i915_gem.c 124.4 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84 85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107
	if (!i915_reset_in_progress(error))
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115
	ret = wait_event_interruptible_timeout(error->reset_queue,
116
					       !i915_reset_in_progress(error),
117
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123 124
	} else {
		return 0;
125
	}
126 127
}

128
int i915_mutex_lock_interruptible(struct drm_device *dev)
129
{
130
	struct drm_i915_private *dev_priv = to_i915(dev);
131 132
	int ret;

133
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 135 136 137 138 139 140 141 142
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
143

144 145
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146
			    struct drm_file *file)
147
{
148
	struct drm_i915_private *dev_priv = to_i915(dev);
149
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
150
	struct drm_i915_gem_get_aperture *args = data;
151
	struct i915_vma *vma;
152
	size_t pinned;
153

154
	pinned = 0;
155
	mutex_lock(&dev->struct_mutex);
156
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157
		if (i915_vma_is_pinned(vma))
158
			pinned += vma->node.size;
159
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	mutex_unlock(&dev->struct_mutex);
163

164
	args->aper_size = ggtt->base.total;
165
	args->aper_available_size = args->aper_size - pinned;
166

167 168 169
	return 0;
}

170 171
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172
{
173 174 175 176 177
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

195
		put_page(page);
196 197 198
		vaddr += PAGE_SIZE;
	}

199
	i915_gem_chipset_flush(to_i915(obj->base.dev));
200 201 202 203 204 205 206 207 208 209 210 211 212

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
213

214 215 216 217 218 219 220 221 222 223 224 225 226
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
227

228
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
229
	if (WARN_ON(ret)) {
230 231 232 233 234 235 236 237 238 239
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			put_page(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
int
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
	int ret;

	/* The vma will only be freed if it is marked as closed, and if we wait
	 * upon rendering to the vma, we may unbind anything in the list.
	 */
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 * @obj: i915 gem object
 * @readonly: waiting for just read access or read-write access
 */
int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
	struct reservation_object *resv;
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = i915_gem_object_get_active(obj);
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

	for_each_active(active_mask, idx) {
		int ret;

		ret = i915_gem_active_wait(&active[idx],
					   &obj->base.dev->struct_mutex);
		if (ret)
			return ret;
	}

	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

	return 0;
}

352 353 354
/* A nonblocking variant of the above wait. Must be called prior to
 * acquiring the mutex for the object, as the object state may change
 * during this call. A reference must be held by the caller for the object.
355 356
 */
static __must_check int
357 358 359
__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
			struct intel_rps_client *rps,
			bool readonly)
360 361 362
{
	struct i915_gem_active *active;
	unsigned long active_mask;
363
	int idx;
364

365
	active_mask = __I915_BO_ACTIVE(obj);
366 367 368 369 370 371 372 373 374 375
	if (!active_mask)
		return 0;

	if (!readonly) {
		active = obj->last_read;
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

376 377
	for_each_active(active_mask, idx) {
		int ret;
378

379 380 381 382
		ret = i915_gem_active_wait_unlocked(&active[idx],
						    true, NULL, rps);
		if (ret)
			return ret;
383 384
	}

385
	return 0;
386 387 388 389 390 391 392 393 394
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

395 396 397 398 399
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
400
	int ret;
401 402 403 404 405 406 407 408 409 410 411 412 413 414

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
415 416 417 418 419
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
420 421 422
	if (ret)
		return ret;

423 424 425 426 427 428
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
429 430 431
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
432 433 434 435 436 437 438 439 440
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
441
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
442
	int ret = 0;
443 444 445 446 447 448 449

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
450

451
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
452 453 454 455 456 457 458 459 460 461
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
462 463 464 465
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
466 467
	}

468
	drm_clflush_virt_range(vaddr, args->size);
469
	i915_gem_chipset_flush(to_i915(dev));
470 471

out:
472
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
473
	return ret;
474 475
}

476 477
void *i915_gem_object_alloc(struct drm_device *dev)
{
478
	struct drm_i915_private *dev_priv = to_i915(dev);
479
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
480 481 482 483
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
484
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
485
	kmem_cache_free(dev_priv->objects, obj);
486 487
}

488 489 490 491 492
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
493
{
494
	struct drm_i915_gem_object *obj;
495 496
	int ret;
	u32 handle;
497

498
	size = roundup(size, PAGE_SIZE);
499 500
	if (size == 0)
		return -EINVAL;
501 502

	/* Allocate the new object */
503
	obj = i915_gem_object_create(dev, size);
504 505
	if (IS_ERR(obj))
		return PTR_ERR(obj);
506

507
	ret = drm_gem_handle_create(file, &obj->base, &handle);
508
	/* drop reference from allocate - handle holds it now */
509
	i915_gem_object_put_unlocked(obj);
510 511
	if (ret)
		return ret;
512

513
	*handle_p = handle;
514 515 516
	return 0;
}

517 518 519 520 521 522
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
523
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
524 525
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
526
			       args->size, &args->handle);
527 528 529 530
}

/**
 * Creates a new mm object and returns a handle to it.
531 532 533
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
534 535 536 537 538 539
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
540

541
	return i915_gem_create(file, dev,
542
			       args->size, &args->handle);
543 544
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

571
static inline int
572 573
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

597 598 599 600 601 602 603 604 605 606 607 608
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

609
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
610 611
		return -EINVAL;

612 613 614 615
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

634 635 636
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
637
static int
638 639 640 641 642 643 644
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

645
	if (unlikely(page_do_bit17_swizzling))
646 647 648 649 650 651 652 653 654 655 656
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

657
	return ret ? -EFAULT : 0;
658 659
}

660 661 662 663
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
664
	if (unlikely(swizzled)) {
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

682 683 684 685 686 687 688 689 690 691 692 693
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
694 695 696
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
697 698 699 700 701 702 703 704 705 706 707

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

708
	return ret ? - EFAULT : 0;
709 710
}

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
738
	struct drm_i915_private *dev_priv = to_i915(dev);
739 740 741 742 743 744 745
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

746
	ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

847
static int
848 849 850 851
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
852
{
853
	char __user *user_data;
854
	ssize_t remain;
855
	loff_t offset;
856
	int shmem_page_offset, page_length, ret = 0;
857
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
858
	int prefaulted = 0;
859
	int needs_clflush = 0;
860
	struct sg_page_iter sg_iter;
861

862
	if (!i915_gem_object_has_struct_page(obj))
863 864
		return -ENODEV;

865
	user_data = u64_to_user_ptr(args->data_ptr);
866 867
	remain = args->size;

868
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
869

870
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
871 872 873
	if (ret)
		return ret;

874
	offset = args->offset;
875

876 877
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
878
		struct page *page = sg_page_iter_page(&sg_iter);
879 880 881 882

		if (remain <= 0)
			break;

883 884 885 886 887
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
888
		shmem_page_offset = offset_in_page(offset);
889 890 891 892
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

893 894 895
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

896 897 898 899 900
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
901 902 903

		mutex_unlock(&dev->struct_mutex);

904
		if (likely(!i915.prefault_disable) && !prefaulted) {
905
			ret = fault_in_multipages_writeable(user_data, remain);
906 907 908 909 910 911 912
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
913

914 915 916
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
917

918
		mutex_lock(&dev->struct_mutex);
919 920

		if (ret)
921 922
			goto out;

923
next_page:
924
		remain -= page_length;
925
		user_data += page_length;
926 927 928
		offset += page_length;
	}

929
out:
930 931
	i915_gem_object_unpin_pages(obj);

932 933 934
	return ret;
}

935 936
/**
 * Reads data from the object referenced by handle.
937 938 939
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
940 941 942 943 944
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
945
		     struct drm_file *file)
946 947
{
	struct drm_i915_gem_pread *args = data;
948
	struct drm_i915_gem_object *obj;
949
	int ret = 0;
950

951 952 953 954
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
955
		       u64_to_user_ptr(args->data_ptr),
956 957 958
		       args->size))
		return -EFAULT;

959
	obj = i915_gem_object_lookup(file, args->handle);
960 961
	if (!obj)
		return -ENOENT;
962

963
	/* Bounds check source.  */
964 965
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
966
		ret = -EINVAL;
967
		goto err;
C
Chris Wilson 已提交
968 969
	}

C
Chris Wilson 已提交
970 971
	trace_i915_gem_object_pread(obj, args->offset, args->size);

972 973 974 975 976 977 978 979
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err;

980
	ret = i915_gem_shmem_pread(dev, obj, args, file);
981

982
	/* pread for non shmem backed objects */
983 984
	if (ret == -EFAULT || ret == -ENODEV) {
		intel_runtime_pm_get(to_i915(dev));
985 986
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);
987 988
		intel_runtime_pm_put(to_i915(dev));
	}
989

990
	i915_gem_object_put(obj);
991
	mutex_unlock(&dev->struct_mutex);
992 993 994 995 996

	return ret;

err:
	i915_gem_object_put_unlocked(obj);
997
	return ret;
998 999
}

1000 1001
/* This is the fast write path which cannot handle
 * page faults in the source data
1002
 */
1003 1004 1005 1006 1007 1008

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
1009
{
1010 1011
	void __iomem *vaddr_atomic;
	void *vaddr;
1012
	unsigned long unwritten;
1013

P
Peter Zijlstra 已提交
1014
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1015 1016 1017
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
1018
						      user_data, length);
P
Peter Zijlstra 已提交
1019
	io_mapping_unmap_atomic(vaddr_atomic);
1020
	return unwritten;
1021 1022
}

1023 1024 1025
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1026
 * @i915: i915 device private data
1027 1028 1029
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
1030
 */
1031
static int
1032
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1033
			 struct drm_i915_gem_object *obj,
1034
			 struct drm_i915_gem_pwrite *args,
1035
			 struct drm_file *file)
1036
{
1037
	struct i915_ggtt *ggtt = &i915->ggtt;
1038
	struct drm_device *dev = obj->base.dev;
1039 1040
	struct drm_mm_node node;
	uint64_t remain, offset;
1041
	char __user *user_data;
1042
	int ret;
1043 1044
	bool hit_slow_path = false;

1045
	if (i915_gem_object_is_tiled(obj))
1046
		return -EFAULT;
D
Daniel Vetter 已提交
1047

1048 1049
	ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
1065 1066 1067
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
1068
	}
D
Daniel Vetter 已提交
1069 1070 1071 1072 1073

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1074
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
1075
	obj->dirty = true;
1076

1077 1078 1079 1080
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1081 1082
		/* Operation in this page
		 *
1083 1084 1085
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1086
		 */
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1100
		/* If we get a fault while copying data, then (presumably) our
1101 1102
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1103 1104
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1105
		 */
1106
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1107
				    page_offset, user_data, page_length)) {
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1120
		}
1121

1122 1123 1124
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1125 1126
	}

1127
out_flush:
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1141
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1142
out_unpin:
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1153
out:
1154
	return ret;
1155 1156
}

1157 1158 1159 1160
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1161
static int
1162 1163 1164 1165 1166
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1167
{
1168
	char *vaddr;
1169
	int ret;
1170

1171
	if (unlikely(page_do_bit17_swizzling))
1172
		return -EINVAL;
1173

1174 1175 1176 1177
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1178 1179
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1180 1181 1182 1183
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1184

1185
	return ret ? -EFAULT : 0;
1186 1187
}

1188 1189
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1190
static int
1191 1192 1193 1194 1195
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1196
{
1197 1198
	char *vaddr;
	int ret;
1199

1200
	vaddr = kmap(page);
1201
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1202 1203 1204
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1205 1206
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1207 1208
						user_data,
						page_length);
1209 1210 1211 1212 1213
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1214 1215 1216
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1217
	kunmap(page);
1218

1219
	return ret ? -EFAULT : 0;
1220 1221 1222
}

static int
1223 1224 1225 1226
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1227 1228
{
	ssize_t remain;
1229 1230
	loff_t offset;
	char __user *user_data;
1231
	int shmem_page_offset, page_length, ret = 0;
1232
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1233
	int hit_slowpath = 0;
1234 1235
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1236
	struct sg_page_iter sg_iter;
1237

1238
	user_data = u64_to_user_ptr(args->data_ptr);
1239 1240
	remain = args->size;

1241
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1242

1243 1244 1245 1246
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

1247 1248 1249 1250 1251
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1252
		needs_clflush_after = cpu_write_needs_clflush(obj);
1253
	}
1254 1255 1256 1257 1258
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1259

1260 1261 1262 1263
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1264
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1265

1266 1267
	i915_gem_object_pin_pages(obj);

1268
	offset = args->offset;
1269
	obj->dirty = 1;
1270

1271 1272
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1273
		struct page *page = sg_page_iter_page(&sg_iter);
1274
		int partial_cacheline_write;
1275

1276 1277 1278
		if (remain <= 0)
			break;

1279 1280 1281 1282 1283
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1284
		shmem_page_offset = offset_in_page(offset);
1285 1286 1287 1288 1289

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1290 1291 1292 1293 1294 1295 1296
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1297 1298 1299
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1300 1301 1302 1303 1304 1305
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1306 1307 1308

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1309 1310 1311 1312
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1313

1314
		mutex_lock(&dev->struct_mutex);
1315 1316

		if (ret)
1317 1318
			goto out;

1319
next_page:
1320
		remain -= page_length;
1321
		user_data += page_length;
1322
		offset += page_length;
1323 1324
	}

1325
out:
1326 1327
	i915_gem_object_unpin_pages(obj);

1328
	if (hit_slowpath) {
1329 1330 1331 1332 1333 1334 1335
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1336
			if (i915_gem_clflush_object(obj, obj->pin_display))
1337
				needs_clflush_after = true;
1338
		}
1339
	}
1340

1341
	if (needs_clflush_after)
1342
		i915_gem_chipset_flush(to_i915(dev));
1343 1344
	else
		obj->cache_dirty = true;
1345

1346
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1347
	return ret;
1348 1349 1350 1351
}

/**
 * Writes data to the object referenced by handle.
1352 1353 1354
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1355 1356 1357 1358 1359
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1360
		      struct drm_file *file)
1361
{
1362
	struct drm_i915_private *dev_priv = to_i915(dev);
1363
	struct drm_i915_gem_pwrite *args = data;
1364
	struct drm_i915_gem_object *obj;
1365 1366 1367 1368 1369 1370
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1371
		       u64_to_user_ptr(args->data_ptr),
1372 1373 1374
		       args->size))
		return -EFAULT;

1375
	if (likely(!i915.prefault_disable)) {
1376
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1377 1378 1379 1380
						   args->size);
		if (ret)
			return -EFAULT;
	}
1381

1382
	obj = i915_gem_object_lookup(file, args->handle);
1383 1384
	if (!obj)
		return -ENOENT;
1385

1386
	/* Bounds check destination. */
1387 1388
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1389
		ret = -EINVAL;
1390
		goto err;
C
Chris Wilson 已提交
1391 1392
	}

C
Chris Wilson 已提交
1393 1394
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
	if (ret)
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;

D
Daniel Vetter 已提交
1405
	ret = -EFAULT;
1406 1407 1408 1409 1410 1411
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1412 1413
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1414
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1415 1416 1417
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1418
	}
1419

1420
	if (ret == -EFAULT || ret == -ENOSPC) {
1421 1422
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1423
		else if (i915_gem_object_has_struct_page(obj))
1424
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1425 1426
		else
			ret = -ENODEV;
1427
	}
1428

1429
	i915_gem_object_put(obj);
1430
	mutex_unlock(&dev->struct_mutex);
1431 1432
	intel_runtime_pm_put(dev_priv);

1433
	return ret;
1434 1435 1436 1437 1438 1439

err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1440 1441
}

1442 1443 1444 1445 1446 1447 1448
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1449
/**
1450 1451
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1452 1453 1454
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1455 1456 1457
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1458
			  struct drm_file *file)
1459 1460
{
	struct drm_i915_gem_set_domain *args = data;
1461
	struct drm_i915_gem_object *obj;
1462 1463
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1464 1465
	int ret;

1466
	/* Only handle setting domains to types used by the CPU. */
1467
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1468 1469 1470 1471 1472 1473 1474 1475
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1476
	obj = i915_gem_object_lookup(file, args->handle);
1477 1478
	if (!obj)
		return -ENOENT;
1479

1480 1481 1482 1483
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1484 1485 1486 1487 1488
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
1489
	if (ret)
1490
		goto err;
1491

1492
	if (read_domains & I915_GEM_DOMAIN_GTT)
1493
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1494
	else
1495
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1496

1497
	if (write_domain != 0)
1498
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1499

1500
	i915_gem_object_put(obj);
1501 1502
	mutex_unlock(&dev->struct_mutex);
	return ret;
1503 1504 1505 1506

err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1507 1508 1509 1510
}

/**
 * Called when user space has done writes to this buffer
1511 1512 1513
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1514 1515 1516
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1517
			 struct drm_file *file)
1518 1519
{
	struct drm_i915_gem_sw_finish *args = data;
1520
	struct drm_i915_gem_object *obj;
1521
	int err = 0;
1522

1523
	obj = i915_gem_object_lookup(file, args->handle);
1524 1525
	if (!obj)
		return -ENOENT;
1526 1527

	/* Pinned buffers may be scanout, so flush the cache */
1528 1529 1530 1531 1532 1533 1534
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1535

1536 1537
	i915_gem_object_put_unlocked(obj);
	return err;
1538 1539 1540
}

/**
1541 1542 1543 1544 1545
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1546 1547 1548
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1559 1560 1561
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1562
		    struct drm_file *file)
1563 1564
{
	struct drm_i915_gem_mmap *args = data;
1565
	struct drm_i915_gem_object *obj;
1566 1567
	unsigned long addr;

1568 1569 1570
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1571
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1572 1573
		return -ENODEV;

1574 1575
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1576
		return -ENOENT;
1577

1578 1579 1580
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1581
	if (!obj->base.filp) {
1582
		i915_gem_object_put_unlocked(obj);
1583 1584 1585
		return -EINVAL;
	}

1586
	addr = vm_mmap(obj->base.filp, 0, args->size,
1587 1588
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1589 1590 1591 1592
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1593
		if (down_write_killable(&mm->mmap_sem)) {
1594
			i915_gem_object_put_unlocked(obj);
1595 1596
			return -EINTR;
		}
1597 1598 1599 1600 1601 1602 1603
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1604 1605

		/* This may race, but that's ok, it only gets set */
1606
		WRITE_ONCE(obj->has_wc_mmap, true);
1607
	}
1608
	i915_gem_object_put_unlocked(obj);
1609 1610 1611 1612 1613 1614 1615 1616
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1617 1618
/**
 * i915_gem_fault - fault a page into the GTT
1619 1620
 * @vma: VMA in question
 * @vmf: fault info
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1635 1636
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1637 1638
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1639
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1640
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1641 1642
	pgoff_t page_offset;
	unsigned long pfn;
1643
	int ret;
1644

1645 1646 1647 1648
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

C
Chris Wilson 已提交
1649 1650
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1651
	/* Try to flush the object off the GPU first without holding the lock.
1652
	 * Upon acquiring the lock, we will perform our sanity checks and then
1653 1654 1655
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1656
	ret = __unsafe_wait_rendering(obj, NULL, !write);
1657
	if (ret)
1658 1659 1660 1661 1662 1663 1664
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1665

1666 1667
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1668
		ret = -EFAULT;
1669
		goto err_unlock;
1670 1671
	}

1672
	/* Use a partial view if the object is bigger than the aperture. */
1673
	if (obj->base.size >= ggtt->mappable_end &&
1674
	    !i915_gem_object_is_tiled(obj)) {
1675
		static const unsigned int chunk_size = 256; // 1 MiB
1676

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
1688
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1689
	if (ret)
1690
		goto err_unlock;
1691

1692 1693
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1694
		goto err_unpin;
1695

1696
	ret = i915_gem_object_get_fence(obj);
1697
	if (ret)
1698
		goto err_unpin;
1699

1700
	/* Finally, remap it using the new GTT offset */
1701
	pfn = ggtt->mappable_base +
1702
		i915_gem_obj_ggtt_offset_view(obj, &view);
1703
	pfn >>= PAGE_SHIFT;
1704

1705 1706 1707 1708 1709 1710 1711 1712 1713
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1714

1715 1716
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1717 1718 1719 1720 1721
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1743
err_unpin:
1744
	i915_gem_object_ggtt_unpin_view(obj, &view);
1745
err_unlock:
1746
	mutex_unlock(&dev->struct_mutex);
1747 1748 1749
err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
1750
	switch (ret) {
1751
	case -EIO:
1752 1753 1754 1755 1756 1757 1758
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1759 1760 1761
			ret = VM_FAULT_SIGBUS;
			break;
		}
1762
	case -EAGAIN:
D
Daniel Vetter 已提交
1763 1764 1765 1766
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1767
		 */
1768 1769
	case 0:
	case -ERESTARTSYS:
1770
	case -EINTR:
1771 1772 1773 1774 1775
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1776 1777
		ret = VM_FAULT_NOPAGE;
		break;
1778
	case -ENOMEM:
1779 1780
		ret = VM_FAULT_OOM;
		break;
1781
	case -ENOSPC:
1782
	case -EFAULT:
1783 1784
		ret = VM_FAULT_SIGBUS;
		break;
1785
	default:
1786
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1787 1788
		ret = VM_FAULT_SIGBUS;
		break;
1789
	}
1790
	return ret;
1791 1792
}

1793 1794 1795 1796
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1797
 * Preserve the reservation of the mmapping with the DRM core code, but
1798 1799 1800 1801 1802 1803 1804 1805 1806
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1807
void
1808
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1809
{
1810 1811 1812 1813 1814 1815
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1816 1817
	if (!obj->fault_mappable)
		return;
1818

1819 1820
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1831
	obj->fault_mappable = false;
1832 1833
}

1834 1835 1836 1837 1838 1839 1840 1841 1842
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1843 1844
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1845
 * @dev_priv: i915 device
1846 1847 1848 1849 1850 1851
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
1852 1853
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
1854
{
1855
	u64 ggtt_size;
1856

1857 1858
	GEM_BUG_ON(size == 0);

1859
	if (INTEL_GEN(dev_priv) >= 4 ||
1860 1861
	    tiling_mode == I915_TILING_NONE)
		return size;
1862 1863

	/* Previous chips need a power-of-two fence region when tiling */
1864
	if (IS_GEN3(dev_priv))
1865
		ggtt_size = 1024*1024;
1866
	else
1867
		ggtt_size = 512*1024;
1868

1869 1870
	while (ggtt_size < size)
		ggtt_size <<= 1;
1871

1872
	return ggtt_size;
1873 1874
}

1875
/**
1876
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
1877
 * @dev_priv: i915 device
1878 1879
 * @size: object size
 * @tiling_mode: tiling mode
1880
 * @fenced: is fenced alignment required or not
1881
 *
1882
 * Return the required global GTT alignment for an object, taking into account
1883
 * potential fence register mapping.
1884
 */
1885
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1886
				int tiling_mode, bool fenced)
1887
{
1888 1889
	GEM_BUG_ON(size == 0);

1890 1891 1892 1893
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1894
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
1895
	    tiling_mode == I915_TILING_NONE)
1896 1897
		return 4096;

1898 1899 1900 1901
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1902
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
1903 1904
}

1905 1906
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1907
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1908
	int err;
1909

1910 1911 1912
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
1913

1914 1915 1916
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
1917
	 */
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	err = i915_gem_wait_for_idle(dev_priv, true);
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
1928

1929
	return err;
1930 1931 1932 1933 1934 1935 1936
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1937
int
1938 1939
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1940
		  uint32_t handle,
1941
		  uint64_t *offset)
1942
{
1943
	struct drm_i915_gem_object *obj;
1944 1945
	int ret;

1946
	obj = i915_gem_object_lookup(file, handle);
1947 1948
	if (!obj)
		return -ENOENT;
1949

1950
	ret = i915_gem_object_create_mmap_offset(obj);
1951 1952
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1953

1954
	i915_gem_object_put_unlocked(obj);
1955
	return ret;
1956 1957
}

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1979
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1980 1981
}

D
Daniel Vetter 已提交
1982 1983 1984
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1985
{
1986
	i915_gem_object_free_mmap_offset(obj);
1987

1988 1989
	if (obj->base.filp == NULL)
		return;
1990

D
Daniel Vetter 已提交
1991 1992 1993 1994 1995
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1996
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1997 1998
	obj->madv = __I915_MADV_PURGED;
}
1999

2000 2001 2002
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2003
{
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2018 2019
}

2020
static void
2021
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2022
{
2023 2024
	struct sgt_iter sgt_iter;
	struct page *page;
2025
	int ret;
2026

2027
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2028

C
Chris Wilson 已提交
2029
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2030
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2031 2032 2033
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2034
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2035 2036 2037
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2038 2039
	i915_gem_gtt_finish_object(obj);

2040
	if (i915_gem_object_needs_bit17_swizzle(obj))
2041 2042
		i915_gem_object_save_bit_17_swizzle(obj);

2043 2044
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2045

2046
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2047
		if (obj->dirty)
2048
			set_page_dirty(page);
2049

2050
		if (obj->madv == I915_MADV_WILLNEED)
2051
			mark_page_accessed(page);
2052

2053
		put_page(page);
2054
	}
2055
	obj->dirty = 0;
2056

2057 2058
	sg_free_table(obj->pages);
	kfree(obj->pages);
2059
}
C
Chris Wilson 已提交
2060

2061
int
2062 2063 2064 2065
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2066
	if (obj->pages == NULL)
2067 2068
		return 0;

2069 2070 2071
	if (obj->pages_pin_count)
		return -EBUSY;

2072
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2073

2074 2075 2076
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2077
	list_del(&obj->global_list);
2078

2079
	if (obj->mapping) {
2080
		/* low bits are ignored by is_vmalloc_addr and kmap_to_page */
2081 2082 2083 2084
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2085 2086 2087
		obj->mapping = NULL;
	}

2088
	ops->put_pages(obj);
2089
	obj->pages = NULL;
2090

2091
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2092 2093 2094 2095

	return 0;
}

2096
static int
C
Chris Wilson 已提交
2097
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2098
{
2099
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2100 2101
	int page_count, i;
	struct address_space *mapping;
2102 2103
	struct sg_table *st;
	struct scatterlist *sg;
2104
	struct sgt_iter sgt_iter;
2105
	struct page *page;
2106
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2107
	int ret;
C
Chris Wilson 已提交
2108
	gfp_t gfp;
2109

C
Chris Wilson 已提交
2110 2111 2112 2113 2114 2115 2116
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2117 2118 2119 2120
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2121
	page_count = obj->base.size / PAGE_SIZE;
2122 2123
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2124
		return -ENOMEM;
2125
	}
2126

2127 2128 2129 2130 2131
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2132
	mapping = file_inode(obj->base.filp)->i_mapping;
2133
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2134
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2135 2136 2137
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2138 2139
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2140 2141 2142 2143 2144
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2145 2146 2147 2148 2149 2150 2151 2152
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2153
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2154 2155
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2156
				goto err_pages;
I
Imre Deak 已提交
2157
			}
C
Chris Wilson 已提交
2158
		}
2159 2160 2161 2162 2163 2164 2165 2166
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2167 2168 2169 2170 2171 2172 2173 2174 2175
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2176 2177 2178

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2179
	}
2180 2181 2182 2183
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2184 2185
	obj->pages = st;

I
Imre Deak 已提交
2186 2187 2188 2189
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2190
	if (i915_gem_object_needs_bit17_swizzle(obj))
2191 2192
		i915_gem_object_do_bit_17_swizzle(obj);

2193
	if (i915_gem_object_is_tiled(obj) &&
2194 2195 2196
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2197 2198 2199
	return 0;

err_pages:
2200
	sg_mark_end(sg);
2201 2202
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2203 2204
	sg_free_table(st);
	kfree(st);
2205 2206 2207 2208 2209 2210 2211 2212 2213

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2214 2215 2216 2217
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2218 2219
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2230
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2231 2232 2233
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2234
	if (obj->pages)
2235 2236
		return 0;

2237
	if (obj->madv != I915_MADV_WILLNEED) {
2238
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2239
		return -EFAULT;
2240 2241
	}

2242 2243
	BUG_ON(obj->pages_pin_count);

2244 2245 2246 2247
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2248
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2249 2250 2251 2252

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2253
	return 0;
2254 2255
}

2256
/* The 'mapping' part of i915_gem_object_pin_map() below */
2257 2258
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2259 2260 2261
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2262 2263
	struct sgt_iter sgt_iter;
	struct page *page;
2264 2265
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2266
	unsigned long i = 0;
2267
	pgprot_t pgprot;
2268 2269 2270
	void *addr;

	/* A single page can always be kmapped */
2271
	if (n_pages == 1 && type == I915_MAP_WB)
2272 2273
		return kmap(sg_page(sgt->sgl));

2274 2275 2276 2277 2278 2279
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2280

2281 2282
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2283 2284 2285 2286

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2287 2288 2289 2290 2291 2292 2293 2294 2295
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2296

2297 2298
	if (pages != stack_pages)
		drm_free_large(pages);
2299 2300 2301 2302 2303

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2304 2305
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2306
{
2307 2308 2309
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2310 2311 2312
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
2313
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2314 2315 2316 2317 2318 2319

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);
2320
	pinned = obj->pages_pin_count > 1;
2321

2322 2323 2324 2325 2326
	ptr = ptr_unpack_bits(obj->mapping, has_type);
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
			goto err;
2327
		}
2328 2329 2330 2331 2332 2333 2334

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

		ptr = obj->mapping = NULL;
2335 2336
	}

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
			goto err;
		}

		obj->mapping = ptr_pack_bits(ptr, type);
	}

	return ptr;

err:
	i915_gem_object_unpin_pages(obj);
	return ERR_PTR(ret);
2352 2353
}

2354
static void
2355 2356
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2357
{
2358 2359
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2360

2361
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2362 2363
}

2364
static void
2365 2366
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2367
{
2368 2369 2370
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2371

2372
	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2373

2374 2375
	i915_gem_object_clear_active(obj, idx);
	if (i915_gem_object_is_active(obj))
2376
		return;
2377

2378 2379 2380 2381
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2382 2383 2384
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2385

2386
	i915_gem_object_put(obj);
2387 2388
}

2389
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2390
{
2391
	unsigned long elapsed;
2392

2393
	if (ctx->hang_stats.banned)
2394 2395
		return true;

2396
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2397 2398
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2399 2400
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2401 2402 2403 2404 2405
	}

	return false;
}

2406
static void i915_set_reset_status(struct i915_gem_context *ctx,
2407
				  const bool guilty)
2408
{
2409
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2410 2411

	if (guilty) {
2412
		hs->banned = i915_context_is_banned(ctx);
2413 2414 2415 2416
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2417 2418 2419
	}
}

2420
struct drm_i915_gem_request *
2421
i915_gem_find_active_request(struct intel_engine_cs *engine)
2422
{
2423 2424
	struct drm_i915_gem_request *request;

2425 2426 2427 2428 2429 2430 2431 2432
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2433
	list_for_each_entry(request, &engine->request_list, link) {
2434
		if (i915_gem_request_completed(request))
2435
			continue;
2436

2437
		return request;
2438
	}
2439 2440 2441 2442

	return NULL;
}

2443
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2444 2445 2446 2447
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2448
	request = i915_gem_find_active_request(engine);
2449 2450 2451
	if (request == NULL)
		return;

2452
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2453

2454
	i915_set_reset_status(request->ctx, ring_hung);
2455
	list_for_each_entry_continue(request, &engine->request_list, link)
2456
		i915_set_reset_status(request->ctx, false);
2457
}
2458

2459
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2460
{
2461
	struct drm_i915_gem_request *request;
2462
	struct intel_ring *ring;
2463

2464 2465 2466 2467
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2468
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2469

2470 2471 2472 2473 2474 2475
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2476
	if (i915.enable_execlists) {
2477 2478
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2479

2480
		intel_execlists_cancel_requests(engine);
2481 2482
	}

2483 2484 2485 2486 2487 2488 2489
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2490 2491
	request = i915_gem_active_raw(&engine->last_request,
				      &engine->i915->drm.struct_mutex);
2492
	if (request)
2493
		i915_gem_request_retire_upto(request);
2494
	GEM_BUG_ON(intel_engine_is_active(engine));
2495 2496 2497 2498 2499 2500 2501 2502

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2503 2504 2505
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2506
	}
2507

2508
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2509 2510
}

2511
void i915_gem_reset(struct drm_device *dev)
2512
{
2513
	struct drm_i915_private *dev_priv = to_i915(dev);
2514
	struct intel_engine_cs *engine;
2515

2516 2517 2518 2519 2520
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2521
	for_each_engine(engine, dev_priv)
2522
		i915_gem_reset_engine_status(engine);
2523

2524
	for_each_engine(engine, dev_priv)
2525
		i915_gem_reset_engine_cleanup(engine);
2526
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2527

2528 2529
	i915_gem_context_reset(dev);

2530
	i915_gem_restore_fences(dev);
2531 2532
}

2533
static void
2534 2535
i915_gem_retire_work_handler(struct work_struct *work)
{
2536
	struct drm_i915_private *dev_priv =
2537
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2538
	struct drm_device *dev = &dev_priv->drm;
2539

2540
	/* Come back later if the device is busy... */
2541
	if (mutex_trylock(&dev->struct_mutex)) {
2542
		i915_gem_retire_requests(dev_priv);
2543
		mutex_unlock(&dev->struct_mutex);
2544
	}
2545 2546 2547 2548 2549

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2550 2551
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2552 2553
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2554
				   round_jiffies_up_relative(HZ));
2555
	}
2556
}
2557

2558 2559 2560 2561
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2562
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2563
	struct drm_device *dev = &dev_priv->drm;
2564
	struct intel_engine_cs *engine;
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2586

2587
	for_each_engine(engine, dev_priv)
2588
		i915_gem_batch_pool_fini(&engine->batch_pool);
2589

2590 2591 2592
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2593

2594 2595 2596 2597 2598
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2599

2600 2601 2602 2603
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2604
	}
2605 2606
}

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2620 2621
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2622 2623 2624
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
2648
	struct intel_rps_client *rps = to_rps_client(file);
2649
	struct drm_i915_gem_object *obj;
2650 2651
	unsigned long active;
	int idx, ret = 0;
2652

2653 2654 2655
	if (args->flags != 0)
		return -EINVAL;

2656
	obj = i915_gem_object_lookup(file, args->bo_handle);
2657
	if (!obj)
2658 2659
		return -ENOENT;

2660 2661 2662 2663 2664 2665 2666
	active = __I915_BO_ACTIVE(obj);
	for_each_active(active, idx) {
		s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
		ret = i915_gem_active_wait_unlocked(&obj->last_read[idx], true,
						    timeout, rps);
		if (ret)
			break;
2667 2668
	}

2669
	i915_gem_object_put_unlocked(obj);
2670
	return ret;
2671 2672
}

2673
static int
2674
__i915_gem_object_sync(struct drm_i915_gem_request *to,
2675
		       struct drm_i915_gem_request *from)
2676 2677 2678
{
	int ret;

2679
	if (to->engine == from->engine)
2680 2681
		return 0;

2682
	if (!i915.semaphores) {
2683 2684 2685 2686
		ret = i915_wait_request(from,
					from->i915->mm.interruptible,
					NULL,
					NO_WAITBOOST);
2687 2688 2689
		if (ret)
			return ret;
	} else {
2690
		int idx = intel_engine_sync_index(from->engine, to->engine);
2691
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2692 2693
			return 0;

2694
		trace_i915_gem_ring_sync_to(to, from);
2695
		ret = to->engine->semaphore.sync_to(to, from);
2696 2697 2698
		if (ret)
			return ret;

2699
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2700 2701 2702 2703 2704
	}

	return 0;
}

2705 2706 2707 2708
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2709
 * @to: request we are wishing to use
2710 2711
 *
 * This code is meant to abstract object synchronization with the GPU.
2712 2713 2714
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2715 2716 2717 2718 2719 2720 2721
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2722 2723 2724
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2725 2726
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2727
		     struct drm_i915_gem_request *to)
2728
{
C
Chris Wilson 已提交
2729 2730 2731
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;
2732

C
Chris Wilson 已提交
2733
	lockdep_assert_held(&obj->base.dev->struct_mutex);
2734

2735
	active_mask = i915_gem_object_get_active(obj);
C
Chris Wilson 已提交
2736 2737
	if (!active_mask)
		return 0;
2738

C
Chris Wilson 已提交
2739 2740
	if (obj->base.pending_write_domain) {
		active = obj->last_read;
2741
	} else {
C
Chris Wilson 已提交
2742 2743
		active_mask = 1;
		active = &obj->last_write;
2744
	}
C
Chris Wilson 已提交
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754

	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
		int ret;

		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

2755
		ret = __i915_gem_object_sync(to, request);
2756 2757 2758
		if (ret)
			return ret;
	}
2759

2760
	return 0;
2761 2762
}

2763 2764 2765 2766 2767 2768 2769
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2770 2771 2772
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2784 2785
static void __i915_vma_iounmap(struct i915_vma *vma)
{
2786
	GEM_BUG_ON(i915_vma_is_pinned(vma));
2787 2788 2789 2790 2791 2792 2793 2794

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2795
int i915_vma_unbind(struct i915_vma *vma)
2796
{
2797
	struct drm_i915_gem_object *obj = vma->obj;
2798
	unsigned long active;
2799
	int ret;
2800

2801 2802 2803 2804
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2805
	if (active) {
2806 2807
		int idx;

2808 2809 2810 2811 2812
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
2813
		__i915_vma_pin(vma);
2814

2815 2816 2817 2818
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2819
				break;
2820 2821
		}

2822
		__i915_vma_unpin(vma);
2823 2824 2825
		if (ret)
			return ret;

2826 2827 2828
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

2829
	if (i915_vma_is_pinned(vma))
2830 2831
		return -EBUSY;

2832 2833
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2834

2835 2836
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2837

2838 2839
	if (i915_vma_is_ggtt(vma) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2840
		i915_gem_object_finish_gtt(obj);
2841

2842 2843 2844 2845
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
2846 2847

		__i915_vma_iounmap(vma);
2848
	}
2849

2850 2851 2852 2853
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
2854
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2855

2856 2857 2858
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

2859
	if (i915_vma_is_ggtt(vma)) {
2860 2861 2862 2863 2864 2865
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
2866
		vma->ggtt_view.pages = NULL;
2867
	}
2868

B
Ben Widawsky 已提交
2869
	/* Since the unbound list is global, only move to that list if
2870
	 * no more VMAs exist. */
2871 2872 2873
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
2874

2875 2876 2877 2878 2879 2880
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2881
destroy:
2882
	if (unlikely(i915_vma_is_closed(vma)))
2883 2884
		i915_vma_destroy(vma);

2885
	return 0;
2886 2887
}

2888 2889
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
			   bool interruptible)
2890
{
2891
	struct intel_engine_cs *engine;
2892
	int ret;
2893

2894
	for_each_engine(engine, dev_priv) {
2895 2896 2897
		if (engine->last_context == NULL)
			continue;

2898
		ret = intel_engine_idle(engine, interruptible);
2899 2900 2901
		if (ret)
			return ret;
	}
2902

2903
	return 0;
2904 2905
}

2906
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2907 2908
				     unsigned long cache_level)
{
2909
	struct drm_mm_node *gtt_space = &vma->node;
2910 2911
	struct drm_mm_node *other;

2912 2913 2914 2915 2916 2917
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
2918
	 */
2919
	if (vma->vm->mm.color_adjust == NULL)
2920 2921
		return true;

2922
	if (!drm_mm_node_allocated(gtt_space))
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

2939
/**
2940 2941
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
2942
 * @size: requested size in bytes (can be larger than the VMA)
2943
 * @alignment: required alignment
2944
 * @flags: mask of PIN_* flags to use
2945 2946 2947 2948 2949 2950 2951
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
2952
 */
2953 2954
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
2955
{
2956 2957
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
2958 2959
	u64 start, end;
	u64 min_alignment;
2960
	int ret;
2961

2962
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
2963
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
2964 2965 2966

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
2967 2968
		size = i915_gem_get_ggtt_size(dev_priv, size,
					      i915_gem_object_get_tiling(obj));
2969 2970

	min_alignment =
2971 2972
		i915_gem_get_ggtt_alignment(dev_priv, size,
					    i915_gem_object_get_tiling(obj),
2973 2974 2975 2976 2977 2978
					    flags & PIN_MAPPABLE);
	if (alignment == 0)
		alignment = min_alignment;
	if (alignment & (min_alignment - 1)) {
		DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
			  alignment, min_alignment);
2979
		return -EINVAL;
2980
	}
2981

2982
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
2983 2984

	end = vma->vm->total;
2985
	if (flags & PIN_MAPPABLE)
2986
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
2987
	if (flags & PIN_ZONE_4G)
2988
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
2989

2990 2991 2992
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
2993
	 */
2994
	if (size > end) {
2995
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
2996
			  size, obj->base.size,
2997
			  flags & PIN_MAPPABLE ? "mappable" : "total",
2998
			  end);
2999
		return -E2BIG;
3000 3001
	}

3002
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3003
	if (ret)
3004
		return ret;
C
Chris Wilson 已提交
3005

3006 3007
	i915_gem_object_pin_pages(obj);

3008
	if (flags & PIN_OFFSET_FIXED) {
3009
		u64 offset = flags & PIN_OFFSET_MASK;
3010
		if (offset & (alignment - 1) || offset > end - size) {
3011
			ret = -EINVAL;
3012
			goto err_unpin;
3013
		}
3014

3015 3016 3017
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3018
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3019 3020 3021
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3022 3023 3024
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3025
		}
3026
	} else {
3027 3028
		u32 search_flag, alloc_flag;

3029 3030 3031 3032 3033 3034 3035
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3036

3037 3038 3039 3040 3041 3042 3043 3044 3045
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3046
search_free:
3047 3048
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3049 3050 3051 3052 3053 3054
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3055
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3056 3057 3058 3059 3060
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3061

3062
			goto err_unpin;
3063
		}
3064
	}
3065
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3066

3067
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3068
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3069
	obj->bind_count++;
3070

3071
	return 0;
B
Ben Widawsky 已提交
3072

3073
err_unpin:
B
Ben Widawsky 已提交
3074
	i915_gem_object_unpin_pages(obj);
3075
	return ret;
3076 3077
}

3078
bool
3079 3080
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3081 3082 3083 3084 3085
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3086
	if (obj->pages == NULL)
3087
		return false;
3088

3089 3090 3091 3092
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3093
	if (obj->stolen || obj->phys_handle)
3094
		return false;
3095

3096 3097 3098 3099 3100 3101 3102 3103
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3104 3105
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3106
		return false;
3107
	}
3108

C
Chris Wilson 已提交
3109
	trace_i915_gem_object_clflush(obj);
3110
	drm_clflush_sg(obj->pages);
3111
	obj->cache_dirty = false;
3112 3113

	return true;
3114 3115 3116 3117
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3118
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3119
{
C
Chris Wilson 已提交
3120 3121
	uint32_t old_write_domain;

3122
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3123 3124
		return;

3125
	/* No actual flushing is required for the GTT write domain.  Writes
3126 3127
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3128 3129 3130 3131
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3132
	 */
3133 3134
	wmb();

3135 3136
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3137

3138
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3139

C
Chris Wilson 已提交
3140
	trace_i915_gem_object_change_domain(obj,
3141
					    obj->base.read_domains,
C
Chris Wilson 已提交
3142
					    old_write_domain);
3143 3144 3145 3146
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3147
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3148
{
C
Chris Wilson 已提交
3149
	uint32_t old_write_domain;
3150

3151
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3152 3153
		return;

3154
	if (i915_gem_clflush_object(obj, obj->pin_display))
3155
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3156

3157 3158
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3159

3160
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3161

C
Chris Wilson 已提交
3162
	trace_i915_gem_object_change_domain(obj,
3163
					    obj->base.read_domains,
C
Chris Wilson 已提交
3164
					    old_write_domain);
3165 3166
}

3167 3168
/**
 * Moves a single object to the GTT read, and possibly write domain.
3169 3170
 * @obj: object to act on
 * @write: ask for write access or read only
3171 3172 3173 3174
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3175
int
3176
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3177
{
C
Chris Wilson 已提交
3178
	uint32_t old_write_domain, old_read_domains;
3179
	struct i915_vma *vma;
3180
	int ret;
3181

3182
	ret = i915_gem_object_wait_rendering(obj, !write);
3183 3184 3185
	if (ret)
		return ret;

3186 3187 3188
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3201
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3202

3203 3204 3205 3206 3207 3208 3209
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3210 3211
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3212

3213 3214 3215
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3216 3217
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3218
	if (write) {
3219 3220 3221
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3222 3223
	}

C
Chris Wilson 已提交
3224 3225 3226 3227
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3228
	/* And bump the LRU for this access */
3229
	vma = i915_gem_obj_to_ggtt(obj);
3230 3231 3232 3233
	if (vma &&
	    drm_mm_node_allocated(&vma->node) &&
	    !i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3234

3235 3236 3237
	return 0;
}

3238 3239
/**
 * Changes the cache-level of an object across all VMA.
3240 3241
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3253 3254 3255
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3256
	struct i915_vma *vma;
3257
	int ret = 0;
3258 3259

	if (obj->cache_level == cache_level)
3260
		goto out;
3261

3262 3263 3264 3265 3266
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3267 3268
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3269 3270 3271
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3272
		if (i915_vma_is_pinned(vma)) {
3273 3274 3275 3276
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3289 3290
	}

3291 3292 3293 3294 3295 3296 3297
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3298
	if (obj->bind_count) {
3299 3300 3301 3302
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3303
		ret = i915_gem_object_wait_rendering(obj, false);
3304 3305 3306
		if (ret)
			return ret;

3307
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3324 3325 3326
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3327 3328 3329 3330 3331 3332 3333 3334
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3335 3336
		}

3337
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3338 3339 3340 3341 3342 3343 3344
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3345 3346
	}

3347
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3348 3349 3350
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3351
out:
3352 3353 3354 3355
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3356
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3357
		if (i915_gem_clflush_object(obj, true))
3358
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3359 3360 3361 3362 3363
	}

	return 0;
}

B
Ben Widawsky 已提交
3364 3365
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3366
{
B
Ben Widawsky 已提交
3367
	struct drm_i915_gem_caching *args = data;
3368 3369
	struct drm_i915_gem_object *obj;

3370 3371
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3372
		return -ENOENT;
3373

3374 3375 3376 3377 3378 3379
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3380 3381 3382 3383
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3384 3385 3386 3387
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3388

3389
	i915_gem_object_put_unlocked(obj);
3390
	return 0;
3391 3392
}

B
Ben Widawsky 已提交
3393 3394
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3395
{
3396
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3397
	struct drm_i915_gem_caching *args = data;
3398 3399 3400 3401
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3402 3403
	switch (args->caching) {
	case I915_CACHING_NONE:
3404 3405
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3406
	case I915_CACHING_CACHED:
3407 3408 3409 3410 3411 3412
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3413
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3414 3415
			return -ENODEV;

3416 3417
		level = I915_CACHE_LLC;
		break;
3418 3419 3420
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3421 3422 3423 3424
	default:
		return -EINVAL;
	}

3425 3426
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3427 3428
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3429
		goto rpm_put;
B
Ben Widawsky 已提交
3430

3431 3432
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3433 3434 3435 3436 3437 3438
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3439
	i915_gem_object_put(obj);
3440 3441
unlock:
	mutex_unlock(&dev->struct_mutex);
3442 3443 3444
rpm_put:
	intel_runtime_pm_put(dev_priv);

3445 3446 3447
	return ret;
}

3448
/*
3449 3450 3451
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3452 3453
 */
int
3454 3455
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3456
				     const struct i915_ggtt_view *view)
3457
{
3458
	u32 old_read_domains, old_write_domain;
3459 3460
	int ret;

3461 3462 3463
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3464
	obj->pin_display++;
3465

3466 3467 3468 3469 3470 3471 3472 3473 3474
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3475 3476
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3477
	if (ret)
3478
		goto err_unpin_display;
3479

3480 3481 3482 3483
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3484
	ret = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3485 3486
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3487
	if (ret)
3488
		goto err_unpin_display;
3489

3490
	i915_gem_object_flush_cpu_write_domain(obj);
3491

3492
	old_write_domain = obj->base.write_domain;
3493
	old_read_domains = obj->base.read_domains;
3494 3495 3496 3497

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3498
	obj->base.write_domain = 0;
3499
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3500 3501 3502

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3503
					    old_write_domain);
3504 3505

	return 0;
3506 3507

err_unpin_display:
3508
	obj->pin_display--;
3509 3510 3511 3512
	return ret;
}

void
3513 3514
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3515
{
3516 3517 3518
	if (WARN_ON(obj->pin_display == 0))
		return;

3519 3520
	i915_gem_object_ggtt_unpin_view(obj, view);

3521
	obj->pin_display--;
3522 3523
}

3524 3525
/**
 * Moves a single object to the CPU read, and possibly write domain.
3526 3527
 * @obj: object to act on
 * @write: requesting write or read-only access
3528 3529 3530 3531
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3532
int
3533
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3534
{
C
Chris Wilson 已提交
3535
	uint32_t old_write_domain, old_read_domains;
3536 3537
	int ret;

3538
	ret = i915_gem_object_wait_rendering(obj, !write);
3539 3540 3541
	if (ret)
		return ret;

3542 3543 3544
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3545
	i915_gem_object_flush_gtt_write_domain(obj);
3546

3547 3548
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3549

3550
	/* Flush the CPU cache if it's still invalid. */
3551
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3552
		i915_gem_clflush_object(obj, false);
3553

3554
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3555 3556 3557 3558 3559
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3560
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3561 3562 3563 3564 3565

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3566 3567
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3568
	}
3569

C
Chris Wilson 已提交
3570 3571 3572 3573
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3574 3575 3576
	return 0;
}

3577 3578 3579
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3580 3581 3582 3583
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3584 3585 3586
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3587
static int
3588
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3589
{
3590
	struct drm_i915_private *dev_priv = to_i915(dev);
3591
	struct drm_i915_file_private *file_priv = file->driver_priv;
3592
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3593
	struct drm_i915_gem_request *request, *target = NULL;
3594
	int ret;
3595

3596 3597 3598 3599
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3600 3601 3602
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3603

3604
	spin_lock(&file_priv->mm.lock);
3605
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3606 3607
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3608

3609 3610 3611 3612 3613 3614 3615
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3616
		target = request;
3617
	}
3618
	if (target)
3619
		i915_gem_request_get(target);
3620
	spin_unlock(&file_priv->mm.lock);
3621

3622
	if (target == NULL)
3623
		return 0;
3624

3625
	ret = i915_wait_request(target, true, NULL, NULL);
3626
	i915_gem_request_put(target);
3627

3628 3629 3630
	return ret;
}

3631
static bool
3632
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3633 3634 3635
{
	struct drm_i915_gem_object *obj = vma->obj;

3636 3637 3638
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3639 3640 3641 3642
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3643 3644 3645 3646 3647 3648 3649 3650 3651
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3652 3653 3654 3655
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3656 3657 3658
	return false;
}

3659 3660 3661
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3662
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3663 3664 3665
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3666
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3667
					    obj->base.size,
3668
					    i915_gem_object_get_tiling(obj));
3669
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3670
						      obj->base.size,
3671
						      i915_gem_object_get_tiling(obj),
3672
						      true);
3673 3674 3675 3676 3677

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3678
		    dev_priv->ggtt.mappable_end);
3679 3680 3681 3682

	obj->map_and_fenceable = mappable && fenceable;
}

3683 3684
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3685
{
3686
	unsigned int bound = vma->flags;
3687 3688
	int ret;

3689
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3690
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3691

3692 3693 3694 3695
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3696

3697
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3698 3699 3700
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3701
	}
3702

3703
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3704
	if (ret)
3705
		goto err;
3706

3707
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3708
		__i915_vma_set_map_and_fenceable(vma);
3709

3710
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3711 3712
	return 0;

3713 3714 3715
err:
	__i915_vma_unpin(vma);
	return ret;
3716 3717 3718 3719 3720
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3721
			 u64 size,
3722 3723
			 u64 alignment,
			 u64 flags)
3724
{
3725 3726
	struct i915_vma *vma;
	int ret;
3727

3728 3729
	if (!view)
		view = &i915_ggtt_view_normal;
3730

3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
	vma = i915_gem_obj_lookup_or_create_ggtt_vma(obj, view);
	if (IS_ERR(vma))
		return PTR_ERR(vma);

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
			return -ENOSPC;

		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
		     " offset=%08x %08x, req.alignment=%llx, req.map_and_fenceable=%d,"
		     " obj->map_and_fenceable=%d\n",
		     upper_32_bits(vma->node.start),
		     lower_32_bits(vma->node.start),
		     alignment,
		     !!(flags & PIN_MAPPABLE),
		     obj->map_and_fenceable);
		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;
	}

	return i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3755 3756
}

3757
void
3758 3759
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
3760
{
3761
	i915_vma_unpin(i915_gem_obj_to_ggtt_view(obj, view));
3762 3763
}

3764
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3779 3780 3781 3782 3783 3784 3785 3786 3787
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3788 3789
}

3790
static __always_inline unsigned int
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
__busy_set_if_active(const struct i915_gem_active *active,
		     unsigned int (*flag)(unsigned int id))
{
	/* For more discussion about the barriers and locking concerns,
	 * see __i915_gem_active_get_rcu().
	 */
	do {
		struct drm_i915_gem_request *request;
		unsigned int id;

		request = rcu_dereference(active->request);
		if (!request || i915_gem_request_completed(request))
			return 0;

		id = request->engine->exec_id;

3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
		/* Check that the pointer wasn't reassigned and overwritten.
		 *
		 * In __i915_gem_active_get_rcu(), we enforce ordering between
		 * the first rcu pointer dereference (imposing a
		 * read-dependency only on access through the pointer) and
		 * the second lockless access through the memory barrier
		 * following a successful atomic_inc_not_zero(). Here there
		 * is no such barrier, and so we must manually insert an
		 * explicit read barrier to ensure that the following
		 * access occurs after all the loads through the first
		 * pointer.
		 *
		 * It is worth comparing this sequence with
		 * raw_write_seqcount_latch() which operates very similarly.
		 * The challenge here is the visibility of the other CPU
		 * writes to the reallocated request vs the local CPU ordering.
		 * Before the other CPU can overwrite the request, it will
		 * have updated our active->request and gone through a wmb.
		 * During the read here, we want to make sure that the values
		 * we see have not been overwritten as we do so - and we do
		 * that by serialising the second pointer check with the writes
		 * on other other CPUs.
		 *
		 * The corresponding write barrier is part of
		 * rcu_assign_pointer().
		 */
		smp_rmb();
3834 3835 3836 3837 3838
		if (request == rcu_access_pointer(active->request))
			return flag(id);
	} while (1);
}

3839
static __always_inline unsigned int
3840 3841 3842 3843 3844
busy_check_reader(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_read_flag);
}

3845
static __always_inline unsigned int
3846 3847 3848 3849 3850
busy_check_writer(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_write_id);
}

3851 3852
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3853
		    struct drm_file *file)
3854 3855
{
	struct drm_i915_gem_busy *args = data;
3856
	struct drm_i915_gem_object *obj;
3857
	unsigned long active;
3858

3859
	obj = i915_gem_object_lookup(file, args->handle);
3860 3861
	if (!obj)
		return -ENOENT;
3862

3863
	args->busy = 0;
3864 3865 3866
	active = __I915_BO_ACTIVE(obj);
	if (active) {
		int idx;
3867

3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
		/* Yes, the lookups are intentionally racy.
		 *
		 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
		 * to regard the value as stale and as our ABI guarantees
		 * forward progress, we confirm the status of each active
		 * request with the hardware.
		 *
		 * Even though we guard the pointer lookup by RCU, that only
		 * guarantees that the pointer and its contents remain
		 * dereferencable and does *not* mean that the request we
		 * have is the same as the one being tracked by the object.
		 *
		 * Consider that we lookup the request just as it is being
		 * retired and freed. We take a local copy of the pointer,
		 * but before we add its engine into the busy set, the other
		 * thread reallocates it and assigns it to a task on another
		 * engine with a fresh and incomplete seqno.
		 *
		 * So after we lookup the engine's id, we double check that
		 * the active request is the same and only then do we add it
		 * into the busy set.
		 */
		rcu_read_lock();

		for_each_active(active, idx)
			args->busy |= busy_check_reader(&obj->last_read[idx]);

		/* For ABI sanity, we only care that the write engine is in
3896 3897 3898 3899 3900
		 * the set of read engines. This should be ensured by the
		 * ordering of setting last_read/last_write in
		 * i915_vma_move_to_active(), and then in reverse in retire.
		 * However, for good measure, we always report the last_write
		 * request as a busy read as well as being a busy write.
3901 3902 3903 3904 3905 3906 3907 3908 3909
		 *
		 * We don't care that the set of active read/write engines
		 * may change during construction of the result, as it is
		 * equally liable to change before userspace can inspect
		 * the result.
		 */
		args->busy |= busy_check_writer(&obj->last_write);

		rcu_read_unlock();
3910
	}
3911

3912 3913
	i915_gem_object_put_unlocked(obj);
	return 0;
3914 3915 3916 3917 3918 3919
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3920
	return i915_gem_ring_throttle(dev, file_priv);
3921 3922
}

3923 3924 3925 3926
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3927
	struct drm_i915_private *dev_priv = to_i915(dev);
3928
	struct drm_i915_gem_madvise *args = data;
3929
	struct drm_i915_gem_object *obj;
3930
	int ret;
3931 3932 3933 3934 3935 3936 3937 3938 3939

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3940 3941 3942 3943
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3944 3945
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
3946 3947
		ret = -ENOENT;
		goto unlock;
3948 3949
	}

3950
	if (obj->pages &&
3951
	    i915_gem_object_is_tiled(obj) &&
3952 3953 3954 3955 3956 3957 3958
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

3959 3960
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3961

C
Chris Wilson 已提交
3962
	/* if the object is no longer attached, discard its backing storage */
3963
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
3964 3965
		i915_gem_object_truncate(obj);

3966
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3967

3968
	i915_gem_object_put(obj);
3969
unlock:
3970
	mutex_unlock(&dev->struct_mutex);
3971
	return ret;
3972 3973
}

3974 3975
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3976
{
3977 3978
	int i;

3979
	INIT_LIST_HEAD(&obj->global_list);
3980
	for (i = 0; i < I915_NUM_ENGINES; i++)
3981 3982 3983 3984 3985
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
	init_request_active(&obj->last_fence, NULL);
3986
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3987
	INIT_LIST_HEAD(&obj->vma_list);
3988
	INIT_LIST_HEAD(&obj->batch_pool_link);
3989

3990 3991
	obj->ops = ops;

3992 3993 3994
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

3995
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3996 3997
}

3998
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3999
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4000 4001 4002 4003
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4004
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4005
						  size_t size)
4006
{
4007
	struct drm_i915_gem_object *obj;
4008
	struct address_space *mapping;
D
Daniel Vetter 已提交
4009
	gfp_t mask;
4010
	int ret;
4011

4012
	obj = i915_gem_object_alloc(dev);
4013
	if (obj == NULL)
4014
		return ERR_PTR(-ENOMEM);
4015

4016 4017 4018
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4019

4020 4021 4022 4023 4024 4025 4026
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4027
	mapping = file_inode(obj->base.filp)->i_mapping;
4028
	mapping_set_gfp_mask(mapping, mask);
4029

4030
	i915_gem_object_init(obj, &i915_gem_object_ops);
4031

4032 4033
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4034

4035 4036
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4052 4053
	trace_i915_gem_object_create(obj);

4054
	return obj;
4055 4056 4057 4058 4059

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4060 4061
}

4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4086
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4087
{
4088
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4089
	struct drm_device *dev = obj->base.dev;
4090
	struct drm_i915_private *dev_priv = to_i915(dev);
4091
	struct i915_vma *vma, *next;
4092

4093 4094
	intel_runtime_pm_get(dev_priv);

4095 4096
	trace_i915_gem_object_destroy(obj);

4097 4098 4099 4100 4101 4102 4103
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4104
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4105
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4106
		GEM_BUG_ON(i915_vma_is_active(vma));
4107
		vma->flags &= ~I915_VMA_PIN_MASK;
4108
		i915_vma_close(vma);
4109
	}
4110
	GEM_BUG_ON(obj->bind_count);
4111

B
Ben Widawsky 已提交
4112 4113 4114 4115 4116
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4117
	WARN_ON(atomic_read(&obj->frontbuffer_bits));
4118

4119 4120
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4121
	    i915_gem_object_is_tiled(obj))
4122 4123
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4124 4125
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4126
	if (discard_backing_storage(obj))
4127
		obj->madv = I915_MADV_DONTNEED;
4128
	i915_gem_object_put_pages(obj);
4129

4130 4131
	BUG_ON(obj->pages);

4132 4133
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4134

4135 4136 4137
	if (obj->ops->release)
		obj->ops->release(obj);

4138 4139
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4140

4141
	kfree(obj->bit_17);
4142
	i915_gem_object_free(obj);
4143 4144

	intel_runtime_pm_put(dev_priv);
4145 4146
}

4147 4148
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4149 4150
{
	struct i915_vma *vma;
4151
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4152 4153
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4154
			return vma;
4155 4156 4157 4158 4159 4160 4161 4162
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4163

4164
	GEM_BUG_ON(!view);
4165

4166
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4167 4168
		if (i915_vma_is_ggtt(vma) &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4169
			return vma;
4170 4171 4172
	return NULL;
}

4173
int i915_gem_suspend(struct drm_device *dev)
4174
{
4175
	struct drm_i915_private *dev_priv = to_i915(dev);
4176
	int ret;
4177

4178 4179
	intel_suspend_gt_powersave(dev_priv);

4180
	mutex_lock(&dev->struct_mutex);
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4194
	ret = i915_gem_wait_for_idle(dev_priv, true);
4195
	if (ret)
4196
		goto err;
4197

4198
	i915_gem_retire_requests(dev_priv);
4199

4200
	i915_gem_context_lost(dev_priv);
4201 4202
	mutex_unlock(&dev->struct_mutex);

4203
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4204 4205
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4206

4207 4208 4209
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4210
	WARN_ON(dev_priv->gt.awake);
4211

4212
	return 0;
4213 4214 4215 4216

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4217 4218
}

4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4236 4237
void i915_gem_init_swizzling(struct drm_device *dev)
{
4238
	struct drm_i915_private *dev_priv = to_i915(dev);
4239

4240
	if (INTEL_INFO(dev)->gen < 5 ||
4241 4242 4243 4244 4245 4246
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4247 4248 4249
	if (IS_GEN5(dev))
		return;

4250 4251
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4252
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4253
	else if (IS_GEN7(dev))
4254
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4255 4256
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4257 4258
	else
		BUG();
4259
}
D
Daniel Vetter 已提交
4260

4261 4262
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4263
	struct drm_i915_private *dev_priv = to_i915(dev);
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4288 4289 4290
int
i915_gem_init_hw(struct drm_device *dev)
{
4291
	struct drm_i915_private *dev_priv = to_i915(dev);
4292
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4293
	int ret;
4294

4295 4296 4297
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4298
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4299
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4300

4301 4302 4303
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4304

4305
	if (HAS_PCH_NOP(dev)) {
4306 4307 4308 4309 4310 4311 4312 4313 4314
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4315 4316
	}

4317 4318
	i915_gem_init_swizzling(dev);

4319 4320 4321 4322 4323 4324 4325 4326
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4327
	BUG_ON(!dev_priv->kernel_context);
4328

4329 4330 4331 4332 4333 4334 4335
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4336
	for_each_engine(engine, dev_priv) {
4337
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4338
		if (ret)
4339
			goto out;
D
Daniel Vetter 已提交
4340
	}
4341

4342 4343
	intel_mocs_init_l3cc_table(dev);

4344
	/* We can't enable contexts until all firmware is loaded */
4345 4346 4347
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4348

4349 4350
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4351
	return ret;
4352 4353
}

4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4375 4376
int i915_gem_init(struct drm_device *dev)
{
4377
	struct drm_i915_private *dev_priv = to_i915(dev);
4378 4379 4380
	int ret;

	mutex_lock(&dev->struct_mutex);
4381

4382
	if (!i915.enable_execlists) {
4383
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4384
	} else {
4385
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4386 4387
	}

4388 4389 4390 4391 4392 4393 4394 4395
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4396
	i915_gem_init_userptr(dev_priv);
4397 4398 4399 4400

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4401

4402
	ret = i915_gem_context_init(dev);
4403 4404
	if (ret)
		goto out_unlock;
4405

4406
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4407
	if (ret)
4408
		goto out_unlock;
4409

4410
	ret = i915_gem_init_hw(dev);
4411
	if (ret == -EIO) {
4412
		/* Allow engine initialisation to fail by marking the GPU as
4413 4414 4415 4416
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4417
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4418
		ret = 0;
4419
	}
4420 4421

out_unlock:
4422
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4423
	mutex_unlock(&dev->struct_mutex);
4424

4425
	return ret;
4426 4427
}

4428
void
4429
i915_gem_cleanup_engines(struct drm_device *dev)
4430
{
4431
	struct drm_i915_private *dev_priv = to_i915(dev);
4432
	struct intel_engine_cs *engine;
4433

4434
	for_each_engine(engine, dev_priv)
4435
		dev_priv->gt.cleanup_engine(engine);
4436 4437
}

4438
static void
4439
init_engine_lists(struct intel_engine_cs *engine)
4440
{
4441
	INIT_LIST_HEAD(&engine->request_list);
4442 4443
}

4444 4445 4446
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4447
	struct drm_device *dev = &dev_priv->drm;
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4458
	if (intel_vgpu_active(dev_priv))
4459 4460 4461 4462 4463 4464 4465 4466 4467
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4468
void
4469
i915_gem_load_init(struct drm_device *dev)
4470
{
4471
	struct drm_i915_private *dev_priv = to_i915(dev);
4472 4473
	int i;

4474
	dev_priv->objects =
4475 4476 4477 4478
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4479 4480 4481 4482 4483
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4484 4485 4486
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
4487 4488 4489
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_DESTROY_BY_RCU,
4490
				  NULL);
4491

4492
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4493 4494
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4495
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4496 4497
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4498
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4499
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4500
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4501
			  i915_gem_retire_work_handler);
4502
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4503
			  i915_gem_idle_work_handler);
4504
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4505
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4506

4507 4508
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4509
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4510

4511
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4512

4513 4514
	dev_priv->mm.interruptible = true;

4515
	spin_lock_init(&dev_priv->fb_tracking.lock);
4516
}
4517

4518 4519 4520 4521 4522 4523 4524
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4525 4526 4527

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4528 4529
}

4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4558
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4559
{
4560
	struct drm_i915_file_private *file_priv = file->driver_priv;
4561
	struct drm_i915_gem_request *request;
4562 4563 4564 4565 4566

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4567
	spin_lock(&file_priv->mm.lock);
4568
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4569
		request->file_priv = NULL;
4570
	spin_unlock(&file_priv->mm.lock);
4571

4572
	if (!list_empty(&file_priv->rps.link)) {
4573
		spin_lock(&to_i915(dev)->rps.client_lock);
4574
		list_del(&file_priv->rps.link);
4575
		spin_unlock(&to_i915(dev)->rps.client_lock);
4576
	}
4577 4578 4579 4580 4581
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4582
	int ret;
4583 4584 4585 4586 4587 4588 4589 4590

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4591
	file_priv->dev_priv = to_i915(dev);
4592
	file_priv->file = file;
4593
	INIT_LIST_HEAD(&file_priv->rps.link);
4594 4595 4596 4597

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4598
	file_priv->bsd_engine = -1;
4599

4600 4601 4602
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4603

4604
	return ret;
4605 4606
}

4607 4608
/**
 * i915_gem_track_fb - update frontbuffer tracking
4609 4610 4611
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4612 4613 4614 4615
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4616 4617 4618 4619
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4620 4621 4622 4623 4624 4625 4626 4627 4628
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4629
	if (old) {
4630 4631
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4632 4633 4634
	}

	if (new) {
4635 4636
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4637 4638 4639
	}
}

4640
/* All the new VM stuff */
4641 4642
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
4643
{
4644
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
4645 4646
	struct i915_vma *vma;

4647
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4648

4649
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4650
		if (i915_vma_is_ggtt(vma) &&
4651 4652 4653
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4654 4655
			return vma->node.start;
	}
4656

4657 4658
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4659 4660 4661
	return -1;
}

4662 4663
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
4664 4665 4666
{
	struct i915_vma *vma;

4667
	list_for_each_entry(vma, &o->vma_list, obj_link)
4668 4669
		if (i915_vma_is_ggtt(vma) &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4670 4671
			return vma->node.start;

4672
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
4673 4674 4675 4676 4677 4678 4679 4680
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

4681
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4682
		if (i915_vma_is_ggtt(vma) &&
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
4693
				  const struct i915_ggtt_view *view)
4694 4695 4696
{
	struct i915_vma *vma;

4697
	list_for_each_entry(vma, &o->vma_list, obj_link)
4698
		if (i915_vma_is_ggtt(vma) &&
4699
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
4700
		    drm_mm_node_allocated(&vma->node))
4701 4702 4703 4704 4705
			return true;

	return false;
}

4706
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
4707 4708 4709
{
	struct i915_vma *vma;

4710
	GEM_BUG_ON(list_empty(&o->vma_list));
4711

4712
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4713
		if (i915_vma_is_ggtt(vma) &&
4714
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
4715
			return vma->node.size;
4716
	}
4717

4718 4719 4720
	return 0;
}

4721
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
4722 4723
{
	struct i915_vma *vma;
4724
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4725
		if (i915_vma_is_pinned(vma))
4726
			return true;
4727

4728
	return false;
4729
}
4730

4731 4732 4733 4734 4735 4736 4737
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4738
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4739 4740 4741 4742 4743 4744 4745
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4756
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4757
	if (IS_ERR(obj))
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4771
	obj->dirty = 1;		/* Backing store is now out of date */
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4783
	i915_gem_object_put(obj);
4784 4785
	return ERR_PTR(ret);
}