i915_gem.c 159.1 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
M
Matthew Auld 已提交
38
#include "i915_gemfs.h"
39
#include <linux/dma-fence-array.h>
40
#include <linux/kthread.h>
41
#include <linux/reservation.h>
42
#include <linux/shmem_fs.h>
43
#include <linux/slab.h>
44
#include <linux/stop_machine.h>
45
#include <linux/swap.h>
J
Jesse Barnes 已提交
46
#include <linux/pci.h>
47
#include <linux/dma-buf.h>
48

49
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
50

51 52
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
53
	if (obj->cache_dirty)
54 55
		return false;

56
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
57 58
		return true;

59
	return obj->pin_global; /* currently in use by HW, keep flushed */
60 61
}

62
static int
63
insert_mappable_node(struct i915_ggtt *ggtt,
64 65 66
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
67 68 69 70
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
71 72 73 74 75 76 77 78
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

79 80
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
81
				  u64 size)
82
{
83
	spin_lock(&dev_priv->mm.object_stat_lock);
84 85
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
86
	spin_unlock(&dev_priv->mm.object_stat_lock);
87 88 89
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
90
				     u64 size)
91
{
92
	spin_lock(&dev_priv->mm.object_stat_lock);
93 94
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
95
	spin_unlock(&dev_priv->mm.object_stat_lock);
96 97
}

98
static int
99
i915_gem_wait_for_error(struct i915_gpu_error *error)
100 101 102
{
	int ret;

103 104
	might_sleep();

105 106 107 108 109
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
110
	ret = wait_event_interruptible_timeout(error->reset_queue,
111
					       !i915_reset_backoff(error),
112
					       I915_RESET_TIMEOUT);
113 114 115 116
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
117
		return ret;
118 119
	} else {
		return 0;
120
	}
121 122
}

123
int i915_mutex_lock_interruptible(struct drm_device *dev)
124
{
125
	struct drm_i915_private *dev_priv = to_i915(dev);
126 127
	int ret;

128
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
129 130 131 132 133 134 135 136 137
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
138

139 140
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
141
			    struct drm_file *file)
142
{
143
	struct drm_i915_private *dev_priv = to_i915(dev);
144
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
145
	struct drm_i915_gem_get_aperture *args = data;
146
	struct i915_vma *vma;
147
	u64 pinned;
148

149
	pinned = ggtt->base.reserved;
150
	mutex_lock(&dev->struct_mutex);
151
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
152
		if (i915_vma_is_pinned(vma))
153
			pinned += vma->node.size;
154
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
155
		if (i915_vma_is_pinned(vma))
156
			pinned += vma->node.size;
157
	mutex_unlock(&dev->struct_mutex);
158

159
	args->aper_size = ggtt->base.total;
160
	args->aper_available_size = args->aper_size - pinned;
161

162 163 164
	return 0;
}

165
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166
{
167
	struct address_space *mapping = obj->base.filp->f_mapping;
168
	drm_dma_handle_t *phys;
169 170
	struct sg_table *st;
	struct scatterlist *sg;
171
	char *vaddr;
172
	int i;
173
	int err;
174

175
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
176
		return -EINVAL;
177

178 179 180 181 182
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
183
			     roundup_pow_of_two(obj->base.size),
184 185
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
186
		return -ENOMEM;
187 188

	vaddr = phys->vaddr;
189 190 191 192 193
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
194
		if (IS_ERR(page)) {
195
			err = PTR_ERR(page);
196 197
			goto err_phys;
		}
198 199 200 201 202 203

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

204
		put_page(page);
205 206 207
		vaddr += PAGE_SIZE;
	}

208
	i915_gem_chipset_flush(to_i915(obj->base.dev));
209 210

	st = kmalloc(sizeof(*st), GFP_KERNEL);
211
	if (!st) {
212
		err = -ENOMEM;
213 214
		goto err_phys;
	}
215 216 217

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
218
		err = -ENOMEM;
219
		goto err_phys;
220 221 222 223 224
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
225

226
	sg_dma_address(sg) = phys->busaddr;
227 228
	sg_dma_len(sg) = obj->base.size;

229
	obj->phys_handle = phys;
230

231
	__i915_gem_object_set_pages(obj, st, sg->length);
232 233

	return 0;
234 235 236

err_phys:
	drm_pci_free(obj->base.dev, phys);
237 238

	return err;
239 240
}

241 242 243 244 245 246 247 248
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

249
static void
250
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
251 252
				struct sg_table *pages,
				bool needs_clflush)
253
{
C
Chris Wilson 已提交
254
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
255

C
Chris Wilson 已提交
256 257
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
258

259 260
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
261
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
262
		drm_clflush_sg(pages);
263

264
	__start_cpu_write(obj);
265 266 267 268 269 270
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
271
	__i915_gem_object_release_shmem(obj, pages, false);
272

C
Chris Wilson 已提交
273
	if (obj->mm.dirty) {
274
		struct address_space *mapping = obj->base.filp->f_mapping;
275
		char *vaddr = obj->phys_handle->vaddr;
276 277 278
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
279 280 281 282 283 284 285 286 287 288 289 290 291
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
292
			if (obj->mm.madv == I915_MADV_WILLNEED)
293
				mark_page_accessed(page);
294
			put_page(page);
295 296
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
297
		obj->mm.dirty = false;
298 299
	}

300 301
	sg_free_table(pages);
	kfree(pages);
302 303

	drm_pci_free(obj->base.dev, obj->phys_handle);
304 305 306 307 308
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
309
	i915_gem_object_unpin_pages(obj);
310 311 312 313 314 315 316 317
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

318 319
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

320
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
321 322 323
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
324 325 326
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
327

328 329 330 331
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
332
	 */
333
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
334 335 336
	if (ret)
		return ret;

337 338 339 340 341 342 343 344 345 346 347 348 349
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

350 351 352 353
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
354
			   struct intel_rps_client *rps_client)
355
{
356
	struct drm_i915_gem_request *rq;
357

358
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
359

360 361 362 363 364 365 366 367 368 369 370 371
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

372 373
	/*
	 * This client is about to stall waiting for the GPU. In many cases
374 375 376 377 378 379 380 381 382 383 384 385 386 387
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
388
	if (rps_client && !i915_gem_request_started(rq)) {
389
		if (INTEL_GEN(rq->i915) >= 6)
390
			gen6_rps_boost(rq, rps_client);
391 392
	}

393 394 395 396 397 398 399 400 401 402 403 404 405
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
406
				 struct intel_rps_client *rps_client)
407
{
408
	unsigned int seq = __read_seqcount_begin(&resv->seq);
409
	struct dma_fence *excl;
410
	bool prune_fences = false;
411 412 413 414

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
415 416
		int ret;

417 418
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
419 420 421
		if (ret)
			return ret;

422 423 424
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
425
							     rps_client);
426
			if (timeout < 0)
427
				break;
428

429 430 431 432 433 434
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
435 436

		prune_fences = count && timeout >= 0;
437 438
	} else {
		excl = reservation_object_get_excl_rcu(resv);
439 440
	}

441
	if (excl && timeout >= 0) {
442 443
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
444 445
		prune_fences = timeout >= 0;
	}
446 447 448

	dma_fence_put(excl);

449 450 451 452
	/* Oportunistically prune the fences iff we know they have *all* been
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
453
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
454 455 456 457 458
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
459 460
	}

461
	return timeout;
462 463
}

464 465 466 467 468
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

469
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

528 529 530 531 532
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
533
 * @rps_client: client (user process) to charge for any waitboosting
534
 */
535 536 537 538
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
539
		     struct intel_rps_client *rps_client)
540
{
541 542 543 544 545 546 547
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
548

549 550
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
551
						   rps_client);
552
	return timeout < 0 ? timeout : 0;
553 554 555 556 557 558
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

559
	return &fpriv->rps_client;
560 561
}

562 563 564
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
565
		     struct drm_file *file)
566 567
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
568
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
569 570 571 572

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
573
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
574 575
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
576

577
	drm_clflush_virt_range(vaddr, args->size);
578
	i915_gem_chipset_flush(to_i915(obj->base.dev));
579

580
	intel_fb_obj_flush(obj, ORIGIN_CPU);
581
	return 0;
582 583
}

584
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
585
{
586
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
587 588 589 590
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
591
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
592
	kmem_cache_free(dev_priv->objects, obj);
593 594
}

595 596
static int
i915_gem_create(struct drm_file *file,
597
		struct drm_i915_private *dev_priv,
598 599
		uint64_t size,
		uint32_t *handle_p)
600
{
601
	struct drm_i915_gem_object *obj;
602 603
	int ret;
	u32 handle;
604

605
	size = roundup(size, PAGE_SIZE);
606 607
	if (size == 0)
		return -EINVAL;
608 609

	/* Allocate the new object */
610
	obj = i915_gem_object_create(dev_priv, size);
611 612
	if (IS_ERR(obj))
		return PTR_ERR(obj);
613

614
	ret = drm_gem_handle_create(file, &obj->base, &handle);
615
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
616
	i915_gem_object_put(obj);
617 618
	if (ret)
		return ret;
619

620
	*handle_p = handle;
621 622 623
	return 0;
}

624 625 626 627 628 629
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
630
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
631
	args->size = args->pitch * args->height;
632
	return i915_gem_create(file, to_i915(dev),
633
			       args->size, &args->handle);
634 635
}

636 637 638 639 640 641
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

642 643
/**
 * Creates a new mm object and returns a handle to it.
644 645 646
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
647 648 649 650 651
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
652
	struct drm_i915_private *dev_priv = to_i915(dev);
653
	struct drm_i915_gem_create *args = data;
654

655
	i915_gem_flush_free_objects(dev_priv);
656

657
	return i915_gem_create(file, dev_priv,
658
			       args->size, &args->handle);
659 660
}

661 662 663 664 665 666 667
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

668
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
669
{
670 671 672 673 674
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
675 676 677 678 679 680 681 682 683 684
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
685 686
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
687
	 */
688

689 690
	wmb();

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
	intel_runtime_pm_get(dev_priv);
	spin_lock_irq(&dev_priv->uncore.lock);

	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));

	spin_unlock_irq(&dev_priv->uncore.lock);
	intel_runtime_pm_put(dev_priv);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

	if (!(obj->base.write_domain & flush_domains))
		return;

709 710
	switch (obj->base.write_domain) {
	case I915_GEM_DOMAIN_GTT:
711
		i915_gem_flush_ggtt_writes(dev_priv);
712 713 714

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
715

716
		for_each_ggtt_vma(vma, obj) {
717 718 719 720 721
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
722 723 724 725 726
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
727 728 729 730 731

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
732 733 734 735 736
	}

	obj->base.write_domain = 0;
}

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

763
static inline int
764 765
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

789 790 791 792 793 794
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
795
				    unsigned int *needs_clflush)
796 797 798
{
	int ret;

799
	lockdep_assert_held(&obj->base.dev->struct_mutex);
800

801
	*needs_clflush = 0;
802 803
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
804

805 806 807 808 809
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
810 811 812
	if (ret)
		return ret;

C
Chris Wilson 已提交
813
	ret = i915_gem_object_pin_pages(obj);
814 815 816
	if (ret)
		return ret;

817 818
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
819 820 821 822 823 824 825
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

826
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
827

828 829 830 831 832
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
833 834
	if (!obj->cache_dirty &&
	    !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
835
		*needs_clflush = CLFLUSH_BEFORE;
836

837
out:
838
	/* return with the pages pinned */
839
	return 0;
840 841 842 843

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
844 845 846 847 848 849 850
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

851 852
	lockdep_assert_held(&obj->base.dev->struct_mutex);

853 854 855 856
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

857 858 859 860 861 862
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
863 864 865
	if (ret)
		return ret;

C
Chris Wilson 已提交
866
	ret = i915_gem_object_pin_pages(obj);
867 868 869
	if (ret)
		return ret;

870 871
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
872 873 874 875 876 877 878
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

879
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
880

881 882 883 884 885
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
886
	if (!obj->cache_dirty) {
887
		*needs_clflush |= CLFLUSH_AFTER;
888

889 890 891 892 893 894 895
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
		if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
			*needs_clflush |= CLFLUSH_BEFORE;
	}
896

897
out:
898
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
899
	obj->mm.dirty = true;
900
	/* return with the pages pinned */
901
	return 0;
902 903 904 905

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
906 907
}

908 909 910 911
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
912
	if (unlikely(swizzled)) {
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

930 931 932
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
933
shmem_pread_slow(struct page *page, int offset, int length,
934 935 936 937 938 939 940 941
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
942
		shmem_clflush_swizzled_range(vaddr + offset, length,
943
					     page_do_bit17_swizzling);
944 945

	if (page_do_bit17_swizzling)
946
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
947
	else
948
		ret = __copy_to_user(user_data, vaddr + offset, length);
949 950
	kunmap(page);

951
	return ret ? - EFAULT : 0;
952 953
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1030
{
1031
	void __iomem *vaddr;
1032
	unsigned long unwritten;
1033 1034

	/* We can use the cpu mem copy function because this is X86. */
1035 1036 1037 1038
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1039 1040
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1041 1042 1043 1044
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1045 1046
		io_mapping_unmap(vaddr);
	}
1047 1048 1049 1050
	return unwritten;
}

static int
1051 1052
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1053
{
1054 1055
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1056
	struct drm_mm_node node;
1057 1058 1059
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1060 1061
	int ret;

1062 1063 1064 1065 1066 1067
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1068 1069 1070
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1071 1072 1073
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1074
		ret = i915_vma_put_fence(vma);
1075 1076 1077 1078 1079
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1080
	if (IS_ERR(vma)) {
1081
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1082
		if (ret)
1083 1084
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1085 1086 1087 1088 1089 1090
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1091
	mutex_unlock(&i915->drm.struct_mutex);
1092

1093 1094 1095
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1112
					       node.start, I915_CACHE_NONE, 0);
1113 1114 1115 1116
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1117

1118
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1119
				  user_data, page_length)) {
1120 1121 1122 1123 1124 1125 1126 1127 1128
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1129
	mutex_lock(&i915->drm.struct_mutex);
1130 1131 1132 1133
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1134
				       node.start, node.size);
1135 1136
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1137
		i915_vma_unpin(vma);
1138
	}
1139 1140 1141
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1142

1143 1144 1145
	return ret;
}

1146 1147
/**
 * Reads data from the object referenced by handle.
1148 1149 1150
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1151 1152 1153 1154 1155
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1156
		     struct drm_file *file)
1157 1158
{
	struct drm_i915_gem_pread *args = data;
1159
	struct drm_i915_gem_object *obj;
1160
	int ret;
1161

1162 1163 1164 1165
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1166
		       u64_to_user_ptr(args->data_ptr),
1167 1168 1169
		       args->size))
		return -EFAULT;

1170
	obj = i915_gem_object_lookup(file, args->handle);
1171 1172
	if (!obj)
		return -ENOENT;
1173

1174
	/* Bounds check source.  */
1175
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1176
		ret = -EINVAL;
1177
		goto out;
C
Chris Wilson 已提交
1178 1179
	}

C
Chris Wilson 已提交
1180 1181
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1182 1183 1184 1185
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1186
	if (ret)
1187
		goto out;
1188

1189
	ret = i915_gem_object_pin_pages(obj);
1190
	if (ret)
1191
		goto out;
1192

1193
	ret = i915_gem_shmem_pread(obj, args);
1194
	if (ret == -EFAULT || ret == -ENODEV)
1195
		ret = i915_gem_gtt_pread(obj, args);
1196

1197 1198
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1199
	i915_gem_object_put(obj);
1200
	return ret;
1201 1202
}

1203 1204
/* This is the fast write path which cannot handle
 * page faults in the source data
1205
 */
1206

1207 1208 1209 1210
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1211
{
1212
	void __iomem *vaddr;
1213
	unsigned long unwritten;
1214

1215
	/* We can use the cpu mem copy function because this is X86. */
1216 1217
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1218
						      user_data, length);
1219 1220
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1221 1222 1223
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1224 1225
		io_mapping_unmap(vaddr);
	}
1226 1227 1228 1229

	return unwritten;
}

1230 1231 1232
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1233
 * @obj: i915 GEM object
1234
 * @args: pwrite arguments structure
1235
 */
1236
static int
1237 1238
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1239
{
1240
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1241 1242
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1243 1244 1245
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1246
	int ret;
1247

1248 1249 1250
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1251

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
		if (!intel_runtime_pm_get_if_in_use(i915)) {
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
		intel_runtime_pm_get(i915);
	}

C
Chris Wilson 已提交
1269
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1270 1271 1272
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1273 1274 1275
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1276
		ret = i915_vma_put_fence(vma);
1277 1278 1279 1280 1281
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1282
	if (IS_ERR(vma)) {
1283
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1284
		if (ret)
1285
			goto out_rpm;
1286
		GEM_BUG_ON(!node.allocated);
1287
	}
D
Daniel Vetter 已提交
1288 1289 1290 1291 1292

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1293 1294
	mutex_unlock(&i915->drm.struct_mutex);

1295
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1296

1297 1298 1299 1300
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1301 1302
		/* Operation in this page
		 *
1303 1304 1305
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1306
		 */
1307
		u32 page_base = node.start;
1308 1309
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1320
		/* If we get a fault while copying data, then (presumably) our
1321 1322
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1323 1324
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1325
		 */
1326
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1327 1328 1329
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1330
		}
1331

1332 1333 1334
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1335
	}
1336
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1337 1338

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1339
out_unpin:
1340 1341 1342
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1343
				       node.start, node.size);
1344 1345
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1346
		i915_vma_unpin(vma);
1347
	}
1348
out_rpm:
1349
	intel_runtime_pm_put(i915);
1350
out_unlock:
1351
	mutex_unlock(&i915->drm.struct_mutex);
1352
	return ret;
1353 1354
}

1355
static int
1356
shmem_pwrite_slow(struct page *page, int offset, int length,
1357 1358 1359 1360
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1361
{
1362 1363
	char *vaddr;
	int ret;
1364

1365
	vaddr = kmap(page);
1366
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1367
		shmem_clflush_swizzled_range(vaddr + offset, length,
1368
					     page_do_bit17_swizzling);
1369
	if (page_do_bit17_swizzling)
1370 1371
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1372
	else
1373
		ret = __copy_from_user(vaddr + offset, user_data, length);
1374
	if (needs_clflush_after)
1375
		shmem_clflush_swizzled_range(vaddr + offset, length,
1376
					     page_do_bit17_swizzling);
1377
	kunmap(page);
1378

1379
	return ret ? -EFAULT : 0;
1380 1381
}

1382 1383 1384 1385 1386
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1387
static int
1388 1389 1390 1391
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1392
{
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1425
	unsigned int needs_clflush;
1426 1427
	unsigned int offset, idx;
	int ret;
1428

1429
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1430 1431 1432
	if (ret)
		return ret;

1433 1434 1435 1436
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1437

1438 1439 1440
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1441

1442 1443 1444 1445 1446 1447 1448
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1449

1450 1451 1452 1453 1454 1455
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1456

1457 1458 1459
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1460

1461 1462 1463 1464
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1465
		if (ret)
1466
			break;
1467

1468 1469 1470
		remain -= length;
		user_data += length;
		offset = 0;
1471
	}
1472

1473
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1474
	i915_gem_obj_finish_shmem_access(obj);
1475
	return ret;
1476 1477 1478 1479
}

/**
 * Writes data to the object referenced by handle.
1480 1481 1482
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1483 1484 1485 1486 1487
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1488
		      struct drm_file *file)
1489 1490
{
	struct drm_i915_gem_pwrite *args = data;
1491
	struct drm_i915_gem_object *obj;
1492 1493 1494 1495 1496 1497
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1498
		       u64_to_user_ptr(args->data_ptr),
1499 1500 1501
		       args->size))
		return -EFAULT;

1502
	obj = i915_gem_object_lookup(file, args->handle);
1503 1504
	if (!obj)
		return -ENOENT;
1505

1506
	/* Bounds check destination. */
1507
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1508
		ret = -EINVAL;
1509
		goto err;
C
Chris Wilson 已提交
1510 1511
	}

C
Chris Wilson 已提交
1512 1513
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1514 1515 1516 1517 1518 1519
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1520 1521 1522 1523 1524
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1525 1526 1527
	if (ret)
		goto err;

1528
	ret = i915_gem_object_pin_pages(obj);
1529
	if (ret)
1530
		goto err;
1531

D
Daniel Vetter 已提交
1532
	ret = -EFAULT;
1533 1534 1535 1536 1537 1538
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1539
	if (!i915_gem_object_has_struct_page(obj) ||
1540
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1541 1542
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1543 1544
		 * textures). Fallback to the shmem path in that case.
		 */
1545
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1546

1547
	if (ret == -EFAULT || ret == -ENOSPC) {
1548 1549
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1550
		else
1551
			ret = i915_gem_shmem_pwrite(obj, args);
1552
	}
1553

1554
	i915_gem_object_unpin_pages(obj);
1555
err:
C
Chris Wilson 已提交
1556
	i915_gem_object_put(obj);
1557
	return ret;
1558 1559
}

1560 1561 1562 1563 1564 1565
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1566 1567
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1568
	for_each_ggtt_vma(vma, obj) {
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1579
	spin_lock(&i915->mm.obj_lock);
1580
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1581 1582
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1583 1584
}

1585
/**
1586 1587
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1588 1589 1590
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1591 1592 1593
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1594
			  struct drm_file *file)
1595 1596
{
	struct drm_i915_gem_set_domain *args = data;
1597
	struct drm_i915_gem_object *obj;
1598 1599
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1600
	int err;
1601

1602
	/* Only handle setting domains to types used by the CPU. */
1603
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1604 1605 1606 1607 1608 1609 1610 1611
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1612
	obj = i915_gem_object_lookup(file, args->handle);
1613 1614
	if (!obj)
		return -ENOENT;
1615

1616 1617 1618 1619
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1620
	err = i915_gem_object_wait(obj,
1621 1622 1623 1624
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1625
	if (err)
C
Chris Wilson 已提交
1626
		goto out;
1627

T
Tina Zhang 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1641 1642 1643 1644 1645 1646 1647 1648 1649
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1650
		goto out;
1651 1652 1653

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1654
		goto out_unpin;
1655

1656 1657 1658 1659
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1660
	else
1661
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1662

1663 1664
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1665

1666
	mutex_unlock(&dev->struct_mutex);
1667

1668
	if (write_domain != 0)
1669 1670
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1671

C
Chris Wilson 已提交
1672
out_unpin:
1673
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1674 1675
out:
	i915_gem_object_put(obj);
1676
	return err;
1677 1678 1679 1680
}

/**
 * Called when user space has done writes to this buffer
1681 1682 1683
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1684 1685 1686
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1687
			 struct drm_file *file)
1688 1689
{
	struct drm_i915_gem_sw_finish *args = data;
1690
	struct drm_i915_gem_object *obj;
1691

1692
	obj = i915_gem_object_lookup(file, args->handle);
1693 1694
	if (!obj)
		return -ENOENT;
1695

T
Tina Zhang 已提交
1696 1697 1698 1699 1700
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1701
	/* Pinned buffers may be scanout, so flush the cache */
1702
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1703
	i915_gem_object_put(obj);
1704 1705

	return 0;
1706 1707 1708
}

/**
1709 1710 1711 1712 1713
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1714 1715 1716
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1727 1728 1729
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1730
		    struct drm_file *file)
1731 1732
{
	struct drm_i915_gem_mmap *args = data;
1733
	struct drm_i915_gem_object *obj;
1734 1735
	unsigned long addr;

1736 1737 1738
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1739
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1740 1741
		return -ENODEV;

1742 1743
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1744
		return -ENOENT;
1745

1746 1747 1748
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1749
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1750
		i915_gem_object_put(obj);
1751
		return -ENXIO;
1752 1753
	}

1754
	addr = vm_mmap(obj->base.filp, 0, args->size,
1755 1756
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1757 1758 1759 1760
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1761
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1762
			i915_gem_object_put(obj);
1763 1764
			return -EINTR;
		}
1765 1766 1767 1768 1769 1770 1771
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1772 1773

		/* This may race, but that's ok, it only gets set */
1774
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1775
	}
C
Chris Wilson 已提交
1776
	i915_gem_object_put(obj);
1777 1778 1779 1780 1781 1782 1783 1784
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1785 1786
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1787
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1788 1789
}

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1810 1811 1812
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1840
	return 2;
1841 1842
}

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1854 1855
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1856
		min_t(unsigned int, chunk,
1857
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1858 1859 1860 1861 1862 1863 1864 1865

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1866 1867
/**
 * i915_gem_fault - fault a page into the GTT
1868
 * @vmf: fault info
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1880 1881 1882
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1883
 */
1884
int i915_gem_fault(struct vm_fault *vmf)
1885
{
1886
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1887
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1888
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1889
	struct drm_device *dev = obj->base.dev;
1890 1891
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1892
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1893
	struct i915_vma *vma;
1894
	pgoff_t page_offset;
1895
	unsigned int flags;
1896
	int ret;
1897

1898
	/* We don't use vmf->pgoff since that has the fake offset */
1899
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1900

C
Chris Wilson 已提交
1901 1902
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1903
	/* Try to flush the object off the GPU first without holding the lock.
1904
	 * Upon acquiring the lock, we will perform our sanity checks and then
1905 1906 1907
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1908 1909 1910 1911
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1912
	if (ret)
1913 1914
		goto err;

1915 1916 1917 1918
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1919 1920 1921 1922 1923
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1924

1925
	/* Access to snoopable pages through the GTT is incoherent. */
1926
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1927
		ret = -EFAULT;
1928
		goto err_unlock;
1929 1930
	}

1931 1932 1933 1934 1935 1936 1937 1938
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1939
	/* Now pin it into the GTT as needed */
1940
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1941 1942
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1943
		struct i915_ggtt_view view =
1944
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1945

1946 1947 1948 1949 1950
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1951 1952
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1953 1954
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1955
		goto err_unlock;
C
Chris Wilson 已提交
1956
	}
1957

1958 1959
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1960
		goto err_unpin;
1961

1962
	ret = i915_vma_pin_fence(vma);
1963
	if (ret)
1964
		goto err_unpin;
1965

1966
	/* Finally, remap it using the new GTT offset */
1967
	ret = remap_io_mapping(area,
1968
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1969
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1970
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1971
			       &ggtt->iomap);
1972 1973
	if (ret)
		goto err_fence;
1974

1975 1976 1977 1978 1979 1980
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

1981 1982
	i915_vma_set_ggtt_write(vma);

1983
err_fence:
1984
	i915_vma_unpin_fence(vma);
1985
err_unpin:
C
Chris Wilson 已提交
1986
	__i915_vma_unpin(vma);
1987
err_unlock:
1988
	mutex_unlock(&dev->struct_mutex);
1989 1990
err_rpm:
	intel_runtime_pm_put(dev_priv);
1991
	i915_gem_object_unpin_pages(obj);
1992
err:
1993
	switch (ret) {
1994
	case -EIO:
1995 1996 1997 1998 1999 2000 2001
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2002 2003 2004
			ret = VM_FAULT_SIGBUS;
			break;
		}
2005
	case -EAGAIN:
D
Daniel Vetter 已提交
2006 2007 2008 2009
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2010
		 */
2011 2012
	case 0:
	case -ERESTARTSYS:
2013
	case -EINTR:
2014 2015 2016 2017 2018
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2019 2020
		ret = VM_FAULT_NOPAGE;
		break;
2021
	case -ENOMEM:
2022 2023
		ret = VM_FAULT_OOM;
		break;
2024
	case -ENOSPC:
2025
	case -EFAULT:
2026 2027
		ret = VM_FAULT_SIGBUS;
		break;
2028
	default:
2029
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2030 2031
		ret = VM_FAULT_SIGBUS;
		break;
2032
	}
2033
	return ret;
2034 2035
}

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2047
	for_each_ggtt_vma(vma, obj)
2048 2049 2050
		i915_vma_unset_userfault(vma);
}

2051 2052 2053 2054
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2055
 * Preserve the reservation of the mmapping with the DRM core code, but
2056 2057 2058 2059 2060 2061 2062 2063 2064
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2065
void
2066
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2067
{
2068 2069
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2070 2071 2072
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2073 2074 2075 2076
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2077
	 */
2078
	lockdep_assert_held(&i915->drm.struct_mutex);
2079
	intel_runtime_pm_get(i915);
2080

2081
	if (!obj->userfault_count)
2082
		goto out;
2083

2084
	__i915_gem_object_release_mmap(obj);
2085 2086 2087 2088 2089 2090 2091 2092 2093

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2094 2095 2096

out:
	intel_runtime_pm_put(i915);
2097 2098
}

2099
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2100
{
2101
	struct drm_i915_gem_object *obj, *on;
2102
	int i;
2103

2104 2105 2106 2107 2108 2109
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2110

2111
	list_for_each_entry_safe(obj, on,
2112 2113
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2114 2115 2116 2117 2118 2119 2120 2121

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2132 2133 2134 2135

		if (!reg->vma)
			continue;

2136
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2137 2138
		reg->dirty = true;
	}
2139 2140
}

2141 2142
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2143
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2144
	int err;
2145

2146
	err = drm_gem_create_mmap_offset(&obj->base);
2147
	if (likely(!err))
2148
		return 0;
2149

2150 2151 2152 2153 2154
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2155

2156
		i915_gem_drain_freed_objects(dev_priv);
2157
		err = drm_gem_create_mmap_offset(&obj->base);
2158 2159 2160 2161
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2162

2163
	return err;
2164 2165 2166 2167 2168 2169 2170
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2171
int
2172 2173
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2174
		  uint32_t handle,
2175
		  uint64_t *offset)
2176
{
2177
	struct drm_i915_gem_object *obj;
2178 2179
	int ret;

2180
	obj = i915_gem_object_lookup(file, handle);
2181 2182
	if (!obj)
		return -ENOENT;
2183

2184
	ret = i915_gem_object_create_mmap_offset(obj);
2185 2186
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2187

C
Chris Wilson 已提交
2188
	i915_gem_object_put(obj);
2189
	return ret;
2190 2191
}

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2213
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2214 2215
}

D
Daniel Vetter 已提交
2216 2217 2218
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2219
{
2220
	i915_gem_object_free_mmap_offset(obj);
2221

2222 2223
	if (obj->base.filp == NULL)
		return;
2224

D
Daniel Vetter 已提交
2225 2226 2227 2228 2229
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2230
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2231
	obj->mm.madv = __I915_MADV_PURGED;
2232
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2233
}
2234

2235
/* Try to discard unwanted pages */
2236
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2237
{
2238 2239
	struct address_space *mapping;

2240
	lockdep_assert_held(&obj->mm.lock);
2241
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2242

C
Chris Wilson 已提交
2243
	switch (obj->mm.madv) {
2244 2245 2246 2247 2248 2249 2250 2251 2252
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2253
	mapping = obj->base.filp->f_mapping,
2254
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2255 2256
}

2257
static void
2258 2259
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2260
{
2261 2262
	struct sgt_iter sgt_iter;
	struct page *page;
2263

2264
	__i915_gem_object_release_shmem(obj, pages, true);
2265

2266
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2267

2268
	if (i915_gem_object_needs_bit17_swizzle(obj))
2269
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2270

2271
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2272
		if (obj->mm.dirty)
2273
			set_page_dirty(page);
2274

C
Chris Wilson 已提交
2275
		if (obj->mm.madv == I915_MADV_WILLNEED)
2276
			mark_page_accessed(page);
2277

2278
		put_page(page);
2279
	}
C
Chris Wilson 已提交
2280
	obj->mm.dirty = false;
2281

2282 2283
	sg_free_table(pages);
	kfree(pages);
2284
}
C
Chris Wilson 已提交
2285

2286 2287 2288
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2289
	void __rcu **slot;
2290

2291
	rcu_read_lock();
C
Chris Wilson 已提交
2292 2293
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2294
	rcu_read_unlock();
2295 2296
}

2297 2298
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2299
{
2300
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2301
	struct sg_table *pages;
2302

C
Chris Wilson 已提交
2303
	if (i915_gem_object_has_pinned_pages(obj))
2304
		return;
2305

2306
	GEM_BUG_ON(obj->bind_count);
2307
	if (!i915_gem_object_has_pages(obj))
2308 2309 2310
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2311
	mutex_lock_nested(&obj->mm.lock, subclass);
2312 2313
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2314

2315 2316 2317
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2318 2319
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2320

2321 2322 2323 2324
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2325
	if (obj->mm.mapping) {
2326 2327
		void *ptr;

2328
		ptr = page_mask_bits(obj->mm.mapping);
2329 2330
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2331
		else
2332 2333
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2334
		obj->mm.mapping = NULL;
2335 2336
	}

2337 2338
	__i915_gem_object_reset_page_iter(obj);

2339 2340 2341
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2342 2343
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

2344 2345
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2346 2347
}

2348
static bool i915_sg_trim(struct sg_table *orig_st)
2349 2350 2351 2352 2353 2354
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2355
		return false;
2356

2357
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2358
		return false;
2359 2360 2361 2362 2363 2364 2365

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2366
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2367 2368 2369 2370

	sg_free_table(orig_st);

	*orig_st = new_st;
2371
	return true;
2372 2373
}

2374
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2375
{
2376
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2377 2378
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2379
	struct address_space *mapping;
2380 2381
	struct sg_table *st;
	struct scatterlist *sg;
2382
	struct sgt_iter sgt_iter;
2383
	struct page *page;
2384
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2385
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2386
	unsigned int sg_page_sizes;
2387
	gfp_t noreclaim;
I
Imre Deak 已提交
2388
	int ret;
2389

C
Chris Wilson 已提交
2390 2391 2392 2393
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2394 2395
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2396

2397 2398
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2399
		return -ENOMEM;
2400

2401
rebuild_st:
2402 2403
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2404
		return -ENOMEM;
2405
	}
2406

2407 2408 2409 2410 2411
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2412
	mapping = obj->base.filp->f_mapping;
2413
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2414 2415
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2416 2417
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2418
	sg_page_sizes = 0;
2419
	for (i = 0; i < page_count; i++) {
2420 2421 2422 2423 2424 2425 2426
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2427
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2428 2429 2430 2431 2432 2433 2434 2435
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2436
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2437
			cond_resched();
2438

C
Chris Wilson 已提交
2439 2440 2441
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2442 2443 2444 2445
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2446
			 */
2447 2448 2449
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2462
				 * this we want __GFP_RETRY_MAYFAIL.
2463
				 */
M
Michal Hocko 已提交
2464
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2465
			}
2466 2467
		} while (1);

2468 2469 2470
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2471
			if (i) {
M
Matthew Auld 已提交
2472
				sg_page_sizes |= sg->length;
2473
				sg = sg_next(sg);
2474
			}
2475 2476 2477 2478 2479 2480
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2481 2482 2483

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2484
	}
2485
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2486
		sg_page_sizes |= sg->length;
2487
		sg_mark_end(sg);
2488
	}
2489

2490 2491 2492
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2493
	ret = i915_gem_gtt_prepare_pages(obj, st);
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2513

2514
	if (i915_gem_object_needs_bit17_swizzle(obj))
2515
		i915_gem_object_do_bit_17_swizzle(obj, st);
2516

M
Matthew Auld 已提交
2517
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2518 2519

	return 0;
2520

2521
err_sg:
2522
	sg_mark_end(sg);
2523
err_pages:
2524 2525
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2526 2527
	sg_free_table(st);
	kfree(st);
2528 2529 2530 2531 2532 2533 2534 2535 2536

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2537 2538 2539
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2540
	return ret;
2541 2542 2543
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2544
				 struct sg_table *pages,
M
Matthew Auld 已提交
2545
				 unsigned int sg_page_sizes)
2546
{
2547 2548 2549 2550
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2551
	lockdep_assert_held(&obj->mm.lock);
2552 2553 2554 2555 2556

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2557 2558

	if (i915_gem_object_is_tiled(obj) &&
2559
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2560 2561 2562 2563
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2564

M
Matthew Auld 已提交
2565 2566
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2567 2568

	/*
M
Matthew Auld 已提交
2569 2570 2571 2572 2573 2574
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2575 2576 2577 2578 2579 2580 2581
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2582 2583 2584 2585

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2586 2587 2588 2589
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2590
	int err;
2591 2592 2593 2594 2595 2596

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2597
	err = obj->ops->get_pages(obj);
2598
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2599

2600
	return err;
2601 2602
}

2603
/* Ensure that the associated pages are gathered from the backing storage
2604
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2605
 * multiple times before they are released by a single call to
2606
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2607 2608 2609
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2610
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2611
{
2612
	int err;
2613

2614 2615 2616
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2617

2618
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2619 2620
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2621 2622 2623
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2624

2625 2626 2627
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2628

2629 2630
unlock:
	mutex_unlock(&obj->mm.lock);
2631
	return err;
2632 2633
}

2634
/* The 'mapping' part of i915_gem_object_pin_map() below */
2635 2636
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2637 2638
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2639
	struct sg_table *sgt = obj->mm.pages;
2640 2641
	struct sgt_iter sgt_iter;
	struct page *page;
2642 2643
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2644
	unsigned long i = 0;
2645
	pgprot_t pgprot;
2646 2647 2648
	void *addr;

	/* A single page can always be kmapped */
2649
	if (n_pages == 1 && type == I915_MAP_WB)
2650 2651
		return kmap(sg_page(sgt->sgl));

2652 2653
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2654
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2655 2656 2657
		if (!pages)
			return NULL;
	}
2658

2659 2660
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2661 2662 2663 2664

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2665
	switch (type) {
2666 2667 2668
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2669 2670 2671 2672 2673 2674 2675 2676
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2677

2678
	if (pages != stack_pages)
M
Michal Hocko 已提交
2679
		kvfree(pages);
2680 2681 2682 2683 2684

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2685 2686
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2687
{
2688 2689 2690
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2691 2692
	int ret;

T
Tina Zhang 已提交
2693 2694
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2695

2696
	ret = mutex_lock_interruptible(&obj->mm.lock);
2697 2698 2699
	if (ret)
		return ERR_PTR(ret);

2700 2701 2702
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2703
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2704
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2705 2706
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2707 2708 2709
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2710

2711 2712 2713
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2714 2715
		pinned = false;
	}
2716
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2717

2718
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2719 2720 2721
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2722
			goto err_unpin;
2723
		}
2724 2725 2726 2727 2728 2729

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2730
		ptr = obj->mm.mapping = NULL;
2731 2732
	}

2733 2734 2735 2736
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2737
			goto err_unpin;
2738 2739
		}

2740
		obj->mm.mapping = page_pack_bits(ptr, type);
2741 2742
	}

2743 2744
out_unlock:
	mutex_unlock(&obj->mm.lock);
2745 2746
	return ptr;

2747 2748 2749 2750 2751
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2752 2753
}

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2771
	if (i915_gem_object_has_pages(obj))
2772 2773
		return -ENODEV;

2774 2775 2776
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2826
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2827
{
2828
	bool banned;
2829

2830
	atomic_inc(&ctx->guilty_count);
2831

2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
	banned = false;
	if (i915_gem_context_is_bannable(ctx)) {
		unsigned int score;

		score = atomic_add_return(CONTEXT_SCORE_GUILTY,
					  &ctx->ban_score);
		banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;

		DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
				 ctx->name, score, yesno(banned));
	}
2843
	if (!banned)
2844 2845
		return;

2846 2847 2848 2849 2850 2851
	i915_gem_context_set_banned(ctx);
	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
		atomic_inc(&ctx->file_priv->context_bans);
		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
	}
2852 2853 2854 2855
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2856
	atomic_inc(&ctx->active_count);
2857 2858
}

2859
struct drm_i915_gem_request *
2860
i915_gem_find_active_request(struct intel_engine_cs *engine)
2861
{
2862 2863
	struct drm_i915_gem_request *request, *active = NULL;
	unsigned long flags;
2864

2865 2866 2867 2868 2869 2870 2871 2872
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2873
	spin_lock_irqsave(&engine->timeline->lock, flags);
2874
	list_for_each_entry(request, &engine->timeline->requests, link) {
2875 2876
		if (__i915_gem_request_completed(request,
						 request->global_seqno))
2877
			continue;
2878

2879
		GEM_BUG_ON(request->engine != engine);
2880 2881
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2882 2883 2884

		active = request;
		break;
2885
	}
2886
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2887

2888
	return active;
2889 2890
}

2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2905 2906 2907 2908 2909 2910 2911 2912 2913
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
struct drm_i915_gem_request *
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_request *request = NULL;

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

	/*
	 * Prevent the signaler thread from updating the request
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
	 * state (by calling dma_fence_signal) as we are processing
	 * the reset. The write from the GPU of the seqno is
	 * asynchronous and the signaler thread may see a different
	 * value to us and declare the request complete, even though
	 * the reset routine have picked that request as the active
	 * (incomplete) request. This conflict is not handled
	 * gracefully!
	 */
	kthread_park(engine->breadcrumbs.signaler);

2935 2936
	/*
	 * Prevent request submission to the hardware until we have
2937 2938
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
2939
	 * to a second via its execlists->tasklet *just* as we are
2940
	 * calling engine->init_hw() and also writing the ELSP.
2941
	 * Turning off the execlists->tasklet until the reset is over
2942 2943
	 * prevents the race.
	 */
2944 2945
	tasklet_kill(&engine->execlists.tasklet);
	tasklet_disable(&engine->execlists.tasklet);
2946

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
	/*
	 * We're using worker to queue preemption requests from the tasklet in
	 * GuC submission mode.
	 * Even though tasklet was disabled, we may still have a worker queued.
	 * Let's make sure that all workers scheduled before disabling the
	 * tasklet are completed before continuing with the reset.
	 */
	if (engine->i915->guc.preempt_wq)
		flush_workqueue(engine->i915->guc.preempt_wq);

2957 2958 2959
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2960 2961 2962
	request = i915_gem_find_active_request(engine);
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
2963 2964 2965 2966

	return request;
}

2967
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2968 2969
{
	struct intel_engine_cs *engine;
2970
	struct drm_i915_gem_request *request;
2971
	enum intel_engine_id id;
2972
	int err = 0;
2973

2974
	for_each_engine(engine, dev_priv, id) {
2975 2976 2977 2978
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
2979
		}
2980 2981

		engine->hangcheck.active_request = request;
2982 2983
	}

2984
	i915_gem_revoke_fences(dev_priv);
2985 2986

	return err;
2987 2988
}

2989
static void skip_request(struct drm_i915_gem_request *request)
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
3004 3005

	dma_fence_set_error(&request->fence, -EIO);
3006 3007
}

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

3031 3032 3033 3034
/* Returns the request if it was guilty of the hang */
static struct drm_i915_gem_request *
i915_gem_reset_request(struct intel_engine_cs *engine,
		       struct drm_i915_gem_request *request)
3035
{
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

3057
	if (engine_stalled(engine)) {
3058 3059
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
3060 3061 3062 3063

		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
3064
	} else {
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
			i915_gem_context_mark_innocent(request->ctx);
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
			spin_lock_irq(&engine->timeline->lock);
			request = list_prev_entry(request, link);
			if (&request->link == &engine->timeline->requests)
				request = NULL;
			spin_unlock_irq(&engine->timeline->lock);
		}
3082 3083
	}

3084
	return request;
3085 3086
}

3087 3088
void i915_gem_reset_engine(struct intel_engine_cs *engine,
			   struct drm_i915_gem_request *request)
3089
{
3090 3091 3092 3093 3094 3095
	/*
	 * Make sure this write is visible before we re-enable the interrupt
	 * handlers on another CPU, as tasklet_enable() resolves to just
	 * a compiler barrier which is insufficient for our purpose here.
	 */
	smp_store_mb(engine->irq_posted, 0);
3096

3097 3098 3099 3100
	if (request)
		request = i915_gem_reset_request(engine, request);

	if (request) {
3101 3102 3103
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
	}
3104 3105 3106

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
3107
}
3108

3109
void i915_gem_reset(struct drm_i915_private *dev_priv)
3110
{
3111
	struct intel_engine_cs *engine;
3112
	enum intel_engine_id id;
3113

3114 3115
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3116 3117
	i915_gem_retire_requests(dev_priv);

3118 3119 3120
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

3121
		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3122 3123 3124
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

		/*
		 * Ostensibily, we always want a context loaded for powersaving,
		 * so if the engine is idle after the reset, send a request
		 * to load our scratch kernel_context.
		 *
		 * More mysteriously, if we leave the engine idle after a reset,
		 * the next userspace batch may hang, with what appears to be
		 * an incoherent read by the CS (presumably stale TLB). An
		 * empty request appears sufficient to paper over the glitch.
		 */
3136
		if (intel_engine_is_idle(engine)) {
3137 3138 3139 3140 3141 3142 3143
			struct drm_i915_gem_request *rq;

			rq = i915_gem_request_alloc(engine,
						    dev_priv->kernel_context);
			if (!IS_ERR(rq))
				__i915_add_request(rq, false);
		}
3144
	}
3145

3146
	i915_gem_restore_fences(dev_priv);
3147 3148 3149 3150 3151 3152 3153

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
3154 3155
}

3156 3157
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3158
	tasklet_enable(&engine->execlists.tasklet);
3159
	kthread_unpark(engine->breadcrumbs.signaler);
3160 3161

	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3162 3163
}

3164 3165
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3166 3167 3168
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3169
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3170

3171
	for_each_engine(engine, dev_priv, id) {
3172
		engine->hangcheck.active_request = NULL;
3173
		i915_gem_reset_finish_engine(engine);
3174
	}
3175 3176
}

3177
static void nop_submit_request(struct drm_i915_gem_request *request)
3178 3179 3180 3181 3182 3183 3184
{
	dma_fence_set_error(&request->fence, -EIO);

	i915_gem_request_submit(request);
}

static void nop_complete_submit_request(struct drm_i915_gem_request *request)
3185
{
3186 3187
	unsigned long flags;

3188
	dma_fence_set_error(&request->fence, -EIO);
3189 3190 3191

	spin_lock_irqsave(&request->engine->timeline->lock, flags);
	__i915_gem_request_submit(request);
3192
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3193
	spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3194 3195
}

3196
void i915_gem_set_wedged(struct drm_i915_private *i915)
3197
{
3198 3199 3200
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3201 3202 3203 3204 3205 3206 3207
	if (drm_debug & DRM_UT_DRIVER) {
		struct drm_printer p = drm_debug_printer(__func__);

		for_each_engine(engine, i915, id)
			intel_engine_dump(engine, &p, "%s\n", engine->name);
	}

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
	/*
	 * First, stop submission to hw, but do not yet complete requests by
	 * rolling the global seqno forward (since this would complete requests
	 * for which we haven't set the fence error to EIO yet).
	 */
	for_each_engine(engine, i915, id)
		engine->submit_request = nop_submit_request;

	/*
	 * Make sure no one is running the old callback before we proceed with
	 * cancelling requests and resetting the completion tracking. Otherwise
	 * we might submit a request to the hardware which never completes.
3220
	 */
3221
	synchronize_rcu();
3222

3223 3224 3225
	for_each_engine(engine, i915, id) {
		/* Mark all executing requests as skipped */
		engine->cancel_requests(engine);
3226

3227 3228 3229 3230 3231
		/*
		 * Only once we've force-cancelled all in-flight requests can we
		 * start to complete all requests.
		 */
		engine->submit_request = nop_complete_submit_request;
3232
		engine->schedule = NULL;
3233 3234
	}

3235 3236
	i915->caps.scheduler = 0;

3237 3238 3239 3240
	/*
	 * Make sure no request can slip through without getting completed by
	 * either this call here to intel_engine_init_global_seqno, or the one
	 * in nop_complete_submit_request.
3241
	 */
3242
	synchronize_rcu();
3243

3244 3245
	for_each_engine(engine, i915, id) {
		unsigned long flags;
3246

3247 3248 3249 3250 3251 3252 3253 3254 3255
		/* Mark all pending requests as complete so that any concurrent
		 * (lockless) lookup doesn't try and wait upon the request as we
		 * reset it.
		 */
		spin_lock_irqsave(&engine->timeline->lock, flags);
		intel_engine_init_global_seqno(engine,
					       intel_engine_last_submit(engine));
		spin_unlock_irqrestore(&engine->timeline->lock, flags);
	}
3256

3257 3258
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	wake_up_all(&i915->gpu_error.reset_queue);
3259 3260
}

3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

	/* Before unwedging, make sure that all pending operations
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
			struct drm_i915_gem_request *rq;

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

			/* We can't use our normal waiter as we want to
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}

	/* Undo nop_submit_request. We prevent all new i915 requests from
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3313
	i915_gem_contexts_lost(i915);
3314 3315 3316 3317 3318 3319 3320

	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3321
static void
3322 3323
i915_gem_retire_work_handler(struct work_struct *work)
{
3324
	struct drm_i915_private *dev_priv =
3325
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3326
	struct drm_device *dev = &dev_priv->drm;
3327

3328
	/* Come back later if the device is busy... */
3329
	if (mutex_trylock(&dev->struct_mutex)) {
3330
		i915_gem_retire_requests(dev_priv);
3331
		mutex_unlock(&dev->struct_mutex);
3332
	}
3333

3334 3335
	/*
	 * Keep the retire handler running until we are finally idle.
3336 3337 3338
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3339
	if (READ_ONCE(dev_priv->gt.awake))
3340 3341
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3342
				   round_jiffies_up_relative(HZ));
3343
}
3344

3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

3404 3405 3406 3407 3408 3409 3410
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3411 3412 3413 3414
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3415
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3416
	unsigned int epoch = I915_EPOCH_INVALID;
3417
	bool rearm_hangcheck;
3418
	ktime_t end;
3419 3420 3421 3422

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3423 3424 3425 3426
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
3427
	end = ktime_add_ms(ktime_get(), I915_IDLE_ENGINES_TIMEOUT);
3428 3429 3430 3431 3432 3433 3434 3435 3436
	do {
		if (new_requests_since_last_retire(dev_priv))
			return;

		if (intel_engines_are_idle(dev_priv))
			break;

		usleep_range(100, 500);
	} while (ktime_before(ktime_get(), end));
3437 3438 3439 3440

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3441
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3442 3443 3444 3445 3446 3447 3448
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3449 3450 3451 3452
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3453
	if (new_requests_since_last_retire(dev_priv))
3454
		goto out_unlock;
3455

3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(dev_priv->drm.irq);

3469
	intel_engines_park(dev_priv);
3470 3471
	i915_gem_timelines_park(dev_priv);

3472
	i915_pmu_gt_parked(dev_priv);
3473

3474 3475
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
3476 3477
	epoch = dev_priv->gt.epoch;
	GEM_BUG_ON(epoch == I915_EPOCH_INVALID);
3478
	rearm_hangcheck = false;
3479

3480 3481
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
3482 3483 3484

	intel_display_power_put(dev_priv, POWER_DOMAIN_GT_IRQ);

3485 3486
	intel_runtime_pm_put(dev_priv);
out_unlock:
3487
	mutex_unlock(&dev_priv->drm.struct_mutex);
3488

3489 3490 3491 3492
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3493
	}
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3511 3512
}

3513 3514
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3515
	struct drm_i915_private *i915 = to_i915(gem->dev);
3516 3517
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3518
	struct i915_lut_handle *lut, *ln;
3519

3520 3521 3522 3523 3524 3525
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3526
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3527 3528 3529 3530
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3531 3532 3533 3534 3535 3536 3537
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3538
			i915_vma_close(vma);
3539

3540 3541
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3542

3543 3544
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3545
	}
3546 3547

	mutex_unlock(&i915->drm.struct_mutex);
3548 3549
}

3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3561 3562
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3563 3564 3565
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3566 3567 3568 3569 3570 3571 3572
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3573
 *  -EAGAIN: incomplete, restart syscall
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3590 3591
	ktime_t start;
	long ret;
3592

3593 3594 3595
	if (args->flags != 0)
		return -EINVAL;

3596
	obj = i915_gem_object_lookup(file, args->bo_handle);
3597
	if (!obj)
3598 3599
		return -ENOENT;

3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3621 3622 3623 3624

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3625 3626
	}

C
Chris Wilson 已提交
3627
	i915_gem_object_put(obj);
3628
	return ret;
3629 3630
}

3631
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3632
{
3633
	int ret, i;
3634

3635 3636 3637 3638 3639
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3640

3641 3642 3643
	return 0;
}

3644 3645
static int wait_for_engines(struct drm_i915_private *i915)
{
3646
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3647 3648 3649 3650 3651 3652 3653 3654 3655
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
		if (drm_debug & DRM_UT_DRIVER) {
			struct drm_printer p = drm_debug_printer(__func__);
			struct intel_engine_cs *engine;
			enum intel_engine_id id;

			for_each_engine(engine, i915, id)
				intel_engine_dump(engine, &p,
3656
						  "%s\n", engine->name);
3657 3658
		}

3659 3660
		i915_gem_set_wedged(i915);
		return -EIO;
3661 3662 3663 3664 3665
	}

	return 0;
}

3666 3667 3668 3669
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3670 3671 3672 3673
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
3684
		i915_gem_retire_requests(i915);
3685 3686

		ret = wait_for_engines(i915);
3687 3688
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3689
	}
3690

3691
	return ret;
3692 3693
}

3694 3695
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3696 3697 3698 3699 3700 3701 3702
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3703 3704 3705 3706 3707
	obj->base.write_domain = 0;
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3708
	if (!READ_ONCE(obj->pin_global))
3709 3710 3711 3712 3713 3714 3715
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
	if (write) {
		obj->base.read_domains = I915_GEM_DOMAIN_WC;
		obj->base.write_domain = I915_GEM_DOMAIN_WC;
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3779 3780
/**
 * Moves a single object to the GTT read, and possibly write domain.
3781 3782
 * @obj: object to act on
 * @write: ask for write access or read only
3783 3784 3785 3786
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3787
int
3788
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3789
{
3790
	int ret;
3791

3792
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3793

3794 3795 3796 3797 3798 3799
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3800 3801 3802
	if (ret)
		return ret;

3803 3804 3805
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3806 3807 3808 3809 3810 3811 3812 3813
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3814
	ret = i915_gem_object_pin_pages(obj);
3815 3816 3817
	if (ret)
		return ret;

3818
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3819

3820 3821 3822 3823 3824 3825 3826
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3827 3828 3829
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3830
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3831
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3832
	if (write) {
3833 3834
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3835
		obj->mm.dirty = true;
3836 3837
	}

C
Chris Wilson 已提交
3838
	i915_gem_object_unpin_pages(obj);
3839 3840 3841
	return 0;
}

3842 3843
/**
 * Changes the cache-level of an object across all VMA.
3844 3845
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3857 3858 3859
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3860
	struct i915_vma *vma;
3861
	int ret;
3862

3863 3864
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3865
	if (obj->cache_level == cache_level)
3866
		return 0;
3867

3868 3869 3870 3871 3872
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3873 3874
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3875 3876 3877
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3878
		if (i915_vma_is_pinned(vma)) {
3879 3880 3881 3882
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3883 3884
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3896 3897
	}

3898 3899 3900 3901 3902 3903 3904
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3905
	if (obj->bind_count) {
3906 3907 3908 3909
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3910 3911 3912 3913 3914 3915
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3916 3917 3918
		if (ret)
			return ret;

3919 3920
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3937
			for_each_ggtt_vma(vma, obj) {
3938 3939 3940 3941
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3942 3943 3944 3945 3946 3947 3948 3949
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3950 3951
		}

3952
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3953 3954 3955 3956 3957 3958 3959
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3960 3961
	}

3962
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3963
		vma->node.color = cache_level;
3964
	i915_gem_object_set_cache_coherency(obj, cache_level);
3965
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3966

3967 3968 3969
	return 0;
}

B
Ben Widawsky 已提交
3970 3971
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3972
{
B
Ben Widawsky 已提交
3973
	struct drm_i915_gem_caching *args = data;
3974
	struct drm_i915_gem_object *obj;
3975
	int err = 0;
3976

3977 3978 3979 3980 3981 3982
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3983

3984 3985 3986 3987 3988 3989
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3990 3991 3992 3993
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3994 3995 3996 3997
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3998 3999 4000
out:
	rcu_read_unlock();
	return err;
4001 4002
}

B
Ben Widawsky 已提交
4003 4004
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4005
{
4006
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
4007
	struct drm_i915_gem_caching *args = data;
4008 4009
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
4010
	int ret = 0;
4011

B
Ben Widawsky 已提交
4012 4013
	switch (args->caching) {
	case I915_CACHING_NONE:
4014 4015
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4016
	case I915_CACHING_CACHED:
4017 4018 4019 4020 4021 4022
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4023
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4024 4025
			return -ENODEV;

4026 4027
		level = I915_CACHE_LLC;
		break;
4028
	case I915_CACHING_DISPLAY:
4029
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4030
		break;
4031 4032 4033 4034
	default:
		return -EINVAL;
	}

4035 4036 4037 4038
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
4039 4040 4041 4042 4043 4044 4045 4046 4047
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

4048 4049 4050 4051 4052 4053 4054
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
4055
	if (ret)
4056
		goto out;
B
Ben Widawsky 已提交
4057

4058 4059 4060
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
4061 4062 4063

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
4064 4065 4066

out:
	i915_gem_object_put(obj);
4067 4068 4069
	return ret;
}

4070
/*
4071 4072 4073
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4074
 */
C
Chris Wilson 已提交
4075
struct i915_vma *
4076 4077
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4078
				     const struct i915_ggtt_view *view)
4079
{
C
Chris Wilson 已提交
4080
	struct i915_vma *vma;
4081 4082
	int ret;

4083 4084
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4085
	/* Mark the global pin early so that we account for the
4086 4087
	 * display coherency whilst setting up the cache domains.
	 */
4088
	obj->pin_global++;
4089

4090 4091 4092 4093 4094 4095 4096 4097 4098
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4099
	ret = i915_gem_object_set_cache_level(obj,
4100 4101
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
4102 4103
	if (ret) {
		vma = ERR_PTR(ret);
4104
		goto err_unpin_global;
C
Chris Wilson 已提交
4105
	}
4106

4107 4108
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
4109 4110 4111 4112
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
4113
	 */
4114
	vma = ERR_PTR(-ENOSPC);
4115
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
4116 4117
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
4134
	if (IS_ERR(vma))
4135
		goto err_unpin_global;
4136

4137 4138
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

4139
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
4140
	__i915_gem_object_flush_for_display(obj);
4141
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
4142

4143 4144 4145
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4146
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4147

C
Chris Wilson 已提交
4148
	return vma;
4149

4150 4151
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
4152
	return vma;
4153 4154 4155
}

void
C
Chris Wilson 已提交
4156
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4157
{
4158
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4159

4160
	if (WARN_ON(vma->obj->pin_global == 0))
4161 4162
		return;

4163
	if (--vma->obj->pin_global == 0)
4164
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4165

4166
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4167
	i915_gem_object_bump_inactive_ggtt(vma->obj);
4168

C
Chris Wilson 已提交
4169
	i915_vma_unpin(vma);
4170 4171
}

4172 4173
/**
 * Moves a single object to the CPU read, and possibly write domain.
4174 4175
 * @obj: object to act on
 * @write: requesting write or read-only access
4176 4177 4178 4179
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4180
int
4181
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4182 4183 4184
{
	int ret;

4185
	lockdep_assert_held(&obj->base.dev->struct_mutex);
4186

4187 4188 4189 4190 4191 4192
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
4193 4194 4195
	if (ret)
		return ret;

4196
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4197

4198
	/* Flush the CPU cache if it's still invalid. */
4199
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4200
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4201
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4202 4203 4204 4205 4206
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4207
	GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
4208 4209 4210 4211

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
4212 4213
	if (write)
		__start_cpu_write(obj);
4214 4215 4216 4217

	return 0;
}

4218 4219 4220
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4221 4222 4223 4224
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4225 4226 4227
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4228
static int
4229
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4230
{
4231
	struct drm_i915_private *dev_priv = to_i915(dev);
4232
	struct drm_i915_file_private *file_priv = file->driver_priv;
4233
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4234
	struct drm_i915_gem_request *request, *target = NULL;
4235
	long ret;
4236

4237 4238 4239
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4240

4241
	spin_lock(&file_priv->mm.lock);
4242
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4243 4244
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4245

4246 4247 4248 4249
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4250

4251
		target = request;
4252
	}
4253
	if (target)
4254
		i915_gem_request_get(target);
4255
	spin_unlock(&file_priv->mm.lock);
4256

4257
	if (target == NULL)
4258
		return 0;
4259

4260 4261 4262
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4263
	i915_gem_request_put(target);
4264

4265
	return ret < 0 ? ret : 0;
4266 4267
}

C
Chris Wilson 已提交
4268
struct i915_vma *
4269 4270
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4271
			 u64 size,
4272 4273
			 u64 alignment,
			 u64 flags)
4274
{
4275 4276
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
4277 4278
	struct i915_vma *vma;
	int ret;
4279

4280 4281
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
	if (!view && flags & PIN_MAPPABLE) {
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4313
	vma = i915_vma_instance(obj, vm, view);
4314
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4315
		return vma;
4316 4317

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4318 4319 4320
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4321

4322
			if (flags & PIN_MAPPABLE &&
4323
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4324 4325 4326
				return ERR_PTR(-ENOSPC);
		}

4327 4328
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4329 4330 4331
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4332
		     !!(flags & PIN_MAPPABLE),
4333
		     i915_vma_is_map_and_fenceable(vma));
4334 4335
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4336
			return ERR_PTR(ret);
4337 4338
	}

C
Chris Wilson 已提交
4339 4340 4341
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4342

C
Chris Wilson 已提交
4343
	return vma;
4344 4345
}

4346
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4361 4362 4363 4364 4365 4366 4367 4368 4369
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4370 4371
}

4372
static __always_inline unsigned int
4373
__busy_set_if_active(const struct dma_fence *fence,
4374 4375
		     unsigned int (*flag)(unsigned int id))
{
4376
	struct drm_i915_gem_request *rq;
4377

4378 4379 4380 4381
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4382
	 *
4383
	 * Note we only report on the status of native fences.
4384
	 */
4385 4386 4387 4388 4389 4390 4391 4392
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

4393
	return flag(rq->engine->uabi_id);
4394 4395
}

4396
static __always_inline unsigned int
4397
busy_check_reader(const struct dma_fence *fence)
4398
{
4399
	return __busy_set_if_active(fence, __busy_read_flag);
4400 4401
}

4402
static __always_inline unsigned int
4403
busy_check_writer(const struct dma_fence *fence)
4404
{
4405 4406 4407 4408
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4409 4410
}

4411 4412
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4413
		    struct drm_file *file)
4414 4415
{
	struct drm_i915_gem_busy *args = data;
4416
	struct drm_i915_gem_object *obj;
4417 4418
	struct reservation_object_list *list;
	unsigned int seq;
4419
	int err;
4420

4421
	err = -ENOENT;
4422 4423
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4424
	if (!obj)
4425
		goto out;
4426

4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4445

4446 4447
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4448

4449 4450 4451 4452
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4453

4454 4455 4456 4457 4458 4459
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4460
	}
4461

4462 4463 4464 4465
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4466 4467 4468
out:
	rcu_read_unlock();
	return err;
4469 4470 4471 4472 4473 4474
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4475
	return i915_gem_ring_throttle(dev, file_priv);
4476 4477
}

4478 4479 4480 4481
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4482
	struct drm_i915_private *dev_priv = to_i915(dev);
4483
	struct drm_i915_gem_madvise *args = data;
4484
	struct drm_i915_gem_object *obj;
4485
	int err;
4486 4487 4488 4489 4490 4491 4492 4493 4494

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4495
	obj = i915_gem_object_lookup(file_priv, args->handle);
4496 4497 4498 4499 4500 4501
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4502

4503
	if (i915_gem_object_has_pages(obj) &&
4504
	    i915_gem_object_is_tiled(obj) &&
4505
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4506 4507
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4508
			__i915_gem_object_unpin_pages(obj);
4509 4510 4511
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4512
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4513
			__i915_gem_object_pin_pages(obj);
4514 4515
			obj->mm.quirked = true;
		}
4516 4517
	}

C
Chris Wilson 已提交
4518 4519
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4520

C
Chris Wilson 已提交
4521
	/* if the object is no longer attached, discard its backing storage */
4522 4523
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4524 4525
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4526
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4527
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4528

4529
out:
4530
	i915_gem_object_put(obj);
4531
	return err;
4532 4533
}

4534 4535 4536 4537 4538 4539 4540
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4541
	intel_fb_obj_flush(obj, ORIGIN_CS);
4542 4543
}

4544 4545
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4546
{
4547 4548
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4549
	INIT_LIST_HEAD(&obj->vma_list);
4550
	INIT_LIST_HEAD(&obj->lut_list);
4551
	INIT_LIST_HEAD(&obj->batch_pool_link);
4552

4553 4554
	obj->ops = ops;

4555 4556 4557
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4558
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4559
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4560 4561 4562 4563

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4564

4565
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4566 4567
}

4568
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4569 4570
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4571

4572 4573
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4574 4575

	.pwrite = i915_gem_object_pwrite_gtt,
4576 4577
};

M
Matthew Auld 已提交
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4602
struct drm_i915_gem_object *
4603
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4604
{
4605
	struct drm_i915_gem_object *obj;
4606
	struct address_space *mapping;
4607
	unsigned int cache_level;
D
Daniel Vetter 已提交
4608
	gfp_t mask;
4609
	int ret;
4610

4611 4612 4613 4614 4615
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4616
	if (size >> PAGE_SHIFT > INT_MAX)
4617 4618 4619 4620 4621
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4622
	obj = i915_gem_object_alloc(dev_priv);
4623
	if (obj == NULL)
4624
		return ERR_PTR(-ENOMEM);
4625

M
Matthew Auld 已提交
4626
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4627 4628
	if (ret)
		goto fail;
4629

4630
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4631
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4632 4633 4634 4635 4636
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4637
	mapping = obj->base.filp->f_mapping;
4638
	mapping_set_gfp_mask(mapping, mask);
4639
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4640

4641
	i915_gem_object_init(obj, &i915_gem_object_ops);
4642

4643 4644
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4645

4646
	if (HAS_LLC(dev_priv))
4647
		/* On some devices, we can have the GPU use the LLC (the CPU
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4659 4660 4661
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4662

4663
	i915_gem_object_set_cache_coherency(obj, cache_level);
4664

4665 4666
	trace_i915_gem_object_create(obj);

4667
	return obj;
4668 4669 4670 4671

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4672 4673
}

4674 4675 4676 4677 4678 4679 4680 4681
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4682
	if (obj->mm.madv != I915_MADV_WILLNEED)
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4698 4699
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4700
{
4701
	struct drm_i915_gem_object *obj, *on;
4702

4703
	intel_runtime_pm_get(i915);
4704
	llist_for_each_entry_safe(obj, on, freed, freed) {
4705 4706 4707 4708
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4709 4710
		mutex_lock(&i915->drm.struct_mutex);

4711 4712 4713 4714 4715 4716 4717
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4718 4719
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4720

4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4733
		mutex_unlock(&i915->drm.struct_mutex);
4734 4735

		GEM_BUG_ON(obj->bind_count);
4736
		GEM_BUG_ON(obj->userfault_count);
4737
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4738
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4739 4740 4741

		if (obj->ops->release)
			obj->ops->release(obj);
4742

4743 4744
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4745
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4746
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4747 4748 4749 4750

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4751
		reservation_object_fini(&obj->__builtin_resv);
4752 4753 4754 4755 4756
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4757 4758 4759

		if (on)
			cond_resched();
4760
	}
4761
	intel_runtime_pm_put(i915);
4762 4763 4764 4765 4766 4767
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4778
		__i915_gem_free_objects(i915, freed);
4779
	}
4780 4781 4782 4783 4784 4785 4786
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4787

4788 4789
	/*
	 * All file-owned VMA should have been released by this point through
4790 4791 4792 4793 4794 4795
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4796

4797
	spin_lock(&i915->mm.free_lock);
4798
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4799 4800
		spin_unlock(&i915->mm.free_lock);

4801
		__i915_gem_free_objects(i915, freed);
4802
		if (need_resched())
4803 4804 4805
			return;

		spin_lock(&i915->mm.free_lock);
4806
	}
4807
	spin_unlock(&i915->mm.free_lock);
4808
}
4809

4810 4811 4812 4813 4814 4815
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

4816 4817 4818 4819 4820 4821 4822 4823 4824
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4825 4826
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4827
		queue_work(i915->wq, &i915->mm.free_work);
4828
}
4829

4830 4831 4832
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4833

4834 4835 4836
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4837
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4838
		obj->mm.madv = I915_MADV_DONTNEED;
4839

4840 4841
	/*
	 * Before we free the object, make sure any pure RCU-only
4842 4843 4844 4845 4846
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4847 4848
}

4849 4850 4851 4852
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4853 4854
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4855 4856 4857 4858 4859
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4860
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4861
{
4862
	struct i915_gem_context *kernel_context = i915->kernel_context;
4863 4864 4865
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

4866 4867 4868 4869
	for_each_engine(engine, i915, id) {
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline->last_request));
		GEM_BUG_ON(engine->last_retired_context != kernel_context);
	}
4870 4871
}

4872 4873
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4874 4875 4876 4877 4878 4879
	if (i915_terminally_wedged(&i915->gpu_error)) {
		mutex_lock(&i915->drm.struct_mutex);
		i915_gem_unset_wedged(i915);
		mutex_unlock(&i915->drm.struct_mutex);
	}

4880 4881 4882 4883 4884 4885
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4886
	 * of the reset, so this could be applied to even earlier gen.
4887
	 */
4888
	if (INTEL_GEN(i915) >= 5) {
4889 4890 4891 4892 4893
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4894
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4895
{
4896
	struct drm_device *dev = &dev_priv->drm;
4897
	int ret;
4898

4899
	intel_runtime_pm_get(dev_priv);
4900 4901
	intel_suspend_gt_powersave(dev_priv);

4902
	mutex_lock(&dev->struct_mutex);
4903 4904 4905 4906 4907 4908 4909 4910 4911

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
4912 4913 4914 4915
	if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(dev_priv);
		if (ret)
			goto err_unlock;
4916

4917 4918 4919 4920 4921
		ret = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE |
					     I915_WAIT_LOCKED);
		if (ret && ret != -EIO)
			goto err_unlock;
4922

4923 4924
		assert_kernel_context_is_current(dev_priv);
	}
4925
	i915_gem_contexts_lost(dev_priv);
4926 4927
	mutex_unlock(&dev->struct_mutex);

4928 4929
	intel_guc_suspend(dev_priv);

4930
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4931
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4932 4933 4934 4935

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
4936
	drain_delayed_work(&dev_priv->gt.idle_work);
4937

4938 4939 4940
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4941
	WARN_ON(dev_priv->gt.awake);
4942 4943
	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4944

4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4964
	i915_gem_sanitize(dev_priv);
4965 4966 4967

	intel_runtime_pm_put(dev_priv);
	return 0;
4968

4969
err_unlock:
4970
	mutex_unlock(&dev->struct_mutex);
4971
	intel_runtime_pm_put(dev_priv);
4972
	return ret;
4973 4974
}

4975
void i915_gem_resume(struct drm_i915_private *i915)
4976
{
4977
	WARN_ON(i915->gt.awake);
4978

4979 4980
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
4981

4982 4983
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
4984

4985 4986
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
4987 4988 4989
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4990
	i915->gt.resume(i915);
4991

4992 4993 4994
	if (i915_gem_init_hw(i915))
		goto err_wedged;

4995 4996
	intel_guc_resume(i915);

4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
5007 5008 5009 5010
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
5011
	goto out_unlock;
5012 5013
}

5014
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5015
{
5016
	if (INTEL_GEN(dev_priv) < 5 ||
5017 5018 5019 5020 5021 5022
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5023
	if (IS_GEN5(dev_priv))
5024 5025
		return;

5026
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5027
	if (IS_GEN6(dev_priv))
5028
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5029
	else if (IS_GEN7(dev_priv))
5030
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5031
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
5032
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5033 5034
	else
		BUG();
5035
}
D
Daniel Vetter 已提交
5036

5037
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5038 5039 5040 5041 5042 5043 5044
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

5045
static void init_unused_rings(struct drm_i915_private *dev_priv)
5046
{
5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
5059 5060 5061
	}
}

5062
static int __i915_gem_restart_engines(void *data)
5063
{
5064
	struct drm_i915_private *i915 = data;
5065
	struct intel_engine_cs *engine;
5066
	enum intel_engine_id id;
5067 5068 5069 5070
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
5071 5072 5073
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
5074
			return err;
5075
		}
5076 5077 5078 5079 5080 5081 5082
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
5083
	int ret;
5084

5085 5086
	dev_priv->gt.last_init_time = ktime_get();

5087 5088 5089
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5090
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5091
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5092

5093
	if (IS_HASWELL(dev_priv))
5094
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5095
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5096

5097
	if (HAS_PCH_NOP(dev_priv)) {
5098
		if (IS_IVYBRIDGE(dev_priv)) {
5099 5100 5101
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
5102
		} else if (INTEL_GEN(dev_priv) >= 7) {
5103 5104 5105 5106
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5107 5108
	}

5109
	i915_gem_init_swizzling(dev_priv);
5110

5111 5112 5113 5114 5115 5116
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
5117
	init_unused_rings(dev_priv);
5118

5119
	BUG_ON(!dev_priv->kernel_context);
5120 5121 5122 5123
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
5124

5125
	ret = i915_ppgtt_init_hw(dev_priv);
5126
	if (ret) {
5127
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5128 5129 5130
		goto out;
	}

5131 5132
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
5133 5134
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5135
		goto out;
5136
	}
5137

5138
	intel_mocs_init_l3cc_table(dev_priv);
5139

5140 5141
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
5142 5143
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5144
	return ret;
5145 5146
}

5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
		struct drm_i915_gem_request *rq;

		rq = i915_gem_request_alloc(engine, ctx);
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

5176
		err = 0;
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
		if (engine->init_context)
			err = engine->init_context(rq);

		__i915_add_request(rq, true);
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

	err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
	if (err)
		goto err_active;

	assert_kernel_context_is_current(i915);

	for_each_engine(engine, i915, id) {
		struct i915_vma *state;

		state = ctx->engine[id].state;
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

	if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

5261
int i915_gem_init(struct drm_i915_private *dev_priv)
5262 5263 5264
{
	int ret;

5265 5266 5267 5268 5269 5270 5271 5272 5273
	/*
	 * We need to fallback to 4K pages since gvt gtt handling doesn't
	 * support huge page entries - we will need to check either hypervisor
	 * mm can support huge guest page or just do emulation in gvt.
	 */
	if (intel_vgpu_active(dev_priv))
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5274
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5275

5276
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5277
		dev_priv->gt.resume = intel_lr_context_resume;
5278
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5279 5280 5281
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5282 5283
	}

5284 5285 5286 5287
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5288
	ret = intel_uc_init_misc(dev_priv);
5289 5290 5291
	if (ret)
		return ret;

5292 5293 5294 5295 5296 5297
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5298
	mutex_lock(&dev_priv->drm.struct_mutex);
5299 5300
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5301
	ret = i915_gem_init_ggtt(dev_priv);
5302 5303 5304 5305
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5306

5307
	ret = i915_gem_contexts_init(dev_priv);
5308 5309 5310 5311
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5312

5313
	ret = intel_engines_init(dev_priv);
5314 5315 5316 5317
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5318

5319 5320
	intel_init_gt_powersave(dev_priv);

5321
	ret = intel_uc_init(dev_priv);
5322
	if (ret)
5323
		goto err_pm;
5324

5325 5326 5327 5328
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5340
	ret = __intel_engines_record_defaults(dev_priv);
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
	i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
	i915_gem_contexts_lost(dev_priv);
	intel_uc_fini_hw(dev_priv);
5369 5370
err_uc_init:
	intel_uc_fini(dev_priv);
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5384
	intel_uc_fini_misc(dev_priv);
5385

5386 5387 5388
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5389
	if (ret == -EIO) {
5390 5391
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5392 5393 5394
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5395 5396 5397 5398
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
			i915_gem_set_wedged(dev_priv);
		}
5399
		ret = 0;
5400 5401
	}

5402
	i915_gem_drain_freed_objects(dev_priv);
5403
	return ret;
5404 5405
}

5406 5407 5408 5409 5410
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5411
void
5412
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5413
{
5414
	struct intel_engine_cs *engine;
5415
	enum intel_engine_id id;
5416

5417
	for_each_engine(engine, dev_priv, id)
5418
		dev_priv->gt.cleanup_engine(engine);
5419 5420
}

5421 5422 5423
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5424
	int i;
5425 5426 5427 5428

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5429 5430 5431
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5432 5433 5434 5435
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5436
	if (intel_vgpu_active(dev_priv))
5437 5438 5439 5440
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5441 5442 5443 5444 5445 5446 5447
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5448
	i915_gem_restore_fences(dev_priv);
5449

5450
	i915_gem_detect_bit_6_swizzle(dev_priv);
5451 5452
}

5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5469
int
5470
i915_gem_load_init(struct drm_i915_private *dev_priv)
5471
{
5472
	int err = -ENOMEM;
5473

5474 5475
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5476 5477
		goto err_out;

5478 5479
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5480 5481
		goto err_objects;

5482 5483 5484 5485
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5486 5487 5488
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5489
					SLAB_TYPESAFE_BY_RCU);
5490
	if (!dev_priv->requests)
5491
		goto err_luts;
5492

5493 5494 5495 5496 5497 5498
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5499 5500 5501 5502
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5503 5504
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5505
	err = i915_gem_timeline_init__global(dev_priv);
5506 5507
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
5508
		goto err_priorities;
5509

5510
	i915_gem_init__mm(dev_priv);
5511

5512
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5513
			  i915_gem_retire_work_handler);
5514
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5515
			  i915_gem_idle_work_handler);
5516
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5517
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5518

5519 5520
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5521
	spin_lock_init(&dev_priv->fb_tracking.lock);
5522

M
Matthew Auld 已提交
5523 5524 5525 5526
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5527 5528
	return 0;

5529 5530
err_priorities:
	kmem_cache_destroy(dev_priv->priorities);
5531 5532
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5533 5534
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5535 5536
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5537 5538 5539 5540 5541 5542
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5543
}
5544

5545
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5546
{
5547
	i915_gem_drain_freed_objects(dev_priv);
5548
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
5549
	WARN_ON(dev_priv->mm.object_count);
5550

5551 5552 5553 5554 5555
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

5556
	kmem_cache_destroy(dev_priv->priorities);
5557
	kmem_cache_destroy(dev_priv->dependencies);
5558
	kmem_cache_destroy(dev_priv->requests);
5559
	kmem_cache_destroy(dev_priv->luts);
5560 5561
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5562 5563 5564

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5565 5566

	i915_gemfs_fini(dev_priv);
5567 5568
}

5569 5570
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5571 5572 5573
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5574 5575 5576 5577 5578
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5579 5580 5581
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
5582 5583 5584 5585 5586
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5597 5598
	 *
	 * To try and reduce the hibernation image, we manually shrink
5599
	 * the objects as well, see i915_gem_freeze()
5600 5601
	 */

5602
	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5603
	i915_gem_drain_freed_objects(dev_priv);
5604

5605
	spin_lock(&dev_priv->mm.obj_lock);
5606
	for (p = phases; *p; p++) {
5607
		list_for_each_entry(obj, *p, mm.link)
5608
			__start_cpu_write(obj);
5609
	}
5610
	spin_unlock(&dev_priv->mm.obj_lock);
5611 5612 5613 5614

	return 0;
}

5615
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5616
{
5617
	struct drm_i915_file_private *file_priv = file->driver_priv;
5618
	struct drm_i915_gem_request *request;
5619 5620 5621 5622 5623

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5624
	spin_lock(&file_priv->mm.lock);
5625
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5626
		request->file_priv = NULL;
5627
	spin_unlock(&file_priv->mm.lock);
5628 5629
}

5630
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5631 5632
{
	struct drm_i915_file_private *file_priv;
5633
	int ret;
5634

5635
	DRM_DEBUG("\n");
5636 5637 5638 5639 5640 5641

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5642
	file_priv->dev_priv = i915;
5643
	file_priv->file = file;
5644 5645 5646 5647

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5648
	file_priv->bsd_engine = -1;
5649

5650
	ret = i915_gem_context_open(i915, file);
5651 5652
	if (ret)
		kfree(file_priv);
5653

5654
	return ret;
5655 5656
}

5657 5658
/**
 * i915_gem_track_fb - update frontbuffer tracking
5659 5660 5661
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5662 5663 5664 5665
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5666 5667 5668 5669
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5670 5671 5672 5673 5674 5675 5676 5677 5678
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5679
	if (old) {
5680 5681
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5682 5683 5684
	}

	if (new) {
5685 5686
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5687 5688 5689
	}
}

5690 5691
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5692
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5693 5694 5695
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5696 5697 5698
	struct file *file;
	size_t offset;
	int err;
5699

5700
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5701
	if (IS_ERR(obj))
5702 5703
		return obj;

5704
	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5705

5706 5707 5708 5709 5710 5711
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5712

5713 5714 5715 5716 5717
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5718

5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5733 5734 5735 5736

	return obj;

fail:
5737
	i915_gem_object_put(obj);
5738
	return ERR_PTR(err);
5739
}
5740 5741 5742 5743 5744 5745

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5746
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5747 5748 5749 5750 5751
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5752
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5877
	if (!obj->mm.dirty)
5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5893

5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939
	pages = fetch_and_zero(&obj->mm.pages);
	if (pages) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);

		__i915_gem_object_reset_page_iter(obj);

		spin_lock(&i915->mm.obj_lock);
		list_del(&obj->mm.link);
		spin_unlock(&i915->mm.obj_lock);
	}

5940 5941
	obj->ops = &i915_gem_phys_ops;

5942
	err = ____i915_gem_object_get_pages(obj);
5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	obj->mm.pages = pages;
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5962 5963
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5964
#include "selftests/mock_gem_device.c"
5965
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
5966
#include "selftests/huge_pages.c"
5967
#include "selftests/i915_gem_object.c"
5968
#include "selftests/i915_gem_coherency.c"
5969
#endif