1461
	}
1462
out_rpm:
1463
	intel_runtime_pm_put(i915);
1464
out_unlock:
1465
	mutex_unlock(&i915->drm.struct_mutex);
1466
	return ret;
1467 1468
}

1469
static int
1470
shmem_pwrite_slow(struct page *page, int offset, int length,
1471 1472 1473 1474
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1475
{
1476 1477
	char *vaddr;
	int ret;
1478

1479
	vaddr = kmap(page);
1480
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1481
		shmem_clflush_swizzled_range(vaddr + offset, length,
1482
					     page_do_bit17_swizzling);
1483
	if (page_do_bit17_swizzling)
1484 1485
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1486
	else
1487
		ret = __copy_from_user(vaddr + offset, user_data, length);
1488
	if (needs_clflush_after)
1489
		shmem_clflush_swizzled_range(vaddr + offset, length,
1490
					     page_do_bit17_swizzling);
1491
	kunmap(page);
1492

1493
	return ret ? -EFAULT : 0;
1494 1495
}

1496 1497 1498 1499 1500
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1501
static int
1502 1503 1504 1505
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1506
{
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1539
	unsigned int needs_clflush;
1540 1541
	unsigned int offset, idx;
	int ret;
1542

1543
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1544 1545 1546
	if (ret)
		return ret;

1547 1548 1549 1550
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1551

1552 1553 1554
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1555

1556 1557 1558 1559 1560 1561 1562
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1563

1564 1565 1566 1567 1568 1569
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1570

1571 1572 1573
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1574

1575 1576 1577 1578
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1579
		if (ret)
1580
			break;
1581

1582 1583 1584
		remain -= length;
		user_data += length;
		offset = 0;
1585
	}
1586

1587
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1588
	i915_gem_obj_finish_shmem_access(obj);
1589
	return ret;
1590 1591 1592 1593
}

/**
 * Writes data to the object referenced by handle.
1594 1595 1596
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1597 1598 1599 1600 1601
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1602
		      struct drm_file *file)
1603 1604
{
	struct drm_i915_gem_pwrite *args = data;
1605
	struct drm_i915_gem_object *obj;
1606 1607 1608 1609 1610 1611
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1612
		       u64_to_user_ptr(args->data_ptr),
1613 1614 1615
		       args->size))
		return -EFAULT;

1616
	obj = i915_gem_object_lookup(file, args->handle);
1617 1618
	if (!obj)
		return -ENOENT;
1619

1620
	/* Bounds check destination. */
1621
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1622
		ret = -EINVAL;
1623
		goto err;
C
Chris Wilson 已提交
1624 1625
	}

C
Chris Wilson 已提交
1626 1627
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1628 1629 1630 1631 1632 1633
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1634 1635 1636 1637 1638
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1639 1640 1641
	if (ret)
		goto err;

1642
	ret = i915_gem_object_pin_pages(obj);
1643
	if (ret)
1644
		goto err;
1645

D
Daniel Vetter 已提交
1646
	ret = -EFAULT;
1647 1648 1649 1650 1651 1652
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1653
	if (!i915_gem_object_has_struct_page(obj) ||
1654
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1655 1656
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1657 1658
		 * textures). Fallback to the shmem path in that case.
		 */
1659
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1660

1661
	if (ret == -EFAULT || ret == -ENOSPC) {
1662 1663
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1664
		else
1665
			ret = i915_gem_shmem_pwrite(obj, args);
1666
	}
1667

1668
	i915_gem_object_unpin_pages(obj);
1669
err:
C
Chris Wilson 已提交
1670
	i915_gem_object_put(obj);
1671
	return ret;
1672 1673
}

1674 1675 1676 1677 1678 1679
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1680 1681
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1682
	for_each_ggtt_vma(vma, obj) {
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1693
	spin_lock(&i915->mm.obj_lock);
1694
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1695 1696
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1697 1698
}

1699
/**
1700 1701
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1702 1703 1704
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1705 1706 1707
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1708
			  struct drm_file *file)
1709 1710
{
	struct drm_i915_gem_set_domain *args = data;
1711
	struct drm_i915_gem_object *obj;
1712 1713
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1714
	int err;
1715

1716
	/* Only handle setting domains to types used by the CPU. */
1717
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1718 1719 1720 1721 1722 1723 1724 1725
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1726
	obj = i915_gem_object_lookup(file, args->handle);
1727 1728
	if (!obj)
		return -ENOENT;
1729

1730 1731 1732 1733
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1734
	err = i915_gem_object_wait(obj,
1735 1736 1737 1738
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1739
	if (err)
C
Chris Wilson 已提交
1740
		goto out;
1741

T
Tina Zhang 已提交
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1755 1756 1757 1758 1759 1760 1761 1762 1763
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1764
		goto out;
1765 1766 1767

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1768
		goto out_unpin;
1769

1770 1771 1772 1773
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1774
	else
1775
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1776

1777 1778
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1779

1780
	mutex_unlock(&dev->struct_mutex);
1781

1782
	if (write_domain != 0)
1783 1784
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1785

C
Chris Wilson 已提交
1786
out_unpin:
1787
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1788 1789
out:
	i915_gem_object_put(obj);
1790
	return err;
1791 1792 1793 1794
}

/**
 * Called when user space has done writes to this buffer
1795 1796 1797
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1798 1799 1800
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1801
			 struct drm_file *file)
1802 1803
{
	struct drm_i915_gem_sw_finish *args = data;
1804
	struct drm_i915_gem_object *obj;
1805

1806
	obj = i915_gem_object_lookup(file, args->handle);
1807 1808
	if (!obj)
		return -ENOENT;
1809

T
Tina Zhang 已提交
1810 1811 1812 1813 1814
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1815
	/* Pinned buffers may be scanout, so flush the cache */
1816
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1817
	i915_gem_object_put(obj);
1818 1819

	return 0;
1820 1821 1822
}

/**
1823 1824 1825 1826 1827
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1828 1829 1830
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1841 1842 1843
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1844
		    struct drm_file *file)
1845 1846
{
	struct drm_i915_gem_mmap *args = data;
1847
	struct drm_i915_gem_object *obj;
1848 1849
	unsigned long addr;

1850 1851 1852
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1853
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1854 1855
		return -ENODEV;

1856 1857
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1858
		return -ENOENT;
1859

1860 1861 1862
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1863
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1864
		i915_gem_object_put(obj);
1865
		return -ENXIO;
1866 1867
	}

1868
	addr = vm_mmap(obj->base.filp, 0, args->size,
1869 1870
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1871 1872 1873 1874
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1875
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1876
			i915_gem_object_put(obj);
1877 1878
			return -EINTR;
		}
1879 1880 1881 1882 1883 1884 1885
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1886 1887

		/* This may race, but that's ok, it only gets set */
1888
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1889
	}
C
Chris Wilson 已提交
1890
	i915_gem_object_put(obj);
1891 1892 1893 1894 1895 1896 1897 1898
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1899 1900
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1901
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1902 1903
}

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1924 1925 1926
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1954
	return 2;
1955 1956
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1968 1969
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1970
		min_t(unsigned int, chunk,
1971
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1972 1973 1974 1975 1976 1977 1978 1979

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1980 1981
/**
 * i915_gem_fault - fault a page into the GTT
1982
 * @vmf: fault info
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1994 1995 1996
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1997
 */
1998
vm_fault_t i915_gem_fault(struct vm_fault *vmf)
1999
{
2000
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2001
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
2002
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2003
	struct drm_device *dev = obj->base.dev;
2004 2005
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2006
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
2007
	struct i915_vma *vma;
2008
	pgoff_t page_offset;
2009
	int ret;
2010

2011
	/* We don't use vmf->pgoff since that has the fake offset */
2012
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2013

C
Chris Wilson 已提交
2014 2015
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2016
	/* Try to flush the object off the GPU first without holding the lock.
2017
	 * Upon acquiring the lock, we will perform our sanity checks and then
2018 2019 2020
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
2021 2022 2023 2024
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
2025
	if (ret)
2026 2027
		goto err;

2028 2029 2030 2031
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

2032 2033 2034 2035 2036
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
2037

2038
	/* Access to snoopable pages through the GTT is incoherent. */
2039
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2040
		ret = -EFAULT;
2041
		goto err_unlock;
2042 2043
	}

2044

2045
	/* Now pin it into the GTT as needed */
2046 2047 2048 2049
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE |
				       PIN_NONBLOCK |
				       PIN_NONFAULT);
2050 2051
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
2052
		struct i915_ggtt_view view =
2053
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2054
		unsigned int flags;
2055

2056 2057 2058 2059 2060 2061
		flags = PIN_MAPPABLE;
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
2062 2063 2064 2065
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

2066 2067 2068 2069 2070 2071
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		if (IS_ERR(vma) && !view.type) {
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		}
2072
	}
C
Chris Wilson 已提交
2073 2074
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
2075
		goto err_unlock;
C
Chris Wilson 已提交
2076
	}
2077

2078 2079
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
2080
		goto err_unpin;
2081

2082
	ret = i915_vma_pin_fence(vma);
2083
	if (ret)
2084
		goto err_unpin;
2085

2086
	/* Finally, remap it using the new GTT offset */
2087
	ret = remap_io_mapping(area,
2088
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2089
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2090
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2091
			       &ggtt->iomap);
2092 2093
	if (ret)
		goto err_fence;
2094

2095 2096 2097 2098 2099 2100
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

2101 2102
	i915_vma_set_ggtt_write(vma);

2103
err_fence:
2104
	i915_vma_unpin_fence(vma);
2105
err_unpin:
C
Chris Wilson 已提交
2106
	__i915_vma_unpin(vma);
2107
err_unlock:
2108
	mutex_unlock(&dev->struct_mutex);
2109 2110
err_rpm:
	intel_runtime_pm_put(dev_priv);
2111
	i915_gem_object_unpin_pages(obj);
2112
err:
2113
	switch (ret) {
2114
	case -EIO:
2115 2116 2117 2118 2119 2120
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
2121 2122
		if (!i915_terminally_wedged(&dev_priv->gpu_error))
			return VM_FAULT_SIGBUS;
2123
		/* else: fall through */
2124
	case -EAGAIN:
D
Daniel Vetter 已提交
2125 2126 2127 2128
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2129
		 */
2130 2131
	case 0:
	case -ERESTARTSYS:
2132
	case -EINTR:
2133 2134 2135 2136 2137
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2138
		return VM_FAULT_NOPAGE;
2139
	case -ENOMEM:
2140
		return VM_FAULT_OOM;
2141
	case -ENOSPC:
2142
	case -EFAULT:
2143
		return VM_FAULT_SIGBUS;
2144
	default:
2145
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2146
		return VM_FAULT_SIGBUS;
2147 2148 2149
	}
}

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2161
	for_each_ggtt_vma(vma, obj)
2162 2163 2164
		i915_vma_unset_userfault(vma);
}

2165 2166 2167 2168
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2169
 * Preserve the reservation of the mmapping with the DRM core code, but
2170 2171 2172 2173 2174 2175 2176 2177 2178
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2179
void
2180
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2181
{
2182 2183
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2184 2185 2186
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2187 2188 2189 2190
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2191
	 */
2192
	lockdep_assert_held(&i915->drm.struct_mutex);
2193
	intel_runtime_pm_get(i915);
2194

2195
	if (!obj->userfault_count)
2196
		goto out;
2197

2198
	__i915_gem_object_release_mmap(obj);
2199 2200 2201 2202 2203 2204 2205 2206 2207

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2208 2209 2210

out:
	intel_runtime_pm_put(i915);
2211 2212
}

2213
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2214
{
2215
	struct drm_i915_gem_object *obj, *on;
2216
	int i;
2217

2218 2219 2220 2221 2222 2223
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2224

2225
	list_for_each_entry_safe(obj, on,
2226 2227
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2228 2229 2230 2231 2232 2233 2234 2235

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2246 2247 2248 2249

		if (!reg->vma)
			continue;

2250
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2251 2252
		reg->dirty = true;
	}
2253 2254
}

2255 2256
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2257
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2258
	int err;
2259

2260
	err = drm_gem_create_mmap_offset(&obj->base);
2261
	if (likely(!err))
2262
		return 0;
2263

2264 2265 2266 2267 2268
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2269

2270
		i915_gem_drain_freed_objects(dev_priv);
2271
		err = drm_gem_create_mmap_offset(&obj->base);
2272 2273 2274 2275
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2276

2277
	return err;
2278 2279 2280 2281 2282 2283 2284
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2285
int
2286 2287
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2288
		  uint32_t handle,
2289
		  uint64_t *offset)
2290
{
2291
	struct drm_i915_gem_object *obj;
2292 2293
	int ret;

2294
	obj = i915_gem_object_lookup(file, handle);
2295 2296
	if (!obj)
		return -ENOENT;
2297

2298
	ret = i915_gem_object_create_mmap_offset(obj);
2299 2300
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2301

C
Chris Wilson 已提交
2302
	i915_gem_object_put(obj);
2303
	return ret;
2304 2305
}

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2327
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2328 2329
}

D
Daniel Vetter 已提交
2330 2331 2332
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2333
{
2334
	i915_gem_object_free_mmap_offset(obj);
2335

2336 2337
	if (obj->base.filp == NULL)
		return;
2338

D
Daniel Vetter 已提交
2339 2340 2341 2342 2343
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2344
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2345
	obj->mm.madv = __I915_MADV_PURGED;
2346
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2347
}
2348

2349
/* Try to discard unwanted pages */
2350
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2351
{
2352 2353
	struct address_space *mapping;

2354
	lockdep_assert_held(&obj->mm.lock);
2355
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2356

C
Chris Wilson 已提交
2357
	switch (obj->mm.madv) {
2358 2359 2360 2361 2362 2363 2364 2365 2366
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2367
	mapping = obj->base.filp->f_mapping,
2368
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2369 2370
}

2371
static void
2372 2373
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2374
{
2375 2376
	struct sgt_iter sgt_iter;
	struct page *page;
2377

2378
	__i915_gem_object_release_shmem(obj, pages, true);
2379

2380
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2381

2382
	if (i915_gem_object_needs_bit17_swizzle(obj))
2383
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2384

2385
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2386
		if (obj->mm.dirty)
2387
			set_page_dirty(page);
2388

C
Chris Wilson 已提交
2389
		if (obj->mm.madv == I915_MADV_WILLNEED)
2390
			mark_page_accessed(page);
2391

2392
		put_page(page);
2393
	}
C
Chris Wilson 已提交
2394
	obj->mm.dirty = false;
2395

2396 2397
	sg_free_table(pages);
	kfree(pages);
2398
}
C
Chris Wilson 已提交
2399

2400 2401 2402
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2403
	void __rcu **slot;
2404

2405
	rcu_read_lock();
C
Chris Wilson 已提交
2406 2407
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2408
	rcu_read_unlock();
2409 2410
}

2411 2412
static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2413
{
2414
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2415
	struct sg_table *pages;
2416

2417
	pages = fetch_and_zero(&obj->mm.pages);
2418 2419
	if (!pages)
		return NULL;
2420

2421 2422 2423 2424
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2425
	if (obj->mm.mapping) {
2426 2427
		void *ptr;

2428
		ptr = page_mask_bits(obj->mm.mapping);
2429 2430
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2431
		else
2432 2433
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2434
		obj->mm.mapping = NULL;
2435 2436
	}

2437
	__i915_gem_object_reset_page_iter(obj);
2438 2439 2440 2441
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

	return pages;
}
2442

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
{
	struct sg_table *pages;

	if (i915_gem_object_has_pinned_pages(obj))
		return;

	GEM_BUG_ON(obj->bind_count);
	if (!i915_gem_object_has_pages(obj))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
	mutex_lock_nested(&obj->mm.lock, subclass);
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;

	/*
	 * ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early.
	 */
	pages = __i915_gem_object_unset_pages(obj);
2466 2467 2468
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2469 2470
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2471 2472
}

2473
static bool i915_sg_trim(struct sg_table *orig_st)
2474 2475 2476 2477 2478 2479
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2480
		return false;
2481

2482
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2483
		return false;
2484 2485 2486 2487 2488 2489 2490

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2491
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2492 2493 2494 2495

	sg_free_table(orig_st);

	*orig_st = new_st;
2496
	return true;
2497 2498
}

2499
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2500
{
2501
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2502 2503
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2504
	struct address_space *mapping;
2505 2506
	struct sg_table *st;
	struct scatterlist *sg;
2507
	struct sgt_iter sgt_iter;
2508
	struct page *page;
2509
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2510
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2511
	unsigned int sg_page_sizes;
2512
	gfp_t noreclaim;
I
Imre Deak 已提交
2513
	int ret;
2514

C
Chris Wilson 已提交
2515 2516 2517 2518
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2519 2520
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2521

2522 2523
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2524
		return -ENOMEM;
2525

2526
rebuild_st:
2527 2528
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2529
		return -ENOMEM;
2530
	}
2531

2532 2533 2534 2535 2536
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2537
	mapping = obj->base.filp->f_mapping;
2538
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2539 2540
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2541 2542
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2543
	sg_page_sizes = 0;
2544
	for (i = 0; i < page_count; i++) {
2545 2546 2547 2548 2549 2550 2551
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2552
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2553 2554 2555 2556 2557 2558 2559 2560
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2561
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2562
			cond_resched();
2563

C
Chris Wilson 已提交
2564 2565 2566
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2567 2568 2569 2570
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2571
			 */
2572 2573 2574
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2587
				 * this we want __GFP_RETRY_MAYFAIL.
2588
				 */
M
Michal Hocko 已提交
2589
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2590
			}
2591 2592
		} while (1);

2593 2594 2595
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2596
			if (i) {
M
Matthew Auld 已提交
2597
				sg_page_sizes |= sg->length;
2598
				sg = sg_next(sg);
2599
			}
2600 2601 2602 2603 2604 2605
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2606 2607 2608

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2609
	}
2610
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2611
		sg_page_sizes |= sg->length;
2612
		sg_mark_end(sg);
2613
	}
2614

2615 2616 2617
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2618
	ret = i915_gem_gtt_prepare_pages(obj, st);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2638

2639
	if (i915_gem_object_needs_bit17_swizzle(obj))
2640
		i915_gem_object_do_bit_17_swizzle(obj, st);
2641

M
Matthew Auld 已提交
2642
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2643 2644

	return 0;
2645

2646
err_sg:
2647
	sg_mark_end(sg);
2648
err_pages:
2649 2650
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2651 2652
	sg_free_table(st);
	kfree(st);
2653 2654 2655 2656 2657 2658 2659 2660 2661

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2662 2663 2664
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2665
	return ret;
2666 2667 2668
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2669
				 struct sg_table *pages,
M
Matthew Auld 已提交
2670
				 unsigned int sg_page_sizes)
2671
{
2672 2673 2674 2675
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2676
	lockdep_assert_held(&obj->mm.lock);
2677 2678 2679 2680 2681

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2682 2683

	if (i915_gem_object_is_tiled(obj) &&
2684
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2685 2686 2687 2688
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2689

M
Matthew Auld 已提交
2690 2691
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2692 2693

	/*
M
Matthew Auld 已提交
2694 2695 2696 2697 2698 2699
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2700 2701 2702 2703 2704 2705 2706
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2707 2708 2709 2710

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2711 2712 2713 2714
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2715
	int err;
2716 2717 2718 2719 2720 2721

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2722
	err = obj->ops->get_pages(obj);
2723
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2724

2725
	return err;
2726 2727
}

2728
/* Ensure that the associated pages are gathered from the backing storage
2729
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2730
 * multiple times before they are released by a single call to
2731
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2732 2733 2734
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2735
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2736
{
2737
	int err;
2738

2739 2740 2741
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2742

2743
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2744 2745
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2746 2747 2748
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2749

2750 2751 2752
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2753

2754 2755
unlock:
	mutex_unlock(&obj->mm.lock);
2756
	return err;
2757 2758
}

2759
/* The 'mapping' part of i915_gem_object_pin_map() below */
2760 2761
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2762 2763
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2764
	struct sg_table *sgt = obj->mm.pages;
2765 2766
	struct sgt_iter sgt_iter;
	struct page *page;
2767 2768
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2769
	unsigned long i = 0;
2770
	pgprot_t pgprot;
2771 2772 2773
	void *addr;

	/* A single page can always be kmapped */
2774
	if (n_pages == 1 && type == I915_MAP_WB)
2775 2776
		return kmap(sg_page(sgt->sgl));

2777 2778
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2779
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2780 2781 2782
		if (!pages)
			return NULL;
	}
2783

2784 2785
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2786 2787 2788 2789

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2790
	switch (type) {
2791 2792 2793
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2794 2795 2796 2797 2798 2799 2800 2801
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2802

2803
	if (pages != stack_pages)
M
Michal Hocko 已提交
2804
		kvfree(pages);
2805 2806 2807 2808 2809

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2810 2811
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2812
{
2813 2814 2815
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2816 2817
	int ret;

T
Tina Zhang 已提交
2818 2819
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2820

2821
	ret = mutex_lock_interruptible(&obj->mm.lock);
2822 2823 2824
	if (ret)
		return ERR_PTR(ret);

2825 2826 2827
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2828
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2829
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2830 2831
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2832 2833 2834
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2835

2836 2837 2838
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2839 2840
		pinned = false;
	}
2841
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2842

2843
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2844 2845 2846
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2847
			goto err_unpin;
2848
		}
2849 2850 2851 2852 2853 2854

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2855
		ptr = obj->mm.mapping = NULL;
2856 2857
	}

2858 2859 2860 2861
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2862
			goto err_unpin;
2863 2864
		}

2865
		obj->mm.mapping = page_pack_bits(ptr, type);
2866 2867
	}

2868 2869
out_unlock:
	mutex_unlock(&obj->mm.lock);
2870 2871
	return ptr;

2872 2873 2874 2875 2876
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2877 2878
}

2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2896
	if (i915_gem_object_has_pages(obj))
2897 2898
		return -ENODEV;

2899 2900 2901
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
					const struct i915_gem_context *ctx)
{
	unsigned int score;
	unsigned long prev_hang;

	if (i915_gem_context_is_banned(ctx))
		score = I915_CLIENT_SCORE_CONTEXT_BAN;
	else
		score = 0;

	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
		score += I915_CLIENT_SCORE_HANG_FAST;

	if (score) {
		atomic_add(score, &file_priv->ban_score);

		DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
				 ctx->name, score,
				 atomic_read(&file_priv->ban_score));
	}
}

2975
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2976
{
2977 2978
	unsigned int score;
	bool banned, bannable;
2979

2980
	atomic_inc(&ctx->guilty_count);
2981

2982 2983 2984
	bannable = i915_gem_context_is_bannable(ctx);
	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
	banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
2985

2986 2987
	/* Cool contexts don't accumulate client ban score */
	if (!bannable)
2988 2989
		return;

2990 2991 2992 2993
	if (banned) {
		DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
				 ctx->name, atomic_read(&ctx->guilty_count),
				 score);
2994
		i915_gem_context_set_banned(ctx);
2995
	}
2996 2997 2998

	if (!IS_ERR_OR_NULL(ctx->file_priv))
		i915_gem_client_mark_guilty(ctx->file_priv, ctx);
2999 3000 3001 3002
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
3003
	atomic_inc(&ctx->active_count);
3004 3005
}

3006
struct i915_request *
3007
i915_gem_find_active_request(struct intel_engine_cs *engine)
3008
{
3009
	struct i915_request *request, *active = NULL;
3010
	unsigned long flags;
3011

3012 3013 3014 3015 3016 3017
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
3018 3019
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
3020 3021
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
3022
	 */
3023 3024
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
3025
		if (__i915_request_completed(request, request->global_seqno))
3026
			continue;
3027

3028 3029
		active = request;
		break;
3030
	}
3031
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3032

3033
	return active;
3034 3035
}

3036 3037 3038 3039
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
3040
struct i915_request *
3041 3042
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
3043
	struct i915_request *request;
3044

3045 3046 3047 3048 3049 3050 3051 3052 3053
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

3054
	request = engine->reset.prepare(engine);
3055 3056
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
3057 3058 3059 3060

	return request;
}

3061
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3062 3063
{
	struct intel_engine_cs *engine;
3064
	struct i915_request *request;
3065
	enum intel_engine_id id;
3066
	int err = 0;
3067

3068
	for_each_engine(engine, dev_priv, id) {
3069 3070 3071 3072
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
3073
		}
3074 3075

		engine->hangcheck.active_request = request;
3076 3077
	}

3078
	i915_gem_revoke_fences(dev_priv);
3079
	intel_uc_sanitize(dev_priv);
3080 3081

	return err;
3082 3083
}

3084
static void skip_request(struct i915_request *request)
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
3099 3100

	dma_fence_set_error(&request->fence, -EIO);
3101 3102
}

3103
static void engine_skip_context(struct i915_request *request)
3104 3105
{
	struct intel_engine_cs *engine = request->engine;
C
Chris Wilson 已提交
3106
	struct i915_gem_context *hung_ctx = request->gem_context;
3107
	struct i915_timeline *timeline = request->timeline;
3108 3109
	unsigned long flags;

3110
	GEM_BUG_ON(timeline == &engine->timeline);
3111

3112
	spin_lock_irqsave(&engine->timeline.lock, flags);
3113
	spin_lock_nested(&timeline->lock, SINGLE_DEPTH_NESTING);
3114

3115
	list_for_each_entry_continue(request, &engine->timeline.requests, link)
C
Chris Wilson 已提交
3116
		if (request->gem_context == hung_ctx)
3117 3118 3119 3120 3121 3122
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
3123
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3124 3125
}

3126
/* Returns the request if it was guilty of the hang */
3127
static struct i915_request *
3128
i915_gem_reset_request(struct intel_engine_cs *engine,
3129 3130
		       struct i915_request *request,
		       bool stalled)
3131
{
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

3153 3154 3155 3156 3157 3158 3159 3160 3161
	if (i915_request_completed(request)) {
		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
			  engine->name, request->global_seqno,
			  request->fence.context, request->fence.seqno,
			  intel_engine_get_seqno(engine));
		stalled = false;
	}

	if (stalled) {
C
Chris Wilson 已提交
3162
		i915_gem_context_mark_guilty(request->gem_context);
3163
		skip_request(request);
3164 3165

		/* If this context is now banned, skip all pending requests. */
C
Chris Wilson 已提交
3166
		if (i915_gem_context_is_banned(request->gem_context))
3167
			engine_skip_context(request);
3168
	} else {
3169 3170 3171 3172 3173 3174 3175
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
C
Chris Wilson 已提交
3176 3177
			unsigned long flags;

C
Chris Wilson 已提交
3178
			i915_gem_context_mark_innocent(request->gem_context);
3179 3180 3181
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
C
Chris Wilson 已提交
3182
			spin_lock_irqsave(&engine->timeline.lock, flags);
3183
			request = list_prev_entry(request, link);
3184
			if (&request->link == &engine->timeline.requests)
3185
				request = NULL;
C
Chris Wilson 已提交
3186
			spin_unlock_irqrestore(&engine->timeline.lock, flags);
3187
		}
3188 3189
	}

3190
	return request;
3191 3192
}

3193
void i915_gem_reset_engine(struct intel_engine_cs *engine,
3194 3195
			   struct i915_request *request,
			   bool stalled)
3196
{
3197 3198 3199 3200 3201 3202
	/*
	 * Make sure this write is visible before we re-enable the interrupt
	 * handlers on another CPU, as tasklet_enable() resolves to just
	 * a compiler barrier which is insufficient for our purpose here.
	 */
	smp_store_mb(engine->irq_posted, 0);
3203

3204
	if (request)
3205
		request = i915_gem_reset_request(engine, request, stalled);
3206

3207
	/* Setup the CS to resume from the breadcrumb of the hung request */
3208
	engine->reset.reset(engine, request);
3209
}
3210

3211 3212
void i915_gem_reset(struct drm_i915_private *dev_priv,
		    unsigned int stalled_mask)
3213
{
3214
	struct intel_engine_cs *engine;
3215
	enum intel_engine_id id;
3216

3217 3218
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3219
	i915_retire_requests(dev_priv);
3220

3221
	for_each_engine(engine, dev_priv, id) {
3222
		struct intel_context *ce;
3223

3224 3225
		i915_gem_reset_engine(engine,
				      engine->hangcheck.active_request,
3226
				      stalled_mask & ENGINE_MASK(id));
3227 3228 3229
		ce = fetch_and_zero(&engine->last_retired_context);
		if (ce)
			intel_context_unpin(ce);
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240

		/*
		 * Ostensibily, we always want a context loaded for powersaving,
		 * so if the engine is idle after the reset, send a request
		 * to load our scratch kernel_context.
		 *
		 * More mysteriously, if we leave the engine idle after a reset,
		 * the next userspace batch may hang, with what appears to be
		 * an incoherent read by the CS (presumably stale TLB). An
		 * empty request appears sufficient to paper over the glitch.
		 */
3241
		if (intel_engine_is_idle(engine)) {
3242
			struct i915_request *rq;
3243

3244 3245
			rq = i915_request_alloc(engine,
						dev_priv->kernel_context);
3246
			if (!IS_ERR(rq))
3247
				i915_request_add(rq);
3248
		}
3249
	}
3250

3251
	i915_gem_restore_fences(dev_priv);
3252 3253
}

3254 3255
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3256 3257
	engine->reset.finish(engine);

3258
	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3259 3260
}

3261 3262
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3263 3264 3265
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3266
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3267

3268
	for_each_engine(engine, dev_priv, id) {
3269
		engine->hangcheck.active_request = NULL;
3270
		i915_gem_reset_finish_engine(engine);
3271
	}
3272 3273
}

3274
static void nop_submit_request(struct i915_request *request)
3275
{
3276 3277 3278
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3279 3280
	dma_fence_set_error(&request->fence, -EIO);

3281
	i915_request_submit(request);
3282 3283
}

3284
static void nop_complete_submit_request(struct i915_request *request)
3285
{
3286 3287
	unsigned long flags;

3288 3289 3290
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3291
	dma_fence_set_error(&request->fence, -EIO);
3292

3293
	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3294
	__i915_request_submit(request);
3295
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3296
	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3297 3298
}

3299
void i915_gem_set_wedged(struct drm_i915_private *i915)
3300
{
3301 3302 3303
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3304 3305
	GEM_TRACE("start\n");

3306
	if (GEM_SHOW_DEBUG()) {
3307 3308 3309 3310 3311 3312
		struct drm_printer p = drm_debug_printer(__func__);

		for_each_engine(engine, i915, id)
			intel_engine_dump(engine, &p, "%s\n", engine->name);
	}

3313 3314 3315
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	smp_mb__after_atomic();

3316 3317 3318 3319 3320
	/*
	 * First, stop submission to hw, but do not yet complete requests by
	 * rolling the global seqno forward (since this would complete requests
	 * for which we haven't set the fence error to EIO yet).
	 */
3321 3322
	for_each_engine(engine, i915, id) {
		i915_gem_reset_prepare_engine(engine);
3323

3324
		engine->submit_request = nop_submit_request;
3325
		engine->schedule = NULL;
3326
	}
3327
	i915->caps.scheduler = 0;
3328

3329 3330 3331
	/* Even if the GPU reset fails, it should still stop the engines */
	intel_gpu_reset(i915, ALL_ENGINES);

3332 3333 3334 3335
	/*
	 * Make sure no one is running the old callback before we proceed with
	 * cancelling requests and resetting the completion tracking. Otherwise
	 * we might submit a request to the hardware which never completes.
3336
	 */
3337
	synchronize_rcu();
3338

3339 3340 3341
	for_each_engine(engine, i915, id) {
		/* Mark all executing requests as skipped */
		engine->cancel_requests(engine);
3342

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
		/*
		 * Only once we've force-cancelled all in-flight requests can we
		 * start to complete all requests.
		 */
		engine->submit_request = nop_complete_submit_request;
	}

	/*
	 * Make sure no request can slip through without getting completed by
	 * either this call here to intel_engine_init_global_seqno, or the one
	 * in nop_complete_submit_request.
3354
	 */
3355
	synchronize_rcu();
3356

3357 3358
	for_each_engine(engine, i915, id) {
		unsigned long flags;
3359

3360 3361
		/*
		 * Mark all pending requests as complete so that any concurrent
3362 3363 3364
		 * (lockless) lookup doesn't try and wait upon the request as we
		 * reset it.
		 */
3365
		spin_lock_irqsave(&engine->timeline.lock, flags);
3366 3367
		intel_engine_init_global_seqno(engine,
					       intel_engine_last_submit(engine));
3368
		spin_unlock_irqrestore(&engine->timeline.lock, flags);
3369 3370

		i915_gem_reset_finish_engine(engine);
3371
	}
3372

3373 3374
	GEM_TRACE("end\n");

3375
	wake_up_all(&i915->gpu_error.reset_queue);
3376 3377
}

3378 3379
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
3380
	struct i915_timeline *tl;
3381 3382 3383 3384 3385

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

3386 3387
	GEM_TRACE("start\n");

3388 3389
	/*
	 * Before unwedging, make sure that all pending operations
3390 3391 3392 3393 3394 3395 3396 3397 3398
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
3399
		struct i915_request *rq;
3400

3401 3402 3403 3404
		rq = i915_gem_active_peek(&tl->last_request,
					  &i915->drm.struct_mutex);
		if (!rq)
			continue;
3405

3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
		/*
		 * We can't use our normal waiter as we want to
		 * avoid recursively trying to handle the current
		 * reset. The basic dma_fence_default_wait() installs
		 * a callback for dma_fence_signal(), which is
		 * triggered by our nop handler (indirectly, the
		 * callback enables the signaler thread which is
		 * woken by the nop_submit_request() advancing the seqno
		 * and when the seqno passes the fence, the signaler
		 * then signals the fence waking us up).
		 */
		if (dma_fence_default_wait(&rq->fence, true,
					   MAX_SCHEDULE_TIMEOUT) < 0)
			return false;
3420
	}
3421 3422
	i915_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests);
3423

3424 3425
	/*
	 * Undo nop_submit_request. We prevent all new i915 requests from
3426 3427 3428 3429 3430 3431 3432 3433
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3434
	i915_gem_contexts_lost(i915);
3435

3436 3437
	GEM_TRACE("end\n");

3438 3439 3440 3441 3442 3443
	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3444
static void
3445 3446
i915_gem_retire_work_handler(struct work_struct *work)
{
3447
	struct drm_i915_private *dev_priv =
3448
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3449
	struct drm_device *dev = &dev_priv->drm;
3450

3451
	/* Come back later if the device is busy... */
3452
	if (mutex_trylock(&dev->struct_mutex)) {
3453
		i915_retire_requests(dev_priv);
3454
		mutex_unlock(&dev->struct_mutex);
3455
	}
3456

3457 3458
	/*
	 * Keep the retire handler running until we are finally idle.
3459 3460 3461
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3462
	if (READ_ONCE(dev_priv->gt.awake))
3463 3464
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3465
				   round_jiffies_up_relative(HZ));
3466
}
3467

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

3527 3528 3529 3530 3531 3532 3533
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (i915_terminally_wedged(&i915->gpu_error))
		return;

	GEM_BUG_ON(i915->gt.active_requests);
	for_each_engine(engine, i915, id) {
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
		GEM_BUG_ON(engine->last_retired_context !=
			   to_intel_context(i915->kernel_context, engine));
	}
}

3550 3551 3552 3553
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3554
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3555
	unsigned int epoch = I915_EPOCH_INVALID;
3556 3557 3558 3559 3560
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
	if (READ_ONCE(dev_priv->gt.active_requests))
		return;

	/*
	 * Flush out the last user context, leaving only the pinned
	 * kernel context resident. When we are idling on the kernel_context,
	 * no more new requests (with a context switch) are emitted and we
	 * can finally rest. A consequence is that the idle work handler is
	 * always called at least twice before idling (and if the system is
	 * idle that implies a round trip through the retire worker).
	 */
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_switch_to_kernel_context(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
		  READ_ONCE(dev_priv->gt.active_requests));

3579 3580
	/*
	 * Wait for last execlists context complete, but bail out in case a
3581 3582 3583 3584 3585
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
3586
	 */
3587 3588 3589 3590
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3591 3592 3593 3594

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3595
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3596 3597 3598 3599 3600 3601 3602
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3603 3604 3605 3606
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3607
	if (new_requests_since_last_retire(dev_priv))
3608
		goto out_unlock;
3609

3610
	epoch = __i915_gem_park(dev_priv);
3611

3612 3613
	assert_kernel_context_is_current(dev_priv);

3614 3615
	rearm_hangcheck = false;
out_unlock:
3616
	mutex_unlock(&dev_priv->drm.struct_mutex);
3617

3618 3619 3620 3621
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3622
	}
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3640 3641
}

3642 3643
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3644
	struct drm_i915_private *i915 = to_i915(gem->dev);
3645 3646
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3647
	struct i915_lut_handle *lut, *ln;
3648

3649 3650 3651 3652 3653 3654
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3655
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3656 3657 3658 3659
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3660 3661 3662 3663 3664 3665 3666
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3667
			i915_vma_close(vma);
3668

3669 3670
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3671

3672 3673
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3674
	}
3675 3676

	mutex_unlock(&i915->drm.struct_mutex);
3677 3678
}

3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3690 3691
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3692 3693 3694
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3695 3696 3697 3698 3699 3700 3701
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3702
 *  -EAGAIN: incomplete, restart syscall
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3719 3720
	ktime_t start;
	long ret;
3721

3722 3723 3724
	if (args->flags != 0)
		return -EINVAL;

3725
	obj = i915_gem_object_lookup(file, args->bo_handle);
3726
	if (!obj)
3727 3728
		return -ENOENT;

3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3750 3751 3752 3753

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3754 3755
	}

C
Chris Wilson 已提交
3756
	i915_gem_object_put(obj);
3757
	return ret;
3758 3759
}

3760
static int wait_for_timeline(struct i915_timeline *tl, unsigned int flags)
3761
{
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
	struct i915_request *rq;
	long ret;

	rq = i915_gem_active_get_unlocked(&tl->last_request);
	if (!rq)
		return 0;

	/*
	 * "Race-to-idle".
	 *
	 * Switching to the kernel context is often used a synchronous
	 * step prior to idling, e.g. in suspend for flushing all
	 * current operations to memory before sleeping. These we
	 * want to complete as quickly as possible to avoid prolonged
	 * stalls, so allow the gpu to boost to maximum clocks.
	 */
	if (flags & I915_WAIT_FOR_IDLE_BOOST)
		gen6_rps_boost(rq, NULL);

	ret = i915_request_wait(rq, flags, MAX_SCHEDULE_TIMEOUT);
	i915_request_put(rq);

	return ret < 0 ? ret : 0;
3785 3786
}

3787 3788
static int wait_for_engines(struct drm_i915_private *i915)
{
3789
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3790 3791
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3792
		GEM_TRACE_DUMP();
3793 3794
		i915_gem_set_wedged(i915);
		return -EIO;
3795 3796 3797 3798 3799
	}

	return 0;
}

3800 3801
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
3802 3803 3804
	GEM_TRACE("flags=%x (%s)\n",
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked");

3805 3806 3807 3808
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3809
	if (flags & I915_WAIT_LOCKED) {
3810 3811
		struct i915_timeline *tl;
		int err;
3812 3813 3814 3815

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
3816 3817 3818
			err = wait_for_timeline(tl, flags);
			if (err)
				return err;
3819
		}
3820 3821 3822 3823 3824

		err = wait_for_engines(i915);
		if (err)
			return err;

3825
		i915_retire_requests(i915);
3826
		GEM_BUG_ON(i915->gt.active_requests);
3827
	} else {
3828 3829 3830
		struct intel_engine_cs *engine;
		enum intel_engine_id id;
		int err;
3831

3832 3833 3834 3835 3836 3837
		for_each_engine(engine, i915, id) {
			err = wait_for_timeline(&engine->timeline, flags);
			if (err)
				return err;
		}
	}
3838 3839

	return 0;
3840 3841
}

3842 3843
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3844 3845 3846 3847 3848 3849 3850
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3851
	obj->write_domain = 0;
3852 3853 3854 3855
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3856
	if (!READ_ONCE(obj->pin_global))
3857 3858 3859 3860 3861 3862 3863
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

3888
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3909
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3910 3911 3912 3913 3914
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3915 3916
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3917
	if (write) {
3918 3919
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3920 3921 3922 3923 3924 3925 3926
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3927 3928
/**
 * Moves a single object to the GTT read, and possibly write domain.
3929 3930
 * @obj: object to act on
 * @write: ask for write access or read only
3931 3932 3933 3934
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3935
int
3936
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3937
{
3938
	int ret;
3939

3940
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3941

3942 3943 3944 3945 3946 3947
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3948 3949 3950
	if (ret)
		return ret;

3951
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3952 3953
		return 0;

3954 3955 3956 3957 3958 3959 3960 3961
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3962
	ret = i915_gem_object_pin_pages(obj);
3963 3964 3965
	if (ret)
		return ret;

3966
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3967

3968 3969 3970 3971
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3972
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3973 3974
		mb();

3975 3976 3977
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3978 3979
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3980
	if (write) {
3981 3982
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3983
		obj->mm.dirty = true;
3984 3985
	}

C
Chris Wilson 已提交
3986
	i915_gem_object_unpin_pages(obj);
3987 3988 3989
	return 0;
}

3990 3991
/**
 * Changes the cache-level of an object across all VMA.
3992 3993
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
4005 4006 4007
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
4008
	struct i915_vma *vma;
4009
	int ret;
4010

4011 4012
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4013
	if (obj->cache_level == cache_level)
4014
		return 0;
4015

4016 4017 4018 4019 4020
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
4021 4022
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4023 4024 4025
		if (!drm_mm_node_allocated(&vma->node))
			continue;

4026
		if (i915_vma_is_pinned(vma)) {
4027 4028 4029 4030
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

4031 4032
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
4044 4045
	}

4046 4047 4048 4049 4050 4051 4052
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
4053
	if (obj->bind_count) {
4054 4055 4056 4057
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
4058 4059 4060 4061 4062 4063
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
4064 4065 4066
		if (ret)
			return ret;

4067 4068
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4085
			for_each_ggtt_vma(vma, obj) {
4086 4087 4088 4089
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
4090 4091 4092 4093 4094 4095 4096 4097
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4098 4099
		}

4100
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4101 4102 4103 4104 4105 4106 4107
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4108 4109
	}

4110
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4111
		vma->node.color = cache_level;
4112
	i915_gem_object_set_cache_coherency(obj, cache_level);
4113
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4114

4115 4116 4117
	return 0;
}

B
Ben Widawsky 已提交
4118 4119
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4120
{
B
Ben Widawsky 已提交
4121
	struct drm_i915_gem_caching *args = data;
4122
	struct drm_i915_gem_object *obj;
4123
	int err = 0;
4124

4125 4126 4127 4128 4129 4130
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
4131

4132 4133 4134 4135 4136 4137
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4138 4139 4140 4141
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4142 4143 4144 4145
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4146 4147 4148
out:
	rcu_read_unlock();
	return err;
4149 4150
}

B
Ben Widawsky 已提交
4151 4152
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4153
{
4154
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
4155
	struct drm_i915_gem_caching *args = data;
4156 4157
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
4158
	int ret = 0;
4159

B
Ben Widawsky 已提交
4160 4161
	switch (args->caching) {
	case I915_CACHING_NONE:
4162 4163
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4164
	case I915_CACHING_CACHED:
4165 4166 4167 4168 4169 4170
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4171
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4172 4173
			return -ENODEV;

4174 4175
		level = I915_CACHE_LLC;
		break;
4176
	case I915_CACHING_DISPLAY:
4177
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4178
		break;
4179 4180 4181 4182
	default:
		return -EINVAL;
	}

4183 4184 4185 4186
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
4187 4188 4189 4190 4191 4192 4193 4194 4195
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

4196 4197 4198 4199 4200 4201 4202
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
4203
	if (ret)
4204
		goto out;
B
Ben Widawsky 已提交
4205

4206 4207 4208
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
4209 4210 4211

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
4212 4213 4214

out:
	i915_gem_object_put(obj);
4215 4216 4217
	return ret;
}

4218
/*
4219 4220 4221 4222
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
4223
 */
C
Chris Wilson 已提交
4224
struct i915_vma *
4225 4226
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4227 4228
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
4229
{
C
Chris Wilson 已提交
4230
	struct i915_vma *vma;
4231 4232
	int ret;

4233 4234
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4235
	/* Mark the global pin early so that we account for the
4236 4237
	 * display coherency whilst setting up the cache domains.
	 */
4238
	obj->pin_global++;
4239

4240 4241 4242 4243 4244 4245 4246 4247 4248
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4249
	ret = i915_gem_object_set_cache_level(obj,
4250 4251
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
4252 4253
	if (ret) {
		vma = ERR_PTR(ret);
4254
		goto err_unpin_global;
C
Chris Wilson 已提交
4255
	}
4256

4257 4258
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
4259 4260 4261 4262
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
4263
	 */
4264
	vma = ERR_PTR(-ENOSPC);
4265 4266
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4267
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4268 4269 4270 4271
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
4272
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
4273
	if (IS_ERR(vma))
4274
		goto err_unpin_global;
4275

4276 4277
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

4278
	__i915_gem_object_flush_for_display(obj);
4279

4280 4281 4282
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4283
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4284

C
Chris Wilson 已提交
4285
	return vma;
4286

4287 4288
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
4289
	return vma;
4290 4291 4292
}

void
C
Chris Wilson 已提交
4293
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4294
{
4295
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4296

4297
	if (WARN_ON(vma->obj->pin_global == 0))
4298 4299
		return;

4300
	if (--vma->obj->pin_global == 0)
4301
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4302

4303
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4304
	i915_gem_object_bump_inactive_ggtt(vma->obj);
4305

C
Chris Wilson 已提交
4306
	i915_vma_unpin(vma);
4307 4308
}

4309 4310
/**
 * Moves a single object to the CPU read, and possibly write domain.
4311 4312
 * @obj: object to act on
 * @write: requesting write or read-only access
4313 4314 4315 4316
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4317
int
4318
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4319 4320 4321
{
	int ret;

4322
	lockdep_assert_held(&obj->base.dev->struct_mutex);
4323

4324 4325 4326 4327 4328 4329
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
4330 4331 4332
	if (ret)
		return ret;

4333
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4334

4335
	/* Flush the CPU cache if it's still invalid. */
4336
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4337
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4338
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4339 4340 4341 4342 4343
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4344
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4345 4346 4347 4348

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
4349 4350
	if (write)
		__start_cpu_write(obj);
4351 4352 4353 4354

	return 0;
}

4355 4356 4357
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4358 4359 4360 4361
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4362 4363 4364
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4365
static int
4366
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4367
{
4368
	struct drm_i915_private *dev_priv = to_i915(dev);
4369
	struct drm_i915_file_private *file_priv = file->driver_priv;
4370
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4371
	struct i915_request *request, *target = NULL;
4372
	long ret;
4373

4374 4375 4376
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4377

4378
	spin_lock(&file_priv->mm.lock);
4379
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4380 4381
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4382

4383 4384 4385 4386
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4387

4388
		target = request;
4389
	}
4390
	if (target)
4391
		i915_request_get(target);
4392
	spin_unlock(&file_priv->mm.lock);
4393

4394
	if (target == NULL)
4395
		return 0;
4396

4397
	ret = i915_request_wait(target,
4398 4399
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4400
	i915_request_put(target);
4401

4402
	return ret < 0 ? ret : 0;
4403 4404
}

C
Chris Wilson 已提交
4405
struct i915_vma *
4406 4407
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4408
			 u64 size,
4409 4410
			 u64 alignment,
			 u64 flags)
4411
{
4412
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4413
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
4414 4415
	struct i915_vma *vma;
	int ret;
4416

4417 4418
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4419 4420
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4451
	vma = i915_vma_instance(obj, vm, view);
4452
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4453
		return vma;
4454 4455

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4456 4457 4458
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4459

4460
			if (flags & PIN_MAPPABLE &&
4461
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4462 4463 4464
				return ERR_PTR(-ENOSPC);
		}

4465 4466
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4467 4468 4469
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4470
		     !!(flags & PIN_MAPPABLE),
4471
		     i915_vma_is_map_and_fenceable(vma));
4472 4473
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4474
			return ERR_PTR(ret);
4475 4476
	}

C
Chris Wilson 已提交
4477 4478 4479
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4480

C
Chris Wilson 已提交
4481
	return vma;
4482 4483
}

4484
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4499 4500 4501 4502 4503 4504 4505 4506 4507
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4508 4509
}

4510
static __always_inline unsigned int
4511
__busy_set_if_active(const struct dma_fence *fence,
4512 4513
		     unsigned int (*flag)(unsigned int id))
{
4514
	struct i915_request *rq;
4515

4516 4517 4518 4519
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4520
	 *
4521
	 * Note we only report on the status of native fences.
4522
	 */
4523 4524 4525 4526
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
4527 4528
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
4529 4530
		return 0;

4531
	return flag(rq->engine->uabi_id);
4532 4533
}

4534
static __always_inline unsigned int
4535
busy_check_reader(const struct dma_fence *fence)
4536
{
4537
	return __busy_set_if_active(fence, __busy_read_flag);
4538 4539
}

4540
static __always_inline unsigned int
4541
busy_check_writer(const struct dma_fence *fence)
4542
{
4543 4544 4545 4546
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4547 4548
}

4549 4550
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4551
		    struct drm_file *file)
4552 4553
{
	struct drm_i915_gem_busy *args = data;
4554
	struct drm_i915_gem_object *obj;
4555 4556
	struct reservation_object_list *list;
	unsigned int seq;
4557
	int err;
4558

4559
	err = -ENOENT;
4560 4561
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4562
	if (!obj)
4563
		goto out;
4564

4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4583

4584 4585
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4586

4587 4588 4589 4590
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4591

4592 4593 4594 4595 4596 4597
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4598
	}
4599

4600 4601 4602 4603
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4604 4605 4606
out:
	rcu_read_unlock();
	return err;
4607 4608 4609 4610 4611 4612
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4613
	return i915_gem_ring_throttle(dev, file_priv);
4614 4615
}

4616 4617 4618 4619
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4620
	struct drm_i915_private *dev_priv = to_i915(dev);
4621
	struct drm_i915_gem_madvise *args = data;
4622
	struct drm_i915_gem_object *obj;
4623
	int err;
4624 4625 4626 4627 4628 4629 4630 4631 4632

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4633
	obj = i915_gem_object_lookup(file_priv, args->handle);
4634 4635 4636 4637 4638 4639
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4640

4641
	if (i915_gem_object_has_pages(obj) &&
4642
	    i915_gem_object_is_tiled(obj) &&
4643
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4644 4645
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4646
			__i915_gem_object_unpin_pages(obj);
4647 4648 4649
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4650
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4651
			__i915_gem_object_pin_pages(obj);
4652 4653
			obj->mm.quirked = true;
		}
4654 4655
	}

C
Chris Wilson 已提交
4656 4657
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4658

C
Chris Wilson 已提交
4659
	/* if the object is no longer attached, discard its backing storage */
4660 4661
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4662 4663
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4664
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4665
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4666

4667
out:
4668
	i915_gem_object_put(obj);
4669
	return err;
4670 4671
}

4672
static void
4673
frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4674 4675 4676 4677
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4678
	intel_fb_obj_flush(obj, ORIGIN_CS);
4679 4680
}

4681 4682
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4683
{
4684 4685
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4686
	INIT_LIST_HEAD(&obj->vma_list);
4687
	INIT_LIST_HEAD(&obj->lut_list);
4688
	INIT_LIST_HEAD(&obj->batch_pool_link);
4689

4690 4691
	obj->ops = ops;

4692 4693 4694
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4695
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4696
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4697 4698 4699 4700

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4701

4702
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4703 4704
}

4705
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4706 4707
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4708

4709 4710
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4711 4712

	.pwrite = i915_gem_object_pwrite_gtt,
4713 4714
};

M
Matthew Auld 已提交
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4739
struct drm_i915_gem_object *
4740
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4741
{
4742
	struct drm_i915_gem_object *obj;
4743
	struct address_space *mapping;
4744
	unsigned int cache_level;
D
Daniel Vetter 已提交
4745
	gfp_t mask;
4746
	int ret;
4747

4748 4749 4750 4751 4752
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4753
	if (size >> PAGE_SHIFT > INT_MAX)
4754 4755 4756 4757 4758
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4759
	obj = i915_gem_object_alloc(dev_priv);
4760
	if (obj == NULL)
4761
		return ERR_PTR(-ENOMEM);
4762

M
Matthew Auld 已提交
4763
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4764 4765
	if (ret)
		goto fail;
4766

4767
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4768
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4769 4770 4771 4772 4773
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4774
	mapping = obj->base.filp->f_mapping;
4775
	mapping_set_gfp_mask(mapping, mask);
4776
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4777

4778
	i915_gem_object_init(obj, &i915_gem_object_ops);
4779

4780 4781
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4782

4783
	if (HAS_LLC(dev_priv))
4784
		/* On some devices, we can have the GPU use the LLC (the CPU
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4796 4797 4798
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4799

4800
	i915_gem_object_set_cache_coherency(obj, cache_level);
4801

4802 4803
	trace_i915_gem_object_create(obj);

4804
	return obj;
4805 4806 4807 4808

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4809 4810
}

4811 4812 4813 4814 4815 4816 4817 4818
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4819
	if (obj->mm.madv != I915_MADV_WILLNEED)
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4835 4836
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4837
{
4838
	struct drm_i915_gem_object *obj, *on;
4839

4840
	intel_runtime_pm_get(i915);
4841
	llist_for_each_entry_safe(obj, on, freed, freed) {
4842 4843 4844 4845
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4846 4847
		mutex_lock(&i915->drm.struct_mutex);

4848 4849 4850 4851 4852
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4853
			i915_vma_destroy(vma);
4854
		}
4855 4856
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4857

4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4870
		mutex_unlock(&i915->drm.struct_mutex);
4871 4872

		GEM_BUG_ON(obj->bind_count);
4873
		GEM_BUG_ON(obj->userfault_count);
4874
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4875
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4876 4877 4878

		if (obj->ops->release)
			obj->ops->release(obj);
4879

4880 4881
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4882
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4883
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4884 4885 4886 4887

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4888
		reservation_object_fini(&obj->__builtin_resv);
4889 4890 4891 4892 4893
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4894

4895 4896 4897
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4898 4899
		if (on)
			cond_resched();
4900
	}
4901
	intel_runtime_pm_put(i915);
4902 4903 4904 4905 4906 4907
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4918
		__i915_gem_free_objects(i915, freed);
4919
	}
4920 4921 4922 4923 4924 4925 4926
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4927

4928 4929
	/*
	 * All file-owned VMA should have been released by this point through
4930 4931 4932 4933 4934 4935
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4936

4937
	spin_lock(&i915->mm.free_lock);
4938
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4939 4940
		spin_unlock(&i915->mm.free_lock);

4941
		__i915_gem_free_objects(i915, freed);
4942
		if (need_resched())
4943 4944 4945
			return;

		spin_lock(&i915->mm.free_lock);
4946
	}
4947
	spin_unlock(&i915->mm.free_lock);
4948
}
4949

4950 4951 4952 4953 4954 4955
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

4956 4957 4958 4959 4960 4961 4962 4963 4964
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4965 4966
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4967
		queue_work(i915->wq, &i915->mm.free_work);
4968
}
4969

4970 4971 4972
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4973

4974 4975 4976
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4977
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4978
		obj->mm.madv = I915_MADV_DONTNEED;
4979

4980 4981
	/*
	 * Before we free the object, make sure any pure RCU-only
4982 4983 4984 4985
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4986
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4987
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4988 4989
}

4990 4991 4992 4993
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4994 4995
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4996 4997 4998 4999 5000
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

5001 5002
void i915_gem_sanitize(struct drm_i915_private *i915)
{
5003
	int err;
5004 5005 5006

	GEM_TRACE("\n");

5007
	mutex_lock(&i915->drm.struct_mutex);
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017

	intel_runtime_pm_get(i915);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
5018
	if (i915_terminally_wedged(&i915->gpu_error))
5019 5020
		i915_gem_unset_wedged(i915);

5021 5022 5023 5024 5025 5026
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
5027
	 * of the reset, so this could be applied to even earlier gen.
5028
	 */
5029
	err = -ENODEV;
5030
	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5031 5032 5033
		err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
	if (!err)
		intel_engines_sanitize(i915);
5034 5035 5036 5037

	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	intel_runtime_pm_put(i915);

5038 5039
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
5040 5041
}

5042
int i915_gem_suspend(struct drm_i915_private *dev_priv)
5043
{
5044
	struct drm_device *dev = &dev_priv->drm;
5045
	int ret;
5046

5047 5048
	GEM_TRACE("\n");

5049
	intel_runtime_pm_get(dev_priv);
5050 5051
	intel_suspend_gt_powersave(dev_priv);

5052
	mutex_lock(&dev->struct_mutex);
5053 5054 5055 5056 5057 5058 5059 5060 5061

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
5062 5063 5064 5065
	if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(dev_priv);
		if (ret)
			goto err_unlock;
5066

5067 5068
		ret = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE |
5069 5070
					     I915_WAIT_LOCKED |
					     I915_WAIT_FOR_IDLE_BOOST);
5071 5072
		if (ret && ret != -EIO)
			goto err_unlock;
5073

5074 5075
		assert_kernel_context_is_current(dev_priv);
	}
5076 5077
	mutex_unlock(&dev->struct_mutex);

5078
	intel_uc_suspend(dev_priv);
5079

5080
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
5081
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
5082 5083 5084 5085

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
5086
	drain_delayed_work(&dev_priv->gt.idle_work);
5087

5088 5089 5090
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
5091
	WARN_ON(dev_priv->gt.awake);
5092 5093
	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
5094

5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
	intel_runtime_pm_put(dev_priv);
	return 0;

err_unlock:
	mutex_unlock(&dev->struct_mutex);
	intel_runtime_pm_put(dev_priv);
	return ret;
}

void i915_gem_suspend_late(struct drm_i915_private *i915)
{
5106 5107 5108 5109 5110 5111 5112
	struct drm_i915_gem_object *obj;
	struct list_head *phases[] = {
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
		NULL
	}, **phase;

5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */

5133 5134 5135 5136 5137 5138 5139
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
	}
	mutex_unlock(&i915->drm.struct_mutex);

5140 5141
	intel_uc_sanitize(i915);
	i915_gem_sanitize(i915);
5142 5143
}

5144
void i915_gem_resume(struct drm_i915_private *i915)
5145
{
5146 5147
	GEM_TRACE("\n");

5148
	WARN_ON(i915->gt.awake);
5149

5150 5151
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5152

5153 5154
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
5155

5156 5157
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
5158 5159 5160
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
5161
	i915->gt.resume(i915);
5162

5163 5164 5165
	if (i915_gem_init_hw(i915))
		goto err_wedged;

5166
	intel_uc_resume(i915);
5167

5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
5178 5179 5180 5181
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
5182
	goto out_unlock;
5183 5184
}

5185
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5186
{
5187
	if (INTEL_GEN(dev_priv) < 5 ||
5188 5189 5190 5191 5192 5193
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5194
	if (IS_GEN5(dev_priv))
5195 5196
		return;

5197
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5198
	if (IS_GEN6(dev_priv))
5199
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5200
	else if (IS_GEN7(dev_priv))
5201
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5202
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
5203
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5204 5205
	else
		BUG();
5206
}
D
Daniel Vetter 已提交
5207

5208
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5209 5210 5211 5212 5213 5214 5215
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

5216
static void init_unused_rings(struct drm_i915_private *dev_priv)
5217
{
5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
5230 5231 5232
	}
}

5233
static int __i915_gem_restart_engines(void *data)
5234
{
5235
	struct drm_i915_private *i915 = data;
5236
	struct intel_engine_cs *engine;
5237
	enum intel_engine_id id;
5238 5239 5240 5241
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
5242 5243 5244
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
5245
			return err;
5246
		}
5247 5248 5249 5250 5251 5252 5253
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
5254
	int ret;
5255

5256 5257
	dev_priv->gt.last_init_time = ktime_get();

5258 5259 5260
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5261
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5262
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5263

5264
	if (IS_HASWELL(dev_priv))
5265
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5266
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5267

5268
	if (HAS_PCH_NOP(dev_priv)) {
5269
		if (IS_IVYBRIDGE(dev_priv)) {
5270 5271 5272
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
5273
		} else if (INTEL_GEN(dev_priv) >= 7) {
5274 5275 5276 5277
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5278 5279
	}

5280 5281
	intel_gt_workarounds_apply(dev_priv);

5282
	i915_gem_init_swizzling(dev_priv);
5283

5284 5285 5286 5287 5288 5289
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
5290
	init_unused_rings(dev_priv);
5291

5292
	BUG_ON(!dev_priv->kernel_context);
5293 5294 5295 5296
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
5297

5298
	ret = i915_ppgtt_init_hw(dev_priv);
5299
	if (ret) {
5300
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5301 5302 5303
		goto out;
	}

5304 5305 5306 5307 5308 5309
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

5310 5311
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
5312 5313
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5314
		goto out;
5315
	}
5316

5317
	intel_mocs_init_l3cc_table(dev_priv);
5318

5319 5320
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
5321 5322
	if (ret)
		goto cleanup_uc;
5323 5324
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5325
	return ret;
5326 5327 5328 5329

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
	goto out;
5330 5331
}

5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
5353
		struct i915_request *rq;
5354

5355
		rq = i915_request_alloc(engine, ctx);
5356 5357 5358 5359 5360
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

5361
		err = 0;
5362 5363 5364
		if (engine->init_context)
			err = engine->init_context(rq);

5365
		i915_request_add(rq);
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

	err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
	if (err)
		goto err_active;

	assert_kernel_context_is_current(i915);

	for_each_engine(engine, i915, id) {
		struct i915_vma *state;

5383
		state = to_intel_context(ctx, engine)->state;
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

	if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

5446
int i915_gem_init(struct drm_i915_private *dev_priv)
5447 5448 5449
{
	int ret;

5450 5451
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5452 5453 5454
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5455
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5456

5457
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5458
		dev_priv->gt.resume = intel_lr_context_resume;
5459
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5460 5461 5462
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5463 5464
	}

5465 5466 5467 5468
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5469
	ret = intel_uc_init_misc(dev_priv);
5470 5471 5472
	if (ret)
		return ret;

5473
	ret = intel_wopcm_init(&dev_priv->wopcm);
5474
	if (ret)
5475
		goto err_uc_misc;
5476

5477 5478 5479 5480 5481 5482
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5483
	mutex_lock(&dev_priv->drm.struct_mutex);
5484 5485
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5486
	ret = i915_gem_init_ggtt(dev_priv);
5487 5488 5489 5490
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5491

5492
	ret = i915_gem_contexts_init(dev_priv);
5493 5494 5495 5496
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5497

5498
	ret = intel_engines_init(dev_priv);
5499 5500 5501 5502
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5503

5504 5505
	intel_init_gt_powersave(dev_priv);

5506
	ret = intel_uc_init(dev_priv);
5507
	if (ret)
5508
		goto err_pm;
5509

5510 5511 5512 5513
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5525
	ret = __intel_engines_record_defaults(dev_priv);
5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
5551 5552 5553 5554 5555 5556
	mutex_unlock(&dev_priv->drm.struct_mutex);

	WARN_ON(i915_gem_suspend(dev_priv));
	i915_gem_suspend_late(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
5557
	intel_uc_fini_hw(dev_priv);
5558 5559
err_uc_init:
	intel_uc_fini(dev_priv);
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5573
err_uc_misc:
5574
	intel_uc_fini_misc(dev_priv);
5575

5576 5577 5578
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5579
	if (ret == -EIO) {
5580 5581
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5582 5583 5584
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5585
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5586 5587
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
5588 5589
			i915_gem_set_wedged(dev_priv);
		}
5590
		ret = 0;
5591 5592
	}

5593
	i915_gem_drain_freed_objects(dev_priv);
5594
	return ret;
5595 5596
}

5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	i915_gem_suspend_late(dev_priv);

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
	i915_gem_cleanup_engines(dev_priv);
	i915_gem_contexts_fini(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

5619 5620 5621 5622 5623
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5624
void
5625
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5626
{
5627
	struct intel_engine_cs *engine;
5628
	enum intel_engine_id id;
5629

5630
	for_each_engine(engine, dev_priv, id)
5631
		dev_priv->gt.cleanup_engine(engine);
5632 5633
}

5634 5635 5636
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5637
	int i;
5638

5639
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5640 5641
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5642
	else if (INTEL_GEN(dev_priv) >= 4 ||
5643 5644
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5645 5646 5647 5648
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5649
	if (intel_vgpu_active(dev_priv))
5650 5651 5652 5653
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5654 5655 5656 5657 5658 5659 5660
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5661
	i915_gem_restore_fences(dev_priv);
5662

5663
	i915_gem_detect_bit_6_swizzle(dev_priv);
5664 5665
}

5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5682
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5683
{
5684
	int err = -ENOMEM;
5685

5686 5687
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5688 5689
		goto err_out;

5690 5691
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5692 5693
		goto err_objects;

5694 5695 5696 5697
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5698
	dev_priv->requests = KMEM_CACHE(i915_request,
5699 5700
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5701
					SLAB_TYPESAFE_BY_RCU);
5702
	if (!dev_priv->requests)
5703
		goto err_luts;
5704

5705 5706 5707 5708 5709 5710
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5711 5712 5713 5714
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5715
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5716
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5717
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5718

5719
	i915_gem_init__mm(dev_priv);
5720

5721
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5722
			  i915_gem_retire_work_handler);
5723
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5724
			  i915_gem_idle_work_handler);
5725
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5726
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5727

5728 5729
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5730
	spin_lock_init(&dev_priv->fb_tracking.lock);
5731

M
Matthew Auld 已提交
5732 5733 5734 5735
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5736 5737
	return 0;

5738 5739
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5740 5741
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5742 5743
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5744 5745 5746 5747 5748 5749
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5750
}
5751

5752
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5753
{
5754
	i915_gem_drain_freed_objects(dev_priv);
5755 5756
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5757
	WARN_ON(dev_priv->mm.object_count);
5758 5759
	WARN_ON(!list_empty(&dev_priv->gt.timelines));

5760
	kmem_cache_destroy(dev_priv->priorities);
5761
	kmem_cache_destroy(dev_priv->dependencies);
5762
	kmem_cache_destroy(dev_priv->requests);
5763
	kmem_cache_destroy(dev_priv->luts);
5764 5765
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5766 5767 5768

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5769 5770

	i915_gemfs_fini(dev_priv);
5771 5772
}

5773 5774
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5775 5776 5777
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5778 5779 5780 5781 5782
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5783
int i915_gem_freeze_late(struct drm_i915_private *i915)
5784 5785
{
	struct drm_i915_gem_object *obj;
5786
	struct list_head *phases[] = {
5787 5788
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
5789
		NULL
5790
	}, **phase;
5791

5792 5793
	/*
	 * Called just before we write the hibernation image.
5794 5795 5796 5797 5798 5799 5800 5801
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5802 5803
	 *
	 * To try and reduce the hibernation image, we manually shrink
5804
	 * the objects as well, see i915_gem_freeze()
5805 5806
	 */

5807 5808
	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
	i915_gem_drain_freed_objects(i915);
5809

5810 5811 5812 5813
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5814
	}
5815
	mutex_unlock(&i915->drm.struct_mutex);
5816 5817 5818 5819

	return 0;
}

5820
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5821
{
5822
	struct drm_i915_file_private *file_priv = file->driver_priv;
5823
	struct i915_request *request;
5824 5825 5826 5827 5828

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5829
	spin_lock(&file_priv->mm.lock);
5830
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5831
		request->file_priv = NULL;
5832
	spin_unlock(&file_priv->mm.lock);
5833 5834
}

5835
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5836 5837
{
	struct drm_i915_file_private *file_priv;
5838
	int ret;
5839

5840
	DRM_DEBUG("\n");
5841 5842 5843 5844 5845 5846

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5847
	file_priv->dev_priv = i915;
5848
	file_priv->file = file;
5849 5850 5851 5852

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5853
	file_priv->bsd_engine = -1;
5854
	file_priv->hang_timestamp = jiffies;
5855

5856
	ret = i915_gem_context_open(i915, file);
5857 5858
	if (ret)
		kfree(file_priv);
5859

5860
	return ret;
5861 5862
}

5863 5864
/**
 * i915_gem_track_fb - update frontbuffer tracking
5865 5866 5867
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5868 5869 5870 5871
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5872 5873 5874 5875
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5876 5877 5878 5879 5880 5881 5882 5883 5884
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5885
	if (old) {
5886 5887
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5888 5889 5890
	}

	if (new) {
5891 5892
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5893 5894 5895
	}
}

5896 5897
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5898
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5899 5900 5901
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5902 5903 5904
	struct file *file;
	size_t offset;
	int err;
5905

5906
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5907
	if (IS_ERR(obj))
5908 5909
		return obj;

5910
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5911

5912 5913 5914 5915 5916 5917
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5918

5919 5920 5921 5922 5923
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5924

5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5939 5940 5941 5942

	return obj;

fail:
5943
	i915_gem_object_put(obj);
5944
	return ERR_PTR(err);
5945
}
5946 5947 5948 5949 5950 5951

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5952
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5953 5954 5955 5956 5957
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5958
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
6083
	if (!obj->mm.dirty)
6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
6099

6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

6135
	pages = __i915_gem_object_unset_pages(obj);
6136

6137 6138
	obj->ops = &i915_gem_phys_ops;

6139
	err = ____i915_gem_object_get_pages(obj);
6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
6153 6154 6155 6156 6157
	if (!IS_ERR_OR_NULL(pages)) {
		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);

		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
	}
6158 6159 6160 6161 6162
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

6163 6164
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
6165
#include "selftests/mock_gem_device.c"
6166
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
6167
#include "selftests/huge_pages.c"
6168
#include "selftests/i915_gem_object.c"
6169
#include "selftests/i915_gem_coherency.c"
6170
#endif