i915_gem.c 159.2 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
M
Matthew Auld 已提交
38
#include "i915_gemfs.h"
39
#include <linux/dma-fence-array.h>
40
#include <linux/kthread.h>
41
#include <linux/reservation.h>
42
#include <linux/shmem_fs.h>
43
#include <linux/slab.h>
44
#include <linux/stop_machine.h>
45
#include <linux/swap.h>
J
Jesse Barnes 已提交
46
#include <linux/pci.h>
47
#include <linux/dma-buf.h>
48

49
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
50

51 52
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
53
	if (obj->cache_dirty)
54 55
		return false;

56
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
57 58
		return true;

59
	return obj->pin_global; /* currently in use by HW, keep flushed */
60 61
}

62
static int
63
insert_mappable_node(struct i915_ggtt *ggtt,
64 65 66
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
67 68 69 70
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
71 72 73 74 75 76 77 78
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

79 80
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
81
				  u64 size)
82
{
83
	spin_lock(&dev_priv->mm.object_stat_lock);
84 85
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
86
	spin_unlock(&dev_priv->mm.object_stat_lock);
87 88 89
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
90
				     u64 size)
91
{
92
	spin_lock(&dev_priv->mm.object_stat_lock);
93 94
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
95
	spin_unlock(&dev_priv->mm.object_stat_lock);
96 97
}

98
static int
99
i915_gem_wait_for_error(struct i915_gpu_error *error)
100 101 102
{
	int ret;

103 104
	might_sleep();

105 106 107 108 109
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
110
	ret = wait_event_interruptible_timeout(error->reset_queue,
111
					       !i915_reset_backoff(error),
112
					       I915_RESET_TIMEOUT);
113 114 115 116
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
117
		return ret;
118 119
	} else {
		return 0;
120
	}
121 122
}

123
int i915_mutex_lock_interruptible(struct drm_device *dev)
124
{
125
	struct drm_i915_private *dev_priv = to_i915(dev);
126 127
	int ret;

128
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
129 130 131 132 133 134 135 136 137
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
138

139 140
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
141
			    struct drm_file *file)
142
{
143
	struct drm_i915_private *dev_priv = to_i915(dev);
144
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
145
	struct drm_i915_gem_get_aperture *args = data;
146
	struct i915_vma *vma;
147
	u64 pinned;
148

149
	pinned = ggtt->base.reserved;
150
	mutex_lock(&dev->struct_mutex);
151
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
152
		if (i915_vma_is_pinned(vma))
153
			pinned += vma->node.size;
154
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
155
		if (i915_vma_is_pinned(vma))
156
			pinned += vma->node.size;
157
	mutex_unlock(&dev->struct_mutex);
158

159
	args->aper_size = ggtt->base.total;
160
	args->aper_available_size = args->aper_size - pinned;
161

162 163 164
	return 0;
}

165
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166
{
167
	struct address_space *mapping = obj->base.filp->f_mapping;
168
	drm_dma_handle_t *phys;
169 170
	struct sg_table *st;
	struct scatterlist *sg;
171
	char *vaddr;
172
	int i;
173
	int err;
174

175
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
176
		return -EINVAL;
177

178 179 180 181 182
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
183
			     roundup_pow_of_two(obj->base.size),
184 185
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
186
		return -ENOMEM;
187 188

	vaddr = phys->vaddr;
189 190 191 192 193
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
194
		if (IS_ERR(page)) {
195
			err = PTR_ERR(page);
196 197
			goto err_phys;
		}
198 199 200 201 202 203

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

204
		put_page(page);
205 206 207
		vaddr += PAGE_SIZE;
	}

208
	i915_gem_chipset_flush(to_i915(obj->base.dev));
209 210

	st = kmalloc(sizeof(*st), GFP_KERNEL);
211
	if (!st) {
212
		err = -ENOMEM;
213 214
		goto err_phys;
	}
215 216 217

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
218
		err = -ENOMEM;
219
		goto err_phys;
220 221 222 223 224
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
225

226
	sg_dma_address(sg) = phys->busaddr;
227 228
	sg_dma_len(sg) = obj->base.size;

229
	obj->phys_handle = phys;
230

231
	__i915_gem_object_set_pages(obj, st, sg->length);
232 233

	return 0;
234 235 236

err_phys:
	drm_pci_free(obj->base.dev, phys);
237 238

	return err;
239 240
}

241 242
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
243 244
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
245 246 247 248
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

249
static void
250
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
251 252
				struct sg_table *pages,
				bool needs_clflush)
253
{
C
Chris Wilson 已提交
254
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
255

C
Chris Wilson 已提交
256 257
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
258

259
	if (needs_clflush &&
260
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
261
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
262
		drm_clflush_sg(pages);
263

264
	__start_cpu_write(obj);
265 266 267 268 269 270
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
271
	__i915_gem_object_release_shmem(obj, pages, false);
272

C
Chris Wilson 已提交
273
	if (obj->mm.dirty) {
274
		struct address_space *mapping = obj->base.filp->f_mapping;
275
		char *vaddr = obj->phys_handle->vaddr;
276 277 278
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
279 280 281 282 283 284 285 286 287 288 289 290 291
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
292
			if (obj->mm.madv == I915_MADV_WILLNEED)
293
				mark_page_accessed(page);
294
			put_page(page);
295 296
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
297
		obj->mm.dirty = false;
298 299
	}

300 301
	sg_free_table(pages);
	kfree(pages);
302 303

	drm_pci_free(obj->base.dev, obj->phys_handle);
304 305 306 307 308
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
309
	i915_gem_object_unpin_pages(obj);
310 311 312 313 314 315 316 317
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

318 319
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

320
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
321 322 323
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
324 325 326
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
327

328 329 330 331
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
332
	 */
333
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
334 335 336
	if (ret)
		return ret;

337 338 339 340 341 342 343 344 345 346 347 348 349
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

350 351 352 353
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
354
			   struct intel_rps_client *rps_client)
355
{
356
	struct i915_request *rq;
357

358
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
359

360 361 362 363 364 365 366 367 368
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
369
	if (i915_request_completed(rq))
370 371
		goto out;

372 373
	/*
	 * This client is about to stall waiting for the GPU. In many cases
374 375 376 377 378 379 380 381 382 383 384 385 386 387
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
388
	if (rps_client && !i915_request_started(rq)) {
389
		if (INTEL_GEN(rq->i915) >= 6)
390
			gen6_rps_boost(rq, rps_client);
391 392
	}

393
	timeout = i915_request_wait(rq, flags, timeout);
394 395

out:
396 397
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
398 399 400 401 402 403 404 405

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
406
				 struct intel_rps_client *rps_client)
407
{
408
	unsigned int seq = __read_seqcount_begin(&resv->seq);
409
	struct dma_fence *excl;
410
	bool prune_fences = false;
411 412 413 414

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
415 416
		int ret;

417 418
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
419 420 421
		if (ret)
			return ret;

422 423 424
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
425
							     rps_client);
426
			if (timeout < 0)
427
				break;
428

429 430 431 432 433 434
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
435

436 437 438 439 440 441 442 443 444
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
445
		prune_fences = count && timeout >= 0;
446 447
	} else {
		excl = reservation_object_get_excl_rcu(resv);
448 449
	}

450
	if (excl && timeout >= 0)
451 452
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
453 454 455

	dma_fence_put(excl);

456 457
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
458 459 460
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
461
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
462 463 464 465 466
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
467 468
	}

469
	return timeout;
470 471
}

472 473
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
474
	struct i915_request *rq;
475 476
	struct intel_engine_cs *engine;

477
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

536 537 538 539 540
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
541
 * @rps_client: client (user process) to charge for any waitboosting
542
 */
543 544 545 546
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
547
		     struct intel_rps_client *rps_client)
548
{
549 550 551 552 553 554 555
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
556

557 558
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
559
						   rps_client);
560
	return timeout < 0 ? timeout : 0;
561 562 563 564 565 566
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

567
	return &fpriv->rps_client;
568 569
}

570 571 572
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
573
		     struct drm_file *file)
574 575
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
576
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
577 578 579 580

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
581
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
582 583
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
584

585
	drm_clflush_virt_range(vaddr, args->size);
586
	i915_gem_chipset_flush(to_i915(obj->base.dev));
587

588
	intel_fb_obj_flush(obj, ORIGIN_CPU);
589
	return 0;
590 591
}

592
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
593
{
594
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
595 596 597 598
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
599
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
600
	kmem_cache_free(dev_priv->objects, obj);
601 602
}

603 604
static int
i915_gem_create(struct drm_file *file,
605
		struct drm_i915_private *dev_priv,
606 607
		uint64_t size,
		uint32_t *handle_p)
608
{
609
	struct drm_i915_gem_object *obj;
610 611
	int ret;
	u32 handle;
612

613
	size = roundup(size, PAGE_SIZE);
614 615
	if (size == 0)
		return -EINVAL;
616 617

	/* Allocate the new object */
618
	obj = i915_gem_object_create(dev_priv, size);
619 620
	if (IS_ERR(obj))
		return PTR_ERR(obj);
621

622
	ret = drm_gem_handle_create(file, &obj->base, &handle);
623
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
624
	i915_gem_object_put(obj);
625 626
	if (ret)
		return ret;
627

628
	*handle_p = handle;
629 630 631
	return 0;
}

632 633 634 635 636 637
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
638
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
639
	args->size = args->pitch * args->height;
640
	return i915_gem_create(file, to_i915(dev),
641
			       args->size, &args->handle);
642 643
}

644 645 646 647 648 649
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

650 651
/**
 * Creates a new mm object and returns a handle to it.
652 653 654
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
655 656 657 658 659
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
660
	struct drm_i915_private *dev_priv = to_i915(dev);
661
	struct drm_i915_gem_create *args = data;
662

663
	i915_gem_flush_free_objects(dev_priv);
664

665
	return i915_gem_create(file, dev_priv,
666
			       args->size, &args->handle);
667 668
}

669 670 671 672 673 674 675
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

676
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
677
{
678 679 680 681 682
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
683 684 685 686 687 688 689 690 691 692
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
693 694
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
695
	 */
696

697 698
	wmb();

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
	intel_runtime_pm_get(dev_priv);
	spin_lock_irq(&dev_priv->uncore.lock);

	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));

	spin_unlock_irq(&dev_priv->uncore.lock);
	intel_runtime_pm_put(dev_priv);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

714
	if (!(obj->write_domain & flush_domains))
715 716
		return;

717
	switch (obj->write_domain) {
718
	case I915_GEM_DOMAIN_GTT:
719
		i915_gem_flush_ggtt_writes(dev_priv);
720 721 722

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
723

724
		for_each_ggtt_vma(vma, obj) {
725 726 727 728 729
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
730 731 732 733 734
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
735 736 737 738 739

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
740 741
	}

742
	obj->write_domain = 0;
743 744
}

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

771
static inline int
772 773
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

797 798 799 800 801 802
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
803
				    unsigned int *needs_clflush)
804 805 806
{
	int ret;

807
	lockdep_assert_held(&obj->base.dev->struct_mutex);
808

809
	*needs_clflush = 0;
810 811
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
812

813 814 815 816 817
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
818 819 820
	if (ret)
		return ret;

C
Chris Wilson 已提交
821
	ret = i915_gem_object_pin_pages(obj);
822 823 824
	if (ret)
		return ret;

825 826
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
827 828 829 830 831 832 833
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

834
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
835

836 837 838 839 840
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
841
	if (!obj->cache_dirty &&
842
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
843
		*needs_clflush = CLFLUSH_BEFORE;
844

845
out:
846
	/* return with the pages pinned */
847
	return 0;
848 849 850 851

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
852 853 854 855 856 857 858
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

859 860
	lockdep_assert_held(&obj->base.dev->struct_mutex);

861 862 863 864
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

865 866 867 868 869 870
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
871 872 873
	if (ret)
		return ret;

C
Chris Wilson 已提交
874
	ret = i915_gem_object_pin_pages(obj);
875 876 877
	if (ret)
		return ret;

878 879
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
880 881 882 883 884 885 886
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

887
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
888

889 890 891 892 893
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
894
	if (!obj->cache_dirty) {
895
		*needs_clflush |= CLFLUSH_AFTER;
896

897 898 899 900
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
901
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
902 903
			*needs_clflush |= CLFLUSH_BEFORE;
	}
904

905
out:
906
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
907
	obj->mm.dirty = true;
908
	/* return with the pages pinned */
909
	return 0;
910 911 912 913

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
914 915
}

916 917 918 919
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
920
	if (unlikely(swizzled)) {
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

938 939 940
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
941
shmem_pread_slow(struct page *page, int offset, int length,
942 943 944 945 946 947 948 949
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
950
		shmem_clflush_swizzled_range(vaddr + offset, length,
951
					     page_do_bit17_swizzling);
952 953

	if (page_do_bit17_swizzling)
954
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
955
	else
956
		ret = __copy_to_user(user_data, vaddr + offset, length);
957 958
	kunmap(page);

959
	return ret ? - EFAULT : 0;
960 961
}

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1038
{
1039
	void __iomem *vaddr;
1040
	unsigned long unwritten;
1041 1042

	/* We can use the cpu mem copy function because this is X86. */
1043 1044 1045 1046
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1047 1048
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1049 1050 1051 1052
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1053 1054
		io_mapping_unmap(vaddr);
	}
1055 1056 1057 1058
	return unwritten;
}

static int
1059 1060
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1061
{
1062 1063
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1064
	struct drm_mm_node node;
1065 1066 1067
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1068 1069
	int ret;

1070 1071 1072 1073 1074 1075
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1076 1077 1078
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1079 1080 1081
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1082
		ret = i915_vma_put_fence(vma);
1083 1084 1085 1086 1087
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1088
	if (IS_ERR(vma)) {
1089
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1090
		if (ret)
1091 1092
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1093 1094 1095 1096 1097 1098
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1099
	mutex_unlock(&i915->drm.struct_mutex);
1100

1101 1102 1103
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1120
					       node.start, I915_CACHE_NONE, 0);
1121 1122 1123 1124
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1125

1126
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1127
				  user_data, page_length)) {
1128 1129 1130 1131 1132 1133 1134 1135 1136
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1137
	mutex_lock(&i915->drm.struct_mutex);
1138 1139 1140 1141
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1142
				       node.start, node.size);
1143 1144
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1145
		i915_vma_unpin(vma);
1146
	}
1147 1148 1149
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1150

1151 1152 1153
	return ret;
}

1154 1155
/**
 * Reads data from the object referenced by handle.
1156 1157 1158
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1159 1160 1161 1162 1163
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1164
		     struct drm_file *file)
1165 1166
{
	struct drm_i915_gem_pread *args = data;
1167
	struct drm_i915_gem_object *obj;
1168
	int ret;
1169

1170 1171 1172 1173
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1174
		       u64_to_user_ptr(args->data_ptr),
1175 1176 1177
		       args->size))
		return -EFAULT;

1178
	obj = i915_gem_object_lookup(file, args->handle);
1179 1180
	if (!obj)
		return -ENOENT;
1181

1182
	/* Bounds check source.  */
1183
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1184
		ret = -EINVAL;
1185
		goto out;
C
Chris Wilson 已提交
1186 1187
	}

C
Chris Wilson 已提交
1188 1189
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1190 1191 1192 1193
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1194
	if (ret)
1195
		goto out;
1196

1197
	ret = i915_gem_object_pin_pages(obj);
1198
	if (ret)
1199
		goto out;
1200

1201
	ret = i915_gem_shmem_pread(obj, args);
1202
	if (ret == -EFAULT || ret == -ENODEV)
1203
		ret = i915_gem_gtt_pread(obj, args);
1204

1205 1206
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1207
	i915_gem_object_put(obj);
1208
	return ret;
1209 1210
}

1211 1212
/* This is the fast write path which cannot handle
 * page faults in the source data
1213
 */
1214

1215 1216 1217 1218
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1219
{
1220
	void __iomem *vaddr;
1221
	unsigned long unwritten;
1222

1223
	/* We can use the cpu mem copy function because this is X86. */
1224 1225
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1226
						      user_data, length);
1227 1228
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1229 1230 1231
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1232 1233
		io_mapping_unmap(vaddr);
	}
1234 1235 1236 1237

	return unwritten;
}

1238 1239 1240
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1241
 * @obj: i915 GEM object
1242
 * @args: pwrite arguments structure
1243
 */
1244
static int
1245 1246
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1247
{
1248
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1249 1250
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1251 1252 1253
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1254
	int ret;
1255

1256 1257 1258
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1259

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
		if (!intel_runtime_pm_get_if_in_use(i915)) {
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
		intel_runtime_pm_get(i915);
	}

C
Chris Wilson 已提交
1277
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1278 1279 1280
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1281 1282 1283
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1284
		ret = i915_vma_put_fence(vma);
1285 1286 1287 1288 1289
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1290
	if (IS_ERR(vma)) {
1291
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1292
		if (ret)
1293
			goto out_rpm;
1294
		GEM_BUG_ON(!node.allocated);
1295
	}
D
Daniel Vetter 已提交
1296 1297 1298 1299 1300

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1301 1302
	mutex_unlock(&i915->drm.struct_mutex);

1303
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1304

1305 1306 1307 1308
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1309 1310
		/* Operation in this page
		 *
1311 1312 1313
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1314
		 */
1315
		u32 page_base = node.start;
1316 1317
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1328
		/* If we get a fault while copying data, then (presumably) our
1329 1330
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1331 1332
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1333
		 */
1334
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1335 1336 1337
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1338
		}
1339

1340 1341 1342
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1343
	}
1344
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1345 1346

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1347
out_unpin:
1348 1349 1350
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1351
				       node.start, node.size);
1352 1353
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1354
		i915_vma_unpin(vma);
1355
	}
1356
out_rpm:
1357
	intel_runtime_pm_put(i915);
1358
out_unlock:
1359
	mutex_unlock(&i915->drm.struct_mutex);
1360
	return ret;
1361 1362
}

1363
static int
1364
shmem_pwrite_slow(struct page *page, int offset, int length,
1365 1366 1367 1368
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1369
{
1370 1371
	char *vaddr;
	int ret;
1372

1373
	vaddr = kmap(page);
1374
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1375
		shmem_clflush_swizzled_range(vaddr + offset, length,
1376
					     page_do_bit17_swizzling);
1377
	if (page_do_bit17_swizzling)
1378 1379
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1380
	else
1381
		ret = __copy_from_user(vaddr + offset, user_data, length);
1382
	if (needs_clflush_after)
1383
		shmem_clflush_swizzled_range(vaddr + offset, length,
1384
					     page_do_bit17_swizzling);
1385
	kunmap(page);
1386

1387
	return ret ? -EFAULT : 0;
1388 1389
}

1390 1391 1392 1393 1394
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1395
static int
1396 1397 1398 1399
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1400
{
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1433
	unsigned int needs_clflush;
1434 1435
	unsigned int offset, idx;
	int ret;
1436

1437
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1438 1439 1440
	if (ret)
		return ret;

1441 1442 1443 1444
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1445

1446 1447 1448
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1449

1450 1451 1452 1453 1454 1455 1456
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1457

1458 1459 1460 1461 1462 1463
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1464

1465 1466 1467
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1468

1469 1470 1471 1472
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1473
		if (ret)
1474
			break;
1475

1476 1477 1478
		remain -= length;
		user_data += length;
		offset = 0;
1479
	}
1480

1481
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1482
	i915_gem_obj_finish_shmem_access(obj);
1483
	return ret;
1484 1485 1486 1487
}

/**
 * Writes data to the object referenced by handle.
1488 1489 1490
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1491 1492 1493 1494 1495
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1496
		      struct drm_file *file)
1497 1498
{
	struct drm_i915_gem_pwrite *args = data;
1499
	struct drm_i915_gem_object *obj;
1500 1501 1502 1503 1504 1505
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1506
		       u64_to_user_ptr(args->data_ptr),
1507 1508 1509
		       args->size))
		return -EFAULT;

1510
	obj = i915_gem_object_lookup(file, args->handle);
1511 1512
	if (!obj)
		return -ENOENT;
1513

1514
	/* Bounds check destination. */
1515
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1516
		ret = -EINVAL;
1517
		goto err;
C
Chris Wilson 已提交
1518 1519
	}

C
Chris Wilson 已提交
1520 1521
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1522 1523 1524 1525 1526 1527
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1528 1529 1530 1531 1532
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1533 1534 1535
	if (ret)
		goto err;

1536
	ret = i915_gem_object_pin_pages(obj);
1537
	if (ret)
1538
		goto err;
1539

D
Daniel Vetter 已提交
1540
	ret = -EFAULT;
1541 1542 1543 1544 1545 1546
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1547
	if (!i915_gem_object_has_struct_page(obj) ||
1548
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1549 1550
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1551 1552
		 * textures). Fallback to the shmem path in that case.
		 */
1553
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1554

1555
	if (ret == -EFAULT || ret == -ENOSPC) {
1556 1557
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1558
		else
1559
			ret = i915_gem_shmem_pwrite(obj, args);
1560
	}
1561

1562
	i915_gem_object_unpin_pages(obj);
1563
err:
C
Chris Wilson 已提交
1564
	i915_gem_object_put(obj);
1565
	return ret;
1566 1567
}

1568 1569 1570 1571 1572 1573
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1574 1575
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1576
	for_each_ggtt_vma(vma, obj) {
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1587
	spin_lock(&i915->mm.obj_lock);
1588
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1589 1590
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1591 1592
}

1593
/**
1594 1595
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1596 1597 1598
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1599 1600 1601
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1602
			  struct drm_file *file)
1603 1604
{
	struct drm_i915_gem_set_domain *args = data;
1605
	struct drm_i915_gem_object *obj;
1606 1607
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1608
	int err;
1609

1610
	/* Only handle setting domains to types used by the CPU. */
1611
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1612 1613 1614 1615 1616 1617 1618 1619
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1620
	obj = i915_gem_object_lookup(file, args->handle);
1621 1622
	if (!obj)
		return -ENOENT;
1623

1624 1625 1626 1627
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1628
	err = i915_gem_object_wait(obj,
1629 1630 1631 1632
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1633
	if (err)
C
Chris Wilson 已提交
1634
		goto out;
1635

T
Tina Zhang 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1649 1650 1651 1652 1653 1654 1655 1656 1657
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1658
		goto out;
1659 1660 1661

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1662
		goto out_unpin;
1663

1664 1665 1666 1667
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1668
	else
1669
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1670

1671 1672
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1673

1674
	mutex_unlock(&dev->struct_mutex);
1675

1676
	if (write_domain != 0)
1677 1678
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1679

C
Chris Wilson 已提交
1680
out_unpin:
1681
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1682 1683
out:
	i915_gem_object_put(obj);
1684
	return err;
1685 1686 1687 1688
}

/**
 * Called when user space has done writes to this buffer
1689 1690 1691
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1692 1693 1694
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1695
			 struct drm_file *file)
1696 1697
{
	struct drm_i915_gem_sw_finish *args = data;
1698
	struct drm_i915_gem_object *obj;
1699

1700
	obj = i915_gem_object_lookup(file, args->handle);
1701 1702
	if (!obj)
		return -ENOENT;
1703

T
Tina Zhang 已提交
1704 1705 1706 1707 1708
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1709
	/* Pinned buffers may be scanout, so flush the cache */
1710
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1711
	i915_gem_object_put(obj);
1712 1713

	return 0;
1714 1715 1716
}

/**
1717 1718 1719 1720 1721
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1722 1723 1724
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1735 1736 1737
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1738
		    struct drm_file *file)
1739 1740
{
	struct drm_i915_gem_mmap *args = data;
1741
	struct drm_i915_gem_object *obj;
1742 1743
	unsigned long addr;

1744 1745 1746
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1747
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1748 1749
		return -ENODEV;

1750 1751
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1752
		return -ENOENT;
1753

1754 1755 1756
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1757
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1758
		i915_gem_object_put(obj);
1759
		return -ENXIO;
1760 1761
	}

1762
	addr = vm_mmap(obj->base.filp, 0, args->size,
1763 1764
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1765 1766 1767 1768
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1769
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1770
			i915_gem_object_put(obj);
1771 1772
			return -EINTR;
		}
1773 1774 1775 1776 1777 1778 1779
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1780 1781

		/* This may race, but that's ok, it only gets set */
1782
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1783
	}
C
Chris Wilson 已提交
1784
	i915_gem_object_put(obj);
1785 1786 1787 1788 1789 1790 1791 1792
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1793 1794
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1795
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1796 1797
}

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1818 1819 1820
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1848
	return 2;
1849 1850
}

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1862 1863
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1864
		min_t(unsigned int, chunk,
1865
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1866 1867 1868 1869 1870 1871 1872 1873

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1874 1875
/**
 * i915_gem_fault - fault a page into the GTT
1876
 * @vmf: fault info
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1888 1889 1890
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1891
 */
1892
int i915_gem_fault(struct vm_fault *vmf)
1893
{
1894
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1895
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1896
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1897
	struct drm_device *dev = obj->base.dev;
1898 1899
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1900
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1901
	struct i915_vma *vma;
1902
	pgoff_t page_offset;
1903
	unsigned int flags;
1904
	int ret;
1905

1906
	/* We don't use vmf->pgoff since that has the fake offset */
1907
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1908

C
Chris Wilson 已提交
1909 1910
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1911
	/* Try to flush the object off the GPU first without holding the lock.
1912
	 * Upon acquiring the lock, we will perform our sanity checks and then
1913 1914 1915
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1916 1917 1918 1919
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1920
	if (ret)
1921 1922
		goto err;

1923 1924 1925 1926
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1927 1928 1929 1930 1931
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1932

1933
	/* Access to snoopable pages through the GTT is incoherent. */
1934
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1935
		ret = -EFAULT;
1936
		goto err_unlock;
1937 1938
	}

1939 1940 1941 1942 1943 1944 1945 1946
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1947
	/* Now pin it into the GTT as needed */
1948
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1949 1950
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1951
		struct i915_ggtt_view view =
1952
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1953

1954 1955 1956 1957 1958
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1959 1960
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1961 1962
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1963
		goto err_unlock;
C
Chris Wilson 已提交
1964
	}
1965

1966 1967
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1968
		goto err_unpin;
1969

1970
	ret = i915_vma_pin_fence(vma);
1971
	if (ret)
1972
		goto err_unpin;
1973

1974
	/* Finally, remap it using the new GTT offset */
1975
	ret = remap_io_mapping(area,
1976
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1977
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1978
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1979
			       &ggtt->iomap);
1980 1981
	if (ret)
		goto err_fence;
1982

1983 1984 1985 1986 1987 1988
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

1989 1990
	i915_vma_set_ggtt_write(vma);

1991
err_fence:
1992
	i915_vma_unpin_fence(vma);
1993
err_unpin:
C
Chris Wilson 已提交
1994
	__i915_vma_unpin(vma);
1995
err_unlock:
1996
	mutex_unlock(&dev->struct_mutex);
1997 1998
err_rpm:
	intel_runtime_pm_put(dev_priv);
1999
	i915_gem_object_unpin_pages(obj);
2000
err:
2001
	switch (ret) {
2002
	case -EIO:
2003 2004 2005 2006 2007 2008 2009
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2010 2011 2012
			ret = VM_FAULT_SIGBUS;
			break;
		}
2013
	case -EAGAIN:
D
Daniel Vetter 已提交
2014 2015 2016 2017
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2018
		 */
2019 2020
	case 0:
	case -ERESTARTSYS:
2021
	case -EINTR:
2022 2023 2024 2025 2026
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2027 2028
		ret = VM_FAULT_NOPAGE;
		break;
2029
	case -ENOMEM:
2030 2031
		ret = VM_FAULT_OOM;
		break;
2032
	case -ENOSPC:
2033
	case -EFAULT:
2034 2035
		ret = VM_FAULT_SIGBUS;
		break;
2036
	default:
2037
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2038 2039
		ret = VM_FAULT_SIGBUS;
		break;
2040
	}
2041
	return ret;
2042 2043
}

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2055
	for_each_ggtt_vma(vma, obj)
2056 2057 2058
		i915_vma_unset_userfault(vma);
}

2059 2060 2061 2062
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2063
 * Preserve the reservation of the mmapping with the DRM core code, but
2064 2065 2066 2067 2068 2069 2070 2071 2072
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2073
void
2074
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2075
{
2076 2077
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2078 2079 2080
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2081 2082 2083 2084
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2085
	 */
2086
	lockdep_assert_held(&i915->drm.struct_mutex);
2087
	intel_runtime_pm_get(i915);
2088

2089
	if (!obj->userfault_count)
2090
		goto out;
2091

2092
	__i915_gem_object_release_mmap(obj);
2093 2094 2095 2096 2097 2098 2099 2100 2101

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2102 2103 2104

out:
	intel_runtime_pm_put(i915);
2105 2106
}

2107
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2108
{
2109
	struct drm_i915_gem_object *obj, *on;
2110
	int i;
2111

2112 2113 2114 2115 2116 2117
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2118

2119
	list_for_each_entry_safe(obj, on,
2120 2121
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2122 2123 2124 2125 2126 2127 2128 2129

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2140 2141 2142 2143

		if (!reg->vma)
			continue;

2144
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2145 2146
		reg->dirty = true;
	}
2147 2148
}

2149 2150
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2151
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2152
	int err;
2153

2154
	err = drm_gem_create_mmap_offset(&obj->base);
2155
	if (likely(!err))
2156
		return 0;
2157

2158 2159 2160 2161 2162
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2163

2164
		i915_gem_drain_freed_objects(dev_priv);
2165
		err = drm_gem_create_mmap_offset(&obj->base);
2166 2167 2168 2169
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2170

2171
	return err;
2172 2173 2174 2175 2176 2177 2178
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2179
int
2180 2181
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2182
		  uint32_t handle,
2183
		  uint64_t *offset)
2184
{
2185
	struct drm_i915_gem_object *obj;
2186 2187
	int ret;

2188
	obj = i915_gem_object_lookup(file, handle);
2189 2190
	if (!obj)
		return -ENOENT;
2191

2192
	ret = i915_gem_object_create_mmap_offset(obj);
2193 2194
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2195

C
Chris Wilson 已提交
2196
	i915_gem_object_put(obj);
2197
	return ret;
2198 2199
}

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2221
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2222 2223
}

D
Daniel Vetter 已提交
2224 2225 2226
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2227
{
2228
	i915_gem_object_free_mmap_offset(obj);
2229

2230 2231
	if (obj->base.filp == NULL)
		return;
2232

D
Daniel Vetter 已提交
2233 2234 2235 2236 2237
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2238
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2239
	obj->mm.madv = __I915_MADV_PURGED;
2240
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2241
}
2242

2243
/* Try to discard unwanted pages */
2244
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2245
{
2246 2247
	struct address_space *mapping;

2248
	lockdep_assert_held(&obj->mm.lock);
2249
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2250

C
Chris Wilson 已提交
2251
	switch (obj->mm.madv) {
2252 2253 2254 2255 2256 2257 2258 2259 2260
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2261
	mapping = obj->base.filp->f_mapping,
2262
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2263 2264
}

2265
static void
2266 2267
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2268
{
2269 2270
	struct sgt_iter sgt_iter;
	struct page *page;
2271

2272
	__i915_gem_object_release_shmem(obj, pages, true);
2273

2274
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2275

2276
	if (i915_gem_object_needs_bit17_swizzle(obj))
2277
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2278

2279
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2280
		if (obj->mm.dirty)
2281
			set_page_dirty(page);
2282

C
Chris Wilson 已提交
2283
		if (obj->mm.madv == I915_MADV_WILLNEED)
2284
			mark_page_accessed(page);
2285

2286
		put_page(page);
2287
	}
C
Chris Wilson 已提交
2288
	obj->mm.dirty = false;
2289

2290 2291
	sg_free_table(pages);
	kfree(pages);
2292
}
C
Chris Wilson 已提交
2293

2294 2295 2296
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2297
	void __rcu **slot;
2298

2299
	rcu_read_lock();
C
Chris Wilson 已提交
2300 2301
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2302
	rcu_read_unlock();
2303 2304
}

2305 2306
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2307
{
2308
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2309
	struct sg_table *pages;
2310

C
Chris Wilson 已提交
2311
	if (i915_gem_object_has_pinned_pages(obj))
2312
		return;
2313

2314
	GEM_BUG_ON(obj->bind_count);
2315
	if (!i915_gem_object_has_pages(obj))
2316 2317 2318
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2319
	mutex_lock_nested(&obj->mm.lock, subclass);
2320 2321
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2322

2323 2324 2325
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2326 2327
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2328

2329 2330 2331 2332
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2333
	if (obj->mm.mapping) {
2334 2335
		void *ptr;

2336
		ptr = page_mask_bits(obj->mm.mapping);
2337 2338
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2339
		else
2340 2341
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2342
		obj->mm.mapping = NULL;
2343 2344
	}

2345 2346
	__i915_gem_object_reset_page_iter(obj);

2347 2348 2349
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2350 2351
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

2352 2353
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2354 2355
}

2356
static bool i915_sg_trim(struct sg_table *orig_st)
2357 2358 2359 2360 2361 2362
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2363
		return false;
2364

2365
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2366
		return false;
2367 2368 2369 2370 2371 2372 2373

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2374
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2375 2376 2377 2378

	sg_free_table(orig_st);

	*orig_st = new_st;
2379
	return true;
2380 2381
}

2382
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2383
{
2384
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2385 2386
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2387
	struct address_space *mapping;
2388 2389
	struct sg_table *st;
	struct scatterlist *sg;
2390
	struct sgt_iter sgt_iter;
2391
	struct page *page;
2392
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2393
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2394
	unsigned int sg_page_sizes;
2395
	gfp_t noreclaim;
I
Imre Deak 已提交
2396
	int ret;
2397

C
Chris Wilson 已提交
2398 2399 2400 2401
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2402 2403
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2404

2405 2406
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2407
		return -ENOMEM;
2408

2409
rebuild_st:
2410 2411
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2412
		return -ENOMEM;
2413
	}
2414

2415 2416 2417 2418 2419
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2420
	mapping = obj->base.filp->f_mapping;
2421
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2422 2423
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2424 2425
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2426
	sg_page_sizes = 0;
2427
	for (i = 0; i < page_count; i++) {
2428 2429 2430 2431 2432 2433 2434
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2435
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2436 2437 2438 2439 2440 2441 2442 2443
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2444
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2445
			cond_resched();
2446

C
Chris Wilson 已提交
2447 2448 2449
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2450 2451 2452 2453
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2454
			 */
2455 2456 2457
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2470
				 * this we want __GFP_RETRY_MAYFAIL.
2471
				 */
M
Michal Hocko 已提交
2472
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2473
			}
2474 2475
		} while (1);

2476 2477 2478
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2479
			if (i) {
M
Matthew Auld 已提交
2480
				sg_page_sizes |= sg->length;
2481
				sg = sg_next(sg);
2482
			}
2483 2484 2485 2486 2487 2488
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2489 2490 2491

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2492
	}
2493
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2494
		sg_page_sizes |= sg->length;
2495
		sg_mark_end(sg);
2496
	}
2497

2498 2499 2500
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2501
	ret = i915_gem_gtt_prepare_pages(obj, st);
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2521

2522
	if (i915_gem_object_needs_bit17_swizzle(obj))
2523
		i915_gem_object_do_bit_17_swizzle(obj, st);
2524

M
Matthew Auld 已提交
2525
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2526 2527

	return 0;
2528

2529
err_sg:
2530
	sg_mark_end(sg);
2531
err_pages:
2532 2533
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2534 2535
	sg_free_table(st);
	kfree(st);
2536 2537 2538 2539 2540 2541 2542 2543 2544

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2545 2546 2547
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2548
	return ret;
2549 2550 2551
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2552
				 struct sg_table *pages,
M
Matthew Auld 已提交
2553
				 unsigned int sg_page_sizes)
2554
{
2555 2556 2557 2558
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2559
	lockdep_assert_held(&obj->mm.lock);
2560 2561 2562 2563 2564

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2565 2566

	if (i915_gem_object_is_tiled(obj) &&
2567
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2568 2569 2570 2571
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2572

M
Matthew Auld 已提交
2573 2574
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2575 2576

	/*
M
Matthew Auld 已提交
2577 2578 2579 2580 2581 2582
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2583 2584 2585 2586 2587 2588 2589
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2590 2591 2592 2593

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2594 2595 2596 2597
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2598
	int err;
2599 2600 2601 2602 2603 2604

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2605
	err = obj->ops->get_pages(obj);
2606
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2607

2608
	return err;
2609 2610
}

2611
/* Ensure that the associated pages are gathered from the backing storage
2612
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2613
 * multiple times before they are released by a single call to
2614
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2615 2616 2617
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2618
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2619
{
2620
	int err;
2621

2622 2623 2624
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2625

2626
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2627 2628
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2629 2630 2631
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2632

2633 2634 2635
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2636

2637 2638
unlock:
	mutex_unlock(&obj->mm.lock);
2639
	return err;
2640 2641
}

2642
/* The 'mapping' part of i915_gem_object_pin_map() below */
2643 2644
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2645 2646
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2647
	struct sg_table *sgt = obj->mm.pages;
2648 2649
	struct sgt_iter sgt_iter;
	struct page *page;
2650 2651
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2652
	unsigned long i = 0;
2653
	pgprot_t pgprot;
2654 2655 2656
	void *addr;

	/* A single page can always be kmapped */
2657
	if (n_pages == 1 && type == I915_MAP_WB)
2658 2659
		return kmap(sg_page(sgt->sgl));

2660 2661
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2662
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2663 2664 2665
		if (!pages)
			return NULL;
	}
2666

2667 2668
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2669 2670 2671 2672

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2673
	switch (type) {
2674 2675 2676
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2677 2678 2679 2680 2681 2682 2683 2684
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2685

2686
	if (pages != stack_pages)
M
Michal Hocko 已提交
2687
		kvfree(pages);
2688 2689 2690 2691 2692

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2693 2694
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2695
{
2696 2697 2698
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2699 2700
	int ret;

T
Tina Zhang 已提交
2701 2702
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2703

2704
	ret = mutex_lock_interruptible(&obj->mm.lock);
2705 2706 2707
	if (ret)
		return ERR_PTR(ret);

2708 2709 2710
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2711
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2712
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2713 2714
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2715 2716 2717
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2718

2719 2720 2721
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2722 2723
		pinned = false;
	}
2724
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2725

2726
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2727 2728 2729
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2730
			goto err_unpin;
2731
		}
2732 2733 2734 2735 2736 2737

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2738
		ptr = obj->mm.mapping = NULL;
2739 2740
	}

2741 2742 2743 2744
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2745
			goto err_unpin;
2746 2747
		}

2748
		obj->mm.mapping = page_pack_bits(ptr, type);
2749 2750
	}

2751 2752
out_unlock:
	mutex_unlock(&obj->mm.lock);
2753 2754
	return ptr;

2755 2756 2757 2758 2759
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2760 2761
}

2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2779
	if (i915_gem_object_has_pages(obj))
2780 2781
		return -ENODEV;

2782 2783 2784
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2834
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2835
{
2836
	bool banned;
2837

2838
	atomic_inc(&ctx->guilty_count);
2839

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
	banned = false;
	if (i915_gem_context_is_bannable(ctx)) {
		unsigned int score;

		score = atomic_add_return(CONTEXT_SCORE_GUILTY,
					  &ctx->ban_score);
		banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;

		DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
				 ctx->name, score, yesno(banned));
	}
2851
	if (!banned)
2852 2853
		return;

2854 2855 2856 2857 2858 2859
	i915_gem_context_set_banned(ctx);
	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
		atomic_inc(&ctx->file_priv->context_bans);
		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
	}
2860 2861 2862 2863
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2864
	atomic_inc(&ctx->active_count);
2865 2866
}

2867
struct i915_request *
2868
i915_gem_find_active_request(struct intel_engine_cs *engine)
2869
{
2870
	struct i915_request *request, *active = NULL;
2871
	unsigned long flags;
2872

2873 2874 2875 2876 2877 2878 2879 2880
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2881
	spin_lock_irqsave(&engine->timeline->lock, flags);
2882
	list_for_each_entry(request, &engine->timeline->requests, link) {
2883
		if (__i915_request_completed(request, request->global_seqno))
2884
			continue;
2885

2886
		GEM_BUG_ON(request->engine != engine);
2887 2888
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2889 2890 2891

		active = request;
		break;
2892
	}
2893
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2894

2895
	return active;
2896 2897
}

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2912 2913 2914 2915
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
2916
struct i915_request *
2917 2918
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
2919
	struct i915_request *request = NULL;
2920

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

	/*
	 * Prevent the signaler thread from updating the request
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	 * state (by calling dma_fence_signal) as we are processing
	 * the reset. The write from the GPU of the seqno is
	 * asynchronous and the signaler thread may see a different
	 * value to us and declare the request complete, even though
	 * the reset routine have picked that request as the active
	 * (incomplete) request. This conflict is not handled
	 * gracefully!
	 */
	kthread_park(engine->breadcrumbs.signaler);

2942 2943
	/*
	 * Prevent request submission to the hardware until we have
2944 2945
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
2946
	 * to a second via its execlists->tasklet *just* as we are
2947
	 * calling engine->init_hw() and also writing the ELSP.
2948
	 * Turning off the execlists->tasklet until the reset is over
2949 2950
	 * prevents the race.
	 */
2951 2952
	tasklet_kill(&engine->execlists.tasklet);
	tasklet_disable(&engine->execlists.tasklet);
2953

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
	/*
	 * We're using worker to queue preemption requests from the tasklet in
	 * GuC submission mode.
	 * Even though tasklet was disabled, we may still have a worker queued.
	 * Let's make sure that all workers scheduled before disabling the
	 * tasklet are completed before continuing with the reset.
	 */
	if (engine->i915->guc.preempt_wq)
		flush_workqueue(engine->i915->guc.preempt_wq);

2964 2965 2966
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2967 2968 2969
	request = i915_gem_find_active_request(engine);
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
2970 2971 2972 2973

	return request;
}

2974
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2975 2976
{
	struct intel_engine_cs *engine;
2977
	struct i915_request *request;
2978
	enum intel_engine_id id;
2979
	int err = 0;
2980

2981
	for_each_engine(engine, dev_priv, id) {
2982 2983 2984 2985
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
2986
		}
2987 2988

		engine->hangcheck.active_request = request;
2989 2990
	}

2991
	i915_gem_revoke_fences(dev_priv);
2992 2993

	return err;
2994 2995
}

2996
static void skip_request(struct i915_request *request)
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
3011 3012

	dma_fence_set_error(&request->fence, -EIO);
3013 3014
}

3015
static void engine_skip_context(struct i915_request *request)
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

3038
/* Returns the request if it was guilty of the hang */
3039
static struct i915_request *
3040
i915_gem_reset_request(struct intel_engine_cs *engine,
3041
		       struct i915_request *request)
3042
{
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

3064
	if (engine_stalled(engine)) {
3065 3066
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
3067 3068 3069 3070

		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
3071
	} else {
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
			i915_gem_context_mark_innocent(request->ctx);
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
			spin_lock_irq(&engine->timeline->lock);
			request = list_prev_entry(request, link);
			if (&request->link == &engine->timeline->requests)
				request = NULL;
			spin_unlock_irq(&engine->timeline->lock);
		}
3089 3090
	}

3091
	return request;
3092 3093
}

3094
void i915_gem_reset_engine(struct intel_engine_cs *engine,
3095
			   struct i915_request *request)
3096
{
3097 3098 3099 3100 3101 3102
	/*
	 * Make sure this write is visible before we re-enable the interrupt
	 * handlers on another CPU, as tasklet_enable() resolves to just
	 * a compiler barrier which is insufficient for our purpose here.
	 */
	smp_store_mb(engine->irq_posted, 0);
3103

3104 3105 3106 3107
	if (request)
		request = i915_gem_reset_request(engine, request);

	if (request) {
3108 3109 3110
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
	}
3111 3112 3113

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
3114
}
3115

3116
void i915_gem_reset(struct drm_i915_private *dev_priv)
3117
{
3118
	struct intel_engine_cs *engine;
3119
	enum intel_engine_id id;
3120

3121 3122
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3123
	i915_retire_requests(dev_priv);
3124

3125 3126 3127
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

3128
		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3129 3130 3131
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142

		/*
		 * Ostensibily, we always want a context loaded for powersaving,
		 * so if the engine is idle after the reset, send a request
		 * to load our scratch kernel_context.
		 *
		 * More mysteriously, if we leave the engine idle after a reset,
		 * the next userspace batch may hang, with what appears to be
		 * an incoherent read by the CS (presumably stale TLB). An
		 * empty request appears sufficient to paper over the glitch.
		 */
3143
		if (intel_engine_is_idle(engine)) {
3144
			struct i915_request *rq;
3145

3146 3147
			rq = i915_request_alloc(engine,
						dev_priv->kernel_context);
3148
			if (!IS_ERR(rq))
3149
				__i915_request_add(rq, false);
3150
		}
3151
	}
3152

3153
	i915_gem_restore_fences(dev_priv);
3154 3155 3156 3157 3158 3159 3160

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
3161 3162
}

3163 3164
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3165
	tasklet_enable(&engine->execlists.tasklet);
3166
	kthread_unpark(engine->breadcrumbs.signaler);
3167 3168

	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3169 3170
}

3171 3172
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3173 3174 3175
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3176
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3177

3178
	for_each_engine(engine, dev_priv, id) {
3179
		engine->hangcheck.active_request = NULL;
3180
		i915_gem_reset_finish_engine(engine);
3181
	}
3182 3183
}

3184
static void nop_submit_request(struct i915_request *request)
3185 3186 3187
{
	dma_fence_set_error(&request->fence, -EIO);

3188
	i915_request_submit(request);
3189 3190
}

3191
static void nop_complete_submit_request(struct i915_request *request)
3192
{
3193 3194
	unsigned long flags;

3195
	dma_fence_set_error(&request->fence, -EIO);
3196 3197

	spin_lock_irqsave(&request->engine->timeline->lock, flags);
3198
	__i915_request_submit(request);
3199
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3200
	spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3201 3202
}

3203
void i915_gem_set_wedged(struct drm_i915_private *i915)
3204
{
3205 3206 3207
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3208 3209 3210 3211 3212 3213 3214
	if (drm_debug & DRM_UT_DRIVER) {
		struct drm_printer p = drm_debug_printer(__func__);

		for_each_engine(engine, i915, id)
			intel_engine_dump(engine, &p, "%s\n", engine->name);
	}

3215 3216 3217
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	smp_mb__after_atomic();

3218 3219 3220 3221 3222
	/*
	 * First, stop submission to hw, but do not yet complete requests by
	 * rolling the global seqno forward (since this would complete requests
	 * for which we haven't set the fence error to EIO yet).
	 */
3223 3224
	for_each_engine(engine, i915, id) {
		i915_gem_reset_prepare_engine(engine);
3225
		engine->submit_request = nop_submit_request;
3226
	}
3227 3228 3229 3230 3231

	/*
	 * Make sure no one is running the old callback before we proceed with
	 * cancelling requests and resetting the completion tracking. Otherwise
	 * we might submit a request to the hardware which never completes.
3232
	 */
3233
	synchronize_rcu();
3234

3235 3236 3237
	for_each_engine(engine, i915, id) {
		/* Mark all executing requests as skipped */
		engine->cancel_requests(engine);
3238

3239 3240 3241 3242 3243
		/*
		 * Only once we've force-cancelled all in-flight requests can we
		 * start to complete all requests.
		 */
		engine->submit_request = nop_complete_submit_request;
3244
		engine->schedule = NULL;
3245 3246
	}

3247 3248
	i915->caps.scheduler = 0;

3249 3250 3251 3252
	/*
	 * Make sure no request can slip through without getting completed by
	 * either this call here to intel_engine_init_global_seqno, or the one
	 * in nop_complete_submit_request.
3253
	 */
3254
	synchronize_rcu();
3255

3256 3257
	for_each_engine(engine, i915, id) {
		unsigned long flags;
3258

3259 3260
		/*
		 * Mark all pending requests as complete so that any concurrent
3261 3262 3263 3264 3265 3266 3267
		 * (lockless) lookup doesn't try and wait upon the request as we
		 * reset it.
		 */
		spin_lock_irqsave(&engine->timeline->lock, flags);
		intel_engine_init_global_seqno(engine,
					       intel_engine_last_submit(engine));
		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3268 3269

		i915_gem_reset_finish_engine(engine);
3270
	}
3271

3272
	wake_up_all(&i915->gpu_error.reset_queue);
3273 3274
}

3275 3276 3277 3278 3279 3280 3281 3282 3283
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

3284 3285
	/*
	 * Before unwedging, make sure that all pending operations
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3296
			struct i915_request *rq;
3297 3298 3299 3300 3301 3302

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

3303 3304
			/*
			 * We can't use our normal waiter as we want to
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}
3319 3320
	i915_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests);
3321

3322 3323
	/*
	 * Undo nop_submit_request. We prevent all new i915 requests from
3324 3325 3326 3327 3328 3329 3330 3331
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3332
	i915_gem_contexts_lost(i915);
3333 3334 3335 3336 3337 3338 3339

	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3340
static void
3341 3342
i915_gem_retire_work_handler(struct work_struct *work)
{
3343
	struct drm_i915_private *dev_priv =
3344
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3345
	struct drm_device *dev = &dev_priv->drm;
3346

3347
	/* Come back later if the device is busy... */
3348
	if (mutex_trylock(&dev->struct_mutex)) {
3349
		i915_retire_requests(dev_priv);
3350
		mutex_unlock(&dev->struct_mutex);
3351
	}
3352

3353 3354
	/*
	 * Keep the retire handler running until we are finally idle.
3355 3356 3357
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3358
	if (READ_ONCE(dev_priv->gt.awake))
3359 3360
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3361
				   round_jiffies_up_relative(HZ));
3362
}
3363

3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

3423 3424 3425 3426 3427 3428 3429
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3430 3431 3432 3433
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3434
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3435
	unsigned int epoch = I915_EPOCH_INVALID;
3436 3437 3438 3439 3440
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3441 3442
	/*
	 * Wait for last execlists context complete, but bail out in case a
3443 3444 3445 3446 3447
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
3448
	 */
3449 3450 3451 3452
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3453 3454 3455 3456

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3457
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3458 3459 3460 3461 3462 3463 3464
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3465 3466 3467 3468
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3469
	if (new_requests_since_last_retire(dev_priv))
3470
		goto out_unlock;
3471

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(dev_priv->drm.irq);

3485
	intel_engines_park(dev_priv);
3486 3487
	i915_gem_timelines_park(dev_priv);

3488
	i915_pmu_gt_parked(dev_priv);
3489

3490 3491
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
3492 3493
	epoch = dev_priv->gt.epoch;
	GEM_BUG_ON(epoch == I915_EPOCH_INVALID);
3494
	rearm_hangcheck = false;
3495

3496 3497
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
3498 3499 3500

	intel_display_power_put(dev_priv, POWER_DOMAIN_GT_IRQ);

3501 3502
	intel_runtime_pm_put(dev_priv);
out_unlock:
3503
	mutex_unlock(&dev_priv->drm.struct_mutex);
3504

3505 3506 3507 3508
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3509
	}
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3527 3528
}

3529 3530
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3531
	struct drm_i915_private *i915 = to_i915(gem->dev);
3532 3533
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3534
	struct i915_lut_handle *lut, *ln;
3535

3536 3537 3538 3539 3540 3541
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3542
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3543 3544 3545 3546
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3547 3548 3549 3550 3551 3552 3553
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3554
			i915_vma_close(vma);
3555

3556 3557
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3558

3559 3560
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3561
	}
3562 3563

	mutex_unlock(&i915->drm.struct_mutex);
3564 3565
}

3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3577 3578
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3579 3580 3581
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3582 3583 3584 3585 3586 3587 3588
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3589
 *  -EAGAIN: incomplete, restart syscall
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3606 3607
	ktime_t start;
	long ret;
3608

3609 3610 3611
	if (args->flags != 0)
		return -EINVAL;

3612
	obj = i915_gem_object_lookup(file, args->bo_handle);
3613
	if (!obj)
3614 3615
		return -ENOENT;

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3637 3638 3639 3640

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3641 3642
	}

C
Chris Wilson 已提交
3643
	i915_gem_object_put(obj);
3644
	return ret;
3645 3646
}

3647
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3648
{
3649
	int ret, i;
3650

3651 3652 3653 3654 3655
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3656

3657 3658 3659
	return 0;
}

3660 3661
static int wait_for_engines(struct drm_i915_private *i915)
{
3662
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3663 3664 3665 3666 3667 3668 3669 3670 3671
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
		if (drm_debug & DRM_UT_DRIVER) {
			struct drm_printer p = drm_debug_printer(__func__);
			struct intel_engine_cs *engine;
			enum intel_engine_id id;

			for_each_engine(engine, i915, id)
				intel_engine_dump(engine, &p,
3672
						  "%s\n", engine->name);
3673 3674
		}

3675 3676
		i915_gem_set_wedged(i915);
		return -EIO;
3677 3678 3679 3680 3681
	}

	return 0;
}

3682 3683 3684 3685
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3686 3687 3688 3689
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
3700
		i915_retire_requests(i915);
3701 3702

		ret = wait_for_engines(i915);
3703 3704
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3705
	}
3706

3707
	return ret;
3708 3709
}

3710 3711
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3712 3713 3714 3715 3716 3717 3718
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3719
	obj->write_domain = 0;
3720 3721 3722 3723
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3724
	if (!READ_ONCE(obj->pin_global))
3725 3726 3727 3728 3729 3730 3731
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

3756
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3777
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3778 3779 3780 3781 3782
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3783 3784
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3785
	if (write) {
3786 3787
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3788 3789 3790 3791 3792 3793 3794
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3795 3796
/**
 * Moves a single object to the GTT read, and possibly write domain.
3797 3798
 * @obj: object to act on
 * @write: ask for write access or read only
3799 3800 3801 3802
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3803
int
3804
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3805
{
3806
	int ret;
3807

3808
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3809

3810 3811 3812 3813 3814 3815
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3816 3817 3818
	if (ret)
		return ret;

3819
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3820 3821
		return 0;

3822 3823 3824 3825 3826 3827 3828 3829
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3830
	ret = i915_gem_object_pin_pages(obj);
3831 3832 3833
	if (ret)
		return ret;

3834
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3835

3836 3837 3838 3839
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3840
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3841 3842
		mb();

3843 3844 3845
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3846 3847
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3848
	if (write) {
3849 3850
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3851
		obj->mm.dirty = true;
3852 3853
	}

C
Chris Wilson 已提交
3854
	i915_gem_object_unpin_pages(obj);
3855 3856 3857
	return 0;
}

3858 3859
/**
 * Changes the cache-level of an object across all VMA.
3860 3861
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3873 3874 3875
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3876
	struct i915_vma *vma;
3877
	int ret;
3878

3879 3880
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3881
	if (obj->cache_level == cache_level)
3882
		return 0;
3883

3884 3885 3886 3887 3888
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3889 3890
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3891 3892 3893
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3894
		if (i915_vma_is_pinned(vma)) {
3895 3896 3897 3898
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3899 3900
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3912 3913
	}

3914 3915 3916 3917 3918 3919 3920
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3921
	if (obj->bind_count) {
3922 3923 3924 3925
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3926 3927 3928 3929 3930 3931
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3932 3933 3934
		if (ret)
			return ret;

3935 3936
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3953
			for_each_ggtt_vma(vma, obj) {
3954 3955 3956 3957
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3958 3959 3960 3961 3962 3963 3964 3965
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3966 3967
		}

3968
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3969 3970 3971 3972 3973 3974 3975
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3976 3977
	}

3978
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3979
		vma->node.color = cache_level;
3980
	i915_gem_object_set_cache_coherency(obj, cache_level);
3981
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3982

3983 3984 3985
	return 0;
}

B
Ben Widawsky 已提交
3986 3987
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3988
{
B
Ben Widawsky 已提交
3989
	struct drm_i915_gem_caching *args = data;
3990
	struct drm_i915_gem_object *obj;
3991
	int err = 0;
3992

3993 3994 3995 3996 3997 3998
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3999

4000 4001 4002 4003 4004 4005
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4006 4007 4008 4009
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4010 4011 4012 4013
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4014 4015 4016
out:
	rcu_read_unlock();
	return err;
4017 4018
}

B
Ben Widawsky 已提交
4019 4020
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4021
{
4022
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
4023
	struct drm_i915_gem_caching *args = data;
4024 4025
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
4026
	int ret = 0;
4027

B
Ben Widawsky 已提交
4028 4029
	switch (args->caching) {
	case I915_CACHING_NONE:
4030 4031
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4032
	case I915_CACHING_CACHED:
4033 4034 4035 4036 4037 4038
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4039
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4040 4041
			return -ENODEV;

4042 4043
		level = I915_CACHE_LLC;
		break;
4044
	case I915_CACHING_DISPLAY:
4045
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4046
		break;
4047 4048 4049 4050
	default:
		return -EINVAL;
	}

4051 4052 4053 4054
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
4055 4056 4057 4058 4059 4060 4061 4062 4063
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

4064 4065 4066 4067 4068 4069 4070
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
4071
	if (ret)
4072
		goto out;
B
Ben Widawsky 已提交
4073

4074 4075 4076
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
4077 4078 4079

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
4080 4081 4082

out:
	i915_gem_object_put(obj);
4083 4084 4085
	return ret;
}

4086
/*
4087 4088 4089
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4090
 */
C
Chris Wilson 已提交
4091
struct i915_vma *
4092 4093
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4094 4095
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
4096
{
C
Chris Wilson 已提交
4097
	struct i915_vma *vma;
4098 4099
	int ret;

4100 4101
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4102
	/* Mark the global pin early so that we account for the
4103 4104
	 * display coherency whilst setting up the cache domains.
	 */
4105
	obj->pin_global++;
4106

4107 4108 4109 4110 4111 4112 4113 4114 4115
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4116
	ret = i915_gem_object_set_cache_level(obj,
4117 4118
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
4119 4120
	if (ret) {
		vma = ERR_PTR(ret);
4121
		goto err_unpin_global;
C
Chris Wilson 已提交
4122
	}
4123

4124 4125
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
4126 4127 4128 4129
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
4130
	 */
4131
	vma = ERR_PTR(-ENOSPC);
4132 4133
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4134
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4135 4136 4137 4138
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
4139
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
4140
	if (IS_ERR(vma))
4141
		goto err_unpin_global;
4142

4143 4144
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

4145
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
4146
	__i915_gem_object_flush_for_display(obj);
4147
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
4148

4149 4150 4151
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4152
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4153

C
Chris Wilson 已提交
4154
	return vma;
4155

4156 4157
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
4158
	return vma;
4159 4160 4161
}

void
C
Chris Wilson 已提交
4162
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4163
{
4164
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4165

4166
	if (WARN_ON(vma->obj->pin_global == 0))
4167 4168
		return;

4169
	if (--vma->obj->pin_global == 0)
4170
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4171

4172
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4173
	i915_gem_object_bump_inactive_ggtt(vma->obj);
4174

C
Chris Wilson 已提交
4175
	i915_vma_unpin(vma);
4176 4177
}

4178 4179
/**
 * Moves a single object to the CPU read, and possibly write domain.
4180 4181
 * @obj: object to act on
 * @write: requesting write or read-only access
4182 4183 4184 4185
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4186
int
4187
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4188 4189 4190
{
	int ret;

4191
	lockdep_assert_held(&obj->base.dev->struct_mutex);
4192

4193 4194 4195 4196 4197 4198
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
4199 4200 4201
	if (ret)
		return ret;

4202
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4203

4204
	/* Flush the CPU cache if it's still invalid. */
4205
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4206
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4207
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4208 4209 4210 4211 4212
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4213
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4214 4215 4216 4217

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
4218 4219
	if (write)
		__start_cpu_write(obj);
4220 4221 4222 4223

	return 0;
}

4224 4225 4226
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4227 4228 4229 4230
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4231 4232 4233
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4234
static int
4235
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4236
{
4237
	struct drm_i915_private *dev_priv = to_i915(dev);
4238
	struct drm_i915_file_private *file_priv = file->driver_priv;
4239
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4240
	struct i915_request *request, *target = NULL;
4241
	long ret;
4242

4243 4244 4245
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4246

4247
	spin_lock(&file_priv->mm.lock);
4248
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4249 4250
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4251

4252 4253 4254 4255
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4256

4257
		target = request;
4258
	}
4259
	if (target)
4260
		i915_request_get(target);
4261
	spin_unlock(&file_priv->mm.lock);
4262

4263
	if (target == NULL)
4264
		return 0;
4265

4266
	ret = i915_request_wait(target,
4267 4268
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4269
	i915_request_put(target);
4270

4271
	return ret < 0 ? ret : 0;
4272 4273
}

C
Chris Wilson 已提交
4274
struct i915_vma *
4275 4276
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4277
			 u64 size,
4278 4279
			 u64 alignment,
			 u64 flags)
4280
{
4281 4282
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
4283 4284
	struct i915_vma *vma;
	int ret;
4285

4286 4287
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4288 4289
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4320
	vma = i915_vma_instance(obj, vm, view);
4321
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4322
		return vma;
4323 4324

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4325 4326 4327
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4328

4329
			if (flags & PIN_MAPPABLE &&
4330
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4331 4332 4333
				return ERR_PTR(-ENOSPC);
		}

4334 4335
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4336 4337 4338
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4339
		     !!(flags & PIN_MAPPABLE),
4340
		     i915_vma_is_map_and_fenceable(vma));
4341 4342
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4343
			return ERR_PTR(ret);
4344 4345
	}

C
Chris Wilson 已提交
4346 4347 4348
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4349

C
Chris Wilson 已提交
4350
	return vma;
4351 4352
}

4353
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4368 4369 4370 4371 4372 4373 4374 4375 4376
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4377 4378
}

4379
static __always_inline unsigned int
4380
__busy_set_if_active(const struct dma_fence *fence,
4381 4382
		     unsigned int (*flag)(unsigned int id))
{
4383
	struct i915_request *rq;
4384

4385 4386 4387 4388
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4389
	 *
4390
	 * Note we only report on the status of native fences.
4391
	 */
4392 4393 4394 4395
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
4396 4397
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
4398 4399
		return 0;

4400
	return flag(rq->engine->uabi_id);
4401 4402
}

4403
static __always_inline unsigned int
4404
busy_check_reader(const struct dma_fence *fence)
4405
{
4406
	return __busy_set_if_active(fence, __busy_read_flag);
4407 4408
}

4409
static __always_inline unsigned int
4410
busy_check_writer(const struct dma_fence *fence)
4411
{
4412 4413 4414 4415
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4416 4417
}

4418 4419
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4420
		    struct drm_file *file)
4421 4422
{
	struct drm_i915_gem_busy *args = data;
4423
	struct drm_i915_gem_object *obj;
4424 4425
	struct reservation_object_list *list;
	unsigned int seq;
4426
	int err;
4427

4428
	err = -ENOENT;
4429 4430
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4431
	if (!obj)
4432
		goto out;
4433

4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4452

4453 4454
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4455

4456 4457 4458 4459
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4460

4461 4462 4463 4464 4465 4466
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4467
	}
4468

4469 4470 4471 4472
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4473 4474 4475
out:
	rcu_read_unlock();
	return err;
4476 4477 4478 4479 4480 4481
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4482
	return i915_gem_ring_throttle(dev, file_priv);
4483 4484
}

4485 4486 4487 4488
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4489
	struct drm_i915_private *dev_priv = to_i915(dev);
4490
	struct drm_i915_gem_madvise *args = data;
4491
	struct drm_i915_gem_object *obj;
4492
	int err;
4493 4494 4495 4496 4497 4498 4499 4500 4501

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4502
	obj = i915_gem_object_lookup(file_priv, args->handle);
4503 4504 4505 4506 4507 4508
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4509

4510
	if (i915_gem_object_has_pages(obj) &&
4511
	    i915_gem_object_is_tiled(obj) &&
4512
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4513 4514
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4515
			__i915_gem_object_unpin_pages(obj);
4516 4517 4518
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4519
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4520
			__i915_gem_object_pin_pages(obj);
4521 4522
			obj->mm.quirked = true;
		}
4523 4524
	}

C
Chris Wilson 已提交
4525 4526
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4527

C
Chris Wilson 已提交
4528
	/* if the object is no longer attached, discard its backing storage */
4529 4530
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4531 4532
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4533
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4534
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4535

4536
out:
4537
	i915_gem_object_put(obj);
4538
	return err;
4539 4540
}

4541
static void
4542
frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4543 4544 4545 4546
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4547
	intel_fb_obj_flush(obj, ORIGIN_CS);
4548 4549
}

4550 4551
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4552
{
4553 4554
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4555
	INIT_LIST_HEAD(&obj->vma_list);
4556
	INIT_LIST_HEAD(&obj->lut_list);
4557
	INIT_LIST_HEAD(&obj->batch_pool_link);
4558

4559 4560
	obj->ops = ops;

4561 4562 4563
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4564
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4565
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4566 4567 4568 4569

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4570

4571
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4572 4573
}

4574
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4575 4576
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4577

4578 4579
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4580 4581

	.pwrite = i915_gem_object_pwrite_gtt,
4582 4583
};

M
Matthew Auld 已提交
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4608
struct drm_i915_gem_object *
4609
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4610
{
4611
	struct drm_i915_gem_object *obj;
4612
	struct address_space *mapping;
4613
	unsigned int cache_level;
D
Daniel Vetter 已提交
4614
	gfp_t mask;
4615
	int ret;
4616

4617 4618 4619 4620 4621
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4622
	if (size >> PAGE_SHIFT > INT_MAX)
4623 4624 4625 4626 4627
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4628
	obj = i915_gem_object_alloc(dev_priv);
4629
	if (obj == NULL)
4630
		return ERR_PTR(-ENOMEM);
4631

M
Matthew Auld 已提交
4632
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4633 4634
	if (ret)
		goto fail;
4635

4636
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4637
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4638 4639 4640 4641 4642
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4643
	mapping = obj->base.filp->f_mapping;
4644
	mapping_set_gfp_mask(mapping, mask);
4645
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4646

4647
	i915_gem_object_init(obj, &i915_gem_object_ops);
4648

4649 4650
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4651

4652
	if (HAS_LLC(dev_priv))
4653
		/* On some devices, we can have the GPU use the LLC (the CPU
4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4665 4666 4667
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4668

4669
	i915_gem_object_set_cache_coherency(obj, cache_level);
4670

4671 4672
	trace_i915_gem_object_create(obj);

4673
	return obj;
4674 4675 4676 4677

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4678 4679
}

4680 4681 4682 4683 4684 4685 4686 4687
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4688
	if (obj->mm.madv != I915_MADV_WILLNEED)
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4704 4705
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4706
{
4707
	struct drm_i915_gem_object *obj, *on;
4708

4709
	intel_runtime_pm_get(i915);
4710
	llist_for_each_entry_safe(obj, on, freed, freed) {
4711 4712 4713 4714
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4715 4716
		mutex_lock(&i915->drm.struct_mutex);

4717 4718 4719 4720 4721 4722 4723
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4724 4725
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4726

4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4739
		mutex_unlock(&i915->drm.struct_mutex);
4740 4741

		GEM_BUG_ON(obj->bind_count);
4742
		GEM_BUG_ON(obj->userfault_count);
4743
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4744
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4745 4746 4747

		if (obj->ops->release)
			obj->ops->release(obj);
4748

4749 4750
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4751
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4752
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4753 4754 4755 4756

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4757
		reservation_object_fini(&obj->__builtin_resv);
4758 4759 4760 4761 4762
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4763

4764 4765 4766
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4767 4768
		if (on)
			cond_resched();
4769
	}
4770
	intel_runtime_pm_put(i915);
4771 4772 4773 4774 4775 4776
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4787
		__i915_gem_free_objects(i915, freed);
4788
	}
4789 4790 4791 4792 4793 4794 4795
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4796

4797 4798
	/*
	 * All file-owned VMA should have been released by this point through
4799 4800 4801 4802 4803 4804
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4805

4806
	spin_lock(&i915->mm.free_lock);
4807
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4808 4809
		spin_unlock(&i915->mm.free_lock);

4810
		__i915_gem_free_objects(i915, freed);
4811
		if (need_resched())
4812 4813 4814
			return;

		spin_lock(&i915->mm.free_lock);
4815
	}
4816
	spin_unlock(&i915->mm.free_lock);
4817
}
4818

4819 4820 4821 4822 4823 4824
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

4825 4826 4827 4828 4829 4830 4831 4832 4833
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4834 4835
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4836
		queue_work(i915->wq, &i915->mm.free_work);
4837
}
4838

4839 4840 4841
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4842

4843 4844 4845
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4846
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4847
		obj->mm.madv = I915_MADV_DONTNEED;
4848

4849 4850
	/*
	 * Before we free the object, make sure any pure RCU-only
4851 4852 4853 4854
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4855
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4856
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4857 4858
}

4859 4860 4861 4862
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4863 4864
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4865 4866 4867 4868 4869
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4870
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4871
{
4872
	struct i915_gem_context *kernel_context = i915->kernel_context;
4873 4874 4875
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

4876 4877 4878 4879
	for_each_engine(engine, i915, id) {
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline->last_request));
		GEM_BUG_ON(engine->last_retired_context != kernel_context);
	}
4880 4881
}

4882 4883
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4884 4885 4886 4887 4888 4889
	if (i915_terminally_wedged(&i915->gpu_error)) {
		mutex_lock(&i915->drm.struct_mutex);
		i915_gem_unset_wedged(i915);
		mutex_unlock(&i915->drm.struct_mutex);
	}

4890 4891 4892 4893 4894 4895
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4896
	 * of the reset, so this could be applied to even earlier gen.
4897
	 */
4898 4899
	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
		WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
4900 4901
}

4902
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4903
{
4904
	struct drm_device *dev = &dev_priv->drm;
4905
	int ret;
4906

4907
	intel_runtime_pm_get(dev_priv);
4908 4909
	intel_suspend_gt_powersave(dev_priv);

4910
	mutex_lock(&dev->struct_mutex);
4911 4912 4913 4914 4915 4916 4917 4918 4919

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
4920 4921 4922 4923
	if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(dev_priv);
		if (ret)
			goto err_unlock;
4924

4925 4926 4927 4928 4929
		ret = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE |
					     I915_WAIT_LOCKED);
		if (ret && ret != -EIO)
			goto err_unlock;
4930

4931 4932
		assert_kernel_context_is_current(dev_priv);
	}
4933
	i915_gem_contexts_lost(dev_priv);
4934 4935
	mutex_unlock(&dev->struct_mutex);

4936
	intel_uc_suspend(dev_priv);
4937

4938
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4939
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4940 4941 4942 4943

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
4944
	drain_delayed_work(&dev_priv->gt.idle_work);
4945

4946 4947 4948
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4949
	WARN_ON(dev_priv->gt.awake);
4950 4951
	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4952

4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4972
	i915_gem_sanitize(dev_priv);
4973 4974 4975

	intel_runtime_pm_put(dev_priv);
	return 0;
4976

4977
err_unlock:
4978
	mutex_unlock(&dev->struct_mutex);
4979
	intel_runtime_pm_put(dev_priv);
4980
	return ret;
4981 4982
}

4983
void i915_gem_resume(struct drm_i915_private *i915)
4984
{
4985
	WARN_ON(i915->gt.awake);
4986

4987 4988
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
4989

4990 4991
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
4992

4993 4994
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
4995 4996 4997
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4998
	i915->gt.resume(i915);
4999

5000 5001 5002
	if (i915_gem_init_hw(i915))
		goto err_wedged;

5003
	intel_uc_resume(i915);
5004

5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
5015 5016 5017 5018
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
5019
	goto out_unlock;
5020 5021
}

5022
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5023
{
5024
	if (INTEL_GEN(dev_priv) < 5 ||
5025 5026 5027 5028 5029 5030
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5031
	if (IS_GEN5(dev_priv))
5032 5033
		return;

5034
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5035
	if (IS_GEN6(dev_priv))
5036
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5037
	else if (IS_GEN7(dev_priv))
5038
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5039
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
5040
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5041 5042
	else
		BUG();
5043
}
D
Daniel Vetter 已提交
5044

5045
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5046 5047 5048 5049 5050 5051 5052
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

5053
static void init_unused_rings(struct drm_i915_private *dev_priv)
5054
{
5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
5067 5068 5069
	}
}

5070
static int __i915_gem_restart_engines(void *data)
5071
{
5072
	struct drm_i915_private *i915 = data;
5073
	struct intel_engine_cs *engine;
5074
	enum intel_engine_id id;
5075 5076 5077 5078
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
5079 5080 5081
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
5082
			return err;
5083
		}
5084 5085 5086 5087 5088 5089 5090
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
5091
	int ret;
5092

5093 5094
	dev_priv->gt.last_init_time = ktime_get();

5095 5096 5097
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5098
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5099
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5100

5101
	if (IS_HASWELL(dev_priv))
5102
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5103
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5104

5105
	if (HAS_PCH_NOP(dev_priv)) {
5106
		if (IS_IVYBRIDGE(dev_priv)) {
5107 5108 5109
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
5110
		} else if (INTEL_GEN(dev_priv) >= 7) {
5111 5112 5113 5114
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5115 5116
	}

5117
	i915_gem_init_swizzling(dev_priv);
5118

5119 5120 5121 5122 5123 5124
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
5125
	init_unused_rings(dev_priv);
5126

5127
	BUG_ON(!dev_priv->kernel_context);
5128 5129 5130 5131
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
5132

5133
	ret = i915_ppgtt_init_hw(dev_priv);
5134
	if (ret) {
5135
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5136 5137 5138
		goto out;
	}

5139 5140
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
5141 5142
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5143
		goto out;
5144
	}
5145

5146
	intel_mocs_init_l3cc_table(dev_priv);
5147

5148 5149
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
5150 5151
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5152
	return ret;
5153 5154
}

5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
5176
		struct i915_request *rq;
5177

5178
		rq = i915_request_alloc(engine, ctx);
5179 5180 5181 5182 5183
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

5184
		err = 0;
5185 5186 5187
		if (engine->init_context)
			err = engine->init_context(rq);

5188
		__i915_request_add(rq, true);
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

	err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
	if (err)
		goto err_active;

	assert_kernel_context_is_current(i915);

	for_each_engine(engine, i915, id) {
		struct i915_vma *state;

		state = ctx->engine[id].state;
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

	if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

5269
int i915_gem_init(struct drm_i915_private *dev_priv)
5270 5271 5272
{
	int ret;

5273 5274 5275 5276 5277 5278 5279 5280 5281
	/*
	 * We need to fallback to 4K pages since gvt gtt handling doesn't
	 * support huge page entries - we will need to check either hypervisor
	 * mm can support huge guest page or just do emulation in gvt.
	 */
	if (intel_vgpu_active(dev_priv))
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5282
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5283

5284
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5285
		dev_priv->gt.resume = intel_lr_context_resume;
5286
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5287 5288 5289
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5290 5291
	}

5292 5293 5294 5295
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5296
	ret = intel_uc_init_misc(dev_priv);
5297 5298 5299
	if (ret)
		return ret;

5300 5301 5302 5303 5304 5305
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5306
	mutex_lock(&dev_priv->drm.struct_mutex);
5307 5308
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5309
	ret = i915_gem_init_ggtt(dev_priv);
5310 5311 5312 5313
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5314

5315
	ret = i915_gem_contexts_init(dev_priv);
5316 5317 5318 5319
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5320

5321
	ret = intel_engines_init(dev_priv);
5322 5323 5324 5325
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5326

5327 5328
	intel_init_gt_powersave(dev_priv);

5329
	ret = intel_uc_init(dev_priv);
5330
	if (ret)
5331
		goto err_pm;
5332

5333 5334 5335 5336
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5348
	ret = __intel_engines_record_defaults(dev_priv);
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
	i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
	i915_gem_contexts_lost(dev_priv);
	intel_uc_fini_hw(dev_priv);
5377 5378
err_uc_init:
	intel_uc_fini(dev_priv);
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5392
	intel_uc_fini_misc(dev_priv);
5393

5394 5395 5396
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5397
	if (ret == -EIO) {
5398 5399
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5400 5401 5402
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5403 5404 5405 5406
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
			i915_gem_set_wedged(dev_priv);
		}
5407
		ret = 0;
5408 5409
	}

5410
	i915_gem_drain_freed_objects(dev_priv);
5411
	return ret;
5412 5413
}

5414 5415 5416 5417 5418
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5419
void
5420
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5421
{
5422
	struct intel_engine_cs *engine;
5423
	enum intel_engine_id id;
5424

5425
	for_each_engine(engine, dev_priv, id)
5426
		dev_priv->gt.cleanup_engine(engine);
5427 5428
}

5429 5430 5431
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5432
	int i;
5433

5434
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5435 5436
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5437
	else if (INTEL_GEN(dev_priv) >= 4 ||
5438 5439
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5440 5441 5442 5443
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5444
	if (intel_vgpu_active(dev_priv))
5445 5446 5447 5448
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5449 5450 5451 5452 5453 5454 5455
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5456
	i915_gem_restore_fences(dev_priv);
5457

5458
	i915_gem_detect_bit_6_swizzle(dev_priv);
5459 5460
}

5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5477
int
5478
i915_gem_load_init(struct drm_i915_private *dev_priv)
5479
{
5480
	int err = -ENOMEM;
5481

5482 5483
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5484 5485
		goto err_out;

5486 5487
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5488 5489
		goto err_objects;

5490 5491 5492 5493
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5494
	dev_priv->requests = KMEM_CACHE(i915_request,
5495 5496
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5497
					SLAB_TYPESAFE_BY_RCU);
5498
	if (!dev_priv->requests)
5499
		goto err_luts;
5500

5501 5502 5503 5504 5505 5506
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5507 5508 5509 5510
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5511 5512
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5513
	err = i915_gem_timeline_init__global(dev_priv);
5514 5515
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
5516
		goto err_priorities;
5517

5518
	i915_gem_init__mm(dev_priv);
5519

5520
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5521
			  i915_gem_retire_work_handler);
5522
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5523
			  i915_gem_idle_work_handler);
5524
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5525
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5526

5527 5528
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5529
	spin_lock_init(&dev_priv->fb_tracking.lock);
5530

M
Matthew Auld 已提交
5531 5532 5533 5534
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5535 5536
	return 0;

5537 5538
err_priorities:
	kmem_cache_destroy(dev_priv->priorities);
5539 5540
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5541 5542
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5543 5544
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5545 5546 5547 5548 5549 5550
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5551
}
5552

5553
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5554
{
5555
	i915_gem_drain_freed_objects(dev_priv);
5556 5557
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5558
	WARN_ON(dev_priv->mm.object_count);
5559

5560 5561 5562 5563 5564
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

5565
	kmem_cache_destroy(dev_priv->priorities);
5566
	kmem_cache_destroy(dev_priv->dependencies);
5567
	kmem_cache_destroy(dev_priv->requests);
5568
	kmem_cache_destroy(dev_priv->luts);
5569 5570
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5571 5572 5573

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5574 5575

	i915_gemfs_fini(dev_priv);
5576 5577
}

5578 5579
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5580 5581 5582
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5583 5584 5585 5586 5587
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5588 5589 5590
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
5591 5592 5593 5594 5595
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5606 5607
	 *
	 * To try and reduce the hibernation image, we manually shrink
5608
	 * the objects as well, see i915_gem_freeze()
5609 5610
	 */

5611
	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5612
	i915_gem_drain_freed_objects(dev_priv);
5613

5614
	spin_lock(&dev_priv->mm.obj_lock);
5615
	for (p = phases; *p; p++) {
5616
		list_for_each_entry(obj, *p, mm.link)
5617
			__start_cpu_write(obj);
5618
	}
5619
	spin_unlock(&dev_priv->mm.obj_lock);
5620 5621 5622 5623

	return 0;
}

5624
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5625
{
5626
	struct drm_i915_file_private *file_priv = file->driver_priv;
5627
	struct i915_request *request;
5628 5629 5630 5631 5632

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5633
	spin_lock(&file_priv->mm.lock);
5634
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5635
		request->file_priv = NULL;
5636
	spin_unlock(&file_priv->mm.lock);
5637 5638
}

5639
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5640 5641
{
	struct drm_i915_file_private *file_priv;
5642
	int ret;
5643

5644
	DRM_DEBUG("\n");
5645 5646 5647 5648 5649 5650

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5651
	file_priv->dev_priv = i915;
5652
	file_priv->file = file;
5653 5654 5655 5656

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5657
	file_priv->bsd_engine = -1;
5658

5659
	ret = i915_gem_context_open(i915, file);
5660 5661
	if (ret)
		kfree(file_priv);
5662

5663
	return ret;
5664 5665
}

5666 5667
/**
 * i915_gem_track_fb - update frontbuffer tracking
5668 5669 5670
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5671 5672 5673 5674
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5675 5676 5677 5678
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5679 5680 5681 5682 5683 5684 5685 5686 5687
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5688
	if (old) {
5689 5690
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5691 5692 5693
	}

	if (new) {
5694 5695
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5696 5697 5698
	}
}

5699 5700
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5701
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5702 5703 5704
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5705 5706 5707
	struct file *file;
	size_t offset;
	int err;
5708

5709
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5710
	if (IS_ERR(obj))
5711 5712
		return obj;

5713
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5714

5715 5716 5717 5718 5719 5720
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5721

5722 5723 5724 5725 5726
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5727

5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5742 5743 5744 5745

	return obj;

fail:
5746
	i915_gem_object_put(obj);
5747
	return ERR_PTR(err);
5748
}
5749 5750 5751 5752 5753 5754

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5755
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5756 5757 5758 5759 5760
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5761
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5886
	if (!obj->mm.dirty)
5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5902

5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
	pages = fetch_and_zero(&obj->mm.pages);
	if (pages) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);

		__i915_gem_object_reset_page_iter(obj);

		spin_lock(&i915->mm.obj_lock);
		list_del(&obj->mm.link);
		spin_unlock(&i915->mm.obj_lock);
	}

5949 5950
	obj->ops = &i915_gem_phys_ops;

5951
	err = ____i915_gem_object_get_pages(obj);
5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	obj->mm.pages = pages;
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5971 5972
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5973
#include "selftests/mock_gem_device.c"
5974
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
5975
#include "selftests/huge_pages.c"
5976
#include "selftests/i915_gem_object.c"
5977
#include "selftests/i915_gem_coherency.c"
5978
#endif