i915_gem.c 145.7 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
M
Matthew Auld 已提交
38
#include "i915_gemfs.h"
39
#include <linux/dma-fence-array.h>
40
#include <linux/kthread.h>
41
#include <linux/reservation.h>
42
#include <linux/shmem_fs.h>
43
#include <linux/slab.h>
44
#include <linux/stop_machine.h>
45
#include <linux/swap.h>
J
Jesse Barnes 已提交
46
#include <linux/pci.h>
47
#include <linux/dma-buf.h>
48

49
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
50

51 52
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
53
	if (obj->cache_dirty)
54 55
		return false;

56
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
57 58 59 60 61
		return true;

	return obj->pin_display;
}

62
static int
63
insert_mappable_node(struct i915_ggtt *ggtt,
64 65 66
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
67 68 69 70
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
71 72 73 74 75 76 77 78
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

79 80
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
81
				  u64 size)
82
{
83
	spin_lock(&dev_priv->mm.object_stat_lock);
84 85
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
86
	spin_unlock(&dev_priv->mm.object_stat_lock);
87 88 89
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
90
				     u64 size)
91
{
92
	spin_lock(&dev_priv->mm.object_stat_lock);
93 94
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
95
	spin_unlock(&dev_priv->mm.object_stat_lock);
96 97
}

98
static int
99
i915_gem_wait_for_error(struct i915_gpu_error *error)
100 101 102
{
	int ret;

103 104
	might_sleep();

105 106 107 108 109
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
110
	ret = wait_event_interruptible_timeout(error->reset_queue,
111
					       !i915_reset_backoff(error),
112
					       I915_RESET_TIMEOUT);
113 114 115 116
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
117
		return ret;
118 119
	} else {
		return 0;
120
	}
121 122
}

123
int i915_mutex_lock_interruptible(struct drm_device *dev)
124
{
125
	struct drm_i915_private *dev_priv = to_i915(dev);
126 127
	int ret;

128
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
129 130 131 132 133 134 135 136 137
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
138

139 140
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
141
			    struct drm_file *file)
142
{
143
	struct drm_i915_private *dev_priv = to_i915(dev);
144
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
145
	struct drm_i915_gem_get_aperture *args = data;
146
	struct i915_vma *vma;
147
	u64 pinned;
148

149
	pinned = ggtt->base.reserved;
150
	mutex_lock(&dev->struct_mutex);
151
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
152
		if (i915_vma_is_pinned(vma))
153
			pinned += vma->node.size;
154
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
155
		if (i915_vma_is_pinned(vma))
156
			pinned += vma->node.size;
157
	mutex_unlock(&dev->struct_mutex);
158

159
	args->aper_size = ggtt->base.total;
160
	args->aper_available_size = args->aper_size - pinned;
161

162 163 164
	return 0;
}

165
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166
{
167
	struct address_space *mapping = obj->base.filp->f_mapping;
168
	drm_dma_handle_t *phys;
169 170
	struct sg_table *st;
	struct scatterlist *sg;
171
	char *vaddr;
172
	int i;
173
	int err;
174

175
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
176
		return -EINVAL;
177

178 179 180 181 182
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
183
			     roundup_pow_of_two(obj->base.size),
184 185
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
186
		return -ENOMEM;
187 188

	vaddr = phys->vaddr;
189 190 191 192 193
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
194
		if (IS_ERR(page)) {
195
			err = PTR_ERR(page);
196 197
			goto err_phys;
		}
198 199 200 201 202 203

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

204
		put_page(page);
205 206 207
		vaddr += PAGE_SIZE;
	}

208
	i915_gem_chipset_flush(to_i915(obj->base.dev));
209 210

	st = kmalloc(sizeof(*st), GFP_KERNEL);
211
	if (!st) {
212
		err = -ENOMEM;
213 214
		goto err_phys;
	}
215 216 217

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
218
		err = -ENOMEM;
219
		goto err_phys;
220 221 222 223 224
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
225

226
	sg_dma_address(sg) = phys->busaddr;
227 228
	sg_dma_len(sg) = obj->base.size;

229
	obj->phys_handle = phys;
230

231
	__i915_gem_object_set_pages(obj, st, sg->length);
232 233

	return 0;
234 235 236

err_phys:
	drm_pci_free(obj->base.dev, phys);
237 238

	return err;
239 240
}

241 242 243 244 245 246 247 248
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

249
static void
250
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
251 252
				struct sg_table *pages,
				bool needs_clflush)
253
{
C
Chris Wilson 已提交
254
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
255

C
Chris Wilson 已提交
256 257
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
258

259 260
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
261
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
262
		drm_clflush_sg(pages);
263

264
	__start_cpu_write(obj);
265 266 267 268 269 270
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
271
	__i915_gem_object_release_shmem(obj, pages, false);
272

C
Chris Wilson 已提交
273
	if (obj->mm.dirty) {
274
		struct address_space *mapping = obj->base.filp->f_mapping;
275
		char *vaddr = obj->phys_handle->vaddr;
276 277 278
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
279 280 281 282 283 284 285 286 287 288 289 290 291
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
292
			if (obj->mm.madv == I915_MADV_WILLNEED)
293
				mark_page_accessed(page);
294
			put_page(page);
295 296
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
297
		obj->mm.dirty = false;
298 299
	}

300 301
	sg_free_table(pages);
	kfree(pages);
302 303

	drm_pci_free(obj->base.dev, obj->phys_handle);
304 305 306 307 308
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
309
	i915_gem_object_unpin_pages(obj);
310 311 312 313 314 315 316 317
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

318 319
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

320
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
321 322 323
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
324 325 326
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
327

328 329 330 331
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
332
	 */
333 334 335 336 337 338
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
339 340 341 342 343
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

344 345 346 347 348 349 350 351 352 353 354 355 356
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

357 358 359 360
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
361
			   struct intel_rps_client *rps_client)
362
{
363
	struct drm_i915_gem_request *rq;
364

365
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
366

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
394
	if (rps_client) {
395
		if (INTEL_GEN(rq->i915) >= 6)
396
			gen6_rps_boost(rq, rps_client);
397
		else
398
			rps_client = NULL;
399 400
	}

401 402 403 404 405 406 407 408 409 410 411 412 413
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
414
				 struct intel_rps_client *rps_client)
415
{
416
	unsigned int seq = __read_seqcount_begin(&resv->seq);
417
	struct dma_fence *excl;
418
	bool prune_fences = false;
419 420 421 422

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
423 424
		int ret;

425 426
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
427 428 429
		if (ret)
			return ret;

430 431 432
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
433
							     rps_client);
434
			if (timeout < 0)
435
				break;
436

437 438 439 440 441 442
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
443 444

		prune_fences = count && timeout >= 0;
445 446
	} else {
		excl = reservation_object_get_excl_rcu(resv);
447 448
	}

449
	if (excl && timeout >= 0) {
450 451
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
452 453
		prune_fences = timeout >= 0;
	}
454 455 456

	dma_fence_put(excl);

457 458 459 460
	/* Oportunistically prune the fences iff we know they have *all* been
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
461
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
462 463 464 465 466
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
467 468
	}

469
	return timeout;
470 471
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

536 537 538 539 540 541
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
542
 */
543 544 545 546
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
547
		     struct intel_rps_client *rps_client)
548
{
549 550 551 552 553 554 555
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
556

557 558
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
559
						   rps_client);
560
	return timeout < 0 ? timeout : 0;
561 562 563 564 565 566
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

567
	return &fpriv->rps_client;
568 569
}

570 571 572
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
573
		     struct drm_file *file)
574 575
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
576
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
577 578 579 580

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
581
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
582 583
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
584

585
	drm_clflush_virt_range(vaddr, args->size);
586
	i915_gem_chipset_flush(to_i915(obj->base.dev));
587

588
	intel_fb_obj_flush(obj, ORIGIN_CPU);
589
	return 0;
590 591
}

592
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
593
{
594
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
595 596 597 598
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
599
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
600
	kmem_cache_free(dev_priv->objects, obj);
601 602
}

603 604
static int
i915_gem_create(struct drm_file *file,
605
		struct drm_i915_private *dev_priv,
606 607
		uint64_t size,
		uint32_t *handle_p)
608
{
609
	struct drm_i915_gem_object *obj;
610 611
	int ret;
	u32 handle;
612

613
	size = roundup(size, PAGE_SIZE);
614 615
	if (size == 0)
		return -EINVAL;
616 617

	/* Allocate the new object */
618
	obj = i915_gem_object_create(dev_priv, size);
619 620
	if (IS_ERR(obj))
		return PTR_ERR(obj);
621

622
	ret = drm_gem_handle_create(file, &obj->base, &handle);
623
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
624
	i915_gem_object_put(obj);
625 626
	if (ret)
		return ret;
627

628
	*handle_p = handle;
629 630 631
	return 0;
}

632 633 634 635 636 637
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
638
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
639
	args->size = args->pitch * args->height;
640
	return i915_gem_create(file, to_i915(dev),
641
			       args->size, &args->handle);
642 643
}

644 645 646 647 648 649
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

650 651
/**
 * Creates a new mm object and returns a handle to it.
652 653 654
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
655 656 657 658 659
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
660
	struct drm_i915_private *dev_priv = to_i915(dev);
661
	struct drm_i915_gem_create *args = data;
662

663
	i915_gem_flush_free_objects(dev_priv);
664

665
	return i915_gem_create(file, dev_priv,
666
			       args->size, &args->handle);
667 668
}

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);

	if (!(obj->base.write_domain & flush_domains))
		return;

	/* No actual flushing is required for the GTT write domain.  Writes
	 * to it "immediately" go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
	 */
	wmb();

	switch (obj->base.write_domain) {
	case I915_GEM_DOMAIN_GTT:
703
		if (!HAS_LLC(dev_priv)) {
704 705
			intel_runtime_pm_get(dev_priv);
			spin_lock_irq(&dev_priv->uncore.lock);
706
			POSTING_READ_FW(RING_HEAD(dev_priv->engine[RCS]->mmio_base));
707 708
			spin_unlock_irq(&dev_priv->uncore.lock);
			intel_runtime_pm_put(dev_priv);
709 710 711 712 713 714 715 716 717
		}

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
718 719 720 721 722

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
723 724 725 726 727
	}

	obj->base.write_domain = 0;
}

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

754
static inline int
755 756
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

780 781 782 783 784 785
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
786
				    unsigned int *needs_clflush)
787 788 789
{
	int ret;

790
	lockdep_assert_held(&obj->base.dev->struct_mutex);
791

792
	*needs_clflush = 0;
793 794
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
795

796 797 798 799 800
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
801 802 803
	if (ret)
		return ret;

C
Chris Wilson 已提交
804
	ret = i915_gem_object_pin_pages(obj);
805 806 807
	if (ret)
		return ret;

808 809
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
810 811 812 813 814 815 816
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

817
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
818

819 820 821 822 823
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
824 825
	if (!obj->cache_dirty &&
	    !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
826
		*needs_clflush = CLFLUSH_BEFORE;
827

828
out:
829
	/* return with the pages pinned */
830
	return 0;
831 832 833 834

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
835 836 837 838 839 840 841
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

842 843
	lockdep_assert_held(&obj->base.dev->struct_mutex);

844 845 846 847
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

848 849 850 851 852 853
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
854 855 856
	if (ret)
		return ret;

C
Chris Wilson 已提交
857
	ret = i915_gem_object_pin_pages(obj);
858 859 860
	if (ret)
		return ret;

861 862
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
863 864 865 866 867 868 869
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

870
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
871

872 873 874 875 876
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
877
	if (!obj->cache_dirty) {
878
		*needs_clflush |= CLFLUSH_AFTER;
879

880 881 882 883 884 885 886
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
		if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
			*needs_clflush |= CLFLUSH_BEFORE;
	}
887

888
out:
889
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
890
	obj->mm.dirty = true;
891
	/* return with the pages pinned */
892
	return 0;
893 894 895 896

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
897 898
}

899 900 901 902
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
903
	if (unlikely(swizzled)) {
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

921 922 923
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
924
shmem_pread_slow(struct page *page, int offset, int length,
925 926 927 928 929 930 931 932
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
933
		shmem_clflush_swizzled_range(vaddr + offset, length,
934
					     page_do_bit17_swizzling);
935 936

	if (page_do_bit17_swizzling)
937
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
938
	else
939
		ret = __copy_to_user(user_data, vaddr + offset, length);
940 941
	kunmap(page);

942
	return ret ? - EFAULT : 0;
943 944
}

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1021
{
1022
	void __iomem *vaddr;
1023
	unsigned long unwritten;
1024 1025

	/* We can use the cpu mem copy function because this is X86. */
1026 1027 1028 1029
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1030 1031
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1032 1033 1034 1035
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1036 1037
		io_mapping_unmap(vaddr);
	}
1038 1039 1040 1041
	return unwritten;
}

static int
1042 1043
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1044
{
1045 1046
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1047
	struct drm_mm_node node;
1048 1049 1050
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1051 1052
	int ret;

1053 1054 1055 1056 1057 1058
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1059 1060 1061
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1062 1063 1064
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1065
		ret = i915_vma_put_fence(vma);
1066 1067 1068 1069 1070
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1071
	if (IS_ERR(vma)) {
1072
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1073
		if (ret)
1074 1075
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1076 1077 1078 1079 1080 1081
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1082
	mutex_unlock(&i915->drm.struct_mutex);
1083

1084 1085 1086
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1103
					       node.start, I915_CACHE_NONE, 0);
1104 1105 1106 1107
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1108 1109 1110

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1111 1112 1113 1114 1115 1116 1117 1118 1119
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1120
	mutex_lock(&i915->drm.struct_mutex);
1121 1122 1123 1124
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1125
				       node.start, node.size);
1126 1127
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1128
		i915_vma_unpin(vma);
1129
	}
1130 1131 1132
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1133

1134 1135 1136
	return ret;
}

1137 1138
/**
 * Reads data from the object referenced by handle.
1139 1140 1141
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1142 1143 1144 1145 1146
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1147
		     struct drm_file *file)
1148 1149
{
	struct drm_i915_gem_pread *args = data;
1150
	struct drm_i915_gem_object *obj;
1151
	int ret;
1152

1153 1154 1155 1156
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1157
		       u64_to_user_ptr(args->data_ptr),
1158 1159 1160
		       args->size))
		return -EFAULT;

1161
	obj = i915_gem_object_lookup(file, args->handle);
1162 1163
	if (!obj)
		return -ENOENT;
1164

1165
	/* Bounds check source.  */
1166
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1167
		ret = -EINVAL;
1168
		goto out;
C
Chris Wilson 已提交
1169 1170
	}

C
Chris Wilson 已提交
1171 1172
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1173 1174 1175 1176
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1177
	if (ret)
1178
		goto out;
1179

1180
	ret = i915_gem_object_pin_pages(obj);
1181
	if (ret)
1182
		goto out;
1183

1184
	ret = i915_gem_shmem_pread(obj, args);
1185
	if (ret == -EFAULT || ret == -ENODEV)
1186
		ret = i915_gem_gtt_pread(obj, args);
1187

1188 1189
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1190
	i915_gem_object_put(obj);
1191
	return ret;
1192 1193
}

1194 1195
/* This is the fast write path which cannot handle
 * page faults in the source data
1196
 */
1197

1198 1199 1200 1201
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1202
{
1203
	void __iomem *vaddr;
1204
	unsigned long unwritten;
1205

1206
	/* We can use the cpu mem copy function because this is X86. */
1207 1208
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1209
						      user_data, length);
1210 1211
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1212 1213 1214
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1215 1216
		io_mapping_unmap(vaddr);
	}
1217 1218 1219 1220

	return unwritten;
}

1221 1222 1223
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1224
 * @obj: i915 GEM object
1225
 * @args: pwrite arguments structure
1226
 */
1227
static int
1228 1229
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1230
{
1231
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1232 1233
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1234 1235 1236
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1237
	int ret;
1238

1239 1240 1241
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1242

1243
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1244
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1245 1246 1247
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1248 1249 1250
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1251
		ret = i915_vma_put_fence(vma);
1252 1253 1254 1255 1256
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1257
	if (IS_ERR(vma)) {
1258
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1259
		if (ret)
1260 1261
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1262
	}
D
Daniel Vetter 已提交
1263 1264 1265 1266 1267

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1268 1269
	mutex_unlock(&i915->drm.struct_mutex);

1270
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1271

1272 1273 1274 1275
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1276 1277
		/* Operation in this page
		 *
1278 1279 1280
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1281
		 */
1282
		u32 page_base = node.start;
1283 1284
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1295
		/* If we get a fault while copying data, then (presumably) our
1296 1297
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1298 1299
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1300
		 */
1301 1302 1303 1304
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1305
		}
1306

1307 1308 1309
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1310
	}
1311
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1312 1313

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1314
out_unpin:
1315 1316 1317
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1318
				       node.start, node.size);
1319 1320
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1321
		i915_vma_unpin(vma);
1322
	}
1323
out_unlock:
1324
	intel_runtime_pm_put(i915);
1325
	mutex_unlock(&i915->drm.struct_mutex);
1326
	return ret;
1327 1328
}

1329
static int
1330
shmem_pwrite_slow(struct page *page, int offset, int length,
1331 1332 1333 1334
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1335
{
1336 1337
	char *vaddr;
	int ret;
1338

1339
	vaddr = kmap(page);
1340
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1341
		shmem_clflush_swizzled_range(vaddr + offset, length,
1342
					     page_do_bit17_swizzling);
1343
	if (page_do_bit17_swizzling)
1344 1345
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1346
	else
1347
		ret = __copy_from_user(vaddr + offset, user_data, length);
1348
	if (needs_clflush_after)
1349
		shmem_clflush_swizzled_range(vaddr + offset, length,
1350
					     page_do_bit17_swizzling);
1351
	kunmap(page);
1352

1353
	return ret ? -EFAULT : 0;
1354 1355
}

1356 1357 1358 1359 1360
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1361
static int
1362 1363 1364 1365
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1366
{
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1399
	unsigned int needs_clflush;
1400 1401
	unsigned int offset, idx;
	int ret;
1402

1403
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1404 1405 1406
	if (ret)
		return ret;

1407 1408 1409 1410
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1411

1412 1413 1414
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1415

1416 1417 1418 1419 1420 1421 1422
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1423

1424 1425 1426 1427 1428 1429
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1430

1431 1432 1433
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1434

1435 1436 1437 1438
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1439
		if (ret)
1440
			break;
1441

1442 1443 1444
		remain -= length;
		user_data += length;
		offset = 0;
1445
	}
1446

1447
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1448
	i915_gem_obj_finish_shmem_access(obj);
1449
	return ret;
1450 1451 1452 1453
}

/**
 * Writes data to the object referenced by handle.
1454 1455 1456
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1457 1458 1459 1460 1461
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1462
		      struct drm_file *file)
1463 1464
{
	struct drm_i915_gem_pwrite *args = data;
1465
	struct drm_i915_gem_object *obj;
1466 1467 1468 1469 1470 1471
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1472
		       u64_to_user_ptr(args->data_ptr),
1473 1474 1475
		       args->size))
		return -EFAULT;

1476
	obj = i915_gem_object_lookup(file, args->handle);
1477 1478
	if (!obj)
		return -ENOENT;
1479

1480
	/* Bounds check destination. */
1481
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1482
		ret = -EINVAL;
1483
		goto err;
C
Chris Wilson 已提交
1484 1485
	}

C
Chris Wilson 已提交
1486 1487
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1488 1489 1490 1491 1492 1493
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1494 1495 1496 1497 1498
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1499 1500 1501
	if (ret)
		goto err;

1502
	ret = i915_gem_object_pin_pages(obj);
1503
	if (ret)
1504
		goto err;
1505

D
Daniel Vetter 已提交
1506
	ret = -EFAULT;
1507 1508 1509 1510 1511 1512
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1513
	if (!i915_gem_object_has_struct_page(obj) ||
1514
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1515 1516
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1517 1518
		 * textures). Fallback to the shmem path in that case.
		 */
1519
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1520

1521
	if (ret == -EFAULT || ret == -ENOSPC) {
1522 1523
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1524
		else
1525
			ret = i915_gem_shmem_pwrite(obj, args);
1526
	}
1527

1528
	i915_gem_object_unpin_pages(obj);
1529
err:
C
Chris Wilson 已提交
1530
	i915_gem_object_put(obj);
1531
	return ret;
1532 1533
}

1534 1535 1536 1537 1538 1539 1540 1541
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1542
			break;
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1555
	list_move_tail(&obj->global_link, list);
1556 1557
}

1558
/**
1559 1560
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1561 1562 1563
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1564 1565 1566
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1567
			  struct drm_file *file)
1568 1569
{
	struct drm_i915_gem_set_domain *args = data;
1570
	struct drm_i915_gem_object *obj;
1571 1572
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1573
	int err;
1574

1575
	/* Only handle setting domains to types used by the CPU. */
1576
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1577 1578 1579 1580 1581 1582 1583 1584
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1585
	obj = i915_gem_object_lookup(file, args->handle);
1586 1587
	if (!obj)
		return -ENOENT;
1588

1589 1590 1591 1592
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1593
	err = i915_gem_object_wait(obj,
1594 1595 1596 1597
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1598
	if (err)
C
Chris Wilson 已提交
1599
		goto out;
1600

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1611
		goto out;
1612 1613 1614

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1615
		goto out_unpin;
1616

1617 1618 1619 1620
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1621
	else
1622
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1623

1624 1625
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1626

1627
	mutex_unlock(&dev->struct_mutex);
1628

1629
	if (write_domain != 0)
1630 1631
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1632

C
Chris Wilson 已提交
1633
out_unpin:
1634
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1635 1636
out:
	i915_gem_object_put(obj);
1637
	return err;
1638 1639 1640 1641
}

/**
 * Called when user space has done writes to this buffer
1642 1643 1644
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1645 1646 1647
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1648
			 struct drm_file *file)
1649 1650
{
	struct drm_i915_gem_sw_finish *args = data;
1651
	struct drm_i915_gem_object *obj;
1652

1653
	obj = i915_gem_object_lookup(file, args->handle);
1654 1655
	if (!obj)
		return -ENOENT;
1656 1657

	/* Pinned buffers may be scanout, so flush the cache */
1658
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1659
	i915_gem_object_put(obj);
1660 1661

	return 0;
1662 1663 1664
}

/**
1665 1666 1667 1668 1669
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1670 1671 1672
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1683 1684 1685
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1686
		    struct drm_file *file)
1687 1688
{
	struct drm_i915_gem_mmap *args = data;
1689
	struct drm_i915_gem_object *obj;
1690 1691
	unsigned long addr;

1692 1693 1694
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1695
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1696 1697
		return -ENODEV;

1698 1699
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1700
		return -ENOENT;
1701

1702 1703 1704
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1705
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1706
		i915_gem_object_put(obj);
1707 1708 1709
		return -EINVAL;
	}

1710
	addr = vm_mmap(obj->base.filp, 0, args->size,
1711 1712
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1713 1714 1715 1716
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1717
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1718
			i915_gem_object_put(obj);
1719 1720
			return -EINTR;
		}
1721 1722 1723 1724 1725 1726 1727
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1728 1729

		/* This may race, but that's ok, it only gets set */
1730
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1731
	}
C
Chris Wilson 已提交
1732
	i915_gem_object_put(obj);
1733 1734 1735 1736 1737 1738 1739 1740
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1741 1742
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1743
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1744 1745
}

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1766 1767 1768
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1796
	return 2;
1797 1798
}

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1810 1811
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1812
		min_t(unsigned int, chunk,
1813
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1814 1815 1816 1817 1818 1819 1820 1821

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1822 1823
/**
 * i915_gem_fault - fault a page into the GTT
1824
 * @vmf: fault info
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1836 1837 1838
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1839
 */
1840
int i915_gem_fault(struct vm_fault *vmf)
1841
{
1842
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1843
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1844
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1845
	struct drm_device *dev = obj->base.dev;
1846 1847
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1848
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1849
	struct i915_vma *vma;
1850
	pgoff_t page_offset;
1851
	unsigned int flags;
1852
	int ret;
1853

1854
	/* We don't use vmf->pgoff since that has the fake offset */
1855
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1856

C
Chris Wilson 已提交
1857 1858
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1859
	/* Try to flush the object off the GPU first without holding the lock.
1860
	 * Upon acquiring the lock, we will perform our sanity checks and then
1861 1862 1863
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1864 1865 1866 1867
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1868
	if (ret)
1869 1870
		goto err;

1871 1872 1873 1874
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1875 1876 1877 1878 1879
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1880

1881
	/* Access to snoopable pages through the GTT is incoherent. */
1882
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1883
		ret = -EFAULT;
1884
		goto err_unlock;
1885 1886
	}

1887 1888 1889 1890 1891 1892 1893 1894
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1895
	/* Now pin it into the GTT as needed */
1896
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1897 1898
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1899
		struct i915_ggtt_view view =
1900
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1901

1902 1903 1904 1905 1906
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1907 1908
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1909 1910
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1911
		goto err_unlock;
C
Chris Wilson 已提交
1912
	}
1913

1914 1915
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1916
		goto err_unpin;
1917

1918
	ret = i915_vma_pin_fence(vma);
1919
	if (ret)
1920
		goto err_unpin;
1921

1922
	/* Finally, remap it using the new GTT offset */
1923
	ret = remap_io_mapping(area,
1924
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1925 1926 1927
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1928 1929
	if (ret)
		goto err_fence;
1930

1931 1932 1933 1934 1935 1936 1937
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

err_fence:
1938
	i915_vma_unpin_fence(vma);
1939
err_unpin:
C
Chris Wilson 已提交
1940
	__i915_vma_unpin(vma);
1941
err_unlock:
1942
	mutex_unlock(&dev->struct_mutex);
1943 1944
err_rpm:
	intel_runtime_pm_put(dev_priv);
1945
	i915_gem_object_unpin_pages(obj);
1946
err:
1947
	switch (ret) {
1948
	case -EIO:
1949 1950 1951 1952 1953 1954 1955
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1956 1957 1958
			ret = VM_FAULT_SIGBUS;
			break;
		}
1959
	case -EAGAIN:
D
Daniel Vetter 已提交
1960 1961 1962 1963
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1964
		 */
1965 1966
	case 0:
	case -ERESTARTSYS:
1967
	case -EINTR:
1968 1969 1970 1971 1972
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1973 1974
		ret = VM_FAULT_NOPAGE;
		break;
1975
	case -ENOMEM:
1976 1977
		ret = VM_FAULT_OOM;
		break;
1978
	case -ENOSPC:
1979
	case -EFAULT:
1980 1981
		ret = VM_FAULT_SIGBUS;
		break;
1982
	default:
1983
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1984 1985
		ret = VM_FAULT_SIGBUS;
		break;
1986
	}
1987
	return ret;
1988 1989
}

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
			break;

		i915_vma_unset_userfault(vma);
	}
}

2009 2010 2011 2012
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2013
 * Preserve the reservation of the mmapping with the DRM core code, but
2014 2015 2016 2017 2018 2019 2020 2021 2022
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2023
void
2024
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2025
{
2026 2027
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2028 2029 2030
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2031 2032 2033 2034
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2035
	 */
2036
	lockdep_assert_held(&i915->drm.struct_mutex);
2037
	intel_runtime_pm_get(i915);
2038

2039
	if (!obj->userfault_count)
2040
		goto out;
2041

2042
	__i915_gem_object_release_mmap(obj);
2043 2044 2045 2046 2047 2048 2049 2050 2051

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2052 2053 2054

out:
	intel_runtime_pm_put(i915);
2055 2056
}

2057
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2058
{
2059
	struct drm_i915_gem_object *obj, *on;
2060
	int i;
2061

2062 2063 2064 2065 2066 2067
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2068

2069
	list_for_each_entry_safe(obj, on,
2070 2071
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2072 2073 2074 2075 2076 2077 2078 2079

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2090 2091 2092 2093

		if (!reg->vma)
			continue;

2094
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2095 2096
		reg->dirty = true;
	}
2097 2098
}

2099 2100
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2101
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2102
	int err;
2103

2104
	err = drm_gem_create_mmap_offset(&obj->base);
2105
	if (likely(!err))
2106
		return 0;
2107

2108 2109 2110 2111 2112
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2113

2114
		i915_gem_drain_freed_objects(dev_priv);
2115
		err = drm_gem_create_mmap_offset(&obj->base);
2116 2117 2118 2119
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2120

2121
	return err;
2122 2123 2124 2125 2126 2127 2128
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2129
int
2130 2131
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2132
		  uint32_t handle,
2133
		  uint64_t *offset)
2134
{
2135
	struct drm_i915_gem_object *obj;
2136 2137
	int ret;

2138
	obj = i915_gem_object_lookup(file, handle);
2139 2140
	if (!obj)
		return -ENOENT;
2141

2142
	ret = i915_gem_object_create_mmap_offset(obj);
2143 2144
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2145

C
Chris Wilson 已提交
2146
	i915_gem_object_put(obj);
2147
	return ret;
2148 2149
}

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2171
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2172 2173
}

D
Daniel Vetter 已提交
2174 2175 2176
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2177
{
2178
	i915_gem_object_free_mmap_offset(obj);
2179

2180 2181
	if (obj->base.filp == NULL)
		return;
2182

D
Daniel Vetter 已提交
2183 2184 2185 2186 2187
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2188
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2189
	obj->mm.madv = __I915_MADV_PURGED;
2190
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2191
}
2192

2193
/* Try to discard unwanted pages */
2194
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2195
{
2196 2197
	struct address_space *mapping;

2198 2199 2200
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2201
	switch (obj->mm.madv) {
2202 2203 2204 2205 2206 2207 2208 2209 2210
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2211
	mapping = obj->base.filp->f_mapping,
2212
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2213 2214
}

2215
static void
2216 2217
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2218
{
2219 2220
	struct sgt_iter sgt_iter;
	struct page *page;
2221

2222
	__i915_gem_object_release_shmem(obj, pages, true);
2223

2224
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2225

2226
	if (i915_gem_object_needs_bit17_swizzle(obj))
2227
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2228

2229
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2230
		if (obj->mm.dirty)
2231
			set_page_dirty(page);
2232

C
Chris Wilson 已提交
2233
		if (obj->mm.madv == I915_MADV_WILLNEED)
2234
			mark_page_accessed(page);
2235

2236
		put_page(page);
2237
	}
C
Chris Wilson 已提交
2238
	obj->mm.dirty = false;
2239

2240 2241
	sg_free_table(pages);
	kfree(pages);
2242
}
C
Chris Wilson 已提交
2243

2244 2245 2246
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2247
	void __rcu **slot;
2248

C
Chris Wilson 已提交
2249 2250
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2251 2252
}

2253 2254
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2255
{
2256
	struct sg_table *pages;
2257

C
Chris Wilson 已提交
2258
	if (i915_gem_object_has_pinned_pages(obj))
2259
		return;
2260

2261
	GEM_BUG_ON(obj->bind_count);
2262 2263 2264 2265
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2266
	mutex_lock_nested(&obj->mm.lock, subclass);
2267 2268
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2269

2270 2271 2272
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2273 2274
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2275

C
Chris Wilson 已提交
2276
	if (obj->mm.mapping) {
2277 2278
		void *ptr;

2279
		ptr = page_mask_bits(obj->mm.mapping);
2280 2281
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2282
		else
2283 2284
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2285
		obj->mm.mapping = NULL;
2286 2287
	}

2288 2289
	__i915_gem_object_reset_page_iter(obj);

2290 2291 2292
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2293 2294
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

2295 2296
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2297 2298
}

2299
static bool i915_sg_trim(struct sg_table *orig_st)
2300 2301 2302 2303 2304 2305
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2306
		return false;
2307

2308
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2309
		return false;
2310 2311 2312 2313 2314 2315 2316

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2317
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2318 2319 2320 2321

	sg_free_table(orig_st);

	*orig_st = new_st;
2322
	return true;
2323 2324
}

2325
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2326
{
2327
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2328 2329
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2330
	struct address_space *mapping;
2331 2332
	struct sg_table *st;
	struct scatterlist *sg;
2333
	struct sgt_iter sgt_iter;
2334
	struct page *page;
2335
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2336
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2337
	unsigned int sg_page_sizes;
2338
	gfp_t noreclaim;
I
Imre Deak 已提交
2339
	int ret;
2340

C
Chris Wilson 已提交
2341 2342 2343 2344
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2345 2346
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2347

2348 2349
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2350
		return -ENOMEM;
2351

2352
rebuild_st:
2353 2354
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2355
		return -ENOMEM;
2356
	}
2357

2358 2359 2360 2361 2362
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2363
	mapping = obj->base.filp->f_mapping;
2364
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2365 2366
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2367 2368
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2369
	sg_page_sizes = 0;
2370
	for (i = 0; i < page_count; i++) {
2371 2372 2373 2374 2375 2376 2377
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2378
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2379 2380 2381 2382 2383 2384 2385 2386
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2387
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2388
			cond_resched();
2389

C
Chris Wilson 已提交
2390 2391 2392
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2393 2394 2395 2396
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2397
			 */
2398 2399 2400
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2413
				 * this we want __GFP_RETRY_MAYFAIL.
2414
				 */
M
Michal Hocko 已提交
2415
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2416
			}
2417 2418
		} while (1);

2419 2420 2421
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2422
			if (i) {
M
Matthew Auld 已提交
2423
				sg_page_sizes |= sg->length;
2424
				sg = sg_next(sg);
2425
			}
2426 2427 2428 2429 2430 2431
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2432 2433 2434

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2435
	}
2436
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2437
		sg_page_sizes |= sg->length;
2438
		sg_mark_end(sg);
2439
	}
2440

2441 2442 2443
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2444
	ret = i915_gem_gtt_prepare_pages(obj, st);
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2464

2465
	if (i915_gem_object_needs_bit17_swizzle(obj))
2466
		i915_gem_object_do_bit_17_swizzle(obj, st);
2467

M
Matthew Auld 已提交
2468
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2469 2470

	return 0;
2471

2472
err_sg:
2473
	sg_mark_end(sg);
2474
err_pages:
2475 2476
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2477 2478
	sg_free_table(st);
	kfree(st);
2479 2480 2481 2482 2483 2484 2485 2486 2487

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2488 2489 2490
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2491
	return ret;
2492 2493 2494
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2495
				 struct sg_table *pages,
M
Matthew Auld 已提交
2496
				 unsigned int sg_page_sizes)
2497
{
2498 2499 2500 2501
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2502
	lockdep_assert_held(&obj->mm.lock);
2503 2504 2505 2506 2507

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2508 2509 2510 2511 2512 2513 2514

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2515

M
Matthew Auld 已提交
2516 2517
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2518 2519

	/*
M
Matthew Auld 已提交
2520 2521 2522 2523 2524 2525
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2526 2527 2528 2529 2530 2531 2532 2533
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}

	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2534 2535 2536 2537
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2538
	int err;
2539 2540 2541 2542 2543 2544

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2545 2546
	err = obj->ops->get_pages(obj);
	GEM_BUG_ON(!err && IS_ERR_OR_NULL(obj->mm.pages));
2547

2548
	return err;
2549 2550
}

2551
/* Ensure that the associated pages are gathered from the backing storage
2552
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2553
 * multiple times before they are released by a single call to
2554
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2555 2556 2557
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2558
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2559
{
2560
	int err;
2561

2562 2563 2564
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2565

2566
	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2567 2568
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2569 2570 2571
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2572

2573 2574 2575
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2576

2577 2578
unlock:
	mutex_unlock(&obj->mm.lock);
2579
	return err;
2580 2581
}

2582
/* The 'mapping' part of i915_gem_object_pin_map() below */
2583 2584
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2585 2586
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2587
	struct sg_table *sgt = obj->mm.pages;
2588 2589
	struct sgt_iter sgt_iter;
	struct page *page;
2590 2591
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2592
	unsigned long i = 0;
2593
	pgprot_t pgprot;
2594 2595 2596
	void *addr;

	/* A single page can always be kmapped */
2597
	if (n_pages == 1 && type == I915_MAP_WB)
2598 2599
		return kmap(sg_page(sgt->sgl));

2600 2601
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2602
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2603 2604 2605
		if (!pages)
			return NULL;
	}
2606

2607 2608
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2609 2610 2611 2612

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2613
	switch (type) {
2614 2615 2616
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2617 2618 2619 2620 2621 2622 2623 2624
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2625

2626
	if (pages != stack_pages)
M
Michal Hocko 已提交
2627
		kvfree(pages);
2628 2629 2630 2631 2632

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2633 2634
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2635
{
2636 2637 2638
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2639 2640
	int ret;

2641
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2642

2643
	ret = mutex_lock_interruptible(&obj->mm.lock);
2644 2645 2646
	if (ret)
		return ERR_PTR(ret);

2647 2648 2649
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2650
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2651
		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2652 2653
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2654 2655 2656
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2657

2658 2659 2660
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2661 2662 2663
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2664

2665
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2666 2667 2668
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2669
			goto err_unpin;
2670
		}
2671 2672 2673 2674 2675 2676

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2677
		ptr = obj->mm.mapping = NULL;
2678 2679
	}

2680 2681 2682 2683
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2684
			goto err_unpin;
2685 2686
		}

2687
		obj->mm.mapping = page_pack_bits(ptr, type);
2688 2689
	}

2690 2691
out_unlock:
	mutex_unlock(&obj->mm.lock);
2692 2693
	return ptr;

2694 2695 2696 2697 2698
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2699 2700
}

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
	if (READ_ONCE(obj->mm.pages))
		return -ENODEV;

	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2770 2771
static bool ban_context(const struct i915_gem_context *ctx,
			unsigned int score)
2772
{
2773
	return (i915_gem_context_is_bannable(ctx) &&
2774
		score >= CONTEXT_SCORE_BAN_THRESHOLD);
2775 2776
}

2777
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2778
{
2779 2780
	unsigned int score;
	bool banned;
2781

2782
	atomic_inc(&ctx->guilty_count);
2783

2784 2785 2786 2787 2788
	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
	banned = ban_context(ctx, score);
	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
			 ctx->name, score, yesno(banned));
	if (!banned)
2789 2790
		return;

2791 2792 2793 2794 2795 2796
	i915_gem_context_set_banned(ctx);
	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
		atomic_inc(&ctx->file_priv->context_bans);
		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
	}
2797 2798 2799 2800
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2801
	atomic_inc(&ctx->active_count);
2802 2803
}

2804
struct drm_i915_gem_request *
2805
i915_gem_find_active_request(struct intel_engine_cs *engine)
2806
{
2807 2808
	struct drm_i915_gem_request *request, *active = NULL;
	unsigned long flags;
2809

2810 2811 2812 2813 2814 2815 2816 2817
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2818
	spin_lock_irqsave(&engine->timeline->lock, flags);
2819
	list_for_each_entry(request, &engine->timeline->requests, link) {
2820 2821
		if (__i915_gem_request_completed(request,
						 request->global_seqno))
2822
			continue;
2823

2824
		GEM_BUG_ON(request->engine != engine);
2825 2826
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2827 2828 2829

		active = request;
		break;
2830
	}
2831
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2832

2833
	return active;
2834 2835
}

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2850 2851 2852 2853 2854 2855 2856 2857 2858
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
struct drm_i915_gem_request *
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_request *request = NULL;

2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

	/*
	 * Prevent the signaler thread from updating the request
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
	 * state (by calling dma_fence_signal) as we are processing
	 * the reset. The write from the GPU of the seqno is
	 * asynchronous and the signaler thread may see a different
	 * value to us and declare the request complete, even though
	 * the reset routine have picked that request as the active
	 * (incomplete) request. This conflict is not handled
	 * gracefully!
	 */
	kthread_park(engine->breadcrumbs.signaler);

2880 2881
	/*
	 * Prevent request submission to the hardware until we have
2882 2883 2884 2885 2886 2887 2888
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its engine->irq_tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the engine->irq_tasklet until the reset is over
	 * prevents the race.
	 */
2889 2890
	tasklet_kill(&engine->execlists.irq_tasklet);
	tasklet_disable(&engine->execlists.irq_tasklet);
2891 2892 2893 2894

	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2895 2896 2897
	request = i915_gem_find_active_request(engine);
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
2898 2899 2900 2901

	return request;
}

2902
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2903 2904
{
	struct intel_engine_cs *engine;
2905
	struct drm_i915_gem_request *request;
2906
	enum intel_engine_id id;
2907
	int err = 0;
2908

2909
	for_each_engine(engine, dev_priv, id) {
2910 2911 2912 2913
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
2914
		}
2915 2916

		engine->hangcheck.active_request = request;
2917 2918
	}

2919
	i915_gem_revoke_fences(dev_priv);
2920 2921

	return err;
2922 2923
}

2924
static void skip_request(struct drm_i915_gem_request *request)
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2939 2940

	dma_fence_set_error(&request->fence, -EIO);
2941 2942
}

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2966 2967 2968 2969
/* Returns the request if it was guilty of the hang */
static struct drm_i915_gem_request *
i915_gem_reset_request(struct intel_engine_cs *engine,
		       struct drm_i915_gem_request *request)
2970
{
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2992
	if (engine_stalled(engine)) {
2993 2994
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
2995 2996 2997 2998

		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
2999
	} else {
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
			i915_gem_context_mark_innocent(request->ctx);
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
			spin_lock_irq(&engine->timeline->lock);
			request = list_prev_entry(request, link);
			if (&request->link == &engine->timeline->requests)
				request = NULL;
			spin_unlock_irq(&engine->timeline->lock);
		}
3017 3018
	}

3019
	return request;
3020 3021
}

3022 3023
void i915_gem_reset_engine(struct intel_engine_cs *engine,
			   struct drm_i915_gem_request *request)
3024
{
3025 3026
	engine->irq_posted = 0;

3027 3028 3029 3030
	if (request)
		request = i915_gem_reset_request(engine, request);

	if (request) {
3031 3032 3033
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
	}
3034 3035 3036

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
3037
}
3038

3039
void i915_gem_reset(struct drm_i915_private *dev_priv)
3040
{
3041
	struct intel_engine_cs *engine;
3042
	enum intel_engine_id id;
3043

3044 3045
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3046 3047
	i915_gem_retire_requests(dev_priv);

3048 3049 3050
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

3051
		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3052 3053 3054 3055
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
	}
3056

3057
	i915_gem_restore_fences(dev_priv);
3058 3059 3060 3061 3062 3063 3064

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
3065 3066
}

3067 3068
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3069
	tasklet_enable(&engine->execlists.irq_tasklet);
3070
	kthread_unpark(engine->breadcrumbs.signaler);
3071 3072

	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3073 3074
}

3075 3076
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3077 3078 3079
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3080
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3081

3082
	for_each_engine(engine, dev_priv, id) {
3083
		engine->hangcheck.active_request = NULL;
3084
		i915_gem_reset_finish_engine(engine);
3085
	}
3086 3087
}

3088 3089
static void nop_submit_request(struct drm_i915_gem_request *request)
{
3090 3091
	unsigned long flags;

3092
	GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3093
	dma_fence_set_error(&request->fence, -EIO);
3094 3095 3096

	spin_lock_irqsave(&request->engine->timeline->lock, flags);
	__i915_gem_request_submit(request);
3097
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3098
	spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3099 3100
}

3101
static void engine_set_wedged(struct intel_engine_cs *engine)
3102
{
3103 3104 3105 3106 3107 3108
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
3109
	engine->submit_request = nop_submit_request;
3110

3111
	/* Mark all executing requests as skipped */
3112
	engine->cancel_requests(engine);
3113 3114 3115 3116 3117 3118 3119

	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
	intel_engine_init_global_seqno(engine,
				       intel_engine_last_submit(engine));
3120 3121
}

3122
static int __i915_gem_set_wedged_BKL(void *data)
3123
{
3124
	struct drm_i915_private *i915 = data;
3125
	struct intel_engine_cs *engine;
3126
	enum intel_engine_id id;
3127

3128
	for_each_engine(engine, i915, id)
3129
		engine_set_wedged(engine);
3130

3131 3132 3133
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	wake_up_all(&i915->gpu_error.reset_queue);

3134 3135 3136 3137 3138 3139
	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3140 3141
}

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

	/* Before unwedging, make sure that all pending operations
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
			struct drm_i915_gem_request *rq;

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

			/* We can't use our normal waiter as we want to
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}

	/* Undo nop_submit_request. We prevent all new i915 requests from
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3194
	i915_gem_contexts_lost(i915);
3195 3196 3197 3198 3199 3200 3201

	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3202
static void
3203 3204
i915_gem_retire_work_handler(struct work_struct *work)
{
3205
	struct drm_i915_private *dev_priv =
3206
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3207
	struct drm_device *dev = &dev_priv->drm;
3208

3209
	/* Come back later if the device is busy... */
3210
	if (mutex_trylock(&dev->struct_mutex)) {
3211
		i915_gem_retire_requests(dev_priv);
3212
		mutex_unlock(&dev->struct_mutex);
3213
	}
3214 3215 3216 3217 3218

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3219 3220
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
3221 3222
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3223
				   round_jiffies_up_relative(HZ));
3224
	}
3225
}
3226

3227 3228 3229 3230
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3231
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3232
	struct drm_device *dev = &dev_priv->drm;
3233 3234 3235 3236 3237
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3238 3239 3240 3241
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
3242
	wait_for(intel_engines_are_idle(dev_priv), 10);
3243
	if (READ_ONCE(dev_priv->gt.active_requests))
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3257 3258 3259 3260 3261 3262 3263
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

3264
	if (dev_priv->gt.active_requests)
3265
		goto out_unlock;
3266

3267
	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3268 3269
		DRM_ERROR("Timeout waiting for engines to idle\n");

3270
	intel_engines_mark_idle(dev_priv);
3271
	i915_gem_timelines_mark_idle(dev_priv);
3272

3273 3274 3275
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3276

3277 3278 3279 3280 3281
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3282

3283 3284 3285 3286
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3287
	}
3288 3289
}

3290 3291
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3292
	struct drm_i915_private *i915 = to_i915(gem->dev);
3293 3294
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3295
	struct i915_lut_handle *lut, *ln;
3296

3297 3298 3299 3300 3301 3302
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3303
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3304 3305 3306 3307
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3308 3309 3310 3311 3312 3313 3314
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3315
			i915_vma_close(vma);
3316

3317 3318
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3319

3320 3321
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3322
	}
3323 3324

	mutex_unlock(&i915->drm.struct_mutex);
3325 3326
}

3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3338 3339
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3340 3341 3342
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3343 3344 3345 3346 3347 3348 3349
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3350
 *  -EAGAIN: incomplete, restart syscall
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3367 3368
	ktime_t start;
	long ret;
3369

3370 3371 3372
	if (args->flags != 0)
		return -EINVAL;

3373
	obj = i915_gem_object_lookup(file, args->bo_handle);
3374
	if (!obj)
3375 3376
		return -ENOENT;

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3398 3399 3400 3401

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3402 3403
	}

C
Chris Wilson 已提交
3404
	i915_gem_object_put(obj);
3405
	return ret;
3406 3407
}

3408
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3409
{
3410
	int ret, i;
3411

3412 3413 3414 3415 3416
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3417

3418 3419 3420
	return 0;
}

3421 3422
static int wait_for_engines(struct drm_i915_private *i915)
{
3423 3424 3425 3426
	if (wait_for(intel_engines_are_idle(i915), 50)) {
		DRM_ERROR("Failed to idle engines, declaring wedged!\n");
		i915_gem_set_wedged(i915);
		return -EIO;
3427 3428 3429 3430 3431
	}

	return 0;
}

3432 3433 3434 3435
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3436 3437 3438 3439
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
3450 3451 3452

		i915_gem_retire_requests(i915);
		GEM_BUG_ON(i915->gt.active_requests);
3453 3454

		ret = wait_for_engines(i915);
3455 3456
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3457
	}
3458

3459
	return ret;
3460 3461
}

3462 3463
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3464 3465 3466 3467 3468 3469 3470
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
	obj->base.write_domain = 0;
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
	if (!READ_ONCE(obj->pin_display))
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
	if (write) {
		obj->base.read_domains = I915_GEM_DOMAIN_WC;
		obj->base.write_domain = I915_GEM_DOMAIN_WC;
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3547 3548
/**
 * Moves a single object to the GTT read, and possibly write domain.
3549 3550
 * @obj: object to act on
 * @write: ask for write access or read only
3551 3552 3553 3554
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3555
int
3556
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3557
{
3558
	int ret;
3559

3560
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3561

3562 3563 3564 3565 3566 3567
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3568 3569 3570
	if (ret)
		return ret;

3571 3572 3573
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3574 3575 3576 3577 3578 3579 3580 3581
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3582
	ret = i915_gem_object_pin_pages(obj);
3583 3584 3585
	if (ret)
		return ret;

3586
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3587

3588 3589 3590 3591 3592 3593 3594
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3595 3596 3597
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3598
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3599
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3600
	if (write) {
3601 3602
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3603
		obj->mm.dirty = true;
3604 3605
	}

C
Chris Wilson 已提交
3606
	i915_gem_object_unpin_pages(obj);
3607 3608 3609
	return 0;
}

3610 3611
/**
 * Changes the cache-level of an object across all VMA.
3612 3613
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3625 3626 3627
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3628
	struct i915_vma *vma;
3629
	int ret;
3630

3631 3632
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3633
	if (obj->cache_level == cache_level)
3634
		return 0;
3635

3636 3637 3638 3639 3640
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3641 3642
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3643 3644 3645
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3646
		if (i915_vma_is_pinned(vma)) {
3647 3648 3649 3650
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3663 3664
	}

3665 3666 3667 3668 3669 3670 3671
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3672
	if (obj->bind_count) {
3673 3674 3675 3676
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3677 3678 3679 3680 3681 3682
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3683 3684 3685
		if (ret)
			return ret;

3686 3687
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3704 3705 3706 3707 3708
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3709 3710 3711 3712 3713 3714 3715 3716
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3717 3718
		}

3719
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3720 3721 3722 3723 3724 3725 3726
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3727 3728
	}

3729
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3730
		vma->node.color = cache_level;
3731
	i915_gem_object_set_cache_coherency(obj, cache_level);
3732
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3733

3734 3735 3736
	return 0;
}

B
Ben Widawsky 已提交
3737 3738
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3739
{
B
Ben Widawsky 已提交
3740
	struct drm_i915_gem_caching *args = data;
3741
	struct drm_i915_gem_object *obj;
3742
	int err = 0;
3743

3744 3745 3746 3747 3748 3749
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3750

3751 3752 3753 3754 3755 3756
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3757 3758 3759 3760
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3761 3762 3763 3764
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3765 3766 3767
out:
	rcu_read_unlock();
	return err;
3768 3769
}

B
Ben Widawsky 已提交
3770 3771
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3772
{
3773
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3774
	struct drm_i915_gem_caching *args = data;
3775 3776
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3777
	int ret = 0;
3778

B
Ben Widawsky 已提交
3779 3780
	switch (args->caching) {
	case I915_CACHING_NONE:
3781 3782
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3783
	case I915_CACHING_CACHED:
3784 3785 3786 3787 3788 3789
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3790
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3791 3792
			return -ENODEV;

3793 3794
		level = I915_CACHE_LLC;
		break;
3795
	case I915_CACHING_DISPLAY:
3796
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3797
		break;
3798 3799 3800 3801
	default:
		return -EINVAL;
	}

3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3813
	if (ret)
3814
		goto out;
B
Ben Widawsky 已提交
3815

3816 3817 3818
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3819 3820 3821

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3822 3823 3824

out:
	i915_gem_object_put(obj);
3825 3826 3827
	return ret;
}

3828
/*
3829 3830 3831
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3832
 */
C
Chris Wilson 已提交
3833
struct i915_vma *
3834 3835
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3836
				     const struct i915_ggtt_view *view)
3837
{
C
Chris Wilson 已提交
3838
	struct i915_vma *vma;
3839 3840
	int ret;

3841 3842
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3843 3844 3845
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3846
	obj->pin_display++;
3847

3848 3849 3850 3851 3852 3853 3854 3855 3856
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3857
	ret = i915_gem_object_set_cache_level(obj,
3858 3859
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3860 3861
	if (ret) {
		vma = ERR_PTR(ret);
3862
		goto err_unpin_display;
C
Chris Wilson 已提交
3863
	}
3864

3865 3866
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3867 3868 3869 3870
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3871
	 */
3872
	vma = ERR_PTR(-ENOSPC);
3873
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3874 3875
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3892
	if (IS_ERR(vma))
3893
		goto err_unpin_display;
3894

3895 3896
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3897
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3898
	__i915_gem_object_flush_for_display(obj);
3899
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3900

3901 3902 3903
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3904
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3905

C
Chris Wilson 已提交
3906
	return vma;
3907 3908

err_unpin_display:
3909
	obj->pin_display--;
C
Chris Wilson 已提交
3910
	return vma;
3911 3912 3913
}

void
C
Chris Wilson 已提交
3914
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3915
{
3916
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3917

C
Chris Wilson 已提交
3918
	if (WARN_ON(vma->obj->pin_display == 0))
3919 3920
		return;

3921
	if (--vma->obj->pin_display == 0)
3922
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3923

3924
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3925
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3926

C
Chris Wilson 已提交
3927
	i915_vma_unpin(vma);
3928 3929
}

3930 3931
/**
 * Moves a single object to the CPU read, and possibly write domain.
3932 3933
 * @obj: object to act on
 * @write: requesting write or read-only access
3934 3935 3936 3937
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3938
int
3939
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3940 3941 3942
{
	int ret;

3943
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3944

3945 3946 3947 3948 3949 3950
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3951 3952 3953
	if (ret)
		return ret;

3954
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3955

3956
	/* Flush the CPU cache if it's still invalid. */
3957
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3958
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3959
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3960 3961 3962 3963 3964
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3965
	GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3966 3967 3968 3969

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
3970 3971
	if (write)
		__start_cpu_write(obj);
3972 3973 3974 3975

	return 0;
}

3976 3977 3978
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3979 3980 3981 3982
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3983 3984 3985
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3986
static int
3987
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3988
{
3989
	struct drm_i915_private *dev_priv = to_i915(dev);
3990
	struct drm_i915_file_private *file_priv = file->driver_priv;
3991
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3992
	struct drm_i915_gem_request *request, *target = NULL;
3993
	long ret;
3994

3995 3996 3997
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3998

3999
	spin_lock(&file_priv->mm.lock);
4000
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4001 4002
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4003

4004 4005 4006 4007
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4008

4009
		target = request;
4010
	}
4011
	if (target)
4012
		i915_gem_request_get(target);
4013
	spin_unlock(&file_priv->mm.lock);
4014

4015
	if (target == NULL)
4016
		return 0;
4017

4018 4019 4020
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4021
	i915_gem_request_put(target);
4022

4023
	return ret < 0 ? ret : 0;
4024 4025
}

C
Chris Wilson 已提交
4026
struct i915_vma *
4027 4028
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4029
			 u64 size,
4030 4031
			 u64 alignment,
			 u64 flags)
4032
{
4033 4034
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
4035 4036
	struct i915_vma *vma;
	int ret;
4037

4038 4039
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
	if (!view && flags & PIN_MAPPABLE) {
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4071
	vma = i915_vma_instance(obj, vm, view);
4072
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4073
		return vma;
4074 4075

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4076 4077 4078
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4079

4080
			if (flags & PIN_MAPPABLE &&
4081
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4082 4083 4084
				return ERR_PTR(-ENOSPC);
		}

4085 4086
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4087 4088 4089
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4090
		     !!(flags & PIN_MAPPABLE),
4091
		     i915_vma_is_map_and_fenceable(vma));
4092 4093
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4094
			return ERR_PTR(ret);
4095 4096
	}

C
Chris Wilson 已提交
4097 4098 4099
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4100

C
Chris Wilson 已提交
4101
	return vma;
4102 4103
}

4104
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4119 4120 4121 4122 4123 4124 4125 4126 4127
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4128 4129
}

4130
static __always_inline unsigned int
4131
__busy_set_if_active(const struct dma_fence *fence,
4132 4133
		     unsigned int (*flag)(unsigned int id))
{
4134
	struct drm_i915_gem_request *rq;
4135

4136 4137 4138 4139
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4140
	 *
4141
	 * Note we only report on the status of native fences.
4142
	 */
4143 4144 4145 4146 4147 4148 4149 4150
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

4151
	return flag(rq->engine->uabi_id);
4152 4153
}

4154
static __always_inline unsigned int
4155
busy_check_reader(const struct dma_fence *fence)
4156
{
4157
	return __busy_set_if_active(fence, __busy_read_flag);
4158 4159
}

4160
static __always_inline unsigned int
4161
busy_check_writer(const struct dma_fence *fence)
4162
{
4163 4164 4165 4166
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4167 4168
}

4169 4170
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4171
		    struct drm_file *file)
4172 4173
{
	struct drm_i915_gem_busy *args = data;
4174
	struct drm_i915_gem_object *obj;
4175 4176
	struct reservation_object_list *list;
	unsigned int seq;
4177
	int err;
4178

4179
	err = -ENOENT;
4180 4181
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4182
	if (!obj)
4183
		goto out;
4184

4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4203

4204 4205
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4206

4207 4208 4209 4210
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4211

4212 4213 4214 4215 4216 4217
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4218
	}
4219

4220 4221 4222 4223
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4224 4225 4226
out:
	rcu_read_unlock();
	return err;
4227 4228 4229 4230 4231 4232
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4233
	return i915_gem_ring_throttle(dev, file_priv);
4234 4235
}

4236 4237 4238 4239
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4240
	struct drm_i915_private *dev_priv = to_i915(dev);
4241
	struct drm_i915_gem_madvise *args = data;
4242
	struct drm_i915_gem_object *obj;
4243
	int err;
4244 4245 4246 4247 4248 4249 4250 4251 4252

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4253
	obj = i915_gem_object_lookup(file_priv, args->handle);
4254 4255 4256 4257 4258 4259
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4260

C
Chris Wilson 已提交
4261
	if (obj->mm.pages &&
4262
	    i915_gem_object_is_tiled(obj) &&
4263
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4264 4265
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4266
			__i915_gem_object_unpin_pages(obj);
4267 4268 4269
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4270
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4271
			__i915_gem_object_pin_pages(obj);
4272 4273
			obj->mm.quirked = true;
		}
4274 4275
	}

C
Chris Wilson 已提交
4276 4277
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4278

C
Chris Wilson 已提交
4279
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4280
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4281 4282
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4283
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4284
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4285

4286
out:
4287
	i915_gem_object_put(obj);
4288
	return err;
4289 4290
}

4291 4292 4293 4294 4295 4296 4297
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4298
	intel_fb_obj_flush(obj, ORIGIN_CS);
4299 4300
}

4301 4302
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4303
{
4304 4305
	mutex_init(&obj->mm.lock);

4306
	INIT_LIST_HEAD(&obj->global_link);
B
Ben Widawsky 已提交
4307
	INIT_LIST_HEAD(&obj->vma_list);
4308
	INIT_LIST_HEAD(&obj->lut_list);
4309
	INIT_LIST_HEAD(&obj->batch_pool_link);
4310

4311 4312
	obj->ops = ops;

4313 4314 4315
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4316
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4317
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4318 4319 4320 4321

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4322

4323
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4324 4325
}

4326
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4327 4328
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4329

4330 4331
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4332 4333

	.pwrite = i915_gem_object_pwrite_gtt,
4334 4335
};

M
Matthew Auld 已提交
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4360
struct drm_i915_gem_object *
4361
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4362
{
4363
	struct drm_i915_gem_object *obj;
4364
	struct address_space *mapping;
4365
	unsigned int cache_level;
D
Daniel Vetter 已提交
4366
	gfp_t mask;
4367
	int ret;
4368

4369 4370 4371 4372 4373
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4374
	if (size >> PAGE_SHIFT > INT_MAX)
4375 4376 4377 4378 4379
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4380
	obj = i915_gem_object_alloc(dev_priv);
4381
	if (obj == NULL)
4382
		return ERR_PTR(-ENOMEM);
4383

M
Matthew Auld 已提交
4384
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4385 4386
	if (ret)
		goto fail;
4387

4388
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4389
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4390 4391 4392 4393 4394
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4395
	mapping = obj->base.filp->f_mapping;
4396
	mapping_set_gfp_mask(mapping, mask);
4397
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4398

4399
	i915_gem_object_init(obj, &i915_gem_object_ops);
4400

4401 4402
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4403

4404
	if (HAS_LLC(dev_priv))
4405
		/* On some devices, we can have the GPU use the LLC (the CPU
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4417 4418 4419
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4420

4421
	i915_gem_object_set_cache_coherency(obj, cache_level);
4422

4423 4424
	trace_i915_gem_object_create(obj);

4425
	return obj;
4426 4427 4428 4429

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4430 4431
}

4432 4433 4434 4435 4436 4437 4438 4439
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4440
	if (obj->mm.madv != I915_MADV_WILLNEED)
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4456 4457
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4458
{
4459
	struct drm_i915_gem_object *obj, *on;
4460

4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4475 4476
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4477

4478
		list_del(&obj->global_link);
4479 4480 4481 4482
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

4483 4484
	cond_resched();

4485 4486
	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
4487
		GEM_BUG_ON(obj->userfault_count);
4488
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4489
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4490 4491 4492

		if (obj->ops->release)
			obj->ops->release(obj);
4493

4494 4495
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4496
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4497 4498 4499 4500 4501
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4502
		reservation_object_fini(&obj->__builtin_resv);
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4525

4526 4527 4528 4529 4530 4531 4532
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4533

4534
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4535
		__i915_gem_free_objects(i915, freed);
4536 4537 4538
		if (need_resched())
			break;
	}
4539
}
4540

4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4555

4556 4557 4558
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4559

4560 4561 4562
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4563
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4564
		obj->mm.madv = I915_MADV_DONTNEED;
4565

4566 4567 4568 4569 4570 4571
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4572 4573
}

4574 4575 4576 4577
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4578 4579
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4580 4581 4582 4583 4584
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4585 4586 4587 4588 4589 4590
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4591 4592
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4593 4594
}

4595 4596
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4597 4598 4599 4600 4601 4602
	if (i915_terminally_wedged(&i915->gpu_error)) {
		mutex_lock(&i915->drm.struct_mutex);
		i915_gem_unset_wedged(i915);
		mutex_unlock(&i915->drm.struct_mutex);
	}

4603 4604 4605 4606 4607 4608
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4609
	 * of the reset, so this could be applied to even earlier gen.
4610
	 */
4611
	if (INTEL_GEN(i915) >= 5) {
4612 4613 4614 4615 4616
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4617
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4618
{
4619
	struct drm_device *dev = &dev_priv->drm;
4620
	int ret;
4621

4622
	intel_runtime_pm_get(dev_priv);
4623 4624
	intel_suspend_gt_powersave(dev_priv);

4625
	mutex_lock(&dev->struct_mutex);
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
4637
		goto err_unlock;
4638

4639 4640 4641
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4642
	if (ret && ret != -EIO)
4643
		goto err_unlock;
4644

4645
	assert_kernel_context_is_current(dev_priv);
4646
	i915_gem_contexts_lost(dev_priv);
4647 4648
	mutex_unlock(&dev->struct_mutex);

4649 4650
	intel_guc_suspend(dev_priv);

4651
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4652
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4653 4654 4655 4656

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
4657
	drain_delayed_work(&dev_priv->gt.idle_work);
4658

4659 4660 4661
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4662
	WARN_ON(dev_priv->gt.awake);
4663 4664
	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4665

4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4685
	i915_gem_sanitize(dev_priv);
4686 4687 4688

	intel_runtime_pm_put(dev_priv);
	return 0;
4689

4690
err_unlock:
4691
	mutex_unlock(&dev->struct_mutex);
4692
	intel_runtime_pm_put(dev_priv);
4693
	return ret;
4694 4695
}

4696
void i915_gem_resume(struct drm_i915_private *dev_priv)
4697
{
4698
	struct drm_device *dev = &dev_priv->drm;
4699

4700 4701
	WARN_ON(dev_priv->gt.awake);

4702
	mutex_lock(&dev->struct_mutex);
4703
	i915_gem_restore_gtt_mappings(dev_priv);
4704
	i915_gem_restore_fences(dev_priv);
4705 4706 4707 4708 4709

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4710
	dev_priv->gt.resume(dev_priv);
4711 4712 4713 4714

	mutex_unlock(&dev->struct_mutex);
}

4715
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4716
{
4717
	if (INTEL_GEN(dev_priv) < 5 ||
4718 4719 4720 4721 4722 4723
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4724
	if (IS_GEN5(dev_priv))
4725 4726
		return;

4727
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4728
	if (IS_GEN6(dev_priv))
4729
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4730
	else if (IS_GEN7(dev_priv))
4731
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4732
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4733
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4734 4735
	else
		BUG();
4736
}
D
Daniel Vetter 已提交
4737

4738
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4739 4740 4741 4742 4743 4744 4745
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4746
static void init_unused_rings(struct drm_i915_private *dev_priv)
4747
{
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4760 4761 4762
	}
}

4763
static int __i915_gem_restart_engines(void *data)
4764
{
4765
	struct drm_i915_private *i915 = data;
4766
	struct intel_engine_cs *engine;
4767
	enum intel_engine_id id;
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4781
	int ret;
4782

4783 4784
	dev_priv->gt.last_init_time = ktime_get();

4785 4786 4787
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4788
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4789
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4790

4791
	if (IS_HASWELL(dev_priv))
4792
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4793
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4794

4795
	if (HAS_PCH_NOP(dev_priv)) {
4796
		if (IS_IVYBRIDGE(dev_priv)) {
4797 4798 4799
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4800
		} else if (INTEL_GEN(dev_priv) >= 7) {
4801 4802 4803 4804
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4805 4806
	}

4807
	i915_gem_init_swizzling(dev_priv);
4808

4809 4810 4811 4812 4813 4814
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4815
	init_unused_rings(dev_priv);
4816

4817
	BUG_ON(!dev_priv->kernel_context);
4818

4819
	ret = i915_ppgtt_init_hw(dev_priv);
4820 4821 4822 4823 4824 4825
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4826 4827 4828
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4829

4830
	intel_mocs_init_l3cc_table(dev_priv);
4831

4832 4833 4834 4835
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
	if (ret)
		goto out;
4836

4837 4838
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4839
	return ret;
4840 4841
}

4842 4843 4844 4845 4846 4847
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
4848
	if (i915_modparams.enable_execlists)
4849 4850 4851 4852 4853 4854
		return false;

	if (value >= 0)
		return value;

	/* Enable semaphores on SNB when IO remapping is off */
4855
	if (IS_GEN6(dev_priv) && intel_vtd_active())
4856 4857 4858 4859 4860
		return false;

	return true;
}

4861
int i915_gem_init(struct drm_i915_private *dev_priv)
4862 4863 4864
{
	int ret;

4865
	mutex_lock(&dev_priv->drm.struct_mutex);
4866

4867 4868 4869 4870 4871 4872 4873 4874 4875
	/*
	 * We need to fallback to 4K pages since gvt gtt handling doesn't
	 * support huge page entries - we will need to check either hypervisor
	 * mm can support huge guest page or just do emulation in gvt.
	 */
	if (intel_vgpu_active(dev_priv))
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

4876
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4877

4878
	if (!i915_modparams.enable_execlists) {
4879
		dev_priv->gt.resume = intel_legacy_submission_resume;
4880
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4881
	} else {
4882
		dev_priv->gt.resume = intel_lr_context_resume;
4883
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4884 4885
	}

4886 4887 4888 4889 4890 4891 4892 4893
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4894 4895 4896
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		goto out_unlock;
4897 4898 4899 4900

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4901

4902
	ret = i915_gem_contexts_init(dev_priv);
4903 4904
	if (ret)
		goto out_unlock;
4905

4906
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4907
	if (ret)
4908
		goto out_unlock;
4909

4910
	ret = i915_gem_init_hw(dev_priv);
4911
	if (ret == -EIO) {
4912
		/* Allow engine initialisation to fail by marking the GPU as
4913 4914 4915 4916
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4917
		i915_gem_set_wedged(dev_priv);
4918
		ret = 0;
4919
	}
4920 4921

out_unlock:
4922
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4923
	mutex_unlock(&dev_priv->drm.struct_mutex);
4924

4925
	return ret;
4926 4927
}

4928 4929 4930 4931 4932
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4933
void
4934
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4935
{
4936
	struct intel_engine_cs *engine;
4937
	enum intel_engine_id id;
4938

4939
	for_each_engine(engine, dev_priv, id)
4940
		dev_priv->gt.cleanup_engine(engine);
4941 4942
}

4943 4944 4945
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4946
	int i;
4947 4948 4949 4950

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4951 4952 4953
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4954 4955 4956 4957
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4958
	if (intel_vgpu_active(dev_priv))
4959 4960 4961 4962
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4963 4964 4965 4966 4967 4968 4969
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4970
	i915_gem_restore_fences(dev_priv);
4971

4972
	i915_gem_detect_bit_6_swizzle(dev_priv);
4973 4974
}

4975
int
4976
i915_gem_load_init(struct drm_i915_private *dev_priv)
4977
{
4978
	int err = -ENOMEM;
4979

4980 4981
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4982 4983
		goto err_out;

4984 4985
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4986 4987
		goto err_objects;

4988 4989 4990 4991
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

4992 4993 4994
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
4995
					SLAB_TYPESAFE_BY_RCU);
4996
	if (!dev_priv->requests)
4997
		goto err_luts;
4998

4999 5000 5001 5002 5003 5004
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5005 5006 5007 5008
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5009 5010
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5011
	err = i915_gem_timeline_init__global(dev_priv);
5012 5013
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
5014
		goto err_priorities;
5015

5016 5017
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
5018 5019
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5020
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5021
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
5022
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5023
			  i915_gem_retire_work_handler);
5024
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5025
			  i915_gem_idle_work_handler);
5026
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5027
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5028

5029 5030
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5031
	spin_lock_init(&dev_priv->fb_tracking.lock);
5032

M
Matthew Auld 已提交
5033 5034 5035 5036
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5037 5038
	return 0;

5039 5040
err_priorities:
	kmem_cache_destroy(dev_priv->priorities);
5041 5042
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5043 5044
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5045 5046
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5047 5048 5049 5050 5051 5052
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5053
}
5054

5055
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5056
{
5057
	i915_gem_drain_freed_objects(dev_priv);
5058
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
5059
	WARN_ON(dev_priv->mm.object_count);
5060

5061 5062 5063 5064 5065
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

5066
	kmem_cache_destroy(dev_priv->priorities);
5067
	kmem_cache_destroy(dev_priv->dependencies);
5068
	kmem_cache_destroy(dev_priv->requests);
5069
	kmem_cache_destroy(dev_priv->luts);
5070 5071
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5072 5073 5074

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5075 5076

	i915_gemfs_fini(dev_priv);
5077 5078
}

5079 5080
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5081 5082 5083
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5084 5085 5086 5087 5088
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5089 5090 5091
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
5092 5093 5094 5095 5096
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
5097 5098 5099 5100 5101 5102 5103 5104 5105 5106

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5107 5108
	 *
	 * To try and reduce the hibernation image, we manually shrink
5109
	 * the objects as well, see i915_gem_freeze()
5110 5111
	 */

5112
	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5113
	i915_gem_drain_freed_objects(dev_priv);
5114

5115
	mutex_lock(&dev_priv->drm.struct_mutex);
5116
	for (p = phases; *p; p++) {
5117 5118
		list_for_each_entry(obj, *p, global_link)
			__start_cpu_write(obj);
5119
	}
5120
	mutex_unlock(&dev_priv->drm.struct_mutex);
5121 5122 5123 5124

	return 0;
}

5125
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5126
{
5127
	struct drm_i915_file_private *file_priv = file->driver_priv;
5128
	struct drm_i915_gem_request *request;
5129 5130 5131 5132 5133

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5134
	spin_lock(&file_priv->mm.lock);
5135
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5136
		request->file_priv = NULL;
5137
	spin_unlock(&file_priv->mm.lock);
5138 5139
}

5140
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5141 5142
{
	struct drm_i915_file_private *file_priv;
5143
	int ret;
5144

5145
	DRM_DEBUG("\n");
5146 5147 5148 5149 5150 5151

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5152
	file_priv->dev_priv = i915;
5153
	file_priv->file = file;
5154 5155 5156 5157

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5158
	file_priv->bsd_engine = -1;
5159

5160
	ret = i915_gem_context_open(i915, file);
5161 5162
	if (ret)
		kfree(file_priv);
5163

5164
	return ret;
5165 5166
}

5167 5168
/**
 * i915_gem_track_fb - update frontbuffer tracking
5169 5170 5171
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5172 5173 5174 5175
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5176 5177 5178 5179
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5180 5181 5182 5183 5184 5185 5186 5187 5188
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5189
	if (old) {
5190 5191
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5192 5193 5194
	}

	if (new) {
5195 5196
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5197 5198 5199
	}
}

5200 5201
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5202
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5203 5204 5205
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5206 5207 5208
	struct file *file;
	size_t offset;
	int err;
5209

5210
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5211
	if (IS_ERR(obj))
5212 5213
		return obj;

5214
	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5215

5216 5217 5218 5219 5220 5221
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5222

5223 5224 5225 5226 5227
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5228

5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5243 5244 5245 5246

	return obj;

fail:
5247
	i915_gem_object_put(obj);
5248
	return ERR_PTR(err);
5249
}
5250 5251 5252 5253 5254 5255

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5256
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5257 5258 5259 5260 5261
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5262
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5387
	if (!obj->mm.dirty)
5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5403

5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

	pages = obj->mm.pages;
	obj->ops = &i915_gem_phys_ops;

5442
	err = ____i915_gem_object_get_pages(obj);
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	obj->mm.pages = pages;
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5462 5463
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5464
#include "selftests/mock_gem_device.c"
5465
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
5466
#include "selftests/huge_pages.c"
5467
#include "selftests/i915_gem_object.c"
5468
#include "selftests/i915_gem_coherency.c"
5469
#endif