i915_gem.c 145.0 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_mocs.h"
36
#include <linux/shmem_fs.h>
37
#include <linux/slab.h>
38
#include <linux/swap.h>
J
Jesse Barnes 已提交
39
#include <linux/pci.h>
40
#include <linux/dma-buf.h>
41

42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44
static void
45 46 47
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48

49 50 51 52 53 54
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

55 56
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
57 58 59
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

60 61 62 63 64 65
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

84 85 86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
88
	spin_lock(&dev_priv->mm.object_stat_lock);
89 90
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
91
	spin_unlock(&dev_priv->mm.object_stat_lock);
92 93 94 95 96
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
97
	spin_lock(&dev_priv->mm.object_stat_lock);
98 99
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
100
	spin_unlock(&dev_priv->mm.object_stat_lock);
101 102
}

103
static int
104
i915_gem_wait_for_error(struct i915_gpu_error *error)
105 106 107
{
	int ret;

108
	if (!i915_reset_in_progress(error))
109 110
		return 0;

111 112 113 114 115
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
116
	ret = wait_event_interruptible_timeout(error->reset_queue,
117
					       !i915_reset_in_progress(error),
118
					       10*HZ);
119 120 121 122
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
123
		return ret;
124 125
	} else {
		return 0;
126
	}
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = to_i915(dev);
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = to_i915(dev);
151
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
152
	struct drm_i915_gem_get_aperture *args = data;
153
	struct i915_vma *vma;
154
	size_t pinned;
155

156
	pinned = 0;
157
	mutex_lock(&dev->struct_mutex);
158
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159 160
		if (vma->pin_count)
			pinned += vma->node.size;
161
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162 163
		if (vma->pin_count)
			pinned += vma->node.size;
164
	mutex_unlock(&dev->struct_mutex);
165

166
	args->aper_size = ggtt->base.total;
167
	args->aper_available_size = args->aper_size - pinned;
168

169 170 171
	return 0;
}

172 173
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174
{
175 176 177 178 179
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

197
		put_page(page);
198 199 200
		vaddr += PAGE_SIZE;
	}

201
	i915_gem_chipset_flush(to_i915(obj->base.dev));
202 203 204 205 206 207 208 209 210 211 212 213 214

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
215

216 217 218 219 220 221 222 223 224 225 226 227 228
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
229

230
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
231
	if (WARN_ON(ret)) {
232 233 234 235 236 237 238 239 240 241
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
242
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
243
		char *vaddr = obj->phys_handle->vaddr;
244 245 246
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247 248 249 250 251 252 253 254 255 256 257 258 259 260
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
261
				mark_page_accessed(page);
262
			put_page(page);
263 264
			vaddr += PAGE_SIZE;
		}
265
		obj->dirty = 0;
266 267
	}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
291
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292 293 294 295 296 297 298
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
343
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(to_i915(dev));
372 373

out:
374
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375
	return ret;
376 377
}

378 379
void *i915_gem_object_alloc(struct drm_device *dev)
{
380
	struct drm_i915_private *dev_priv = to_i915(dev);
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
386
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_object_create(dev, size);
406 407
	if (IS_ERR(obj))
		return PTR_ERR(obj);
408

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432
}

/**
 * Creates a new mm object and returns a handle to it.
433 434 435
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
436 437 438 439 440 441
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
442

443
	return i915_gem_create(file, dev,
444
			       args->size, &args->handle);
445 446
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

473
static inline int
474 475
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

499 500 501 502 503 504 505 506 507 508 509 510
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

511
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

535 536 537
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
538
static int
539 540 541 542 543 544 545
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

546
	if (unlikely(page_do_bit17_swizzling))
547 548 549 550 551 552 553 554 555 556 557
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

558
	return ret ? -EFAULT : 0;
559 560
}

561 562 563 564
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
565
	if (unlikely(swizzled)) {
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

583 584 585 586 587 588 589 590 591 592 593 594
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
595 596 597
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
598 599 600 601 602 603 604 605 606 607 608

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

609
	return ret ? - EFAULT : 0;
610 611
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
639
	struct drm_i915_private *dev_priv = to_i915(dev);
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

748
static int
749 750 751 752
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
753
{
754
	char __user *user_data;
755
	ssize_t remain;
756
	loff_t offset;
757
	int shmem_page_offset, page_length, ret = 0;
758
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759
	int prefaulted = 0;
760
	int needs_clflush = 0;
761
	struct sg_page_iter sg_iter;
762

763
	if (!i915_gem_object_has_struct_page(obj))
764 765
		return -ENODEV;

766
	user_data = u64_to_user_ptr(args->data_ptr);
767 768
	remain = args->size;

769
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770

771
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772 773 774
	if (ret)
		return ret;

775
	offset = args->offset;
776

777 778
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
779
		struct page *page = sg_page_iter_page(&sg_iter);
780 781 782 783

		if (remain <= 0)
			break;

784 785 786 787 788
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
789
		shmem_page_offset = offset_in_page(offset);
790 791 792 793
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

794 795 796
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

797 798 799 800 801
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
802 803 804

		mutex_unlock(&dev->struct_mutex);

805
		if (likely(!i915.prefault_disable) && !prefaulted) {
806
			ret = fault_in_multipages_writeable(user_data, remain);
807 808 809 810 811 812 813
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
814

815 816 817
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
818

819
		mutex_lock(&dev->struct_mutex);
820 821

		if (ret)
822 823
			goto out;

824
next_page:
825
		remain -= page_length;
826
		user_data += page_length;
827 828 829
		offset += page_length;
	}

830
out:
831 832
	i915_gem_object_unpin_pages(obj);

833 834 835
	return ret;
}

836 837
/**
 * Reads data from the object referenced by handle.
838 839 840
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
841 842 843 844 845
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846
		     struct drm_file *file)
847 848
{
	struct drm_i915_gem_pread *args = data;
849
	struct drm_i915_gem_object *obj;
850
	int ret = 0;
851

852 853 854 855
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
856
		       u64_to_user_ptr(args->data_ptr),
857 858 859
		       args->size))
		return -EFAULT;

860
	ret = i915_mutex_lock_interruptible(dev);
861
	if (ret)
862
		return ret;
863

864
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865
	if (&obj->base == NULL) {
866 867
		ret = -ENOENT;
		goto unlock;
868
	}
869

870
	/* Bounds check source.  */
871 872
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
873
		ret = -EINVAL;
874
		goto out;
C
Chris Wilson 已提交
875 876
	}

C
Chris Wilson 已提交
877 878
	trace_i915_gem_object_pread(obj, args->offset, args->size);

879
	ret = i915_gem_shmem_pread(dev, obj, args, file);
880

881 882 883 884 885
	/* pread for non shmem backed objects */
	if (ret == -EFAULT || ret == -ENODEV)
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);

886
out:
887
	drm_gem_object_unreference(&obj->base);
888
unlock:
889
	mutex_unlock(&dev->struct_mutex);
890
	return ret;
891 892
}

893 894
/* This is the fast write path which cannot handle
 * page faults in the source data
895
 */
896 897 898 899 900 901

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
902
{
903 904
	void __iomem *vaddr_atomic;
	void *vaddr;
905
	unsigned long unwritten;
906

P
Peter Zijlstra 已提交
907
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
908 909 910
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
911
						      user_data, length);
P
Peter Zijlstra 已提交
912
	io_mapping_unmap_atomic(vaddr_atomic);
913
	return unwritten;
914 915
}

916 917 918
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
919 920 921 922
 * @dev: drm device pointer
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
923
 */
924
static int
925
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
926
			 struct drm_i915_gem_object *obj,
927
			 struct drm_i915_gem_pwrite *args,
928
			 struct drm_file *file)
929
{
930
	struct i915_ggtt *ggtt = &i915->ggtt;
931
	struct drm_device *dev = obj->base.dev;
932 933
	struct drm_mm_node node;
	uint64_t remain, offset;
934
	char __user *user_data;
935
	int ret;
936 937 938 939
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
940

941
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
957 958 959
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
960
	}
D
Daniel Vetter 已提交
961 962 963 964 965

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

966
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
967
	obj->dirty = true;
968

969 970 971 972
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
973 974
		/* Operation in this page
		 *
975 976 977
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
978
		 */
979 980 981 982 983 984 985 986 987 988 989 990 991
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
992
		/* If we get a fault while copying data, then (presumably) our
993 994
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
995 996
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
997
		 */
998
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
999
				    page_offset, user_data, page_length)) {
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1012
		}
1013

1014 1015 1016
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1017 1018
	}

1019
out_flush:
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1033
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1034
out_unpin:
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1045
out:
1046
	return ret;
1047 1048
}

1049 1050 1051 1052
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1053
static int
1054 1055 1056 1057 1058
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1059
{
1060
	char *vaddr;
1061
	int ret;
1062

1063
	if (unlikely(page_do_bit17_swizzling))
1064
		return -EINVAL;
1065

1066 1067 1068 1069
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1070 1071
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1072 1073 1074 1075
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1076

1077
	return ret ? -EFAULT : 0;
1078 1079
}

1080 1081
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1082
static int
1083 1084 1085 1086 1087
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1088
{
1089 1090
	char *vaddr;
	int ret;
1091

1092
	vaddr = kmap(page);
1093
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1094 1095 1096
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1097 1098
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1099 1100
						user_data,
						page_length);
1101 1102 1103 1104 1105
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1106 1107 1108
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1109
	kunmap(page);
1110

1111
	return ret ? -EFAULT : 0;
1112 1113 1114
}

static int
1115 1116 1117 1118
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1119 1120
{
	ssize_t remain;
1121 1122
	loff_t offset;
	char __user *user_data;
1123
	int shmem_page_offset, page_length, ret = 0;
1124
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1125
	int hit_slowpath = 0;
1126 1127
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1128
	struct sg_page_iter sg_iter;
1129

1130
	user_data = u64_to_user_ptr(args->data_ptr);
1131 1132
	remain = args->size;

1133
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1134

1135 1136 1137 1138 1139
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1140
		needs_clflush_after = cpu_write_needs_clflush(obj);
1141 1142 1143
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
1144
	}
1145 1146 1147 1148 1149
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1150

1151 1152 1153 1154
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1155
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1156

1157 1158
	i915_gem_object_pin_pages(obj);

1159
	offset = args->offset;
1160
	obj->dirty = 1;
1161

1162 1163
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1164
		struct page *page = sg_page_iter_page(&sg_iter);
1165
		int partial_cacheline_write;
1166

1167 1168 1169
		if (remain <= 0)
			break;

1170 1171 1172 1173 1174
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1175
		shmem_page_offset = offset_in_page(offset);
1176 1177 1178 1179 1180

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1181 1182 1183 1184 1185 1186 1187
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1188 1189 1190
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1191 1192 1193 1194 1195 1196
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1197 1198 1199

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1200 1201 1202 1203
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1204

1205
		mutex_lock(&dev->struct_mutex);
1206 1207

		if (ret)
1208 1209
			goto out;

1210
next_page:
1211
		remain -= page_length;
1212
		user_data += page_length;
1213
		offset += page_length;
1214 1215
	}

1216
out:
1217 1218
	i915_gem_object_unpin_pages(obj);

1219
	if (hit_slowpath) {
1220 1221 1222 1223 1224 1225 1226
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1227
			if (i915_gem_clflush_object(obj, obj->pin_display))
1228
				needs_clflush_after = true;
1229
		}
1230
	}
1231

1232
	if (needs_clflush_after)
1233
		i915_gem_chipset_flush(to_i915(dev));
1234 1235
	else
		obj->cache_dirty = true;
1236

1237
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1238
	return ret;
1239 1240 1241 1242
}

/**
 * Writes data to the object referenced by handle.
1243 1244 1245
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1246 1247 1248 1249 1250
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1251
		      struct drm_file *file)
1252
{
1253
	struct drm_i915_private *dev_priv = to_i915(dev);
1254
	struct drm_i915_gem_pwrite *args = data;
1255
	struct drm_i915_gem_object *obj;
1256 1257 1258 1259 1260 1261
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1262
		       u64_to_user_ptr(args->data_ptr),
1263 1264 1265
		       args->size))
		return -EFAULT;

1266
	if (likely(!i915.prefault_disable)) {
1267
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1268 1269 1270 1271
						   args->size);
		if (ret)
			return -EFAULT;
	}
1272

1273 1274
	intel_runtime_pm_get(dev_priv);

1275
	ret = i915_mutex_lock_interruptible(dev);
1276
	if (ret)
1277
		goto put_rpm;
1278

1279
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1280
	if (&obj->base == NULL) {
1281 1282
		ret = -ENOENT;
		goto unlock;
1283
	}
1284

1285
	/* Bounds check destination. */
1286 1287
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1288
		ret = -EINVAL;
1289
		goto out;
C
Chris Wilson 已提交
1290 1291
	}

C
Chris Wilson 已提交
1292 1293
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1294
	ret = -EFAULT;
1295 1296 1297 1298 1299 1300
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1301 1302
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1303
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1304 1305 1306
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1307
	}
1308

1309
	if (ret == -EFAULT) {
1310 1311
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1312
		else if (i915_gem_object_has_struct_page(obj))
1313
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1314 1315
		else
			ret = -ENODEV;
1316
	}
1317

1318
out:
1319
	drm_gem_object_unreference(&obj->base);
1320
unlock:
1321
	mutex_unlock(&dev->struct_mutex);
1322 1323 1324
put_rpm:
	intel_runtime_pm_put(dev_priv);

1325 1326 1327
	return ret;
}

1328 1329
static int
i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1330
{
1331 1332
	if (__i915_terminally_wedged(reset_counter))
		return -EIO;
1333

1334
	if (__i915_reset_in_progress(reset_counter)) {
1335 1336 1337 1338 1339
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1340
		return -EAGAIN;
1341 1342 1343 1344 1345
	}

	return 0;
}

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1378 1379
bool __i915_spin_request(const struct drm_i915_gem_request *req,
			 int state, unsigned long timeout_us)
1380
{
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1392

1393
	timeout_us += local_clock_us(&cpu);
1394
	do {
1395
		if (i915_gem_request_completed(req))
1396
			return true;
1397

1398 1399 1400
		if (signal_pending_state(state, current))
			break;

1401
		if (busywait_stop(timeout_us, cpu))
1402
			break;
1403

1404
		cpu_relax_lowlatency();
1405
	} while (!need_resched());
1406

1407
	return false;
1408 1409
}

1410
/**
1411 1412
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
1413 1414
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1415
 * @rps: RPS client
1416
 *
1417 1418 1419 1420 1421 1422 1423
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1424
 * Returns 0 if the request was found within the alloted time. Else returns the
1425 1426
 * errno with remaining time filled in timeout argument.
 */
1427
int __i915_wait_request(struct drm_i915_gem_request *req,
1428
			bool interruptible,
1429
			s64 *timeout,
1430
			struct intel_rps_client *rps)
1431
{
1432
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1433
	DEFINE_WAIT(reset);
1434 1435
	struct intel_wait wait;
	unsigned long timeout_remain;
1436
	s64 before = 0; /* Only to silence a compiler warning. */
1437
	int ret = 0;
1438

1439
	might_sleep();
1440

1441 1442 1443
	if (list_empty(&req->list))
		return 0;

1444
	if (i915_gem_request_completed(req))
1445 1446
		return 0;

1447
	timeout_remain = MAX_SCHEDULE_TIMEOUT;
1448 1449 1450 1451 1452 1453 1454
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

1455
		timeout_remain = nsecs_to_jiffies_timeout(*timeout);
1456 1457 1458 1459 1460

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1461
	}
1462

1463
	trace_i915_gem_request_wait_begin(req);
1464

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
1480 1481
	if (INTEL_INFO(req->i915)->gen >= 6)
		gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
1482

1483
	/* Optimistic spin for the next ~jiffie before touching IRQs */
1484
	if (i915_spin_request(req, state, 5))
1485
		goto complete;
1486

1487 1488
	set_current_state(state);
	add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1489

1490 1491 1492 1493 1494
	intel_wait_init(&wait, req->seqno);
	if (intel_engine_add_wait(req->engine, &wait))
		/* In order to check that we haven't missed the interrupt
		 * as we enabled it, we need to kick ourselves to do a
		 * coherent check on the seqno before we sleep.
1495
		 */
1496
		goto wakeup;
1497

1498
	for (;;) {
1499
		if (signal_pending_state(state, current)) {
1500 1501 1502 1503
			ret = -ERESTARTSYS;
			break;
		}

1504 1505 1506 1507 1508 1509 1510
		/* Ensure that even if the GPU hangs, we get woken up.
		 *
		 * However, note that if no one is waiting, we never notice
		 * a gpu hang. Eventually, we will have to wait for a resource
		 * held by the GPU and so trigger a hangcheck. In the most
		 * pathological case, this will be upon memory starvation!
		 */
1511
		i915_queue_hangcheck(req->i915);
1512

1513 1514 1515 1516
		timeout_remain = io_schedule_timeout(timeout_remain);
		if (timeout_remain == 0) {
			ret = -ETIME;
			break;
1517 1518
		}

1519 1520
		if (intel_wait_complete(&wait))
			break;
1521

1522
		set_current_state(state);
1523

1524 1525 1526 1527 1528 1529 1530 1531
wakeup:
		/* Carefully check if the request is complete, giving time
		 * for the seqno to be visible following the interrupt.
		 * We also have to check in case we are kicked by the GPU
		 * reset in order to drop the struct_mutex.
		 */
		if (__i915_request_irq_complete(req))
			break;
1532 1533 1534 1535

		/* Only spin if we know the GPU is processing this request */
		if (i915_spin_request(req, state, 2))
			break;
1536 1537
	}
	remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1538

1539 1540 1541
	intel_engine_remove_wait(req->engine, &wait);
	__set_current_state(TASK_RUNNING);
complete:
1542 1543
	trace_i915_gem_request_wait_end(req);

1544
	if (timeout) {
1545
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1546 1547

		*timeout = tres < 0 ? 0 : tres;
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1558 1559
	}

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	if (rps && req->seqno == req->engine->last_submitted_seqno) {
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&req->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&req->i915->rps.client_lock);
	}

1576
	return ret;
1577 1578
}

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1616 1617 1618

	put_pid(request->pid);
	request->pid = NULL;
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

1638
	if (request->previous_context) {
1639
		if (i915.enable_execlists)
1640 1641
			intel_lr_context_unpin(request->previous_context,
					       request->engine);
1642 1643
	}

1644
	i915_gem_context_unreference(request->ctx);
1645 1646 1647 1648 1649 1650
	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1651
	struct intel_engine_cs *engine = req->engine;
1652 1653
	struct drm_i915_gem_request *tmp;

1654
	lockdep_assert_held(&engine->i915->dev->struct_mutex);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1669
/**
1670
 * Waits for a request to be signaled, and cleans up the
1671
 * request and object lists appropriately for that event.
1672
 * @req: request to wait on
1673 1674
 */
int
1675
i915_wait_request(struct drm_i915_gem_request *req)
1676
{
1677
	struct drm_i915_private *dev_priv = req->i915;
1678
	bool interruptible;
1679 1680
	int ret;

1681 1682
	interruptible = dev_priv->mm.interruptible;

1683
	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1684

1685
	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1686 1687
	if (ret)
		return ret;
1688

1689
	/* If the GPU hung, we want to keep the requests to find the guilty. */
1690
	if (!i915_reset_in_progress(&dev_priv->gpu_error))
1691 1692
		__i915_gem_request_retire__upto(req);

1693 1694 1695
	return 0;
}

1696 1697 1698
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1699 1700
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1701
 */
1702
int
1703 1704 1705
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1706
	int ret, i;
1707

1708
	if (!obj->active)
1709 1710
		return 0;

1711 1712 1713 1714 1715
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1716

1717
			i = obj->last_write_req->engine->id;
1718 1719 1720 1721 1722 1723
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1724
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1725 1726 1727 1728 1729 1730 1731 1732 1733
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1734
		GEM_BUG_ON(obj->active);
1735 1736 1737 1738 1739 1740 1741 1742 1743
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1744
	int ring = req->engine->id;
1745 1746 1747 1748 1749 1750

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

1751
	if (!i915_reset_in_progress(&req->i915->gpu_error))
1752
		__i915_gem_request_retire__upto(req);
1753 1754
}

1755 1756 1757 1758 1759
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1760
					    struct intel_rps_client *rps,
1761 1762 1763
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
1764
	struct drm_i915_private *dev_priv = to_i915(dev);
1765
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1766
	int ret, i, n = 0;
1767 1768 1769 1770

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1771
	if (!obj->active)
1772 1773
		return 0;

1774 1775 1776 1777 1778 1779 1780 1781 1782
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1783
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1794
	mutex_unlock(&dev->struct_mutex);
1795
	ret = 0;
1796
	for (i = 0; ret == 0 && i < n; i++)
1797
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1798 1799
	mutex_lock(&dev->struct_mutex);

1800 1801 1802 1803 1804 1805 1806
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1807 1808
}

1809 1810 1811 1812 1813 1814
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1815 1816 1817 1818 1819 1820 1821
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1822
/**
1823 1824
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1825 1826 1827
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1828 1829 1830
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1831
			  struct drm_file *file)
1832 1833
{
	struct drm_i915_gem_set_domain *args = data;
1834
	struct drm_i915_gem_object *obj;
1835 1836
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1837 1838
	int ret;

1839
	/* Only handle setting domains to types used by the CPU. */
1840
	if (write_domain & I915_GEM_GPU_DOMAINS)
1841 1842
		return -EINVAL;

1843
	if (read_domains & I915_GEM_GPU_DOMAINS)
1844 1845 1846 1847 1848 1849 1850 1851
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1852
	ret = i915_mutex_lock_interruptible(dev);
1853
	if (ret)
1854
		return ret;
1855

1856
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1857
	if (&obj->base == NULL) {
1858 1859
		ret = -ENOENT;
		goto unlock;
1860
	}
1861

1862 1863 1864 1865
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1866
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1867
							  to_rps_client(file),
1868
							  !write_domain);
1869 1870 1871
	if (ret)
		goto unref;

1872
	if (read_domains & I915_GEM_DOMAIN_GTT)
1873
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1874
	else
1875
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1876

1877
	if (write_domain != 0)
1878
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1879

1880
unref:
1881
	drm_gem_object_unreference(&obj->base);
1882
unlock:
1883 1884 1885 1886 1887 1888
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1889 1890 1891
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1892 1893 1894
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1895
			 struct drm_file *file)
1896 1897
{
	struct drm_i915_gem_sw_finish *args = data;
1898
	struct drm_i915_gem_object *obj;
1899 1900
	int ret = 0;

1901
	ret = i915_mutex_lock_interruptible(dev);
1902
	if (ret)
1903
		return ret;
1904

1905
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1906
	if (&obj->base == NULL) {
1907 1908
		ret = -ENOENT;
		goto unlock;
1909 1910 1911
	}

	/* Pinned buffers may be scanout, so flush the cache */
1912
	if (obj->pin_display)
1913
		i915_gem_object_flush_cpu_write_domain(obj);
1914

1915
	drm_gem_object_unreference(&obj->base);
1916
unlock:
1917 1918 1919 1920 1921
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1922 1923 1924 1925 1926
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1927 1928 1929
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1940 1941 1942
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1943
		    struct drm_file *file)
1944 1945 1946 1947 1948
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1949 1950 1951
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1952
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1953 1954
		return -ENODEV;

1955
	obj = drm_gem_object_lookup(file, args->handle);
1956
	if (obj == NULL)
1957
		return -ENOENT;
1958

1959 1960 1961 1962 1963 1964 1965 1966
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1967
	addr = vm_mmap(obj->filp, 0, args->size,
1968 1969
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1970 1971 1972 1973
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1974 1975 1976 1977
		if (down_write_killable(&mm->mmap_sem)) {
			drm_gem_object_unreference_unlocked(obj);
			return -EINTR;
		}
1978 1979 1980 1981 1982 1983 1984
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1985 1986 1987

		/* This may race, but that's ok, it only gets set */
		WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1988
	}
1989
	drm_gem_object_unreference_unlocked(obj);
1990 1991 1992 1993 1994 1995 1996 1997
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1998 1999
/**
 * i915_gem_fault - fault a page into the GTT
2000 2001
 * @vma: VMA in question
 * @vmf: fault info
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
2016 2017
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
2018 2019
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2020
	struct i915_ggtt_view view = i915_ggtt_view_normal;
2021 2022 2023
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
2024
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2025

2026 2027
	intel_runtime_pm_get(dev_priv);

2028 2029 2030 2031
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

2032 2033 2034
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
2035

C
Chris Wilson 已提交
2036 2037
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2038 2039 2040 2041 2042 2043 2044 2045 2046
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

2047 2048
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2049
		ret = -EFAULT;
2050 2051 2052
		goto unlock;
	}

2053
	/* Use a partial view if the object is bigger than the aperture. */
2054
	if (obj->base.size >= ggtt->mappable_end &&
2055
	    obj->tiling_mode == I915_TILING_NONE) {
2056
		static const unsigned int chunk_size = 256; // 1 MiB
2057

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2070 2071
	if (ret)
		goto unlock;
2072

2073 2074 2075
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
2076

2077
	ret = i915_gem_object_get_fence(obj);
2078
	if (ret)
2079
		goto unpin;
2080

2081
	/* Finally, remap it using the new GTT offset */
2082
	pfn = ggtt->mappable_base +
2083
		i915_gem_obj_ggtt_offset_view(obj, &view);
2084
	pfn >>= PAGE_SHIFT;
2085

2086 2087 2088 2089 2090 2091 2092 2093 2094
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
2095

2096 2097
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2098 2099 2100 2101 2102
			if (ret)
				break;
		}

		obj->fault_mappable = true;
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
2124
unpin:
2125
	i915_gem_object_ggtt_unpin_view(obj, &view);
2126
unlock:
2127
	mutex_unlock(&dev->struct_mutex);
2128
out:
2129
	switch (ret) {
2130
	case -EIO:
2131 2132 2133 2134 2135 2136 2137
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2138 2139 2140
			ret = VM_FAULT_SIGBUS;
			break;
		}
2141
	case -EAGAIN:
D
Daniel Vetter 已提交
2142 2143 2144 2145
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2146
		 */
2147 2148
	case 0:
	case -ERESTARTSYS:
2149
	case -EINTR:
2150 2151 2152 2153 2154
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2155 2156
		ret = VM_FAULT_NOPAGE;
		break;
2157
	case -ENOMEM:
2158 2159
		ret = VM_FAULT_OOM;
		break;
2160
	case -ENOSPC:
2161
	case -EFAULT:
2162 2163
		ret = VM_FAULT_SIGBUS;
		break;
2164
	default:
2165
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2166 2167
		ret = VM_FAULT_SIGBUS;
		break;
2168
	}
2169 2170 2171

	intel_runtime_pm_put(dev_priv);
	return ret;
2172 2173
}

2174 2175 2176 2177
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2178
 * Preserve the reservation of the mmapping with the DRM core code, but
2179 2180 2181 2182 2183 2184 2185 2186 2187
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2188
void
2189
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2190
{
2191 2192 2193 2194 2195 2196
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

2197 2198
	if (!obj->fault_mappable)
		return;
2199

2200 2201
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

2212
	obj->fault_mappable = false;
2213 2214
}

2215 2216 2217 2218 2219 2220 2221 2222 2223
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

2224
uint32_t
2225
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2226
{
2227
	uint32_t gtt_size;
2228 2229

	if (INTEL_INFO(dev)->gen >= 4 ||
2230 2231
	    tiling_mode == I915_TILING_NONE)
		return size;
2232 2233

	/* Previous chips need a power-of-two fence region when tiling */
2234
	if (IS_GEN3(dev))
2235
		gtt_size = 1024*1024;
2236
	else
2237
		gtt_size = 512*1024;
2238

2239 2240
	while (gtt_size < size)
		gtt_size <<= 1;
2241

2242
	return gtt_size;
2243 2244
}

2245 2246
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2247 2248 2249 2250
 * @dev: drm device
 * @size: object size
 * @tiling_mode: tiling mode
 * @fenced: is fenced alignemned required or not
2251 2252
 *
 * Return the required GTT alignment for an object, taking into account
2253
 * potential fence register mapping.
2254
 */
2255 2256 2257
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2258 2259 2260 2261 2262
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2263
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2264
	    tiling_mode == I915_TILING_NONE)
2265 2266
		return 4096;

2267 2268 2269 2270
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2271
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2272 2273
}

2274 2275
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2276
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2277 2278
	int ret;

2279 2280
	dev_priv->mm.shrinker_no_lock_stealing = true;

2281 2282
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2283
		goto out;
2284 2285 2286 2287 2288 2289 2290 2291

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2292 2293 2294 2295 2296
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2297 2298
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2299
		goto out;
2300 2301

	i915_gem_shrink_all(dev_priv);
2302 2303 2304 2305 2306
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2307 2308 2309 2310 2311 2312 2313
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2314
int
2315 2316
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2317
		  uint32_t handle,
2318
		  uint64_t *offset)
2319
{
2320
	struct drm_i915_gem_object *obj;
2321 2322
	int ret;

2323
	ret = i915_mutex_lock_interruptible(dev);
2324
	if (ret)
2325
		return ret;
2326

2327
	obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2328
	if (&obj->base == NULL) {
2329 2330 2331
		ret = -ENOENT;
		goto unlock;
	}
2332

2333
	if (obj->madv != I915_MADV_WILLNEED) {
2334
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2335
		ret = -EFAULT;
2336
		goto out;
2337 2338
	}

2339 2340 2341
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2342

2343
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2344

2345
out:
2346
	drm_gem_object_unreference(&obj->base);
2347
unlock:
2348
	mutex_unlock(&dev->struct_mutex);
2349
	return ret;
2350 2351
}

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2373
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2374 2375
}

D
Daniel Vetter 已提交
2376 2377 2378
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2379
{
2380
	i915_gem_object_free_mmap_offset(obj);
2381

2382 2383
	if (obj->base.filp == NULL)
		return;
2384

D
Daniel Vetter 已提交
2385 2386 2387 2388 2389
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2390
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2391 2392
	obj->madv = __I915_MADV_PURGED;
}
2393

2394 2395 2396
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2397
{
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2412 2413
}

2414
static void
2415
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2416
{
2417 2418
	struct sgt_iter sgt_iter;
	struct page *page;
2419
	int ret;
2420

2421
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2422

C
Chris Wilson 已提交
2423
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2424
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2425 2426 2427
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2428
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2429 2430 2431
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2432 2433
	i915_gem_gtt_finish_object(obj);

2434
	if (i915_gem_object_needs_bit17_swizzle(obj))
2435 2436
		i915_gem_object_save_bit_17_swizzle(obj);

2437 2438
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2439

2440
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2441
		if (obj->dirty)
2442
			set_page_dirty(page);
2443

2444
		if (obj->madv == I915_MADV_WILLNEED)
2445
			mark_page_accessed(page);
2446

2447
		put_page(page);
2448
	}
2449
	obj->dirty = 0;
2450

2451 2452
	sg_free_table(obj->pages);
	kfree(obj->pages);
2453
}
C
Chris Wilson 已提交
2454

2455
int
2456 2457 2458 2459
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2460
	if (obj->pages == NULL)
2461 2462
		return 0;

2463 2464 2465
	if (obj->pages_pin_count)
		return -EBUSY;

2466
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2467

2468 2469 2470
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2471
	list_del(&obj->global_list);
2472

2473
	if (obj->mapping) {
2474 2475 2476 2477
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2478 2479 2480
		obj->mapping = NULL;
	}

2481
	ops->put_pages(obj);
2482
	obj->pages = NULL;
2483

2484
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2485 2486 2487 2488

	return 0;
}

2489
static int
C
Chris Wilson 已提交
2490
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2491
{
2492
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2493 2494
	int page_count, i;
	struct address_space *mapping;
2495 2496
	struct sg_table *st;
	struct scatterlist *sg;
2497
	struct sgt_iter sgt_iter;
2498
	struct page *page;
2499
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2500
	int ret;
C
Chris Wilson 已提交
2501
	gfp_t gfp;
2502

C
Chris Wilson 已提交
2503 2504 2505 2506 2507 2508 2509
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2510 2511 2512 2513
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2514
	page_count = obj->base.size / PAGE_SIZE;
2515 2516
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2517
		return -ENOMEM;
2518
	}
2519

2520 2521 2522 2523 2524
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2525
	mapping = file_inode(obj->base.filp)->i_mapping;
2526
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2527
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2528 2529 2530
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2531 2532
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2533 2534 2535 2536 2537
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2538 2539 2540 2541 2542 2543 2544 2545
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2546
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2547 2548
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2549
				goto err_pages;
I
Imre Deak 已提交
2550
			}
C
Chris Wilson 已提交
2551
		}
2552 2553 2554 2555 2556 2557 2558 2559
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2560 2561 2562 2563 2564 2565 2566 2567 2568
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2569 2570 2571

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2572
	}
2573 2574 2575 2576
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2577 2578
	obj->pages = st;

I
Imre Deak 已提交
2579 2580 2581 2582
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2583
	if (i915_gem_object_needs_bit17_swizzle(obj))
2584 2585
		i915_gem_object_do_bit_17_swizzle(obj);

2586 2587 2588 2589
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2590 2591 2592
	return 0;

err_pages:
2593
	sg_mark_end(sg);
2594 2595
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2596 2597
	sg_free_table(st);
	kfree(st);
2598 2599 2600 2601 2602 2603 2604 2605 2606

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2607 2608 2609 2610
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2611 2612
}

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2623
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2624 2625 2626
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2627
	if (obj->pages)
2628 2629
		return 0;

2630
	if (obj->madv != I915_MADV_WILLNEED) {
2631
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2632
		return -EFAULT;
2633 2634
	}

2635 2636
	BUG_ON(obj->pages_pin_count);

2637 2638 2639 2640
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2641
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2642 2643 2644 2645

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2646
	return 0;
2647 2648
}

2649 2650 2651 2652 2653
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2654 2655
	struct sgt_iter sgt_iter;
	struct page *page;
2656 2657
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2658 2659 2660 2661 2662 2663 2664
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2665 2666 2667 2668 2669 2670
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2671

2672 2673
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2674 2675 2676 2677 2678 2679

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2680 2681
	if (pages != stack_pages)
		drm_free_large(pages);
2682 2683 2684 2685 2686

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2699 2700 2701
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2702 2703 2704 2705 2706 2707 2708 2709
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2710
void i915_vma_move_to_active(struct i915_vma *vma,
2711
			     struct drm_i915_gem_request *req)
2712
{
2713
	struct drm_i915_gem_object *obj = vma->obj;
2714
	struct intel_engine_cs *engine;
2715

2716
	engine = i915_gem_request_get_engine(req);
2717 2718

	/* Add a reference if we're newly entering the active list. */
2719
	if (obj->active == 0)
2720
		drm_gem_object_reference(&obj->base);
2721
	obj->active |= intel_engine_flag(engine);
2722

2723
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2724
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2725

2726
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2727 2728
}

2729 2730
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2731
{
2732 2733
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2734 2735

	i915_gem_request_assign(&obj->last_write_req, NULL);
2736
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2737 2738
}

2739
static void
2740
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2741
{
2742
	struct i915_vma *vma;
2743

2744 2745
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2746

2747
	list_del_init(&obj->engine_list[ring]);
2748 2749
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2750
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2751 2752 2753 2754 2755
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2756

2757 2758 2759 2760 2761 2762 2763
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2764 2765 2766
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2767
	}
2768

2769
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2770
	drm_gem_object_unreference(&obj->base);
2771 2772
}

2773
static int
2774
i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2775
{
2776
	struct intel_engine_cs *engine;
2777
	int ret;
2778

2779
	/* Carefully retire all requests without writing to the rings */
2780
	for_each_engine(engine, dev_priv) {
2781
		ret = intel_engine_idle(engine);
2782 2783
		if (ret)
			return ret;
2784
	}
2785
	i915_gem_retire_requests(dev_priv);
2786

2787 2788
	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
	if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
2789 2790
		while (intel_kick_waiters(dev_priv) ||
		       intel_kick_signalers(dev_priv))
2791 2792 2793
			yield();
	}

2794
	/* Finally reset hw state */
2795
	for_each_engine(engine, dev_priv)
2796
		intel_ring_init_seqno(engine, seqno);
2797

2798
	return 0;
2799 2800
}

2801 2802
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
2803
	struct drm_i915_private *dev_priv = to_i915(dev);
2804 2805 2806 2807 2808 2809 2810 2811
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
2812
	ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2827
int
2828
i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2829
{
2830 2831
	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2832
		int ret = i915_gem_init_seqno(dev_priv, 0);
2833 2834
		if (ret)
			return ret;
2835

2836 2837
		dev_priv->next_seqno = 1;
	}
2838

2839
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2840
	return 0;
2841 2842
}

2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	dev_priv->gt.active_engines |= intel_engine_flag(engine);
	if (dev_priv->gt.awake)
		return;

	intel_runtime_pm_get_noresume(dev_priv);
	dev_priv->gt.awake = true;

	i915_update_gfx_val(dev_priv);
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_busy(dev_priv);

	queue_delayed_work(dev_priv->wq,
			   &dev_priv->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

2863 2864 2865 2866 2867
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2868
void __i915_add_request(struct drm_i915_gem_request *request,
2869 2870
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2871
{
2872
	struct intel_engine_cs *engine;
2873
	struct intel_ringbuffer *ringbuf;
2874
	u32 request_start;
2875
	u32 reserved_tail;
2876 2877
	int ret;

2878
	if (WARN_ON(request == NULL))
2879
		return;
2880

2881
	engine = request->engine;
2882 2883
	ringbuf = request->ringbuf;

2884 2885 2886 2887 2888
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
2889
	request_start = intel_ring_get_tail(ringbuf);
2890 2891 2892
	reserved_tail = request->reserved_space;
	request->reserved_space = 0;

2893 2894 2895 2896 2897 2898 2899
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2900 2901
	if (flush_caches) {
		if (i915.enable_execlists)
2902
			ret = logical_ring_flush_all_caches(request);
2903
		else
2904
			ret = intel_ring_flush_all_caches(request);
2905 2906 2907
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2908

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2931 2932 2933 2934 2935
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2936
	request->postfix = intel_ring_get_tail(ringbuf);
2937

2938
	if (i915.enable_execlists)
2939
		ret = engine->emit_request(request);
2940
	else {
2941
		ret = engine->add_request(request);
2942 2943

		request->tail = intel_ring_get_tail(ringbuf);
2944
	}
2945 2946
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2947
	/* Sanity check that the reserved size was large enough. */
2948 2949 2950 2951 2952 2953 2954
	ret = intel_ring_get_tail(ringbuf) - request_start;
	if (ret < 0)
		ret += ringbuf->size;
	WARN_ONCE(ret > reserved_tail,
		  "Not enough space reserved (%d bytes) "
		  "for adding the request (%d bytes)\n",
		  reserved_tail, ret);
2955 2956

	i915_gem_mark_busy(engine);
2957 2958
}

2959
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2960
{
2961
	unsigned long elapsed;
2962

2963
	if (ctx->hang_stats.banned)
2964 2965
		return true;

2966
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2967 2968
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2969 2970
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2971 2972 2973 2974 2975
	}

	return false;
}

2976
static void i915_set_reset_status(struct i915_gem_context *ctx,
2977
				  const bool guilty)
2978
{
2979
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2980 2981

	if (guilty) {
2982
		hs->banned = i915_context_is_banned(ctx);
2983 2984 2985 2986
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2987 2988 2989
	}
}

2990 2991 2992 2993
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
2994
	kmem_cache_free(req->i915->requests, req);
2995 2996
}

2997
static inline int
2998
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2999
			 struct i915_gem_context *ctx,
3000
			 struct drm_i915_gem_request **req_out)
3001
{
3002
	struct drm_i915_private *dev_priv = engine->i915;
3003
	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
D
Daniel Vetter 已提交
3004
	struct drm_i915_gem_request *req;
3005 3006
	int ret;

3007 3008 3009
	if (!req_out)
		return -EINVAL;

3010
	*req_out = NULL;
3011

3012 3013 3014 3015 3016
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
3017 3018 3019
	if (ret)
		return ret;

D
Daniel Vetter 已提交
3020 3021
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
3022 3023
		return -ENOMEM;

3024
	ret = i915_gem_get_seqno(engine->i915, &req->seqno);
3025 3026
	if (ret)
		goto err;
3027

3028 3029
	kref_init(&req->ref);
	req->i915 = dev_priv;
3030
	req->engine = engine;
3031 3032
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
3033

3034 3035 3036 3037 3038 3039 3040
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
3041
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
3042 3043 3044 3045 3046 3047 3048

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(req);
	else
		ret = intel_ring_alloc_request_extras(req);
	if (ret)
		goto err_ctx;
3049

3050
	*req_out = req;
3051
	return 0;
3052

3053 3054
err_ctx:
	i915_gem_context_unreference(ctx);
3055 3056 3057
err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
3058 3059
}

3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
3074
		       struct i915_gem_context *ctx)
3075 3076 3077 3078 3079
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
3080
		ctx = engine->i915->kernel_context;
3081 3082 3083 3084
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

3085
struct drm_i915_gem_request *
3086
i915_gem_find_active_request(struct intel_engine_cs *engine)
3087
{
3088 3089
	struct drm_i915_gem_request *request;

3090 3091 3092 3093 3094 3095 3096 3097
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
3098
	list_for_each_entry(request, &engine->request_list, list) {
3099
		if (i915_gem_request_completed(request))
3100
			continue;
3101

3102
		return request;
3103
	}
3104 3105 3106 3107

	return NULL;
}

3108
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
3109 3110 3111 3112
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

3113
	request = i915_gem_find_active_request(engine);
3114 3115 3116
	if (request == NULL)
		return;

3117
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3118

3119
	i915_set_reset_status(request->ctx, ring_hung);
3120
	list_for_each_entry_continue(request, &engine->request_list, list)
3121
		i915_set_reset_status(request->ctx, false);
3122
}
3123

3124
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
3125
{
3126 3127
	struct intel_ringbuffer *buffer;

3128
	while (!list_empty(&engine->active_list)) {
3129
		struct drm_i915_gem_object *obj;
3130

3131
		obj = list_first_entry(&engine->active_list,
3132
				       struct drm_i915_gem_object,
3133
				       engine_list[engine->id]);
3134

3135
		i915_gem_object_retire__read(obj, engine->id);
3136
	}
3137

3138 3139 3140 3141 3142 3143
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

3144
	if (i915.enable_execlists) {
3145 3146
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
3147

3148
		intel_execlists_cancel_requests(engine);
3149 3150
	}

3151 3152 3153 3154 3155 3156 3157
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
3158
	while (!list_empty(&engine->request_list)) {
3159 3160
		struct drm_i915_gem_request *request;

3161
		request = list_first_entry(&engine->request_list,
3162 3163 3164
					   struct drm_i915_gem_request,
					   list);

3165
		i915_gem_request_retire(request);
3166
	}
3167 3168 3169 3170 3171 3172 3173 3174

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
3175
	list_for_each_entry(buffer, &engine->buffers, link) {
3176 3177 3178
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
3179 3180

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3181 3182
}

3183
void i915_gem_reset(struct drm_device *dev)
3184
{
3185
	struct drm_i915_private *dev_priv = to_i915(dev);
3186
	struct intel_engine_cs *engine;
3187

3188 3189 3190 3191 3192
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
3193
	for_each_engine(engine, dev_priv)
3194
		i915_gem_reset_engine_status(engine);
3195

3196
	for_each_engine(engine, dev_priv)
3197
		i915_gem_reset_engine_cleanup(engine);
3198

3199 3200
	i915_gem_context_reset(dev);

3201
	i915_gem_restore_fences(dev);
3202 3203

	WARN_ON(i915_verify_lists(dev));
3204 3205 3206 3207
}

/**
 * This function clears the request list as sequence numbers are passed.
3208
 * @engine: engine to retire requests on
3209
 */
3210
void
3211
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3212
{
3213
	WARN_ON(i915_verify_lists(engine->dev));
3214

3215 3216 3217 3218
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
3219
	 */
3220
	while (!list_empty(&engine->request_list)) {
3221 3222
		struct drm_i915_gem_request *request;

3223
		request = list_first_entry(&engine->request_list,
3224 3225 3226
					   struct drm_i915_gem_request,
					   list);

3227
		if (!i915_gem_request_completed(request))
3228 3229
			break;

3230
		i915_gem_request_retire(request);
3231
	}
3232

3233 3234 3235 3236
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
3237
	while (!list_empty(&engine->active_list)) {
3238 3239
		struct drm_i915_gem_object *obj;

3240 3241
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
3242
				       engine_list[engine->id]);
3243

3244
		if (!list_empty(&obj->last_read_req[engine->id]->list))
3245 3246
			break;

3247
		i915_gem_object_retire__read(obj, engine->id);
3248 3249
	}

3250
	WARN_ON(i915_verify_lists(engine->dev));
3251 3252
}

3253
void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3254
{
3255
	struct intel_engine_cs *engine;
3256 3257 3258 3259 3260 3261 3262

	lockdep_assert_held(&dev_priv->dev->struct_mutex);

	if (dev_priv->gt.active_engines == 0)
		return;

	GEM_BUG_ON(!dev_priv->gt.awake);
3263

3264
	for_each_engine(engine, dev_priv) {
3265
		i915_gem_retire_requests_ring(engine);
3266 3267
		if (list_empty(&engine->request_list))
			dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
3268 3269
	}

3270
	if (dev_priv->gt.active_engines == 0)
3271 3272 3273
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.idle_work,
				   msecs_to_jiffies(100));
3274 3275
}

3276
static void
3277 3278
i915_gem_retire_work_handler(struct work_struct *work)
{
3279
	struct drm_i915_private *dev_priv =
3280
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3281
	struct drm_device *dev = dev_priv->dev;
3282

3283
	/* Come back later if the device is busy... */
3284
	if (mutex_trylock(&dev->struct_mutex)) {
3285
		i915_gem_retire_requests(dev_priv);
3286
		mutex_unlock(&dev->struct_mutex);
3287
	}
3288 3289 3290 3291 3292 3293 3294 3295

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
	if (lockless_dereference(dev_priv->gt.awake))
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3296
				   round_jiffies_up_relative(HZ));
3297
}
3298

3299 3300 3301 3302
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3303
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3304
	struct drm_device *dev = dev_priv->dev;
3305
	struct intel_engine_cs *engine;
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
	unsigned int stuck_engines;
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
3328

3329
	for_each_engine(engine, dev_priv)
3330
		i915_gem_batch_pool_fini(&engine->batch_pool);
3331

3332 3333 3334
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3335

3336 3337 3338 3339 3340
	stuck_engines = intel_kick_waiters(dev_priv);
	if (unlikely(stuck_engines)) {
		DRM_DEBUG_DRIVER("kicked stuck waiters...missed irq\n");
		dev_priv->gpu_error.missed_irq_rings |= stuck_engines;
	}
3341

3342 3343 3344 3345 3346
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3347

3348 3349 3350 3351
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3352
	}
3353 3354
}

3355 3356 3357 3358
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
3359
 * @obj: object to flush
3360 3361 3362 3363
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3364
	int i;
3365 3366 3367

	if (!obj->active)
		return 0;
3368

3369
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3370
		struct drm_i915_gem_request *req;
3371

3372 3373 3374 3375
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

3376
		if (i915_gem_request_completed(req))
3377
			i915_gem_object_retire__read(obj, i);
3378 3379 3380 3381 3382
	}

	return 0;
}

3383 3384
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3385 3386 3387
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3412
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3413 3414
	int i, n = 0;
	int ret;
3415

3416 3417 3418
	if (args->flags != 0)
		return -EINVAL;

3419 3420 3421 3422
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3423
	obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3424 3425 3426 3427 3428
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3429 3430
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3431 3432 3433
	if (ret)
		goto out;

3434
	if (!obj->active)
3435
		goto out;
3436 3437

	/* Do this after OLR check to make sure we make forward progress polling
3438
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3439
	 */
3440
	if (args->timeout_ns == 0) {
3441 3442 3443 3444 3445
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3446

3447
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3448 3449 3450 3451 3452 3453
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3454 3455
	mutex_unlock(&dev->struct_mutex);

3456 3457
	for (i = 0; i < n; i++) {
		if (ret == 0)
3458
			ret = __i915_wait_request(req[i], true,
3459
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3460
						  to_rps_client(file));
3461
		i915_gem_request_unreference(req[i]);
3462
	}
3463
	return ret;
3464 3465 3466 3467 3468 3469 3470

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3471 3472 3473
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3474 3475
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3476 3477 3478 3479
{
	struct intel_engine_cs *from;
	int ret;

3480
	from = i915_gem_request_get_engine(from_req);
3481 3482 3483
	if (to == from)
		return 0;

3484
	if (i915_gem_request_completed(from_req))
3485 3486
		return 0;

3487
	if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3488
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3489
		ret = __i915_wait_request(from_req,
3490 3491 3492
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3493 3494 3495
		if (ret)
			return ret;

3496
		i915_gem_object_retire_request(obj, from_req);
3497 3498
	} else {
		int idx = intel_ring_sync_index(from, to);
3499 3500 3501
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3502 3503 3504 3505

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3506
		if (*to_req == NULL) {
3507 3508 3509 3510 3511 3512 3513
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3514 3515
		}

3516 3517
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3532 3533 3534 3535 3536
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3537 3538 3539
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3540 3541 3542
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3543
 * rather than a particular GPU ring. Conceptually we serialise writes
3544
 * between engines inside the GPU. We only allow one engine to write
3545 3546 3547 3548 3549 3550 3551 3552 3553
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3554
 *
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3565 3566
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3567 3568
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3569 3570
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3571
{
3572
	const bool readonly = obj->base.pending_write_domain == 0;
3573
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3574
	int ret, i, n;
3575

3576
	if (!obj->active)
3577 3578
		return 0;

3579 3580
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3581

3582 3583 3584 3585 3586
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3587
		for (i = 0; i < I915_NUM_ENGINES; i++)
3588 3589 3590 3591
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3592
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3593 3594 3595
		if (ret)
			return ret;
	}
3596

3597
	return 0;
3598 3599
}

3600 3601 3602 3603 3604 3605 3606
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3607 3608 3609
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

3632
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3633
{
3634
	struct drm_i915_gem_object *obj = vma->obj;
3635
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3636
	int ret;
3637

3638
	if (list_empty(&vma->obj_link))
3639 3640
		return 0;

3641 3642 3643 3644
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3645

B
Ben Widawsky 已提交
3646
	if (vma->pin_count)
3647
		return -EBUSY;
3648

3649 3650
	BUG_ON(obj->pages == NULL);

3651 3652 3653 3654 3655
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3656

3657
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3658
		i915_gem_object_finish_gtt(obj);
3659

3660 3661 3662 3663
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
3664 3665

		__i915_vma_iounmap(vma);
3666
	}
3667

3668
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3669

3670
	vma->vm->unbind_vma(vma);
3671
	vma->bound = 0;
3672

3673
	list_del_init(&vma->vm_link);
3674
	if (vma->is_ggtt) {
3675 3676 3677 3678 3679 3680
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3681
		vma->ggtt_view.pages = NULL;
3682
	}
3683

B
Ben Widawsky 已提交
3684 3685 3686 3687
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3688
	 * no more VMAs exist. */
I
Imre Deak 已提交
3689
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3690
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3691

3692 3693 3694 3695 3696 3697
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3698
	return 0;
3699 3700
}

3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3711
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3712
{
3713
	struct intel_engine_cs *engine;
3714
	int ret;
3715

3716 3717
	lockdep_assert_held(&dev_priv->dev->struct_mutex);

3718
	for_each_engine(engine, dev_priv) {
3719 3720 3721
		if (engine->last_context == NULL)
			continue;

3722
		ret = intel_engine_idle(engine);
3723 3724 3725
		if (ret)
			return ret;
	}
3726

3727
	WARN_ON(i915_verify_lists(dev));
3728
	return 0;
3729 3730
}

3731
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3732 3733
				     unsigned long cache_level)
{
3734
	struct drm_mm_node *gtt_space = &vma->node;
3735 3736
	struct drm_mm_node *other;

3737 3738 3739 3740 3741 3742
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3743
	 */
3744
	if (vma->vm->mm.color_adjust == NULL)
3745 3746
		return true;

3747
	if (!drm_mm_node_allocated(gtt_space))
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3764
/**
3765 3766
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3767 3768 3769 3770 3771
 * @obj: object to bind
 * @vm: address space to bind into
 * @ggtt_view: global gtt view if applicable
 * @alignment: requested alignment
 * @flags: mask of PIN_* flags to use
3772
 */
3773
static struct i915_vma *
3774 3775
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3776
			   const struct i915_ggtt_view *ggtt_view,
3777
			   unsigned alignment,
3778
			   uint64_t flags)
3779
{
3780
	struct drm_device *dev = obj->base.dev;
3781 3782
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3783
	u32 fence_alignment, unfenced_alignment;
3784 3785
	u32 search_flag, alloc_flag;
	u64 start, end;
3786
	u64 size, fence_size;
B
Ben Widawsky 已提交
3787
	struct i915_vma *vma;
3788
	int ret;
3789

3790 3791 3792 3793 3794
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3795

3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3825

3826 3827 3828
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3829
		end = min_t(u64, end, ggtt->mappable_end);
3830
	if (flags & PIN_ZONE_4G)
3831
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3832

3833
	if (alignment == 0)
3834
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3835
						unfenced_alignment;
3836
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3837 3838 3839
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3840
		return ERR_PTR(-EINVAL);
3841 3842
	}

3843 3844 3845
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3846
	 */
3847
	if (size > end) {
3848
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3849 3850
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3851
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3852
			  end);
3853
		return ERR_PTR(-E2BIG);
3854 3855
	}

3856
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3857
	if (ret)
3858
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3859

3860 3861
	i915_gem_object_pin_pages(obj);

3862 3863 3864
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3865
	if (IS_ERR(vma))
3866
		goto err_unpin;
B
Ben Widawsky 已提交
3867

3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3886
	} else {
3887 3888 3889 3890 3891 3892 3893
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3894

3895
search_free:
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3909

3910 3911
			goto err_free_vma;
		}
3912
	}
3913
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3914
		ret = -EINVAL;
3915
		goto err_remove_node;
3916 3917
	}

3918
	trace_i915_vma_bind(vma, flags);
3919
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3920
	if (ret)
I
Imre Deak 已提交
3921
		goto err_remove_node;
3922

3923
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3924
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3925

3926
	return vma;
B
Ben Widawsky 已提交
3927

3928
err_remove_node:
3929
	drm_mm_remove_node(&vma->node);
3930
err_free_vma:
B
Ben Widawsky 已提交
3931
	i915_gem_vma_destroy(vma);
3932
	vma = ERR_PTR(ret);
3933
err_unpin:
B
Ben Widawsky 已提交
3934
	i915_gem_object_unpin_pages(obj);
3935
	return vma;
3936 3937
}

3938
bool
3939 3940
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3941 3942 3943 3944 3945
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3946
	if (obj->pages == NULL)
3947
		return false;
3948

3949 3950 3951 3952
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3953
	if (obj->stolen || obj->phys_handle)
3954
		return false;
3955

3956 3957 3958 3959 3960 3961 3962 3963
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3964 3965
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3966
		return false;
3967
	}
3968

C
Chris Wilson 已提交
3969
	trace_i915_gem_object_clflush(obj);
3970
	drm_clflush_sg(obj->pages);
3971
	obj->cache_dirty = false;
3972 3973

	return true;
3974 3975 3976 3977
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3978
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3979
{
C
Chris Wilson 已提交
3980 3981
	uint32_t old_write_domain;

3982
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3983 3984
		return;

3985
	/* No actual flushing is required for the GTT write domain.  Writes
3986 3987
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3988 3989 3990 3991
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3992
	 */
3993 3994
	wmb();

3995 3996
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3997

3998
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3999

C
Chris Wilson 已提交
4000
	trace_i915_gem_object_change_domain(obj,
4001
					    obj->base.read_domains,
C
Chris Wilson 已提交
4002
					    old_write_domain);
4003 4004 4005 4006
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
4007
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
4008
{
C
Chris Wilson 已提交
4009
	uint32_t old_write_domain;
4010

4011
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
4012 4013
		return;

4014
	if (i915_gem_clflush_object(obj, obj->pin_display))
4015
		i915_gem_chipset_flush(to_i915(obj->base.dev));
4016

4017 4018
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
4019

4020
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
4021

C
Chris Wilson 已提交
4022
	trace_i915_gem_object_change_domain(obj,
4023
					    obj->base.read_domains,
C
Chris Wilson 已提交
4024
					    old_write_domain);
4025 4026
}

4027 4028
/**
 * Moves a single object to the GTT read, and possibly write domain.
4029 4030
 * @obj: object to act on
 * @write: ask for write access or read only
4031 4032 4033 4034
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
4035
int
4036
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4037
{
4038 4039 4040
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
4041
	uint32_t old_write_domain, old_read_domains;
4042
	struct i915_vma *vma;
4043
	int ret;
4044

4045 4046 4047
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

4048
	ret = i915_gem_object_wait_rendering(obj, !write);
4049 4050 4051
	if (ret)
		return ret;

4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

4064
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
4065

4066 4067 4068 4069 4070 4071 4072
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

4073 4074
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4075

4076 4077 4078
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4079 4080
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4081
	if (write) {
4082 4083 4084
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
4085 4086
	}

C
Chris Wilson 已提交
4087 4088 4089 4090
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4091
	/* And bump the LRU for this access */
4092 4093
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4094
		list_move_tail(&vma->vm_link,
4095
			       &ggtt->base.inactive_list);
4096

4097 4098 4099
	return 0;
}

4100 4101
/**
 * Changes the cache-level of an object across all VMA.
4102 4103
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
4115 4116 4117
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
4118
	struct drm_device *dev = obj->base.dev;
4119
	struct i915_vma *vma, *next;
4120
	bool bound = false;
4121
	int ret = 0;
4122 4123

	if (obj->cache_level == cache_level)
4124
		goto out;
4125

4126 4127 4128 4129 4130
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
4131
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4132 4133 4134 4135 4136 4137 4138 4139
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

4140
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4141
			ret = i915_vma_unbind(vma);
4142 4143
			if (ret)
				return ret;
4144 4145
		} else
			bound = true;
4146 4147
	}

4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
4160
		ret = i915_gem_object_wait_rendering(obj, false);
4161 4162 4163
		if (ret)
			return ret;

4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4181 4182 4183
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
4184 4185 4186 4187 4188 4189 4190 4191
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4192 4193
		}

4194
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4195 4196 4197 4198 4199 4200 4201
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4202 4203
	}

4204
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4205 4206 4207
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

4208
out:
4209 4210 4211 4212
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
4213
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
4214
		if (i915_gem_clflush_object(obj, true))
4215
			i915_gem_chipset_flush(to_i915(obj->base.dev));
4216 4217 4218 4219 4220
	}

	return 0;
}

B
Ben Widawsky 已提交
4221 4222
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4223
{
B
Ben Widawsky 已提交
4224
	struct drm_i915_gem_caching *args = data;
4225 4226
	struct drm_i915_gem_object *obj;

4227
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4228 4229
	if (&obj->base == NULL)
		return -ENOENT;
4230

4231 4232 4233 4234 4235 4236
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4237 4238 4239 4240
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4241 4242 4243 4244
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4245

4246 4247
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
4248 4249
}

B
Ben Widawsky 已提交
4250 4251
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4252
{
4253
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
4254
	struct drm_i915_gem_caching *args = data;
4255 4256 4257 4258
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
4259 4260
	switch (args->caching) {
	case I915_CACHING_NONE:
4261 4262
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4263
	case I915_CACHING_CACHED:
4264 4265 4266 4267 4268 4269
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4270
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4271 4272
			return -ENODEV;

4273 4274
		level = I915_CACHE_LLC;
		break;
4275 4276 4277
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4278 4279 4280 4281
	default:
		return -EINVAL;
	}

4282 4283
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
4284 4285
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
4286
		goto rpm_put;
B
Ben Widawsky 已提交
4287

4288
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
4299 4300 4301
rpm_put:
	intel_runtime_pm_put(dev_priv);

4302 4303 4304
	return ret;
}

4305
/*
4306 4307 4308
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4309 4310
 */
int
4311 4312
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4313
				     const struct i915_ggtt_view *view)
4314
{
4315
	u32 old_read_domains, old_write_domain;
4316 4317
	int ret;

4318 4319 4320
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4321
	obj->pin_display++;
4322

4323 4324 4325 4326 4327 4328 4329 4330 4331
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4332 4333
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4334
	if (ret)
4335
		goto err_unpin_display;
4336

4337 4338 4339 4340
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4341 4342 4343
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4344
	if (ret)
4345
		goto err_unpin_display;
4346

4347
	i915_gem_object_flush_cpu_write_domain(obj);
4348

4349
	old_write_domain = obj->base.write_domain;
4350
	old_read_domains = obj->base.read_domains;
4351 4352 4353 4354

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4355
	obj->base.write_domain = 0;
4356
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4357 4358 4359

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4360
					    old_write_domain);
4361 4362

	return 0;
4363 4364

err_unpin_display:
4365
	obj->pin_display--;
4366 4367 4368 4369
	return ret;
}

void
4370 4371
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4372
{
4373 4374 4375
	if (WARN_ON(obj->pin_display == 0))
		return;

4376 4377
	i915_gem_object_ggtt_unpin_view(obj, view);

4378
	obj->pin_display--;
4379 4380
}

4381 4382
/**
 * Moves a single object to the CPU read, and possibly write domain.
4383 4384
 * @obj: object to act on
 * @write: requesting write or read-only access
4385 4386 4387 4388
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4389
int
4390
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4391
{
C
Chris Wilson 已提交
4392
	uint32_t old_write_domain, old_read_domains;
4393 4394
	int ret;

4395 4396 4397
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4398
	ret = i915_gem_object_wait_rendering(obj, !write);
4399 4400 4401
	if (ret)
		return ret;

4402
	i915_gem_object_flush_gtt_write_domain(obj);
4403

4404 4405
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4406

4407
	/* Flush the CPU cache if it's still invalid. */
4408
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4409
		i915_gem_clflush_object(obj, false);
4410

4411
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4412 4413 4414 4415 4416
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4417
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4418 4419 4420 4421 4422

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4423 4424
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4425
	}
4426

C
Chris Wilson 已提交
4427 4428 4429 4430
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4431 4432 4433
	return 0;
}

4434 4435 4436
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4437 4438 4439 4440
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4441 4442 4443
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4444
static int
4445
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4446
{
4447
	struct drm_i915_private *dev_priv = to_i915(dev);
4448
	struct drm_i915_file_private *file_priv = file->driver_priv;
4449
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4450
	struct drm_i915_gem_request *request, *target = NULL;
4451
	int ret;
4452

4453 4454 4455 4456
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

4457 4458 4459
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4460

4461
	spin_lock(&file_priv->mm.lock);
4462
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4463 4464
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4465

4466 4467 4468 4469 4470 4471 4472
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4473
		target = request;
4474
	}
4475 4476
	if (target)
		i915_gem_request_reference(target);
4477
	spin_unlock(&file_priv->mm.lock);
4478

4479
	if (target == NULL)
4480
		return 0;
4481

4482
	ret = __i915_wait_request(target, true, NULL, NULL);
4483
	i915_gem_request_unreference(target);
4484

4485 4486 4487
	return ret;
}

4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4504 4505 4506 4507
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4508 4509 4510
	return false;
}

4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4529
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4530 4531 4532 4533

	obj->map_and_fenceable = mappable && fenceable;
}

4534 4535 4536 4537 4538 4539
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4540
{
4541
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4542
	struct i915_vma *vma;
4543
	unsigned bound;
4544 4545
	int ret;

4546 4547 4548
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4549
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4550
		return -EINVAL;
4551

4552 4553 4554
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4555 4556 4557 4558 4559 4560
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4561
	if (vma) {
B
Ben Widawsky 已提交
4562 4563 4564
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4565
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4566
			WARN(vma->pin_count,
4567
			     "bo is already pinned in %s with incorrect alignment:"
4568
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4569
			     " obj->map_and_fenceable=%d\n",
4570
			     ggtt_view ? "ggtt" : "ppgtt",
4571 4572
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4573
			     alignment,
4574
			     !!(flags & PIN_MAPPABLE),
4575
			     obj->map_and_fenceable);
4576
			ret = i915_vma_unbind(vma);
4577 4578
			if (ret)
				return ret;
4579 4580

			vma = NULL;
4581 4582 4583
		}
	}

4584
	bound = vma ? vma->bound : 0;
4585
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4586 4587
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4588 4589
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4590 4591
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4592 4593 4594
		if (ret)
			return ret;
	}
4595

4596 4597
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4598
		__i915_vma_set_map_and_fenceable(vma);
4599 4600
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4601

4602
	vma->pin_count++;
4603 4604 4605
	return 0;
}

4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4623 4624 4625 4626
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4627
	BUG_ON(!view);
4628

4629
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4630
				      alignment, flags | PIN_GLOBAL);
4631 4632
}

4633
void
4634 4635
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4636
{
4637
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4638

4639
	WARN_ON(vma->pin_count == 0);
4640
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4641

4642
	--vma->pin_count;
4643 4644 4645 4646
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4647
		    struct drm_file *file)
4648 4649
{
	struct drm_i915_gem_busy *args = data;
4650
	struct drm_i915_gem_object *obj;
4651 4652
	int ret;

4653
	ret = i915_mutex_lock_interruptible(dev);
4654
	if (ret)
4655
		return ret;
4656

4657
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4658
	if (&obj->base == NULL) {
4659 4660
		ret = -ENOENT;
		goto unlock;
4661
	}
4662

4663 4664 4665 4666
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4667
	 */
4668
	ret = i915_gem_object_flush_active(obj);
4669 4670
	if (ret)
		goto unref;
4671

4672 4673 4674 4675
	args->busy = 0;
	if (obj->active) {
		int i;

4676
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4677 4678 4679 4680
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4681
				args->busy |= 1 << (16 + req->engine->exec_id);
4682 4683
		}
		if (obj->last_write_req)
4684
			args->busy |= obj->last_write_req->engine->exec_id;
4685
	}
4686

4687
unref:
4688
	drm_gem_object_unreference(&obj->base);
4689
unlock:
4690
	mutex_unlock(&dev->struct_mutex);
4691
	return ret;
4692 4693 4694 4695 4696 4697
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4698
	return i915_gem_ring_throttle(dev, file_priv);
4699 4700
}

4701 4702 4703 4704
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4705
	struct drm_i915_private *dev_priv = to_i915(dev);
4706
	struct drm_i915_gem_madvise *args = data;
4707
	struct drm_i915_gem_object *obj;
4708
	int ret;
4709 4710 4711 4712 4713 4714 4715 4716 4717

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4718 4719 4720 4721
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4722
	obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4723
	if (&obj->base == NULL) {
4724 4725
		ret = -ENOENT;
		goto unlock;
4726 4727
	}

B
Ben Widawsky 已提交
4728
	if (i915_gem_obj_is_pinned(obj)) {
4729 4730
		ret = -EINVAL;
		goto out;
4731 4732
	}

4733 4734 4735 4736 4737 4738 4739 4740 4741
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4742 4743
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4744

C
Chris Wilson 已提交
4745
	/* if the object is no longer attached, discard its backing storage */
4746
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4747 4748
		i915_gem_object_truncate(obj);

4749
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4750

4751
out:
4752
	drm_gem_object_unreference(&obj->base);
4753
unlock:
4754
	mutex_unlock(&dev->struct_mutex);
4755
	return ret;
4756 4757
}

4758 4759
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4760
{
4761 4762
	int i;

4763
	INIT_LIST_HEAD(&obj->global_list);
4764
	for (i = 0; i < I915_NUM_ENGINES; i++)
4765
		INIT_LIST_HEAD(&obj->engine_list[i]);
4766
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4767
	INIT_LIST_HEAD(&obj->vma_list);
4768
	INIT_LIST_HEAD(&obj->batch_pool_link);
4769

4770 4771
	obj->ops = ops;

4772 4773 4774 4775 4776 4777
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4778
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4779
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4780 4781 4782 4783
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4784
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4785
						  size_t size)
4786
{
4787
	struct drm_i915_gem_object *obj;
4788
	struct address_space *mapping;
D
Daniel Vetter 已提交
4789
	gfp_t mask;
4790
	int ret;
4791

4792
	obj = i915_gem_object_alloc(dev);
4793
	if (obj == NULL)
4794
		return ERR_PTR(-ENOMEM);
4795

4796 4797 4798
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4799

4800 4801 4802 4803 4804 4805 4806
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4807
	mapping = file_inode(obj->base.filp)->i_mapping;
4808
	mapping_set_gfp_mask(mapping, mask);
4809

4810
	i915_gem_object_init(obj, &i915_gem_object_ops);
4811

4812 4813
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4814

4815 4816
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4832 4833
	trace_i915_gem_object_create(obj);

4834
	return obj;
4835 4836 4837 4838 4839

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4840 4841
}

4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4866
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4867
{
4868
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4869
	struct drm_device *dev = obj->base.dev;
4870
	struct drm_i915_private *dev_priv = to_i915(dev);
4871
	struct i915_vma *vma, *next;
4872

4873 4874
	intel_runtime_pm_get(dev_priv);

4875 4876
	trace_i915_gem_object_destroy(obj);

4877
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4878 4879 4880 4881
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4882 4883
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4884

4885 4886
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4887

4888
			WARN_ON(i915_vma_unbind(vma));
4889

4890 4891
			dev_priv->mm.interruptible = was_interruptible;
		}
4892 4893
	}

B
Ben Widawsky 已提交
4894 4895 4896 4897 4898
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4899 4900
	WARN_ON(obj->frontbuffer_bits);

4901 4902 4903 4904 4905
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4906 4907
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4908
	if (discard_backing_storage(obj))
4909
		obj->madv = I915_MADV_DONTNEED;
4910
	i915_gem_object_put_pages(obj);
4911
	i915_gem_object_free_mmap_offset(obj);
4912

4913 4914
	BUG_ON(obj->pages);

4915 4916
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4917

4918 4919 4920
	if (obj->ops->release)
		obj->ops->release(obj);

4921 4922
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4923

4924
	kfree(obj->bit_17);
4925
	i915_gem_object_free(obj);
4926 4927

	intel_runtime_pm_put(dev_priv);
4928 4929
}

4930 4931
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4932 4933
{
	struct i915_vma *vma;
4934
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4935 4936
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4937
			return vma;
4938 4939 4940 4941 4942 4943 4944 4945
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4946

4947
	GEM_BUG_ON(!view);
4948

4949
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4950
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4951
			return vma;
4952 4953 4954
	return NULL;
}

B
Ben Widawsky 已提交
4955 4956 4957
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4958 4959 4960 4961 4962

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4963 4964
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4965

4966
	list_del(&vma->obj_link);
4967

4968
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4969 4970
}

4971
static void
4972
i915_gem_stop_engines(struct drm_device *dev)
4973
{
4974
	struct drm_i915_private *dev_priv = to_i915(dev);
4975
	struct intel_engine_cs *engine;
4976

4977
	for_each_engine(engine, dev_priv)
4978
		dev_priv->gt.stop_engine(engine);
4979 4980
}

4981
int
4982
i915_gem_suspend(struct drm_device *dev)
4983
{
4984
	struct drm_i915_private *dev_priv = to_i915(dev);
4985
	int ret = 0;
4986

4987
	mutex_lock(&dev->struct_mutex);
4988
	ret = i915_gem_wait_for_idle(dev_priv);
4989
	if (ret)
4990
		goto err;
4991

4992
	i915_gem_retire_requests(dev_priv);
4993

4994
	i915_gem_stop_engines(dev);
4995
	i915_gem_context_lost(dev_priv);
4996 4997
	mutex_unlock(&dev->struct_mutex);

4998
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4999 5000
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
5001

5002 5003 5004
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
5005
	WARN_ON(dev_priv->gt.awake);
5006

5007
	return 0;
5008 5009 5010 5011

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
5012 5013
}

5014 5015
void i915_gem_init_swizzling(struct drm_device *dev)
{
5016
	struct drm_i915_private *dev_priv = to_i915(dev);
5017

5018
	if (INTEL_INFO(dev)->gen < 5 ||
5019 5020 5021 5022 5023 5024
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5025 5026 5027
	if (IS_GEN5(dev))
		return;

5028 5029
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
5030
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5031
	else if (IS_GEN7(dev))
5032
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
5033 5034
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5035 5036
	else
		BUG();
5037
}
D
Daniel Vetter 已提交
5038

5039 5040
static void init_unused_ring(struct drm_device *dev, u32 base)
{
5041
	struct drm_i915_private *dev_priv = to_i915(dev);
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

5066
int i915_gem_init_engines(struct drm_device *dev)
5067
{
5068
	struct drm_i915_private *dev_priv = to_i915(dev);
5069
	int ret;
5070

5071
	ret = intel_init_render_ring_buffer(dev);
5072
	if (ret)
5073
		return ret;
5074 5075

	if (HAS_BSD(dev)) {
5076
		ret = intel_init_bsd_ring_buffer(dev);
5077 5078
		if (ret)
			goto cleanup_render_ring;
5079
	}
5080

5081
	if (HAS_BLT(dev)) {
5082 5083 5084 5085 5086
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
5087 5088 5089 5090 5091 5092
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

5093 5094 5095 5096 5097
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
5098

5099 5100
	return 0;

B
Ben Widawsky 已提交
5101
cleanup_vebox_ring:
5102
	intel_cleanup_engine(&dev_priv->engine[VECS]);
5103
cleanup_blt_ring:
5104
	intel_cleanup_engine(&dev_priv->engine[BCS]);
5105
cleanup_bsd_ring:
5106
	intel_cleanup_engine(&dev_priv->engine[VCS]);
5107
cleanup_render_ring:
5108
	intel_cleanup_engine(&dev_priv->engine[RCS]);
5109 5110 5111 5112 5113 5114 5115

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
5116
	struct drm_i915_private *dev_priv = to_i915(dev);
5117
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
5118
	int ret;
5119

5120 5121 5122
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5123
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
5124
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5125

5126 5127 5128
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5129

5130
	if (HAS_PCH_NOP(dev)) {
5131 5132 5133 5134 5135 5136 5137 5138 5139
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5140 5141
	}

5142 5143
	i915_gem_init_swizzling(dev);

5144 5145 5146 5147 5148 5149 5150 5151
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

5152
	BUG_ON(!dev_priv->kernel_context);
5153

5154 5155 5156 5157 5158 5159 5160
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
5161
	for_each_engine(engine, dev_priv) {
5162
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
5163
		if (ret)
5164
			goto out;
D
Daniel Vetter 已提交
5165
	}
5166

5167 5168
	intel_mocs_init_l3cc_table(dev);

5169
	/* We can't enable contexts until all firmware is loaded */
5170 5171 5172
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
5173

5174 5175
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5176
	return ret;
5177 5178
}

5179 5180
int i915_gem_init(struct drm_device *dev)
{
5181
	struct drm_i915_private *dev_priv = to_i915(dev);
5182 5183 5184
	int ret;

	mutex_lock(&dev->struct_mutex);
5185

5186
	if (!i915.enable_execlists) {
5187
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5188 5189 5190
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
5191
	} else {
5192
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5193 5194 5195
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
5196 5197
	}

5198 5199 5200 5201 5202 5203 5204 5205
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5206
	i915_gem_init_userptr(dev_priv);
5207
	i915_gem_init_ggtt(dev);
5208

5209
	ret = i915_gem_context_init(dev);
5210 5211
	if (ret)
		goto out_unlock;
5212

5213
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
5214
	if (ret)
5215
		goto out_unlock;
5216

5217
	ret = i915_gem_init_hw(dev);
5218 5219 5220 5221 5222 5223
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5224
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5225
		ret = 0;
5226
	}
5227 5228

out_unlock:
5229
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5230
	mutex_unlock(&dev->struct_mutex);
5231

5232
	return ret;
5233 5234
}

5235
void
5236
i915_gem_cleanup_engines(struct drm_device *dev)
5237
{
5238
	struct drm_i915_private *dev_priv = to_i915(dev);
5239
	struct intel_engine_cs *engine;
5240

5241
	for_each_engine(engine, dev_priv)
5242
		dev_priv->gt.cleanup_engine(engine);
5243 5244
}

5245
static void
5246
init_engine_lists(struct intel_engine_cs *engine)
5247
{
5248 5249
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
5250 5251
}

5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5266
	if (intel_vgpu_active(dev_priv))
5267 5268 5269 5270 5271 5272 5273 5274 5275
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

5276
void
5277
i915_gem_load_init(struct drm_device *dev)
5278
{
5279
	struct drm_i915_private *dev_priv = to_i915(dev);
5280 5281
	int i;

5282
	dev_priv->objects =
5283 5284 5285 5286
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5287 5288 5289 5290 5291
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5292 5293 5294 5295 5296
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5297

B
Ben Widawsky 已提交
5298
	INIT_LIST_HEAD(&dev_priv->vm_list);
5299
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5300 5301
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5302
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5303 5304
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5305
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5306
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5307
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5308
			  i915_gem_retire_work_handler);
5309
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5310
			  i915_gem_idle_work_handler);
5311
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5312
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5313

5314 5315
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5316
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5317

5318
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5319

5320 5321
	dev_priv->mm.interruptible = true;

5322
	mutex_init(&dev_priv->fb_tracking.lock);
5323
}
5324

5325 5326 5327 5328 5329 5330 5331 5332 5333
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

5362
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5363
{
5364
	struct drm_i915_file_private *file_priv = file->driver_priv;
5365 5366 5367 5368 5369

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5370
	spin_lock(&file_priv->mm.lock);
5371 5372 5373 5374 5375 5376 5377 5378 5379
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5380
	spin_unlock(&file_priv->mm.lock);
5381

5382
	if (!list_empty(&file_priv->rps.link)) {
5383
		spin_lock(&to_i915(dev)->rps.client_lock);
5384
		list_del(&file_priv->rps.link);
5385
		spin_unlock(&to_i915(dev)->rps.client_lock);
5386
	}
5387 5388 5389 5390 5391
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5392
	int ret;
5393 5394 5395 5396 5397 5398 5399 5400 5401

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5402
	file_priv->file = file;
5403
	INIT_LIST_HEAD(&file_priv->rps.link);
5404 5405 5406 5407

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5408 5409
	file_priv->bsd_ring = -1;

5410 5411 5412
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5413

5414
	return ret;
5415 5416
}

5417 5418
/**
 * i915_gem_track_fb - update frontbuffer tracking
5419 5420 5421
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5422 5423 5424 5425
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5443
/* All the new VM stuff */
5444 5445
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5446
{
5447
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5448 5449
	struct i915_vma *vma;

5450
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5451

5452
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5453
		if (vma->is_ggtt &&
5454 5455 5456
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5457 5458
			return vma->node.start;
	}
5459

5460 5461
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5462 5463 5464
	return -1;
}

5465 5466
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5467 5468 5469
{
	struct i915_vma *vma;

5470
	list_for_each_entry(vma, &o->vma_list, obj_link)
5471
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5472 5473
			return vma->node.start;

5474
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5475 5476 5477 5478 5479 5480 5481 5482
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5483
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5484
		if (vma->is_ggtt &&
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5495
				  const struct i915_ggtt_view *view)
5496 5497 5498
{
	struct i915_vma *vma;

5499
	list_for_each_entry(vma, &o->vma_list, obj_link)
5500
		if (vma->is_ggtt &&
5501
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5502
		    drm_mm_node_allocated(&vma->node))
5503 5504 5505 5506 5507 5508 5509
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5510
	struct i915_vma *vma;
5511

5512
	list_for_each_entry(vma, &o->vma_list, obj_link)
5513
		if (drm_mm_node_allocated(&vma->node))
5514 5515 5516 5517 5518
			return true;

	return false;
}

5519
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5520 5521 5522
{
	struct i915_vma *vma;

5523
	GEM_BUG_ON(list_empty(&o->vma_list));
5524

5525
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5526
		if (vma->is_ggtt &&
5527
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5528
			return vma->node.size;
5529
	}
5530

5531 5532 5533
	return 0;
}

5534
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5535 5536
{
	struct i915_vma *vma;
5537
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5538 5539
		if (vma->pin_count > 0)
			return true;
5540

5541
	return false;
5542
}
5543

5544 5545 5546 5547 5548 5549 5550
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5551
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
5552 5553 5554 5555 5556 5557 5558
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5559 5560 5561 5562 5563 5564 5565 5566 5567 5568
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

5569
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5570
	if (IS_ERR(obj))
5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5584
	obj->dirty = 1;		/* Backing store is now out of date */
5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}