i915_gem.c 135.0 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_frontbuffer.h"
36
#include "intel_mocs.h"
37
#include <linux/dma-fence-array.h>
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/stop_machine.h>
42
#include <linux/swap.h>
J
Jesse Barnes 已提交
43
#include <linux/pci.h>
44
#include <linux/dma-buf.h>
45

46
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
47
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
48
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
49

50 51 52
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
53
	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
54 55
}

56 57
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
58 59 60
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

61 62 63 64 65 66
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

67
static int
68
insert_mappable_node(struct i915_ggtt *ggtt,
69 70 71
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
72 73 74 75
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
76 77 78 79 80 81 82 83
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

84 85
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86
				  u64 size)
87
{
88
	spin_lock(&dev_priv->mm.object_stat_lock);
89 90
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
91
	spin_unlock(&dev_priv->mm.object_stat_lock);
92 93 94
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95
				     u64 size)
96
{
97
	spin_lock(&dev_priv->mm.object_stat_lock);
98 99
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
100
	spin_unlock(&dev_priv->mm.object_stat_lock);
101 102
}

103
static int
104
i915_gem_wait_for_error(struct i915_gpu_error *error)
105 106 107
{
	int ret;

108 109
	might_sleep();

110
	if (!i915_reset_in_progress(error))
111 112
		return 0;

113 114 115 116 117
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
118
	ret = wait_event_interruptible_timeout(error->reset_queue,
119
					       !i915_reset_in_progress(error),
120
					       I915_RESET_TIMEOUT);
121 122 123 124
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
125
		return ret;
126 127
	} else {
		return 0;
128
	}
129 130
}

131
int i915_mutex_lock_interruptible(struct drm_device *dev)
132
{
133
	struct drm_i915_private *dev_priv = to_i915(dev);
134 135
	int ret;

136
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137 138 139 140 141 142 143 144 145
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
146

147 148
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
149
			    struct drm_file *file)
150
{
151
	struct drm_i915_private *dev_priv = to_i915(dev);
152
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
153
	struct drm_i915_gem_get_aperture *args = data;
154
	struct i915_vma *vma;
155
	size_t pinned;
156

157
	pinned = 0;
158
	mutex_lock(&dev->struct_mutex);
159
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
163
		if (i915_vma_is_pinned(vma))
164
			pinned += vma->node.size;
165
	mutex_unlock(&dev->struct_mutex);
166

167
	args->aper_size = ggtt->base.total;
168
	args->aper_available_size = args->aper_size - pinned;
169

170 171 172
	return 0;
}

173
static struct sg_table *
174
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
175
{
176
	struct address_space *mapping = obj->base.filp->f_mapping;
177
	drm_dma_handle_t *phys;
178 179
	struct sg_table *st;
	struct scatterlist *sg;
180
	char *vaddr;
181
	int i;
182

183
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
184
		return ERR_PTR(-EINVAL);
185

186 187 188 189 190 191 192 193 194 195 196
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
197 198 199 200 201
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
202 203 204 205
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
206 207 208 209 210 211

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

212
		put_page(page);
213 214 215
		vaddr += PAGE_SIZE;
	}

216
	i915_gem_chipset_flush(to_i915(obj->base.dev));
217 218

	st = kmalloc(sizeof(*st), GFP_KERNEL);
219 220 221 222
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
223 224 225

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
226 227
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
228 229 230 231 232
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
233

234
	sg_dma_address(sg) = phys->busaddr;
235 236
	sg_dma_len(sg) = obj->base.size;

237 238 239 240 241
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
242
	return st;
243 244 245
}

static void
246
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
247 248
				struct sg_table *pages,
				bool needs_clflush)
249
{
C
Chris Wilson 已提交
250
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
251

C
Chris Wilson 已提交
252 253
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
254

255 256
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
257
	    !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
258
		drm_clflush_sg(pages);
259 260 261 262 263 264 265 266 267

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
268
	__i915_gem_object_release_shmem(obj, pages, false);
269

C
Chris Wilson 已提交
270
	if (obj->mm.dirty) {
271
		struct address_space *mapping = obj->base.filp->f_mapping;
272
		char *vaddr = obj->phys_handle->vaddr;
273 274 275
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
276 277 278 279 280 281 282 283 284 285 286 287 288
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
289
			if (obj->mm.madv == I915_MADV_WILLNEED)
290
				mark_page_accessed(page);
291
			put_page(page);
292 293
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
294
		obj->mm.dirty = false;
295 296
	}

297 298
	sg_free_table(pages);
	kfree(pages);
299 300

	drm_pci_free(obj->base.dev, obj->phys_handle);
301 302 303 304 305
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
306
	i915_gem_object_unpin_pages(obj);
307 308 309 310 311 312 313 314
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

315
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 317 318
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
319 320 321
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
322

323 324 325 326
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
327
	 */
328 329 330 331 332 333
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
334 335 336 337 338
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

339 340 341 342 343 344 345 346 347 348 349 350 351
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

352 353 354 355 356
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
357
{
358
	struct drm_i915_gem_request *rq;
359

360
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
394 395
	}

396 397 398 399 400 401
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

402
	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
432 433
		int ret;

434 435
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
436 437 438
		if (ret)
			return ret;

439 440 441 442
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
443
			if (timeout < 0)
444
				break;
445

446 447 448 449 450 451 452 453
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
454 455
	}

456
	if (excl && timeout >= 0)
457 458 459 460 461
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
462 463
}

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

528 529 530 531 532 533
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
534
 */
535 536 537 538 539
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
540
{
541 542 543 544 545 546 547
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
548

549 550 551
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
552
	return timeout < 0 ? timeout : 0;
553 554 555 556 557 558 559 560 561
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

562 563 564 565
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
566
	int ret;
567

568 569
	if (align > obj->base.size)
		return -EINVAL;
570

571
	if (obj->ops == &i915_gem_phys_ops)
572 573
		return 0;

C
Chris Wilson 已提交
574
	if (obj->mm.madv != I915_MADV_WILLNEED)
575 576 577 578 579
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
580 581 582 583
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

584
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
585 586
	if (obj->mm.pages)
		return -EBUSY;
587 588 589

	obj->ops = &i915_gem_phys_ops;

C
Chris Wilson 已提交
590
	return i915_gem_object_pin_pages(obj);
591 592 593 594 595
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
596
		     struct drm_file *file)
597 598
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
599
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
600 601 602 603

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
604
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
605 606
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
607

608
	drm_clflush_virt_range(vaddr, args->size);
609
	i915_gem_chipset_flush(to_i915(obj->base.dev));
610

611
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
612
	return 0;
613 614
}

615
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
616
{
617
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
618 619 620 621
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
622
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
623
	kmem_cache_free(dev_priv->objects, obj);
624 625
}

626 627
static int
i915_gem_create(struct drm_file *file,
628
		struct drm_i915_private *dev_priv,
629 630
		uint64_t size,
		uint32_t *handle_p)
631
{
632
	struct drm_i915_gem_object *obj;
633 634
	int ret;
	u32 handle;
635

636
	size = roundup(size, PAGE_SIZE);
637 638
	if (size == 0)
		return -EINVAL;
639 640

	/* Allocate the new object */
641
	obj = i915_gem_object_create(dev_priv, size);
642 643
	if (IS_ERR(obj))
		return PTR_ERR(obj);
644

645
	ret = drm_gem_handle_create(file, &obj->base, &handle);
646
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
647
	i915_gem_object_put(obj);
648 649
	if (ret)
		return ret;
650

651
	*handle_p = handle;
652 653 654
	return 0;
}

655 656 657 658 659 660
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
661
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
662
	args->size = args->pitch * args->height;
663
	return i915_gem_create(file, to_i915(dev),
664
			       args->size, &args->handle);
665 666 667 668
}

/**
 * Creates a new mm object and returns a handle to it.
669 670 671
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
672 673 674 675 676
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
677
	struct drm_i915_private *dev_priv = to_i915(dev);
678
	struct drm_i915_gem_create *args = data;
679

680
	i915_gem_flush_free_objects(dev_priv);
681

682
	return i915_gem_create(file, dev_priv,
683
			       args->size, &args->handle);
684 685
}

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

712
static inline int
713 714
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

738 739 740 741 742 743
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
744
				    unsigned int *needs_clflush)
745 746 747
{
	int ret;

748
	lockdep_assert_held(&obj->base.dev->struct_mutex);
749

750
	*needs_clflush = 0;
751 752
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
753

754 755 756 757 758
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
759 760 761
	if (ret)
		return ret;

C
Chris Wilson 已提交
762
	ret = i915_gem_object_pin_pages(obj);
763 764 765
	if (ret)
		return ret;

766 767
	i915_gem_object_flush_gtt_write_domain(obj);

768 769 770 771 772 773
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
774 775
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
776 777 778

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
779 780 781
		if (ret)
			goto err_unpin;

782
		*needs_clflush = 0;
783 784
	}

785
	/* return with the pages pinned */
786
	return 0;
787 788 789 790

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
791 792 793 794 795 796 797
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

798 799
	lockdep_assert_held(&obj->base.dev->struct_mutex);

800 801 802 803
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

804 805 806 807 808 809
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
810 811 812
	if (ret)
		return ret;

C
Chris Wilson 已提交
813
	ret = i915_gem_object_pin_pages(obj);
814 815 816
	if (ret)
		return ret;

817 818
	i915_gem_object_flush_gtt_write_domain(obj);

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
836 837 838
		if (ret)
			goto err_unpin;

839 840 841 842 843 844 845
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
846
	obj->mm.dirty = true;
847
	/* return with the pages pinned */
848
	return 0;
849 850 851 852

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
853 854
}

855 856 857 858
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
859
	if (unlikely(swizzled)) {
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

877 878 879
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
880
shmem_pread_slow(struct page *page, int offset, int length,
881 882 883 884 885 886 887 888
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
889
		shmem_clflush_swizzled_range(vaddr + offset, length,
890
					     page_do_bit17_swizzling);
891 892

	if (page_do_bit17_swizzling)
893
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
894
	else
895
		ret = __copy_to_user(user_data, vaddr + offset, length);
896 897
	kunmap(page);

898
	return ret ? - EFAULT : 0;
899 900
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
977 978
{
	void *vaddr;
979
	unsigned long unwritten;
980 981

	/* We can use the cpu mem copy function because this is X86. */
982 983 984 985 986 987 988 989 990
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
991 992 993 994
	return unwritten;
}

static int
995 996
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
997
{
998 999
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1000
	struct drm_mm_node node;
1001 1002 1003
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1004 1005
	int ret;

1006 1007 1008 1009 1010 1011 1012
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1013 1014 1015
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1016
		ret = i915_vma_put_fence(vma);
1017 1018 1019 1020 1021
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1022
	if (IS_ERR(vma)) {
1023
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1024
		if (ret)
1025 1026
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1027 1028 1029 1030 1031 1032
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1033
	mutex_unlock(&i915->drm.struct_mutex);
1034

1035 1036 1037
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1054
					       node.start, I915_CACHE_NONE, 0);
1055 1056 1057 1058
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1059 1060 1061

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1062 1063 1064 1065 1066 1067 1068 1069 1070
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1071
	mutex_lock(&i915->drm.struct_mutex);
1072 1073 1074 1075
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1076
				       node.start, node.size);
1077 1078
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1079
		i915_vma_unpin(vma);
1080
	}
1081 1082 1083
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1084

1085 1086 1087
	return ret;
}

1088 1089
/**
 * Reads data from the object referenced by handle.
1090 1091 1092
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1093 1094 1095 1096 1097
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1098
		     struct drm_file *file)
1099 1100
{
	struct drm_i915_gem_pread *args = data;
1101
	struct drm_i915_gem_object *obj;
1102
	int ret;
1103

1104 1105 1106 1107
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1108
		       u64_to_user_ptr(args->data_ptr),
1109 1110 1111
		       args->size))
		return -EFAULT;

1112
	obj = i915_gem_object_lookup(file, args->handle);
1113 1114
	if (!obj)
		return -ENOENT;
1115

1116
	/* Bounds check source.  */
1117
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1118
		ret = -EINVAL;
1119
		goto out;
C
Chris Wilson 已提交
1120 1121
	}

C
Chris Wilson 已提交
1122 1123
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1124 1125 1126 1127
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1128
	if (ret)
1129
		goto out;
1130

1131
	ret = i915_gem_object_pin_pages(obj);
1132
	if (ret)
1133
		goto out;
1134

1135
	ret = i915_gem_shmem_pread(obj, args);
1136
	if (ret == -EFAULT || ret == -ENODEV)
1137
		ret = i915_gem_gtt_pread(obj, args);
1138

1139 1140
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1141
	i915_gem_object_put(obj);
1142
	return ret;
1143 1144
}

1145 1146
/* This is the fast write path which cannot handle
 * page faults in the source data
1147
 */
1148

1149 1150 1151 1152
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1153
{
1154
	void *vaddr;
1155
	unsigned long unwritten;
1156

1157
	/* We can use the cpu mem copy function because this is X86. */
1158 1159
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1160
						      user_data, length);
1161 1162 1163 1164 1165 1166 1167
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1168 1169 1170 1171

	return unwritten;
}

1172 1173 1174
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1175
 * @obj: i915 GEM object
1176
 * @args: pwrite arguments structure
1177
 */
1178
static int
1179 1180
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1181
{
1182
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1183 1184
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1185 1186 1187
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1188
	int ret;
1189

1190 1191 1192
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1193

1194
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1195
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1196
				       PIN_MAPPABLE | PIN_NONBLOCK);
1197 1198 1199
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1200
		ret = i915_vma_put_fence(vma);
1201 1202 1203 1204 1205
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1206
	if (IS_ERR(vma)) {
1207
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1208
		if (ret)
1209 1210
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1211
	}
D
Daniel Vetter 已提交
1212 1213 1214 1215 1216

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1217 1218
	mutex_unlock(&i915->drm.struct_mutex);

1219
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1220

1221 1222 1223 1224
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1225 1226
		/* Operation in this page
		 *
1227 1228 1229
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1230
		 */
1231
		u32 page_base = node.start;
1232 1233
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1244
		/* If we get a fault while copying data, then (presumably) our
1245 1246
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1247 1248
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1249
		 */
1250 1251 1252 1253
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1254
		}
1255

1256 1257 1258
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1259
	}
1260
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1261 1262

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1263
out_unpin:
1264 1265 1266
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1267
				       node.start, node.size);
1268 1269
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1270
		i915_vma_unpin(vma);
1271
	}
1272
out_unlock:
1273
	intel_runtime_pm_put(i915);
1274
	mutex_unlock(&i915->drm.struct_mutex);
1275
	return ret;
1276 1277
}

1278
static int
1279
shmem_pwrite_slow(struct page *page, int offset, int length,
1280 1281 1282 1283
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1284
{
1285 1286
	char *vaddr;
	int ret;
1287

1288
	vaddr = kmap(page);
1289
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1290
		shmem_clflush_swizzled_range(vaddr + offset, length,
1291
					     page_do_bit17_swizzling);
1292
	if (page_do_bit17_swizzling)
1293 1294
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1295
	else
1296
		ret = __copy_from_user(vaddr + offset, user_data, length);
1297
	if (needs_clflush_after)
1298
		shmem_clflush_swizzled_range(vaddr + offset, length,
1299
					     page_do_bit17_swizzling);
1300
	kunmap(page);
1301

1302
	return ret ? -EFAULT : 0;
1303 1304
}

1305 1306 1307 1308 1309
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1310
static int
1311 1312 1313 1314
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1315
{
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1348
	unsigned int needs_clflush;
1349 1350
	unsigned int offset, idx;
	int ret;
1351

1352
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1353 1354 1355
	if (ret)
		return ret;

1356 1357 1358 1359
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1360

1361 1362 1363
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1364

1365 1366 1367 1368 1369 1370 1371
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1372

1373 1374 1375 1376 1377 1378
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1379

1380 1381 1382
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1383

1384 1385 1386 1387
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1388
		if (ret)
1389
			break;
1390

1391 1392 1393
		remain -= length;
		user_data += length;
		offset = 0;
1394
	}
1395

1396
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1397
	i915_gem_obj_finish_shmem_access(obj);
1398
	return ret;
1399 1400 1401 1402
}

/**
 * Writes data to the object referenced by handle.
1403 1404 1405
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1406 1407 1408 1409 1410
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1411
		      struct drm_file *file)
1412 1413
{
	struct drm_i915_gem_pwrite *args = data;
1414
	struct drm_i915_gem_object *obj;
1415 1416 1417 1418 1419 1420
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1421
		       u64_to_user_ptr(args->data_ptr),
1422 1423 1424
		       args->size))
		return -EFAULT;

1425
	obj = i915_gem_object_lookup(file, args->handle);
1426 1427
	if (!obj)
		return -ENOENT;
1428

1429
	/* Bounds check destination. */
1430
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1431
		ret = -EINVAL;
1432
		goto err;
C
Chris Wilson 已提交
1433 1434
	}

C
Chris Wilson 已提交
1435 1436
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1437 1438 1439 1440 1441 1442
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1443 1444 1445 1446 1447
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1448 1449 1450
	if (ret)
		goto err;

1451
	ret = i915_gem_object_pin_pages(obj);
1452
	if (ret)
1453
		goto err;
1454

D
Daniel Vetter 已提交
1455
	ret = -EFAULT;
1456 1457 1458 1459 1460 1461
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1462
	if (!i915_gem_object_has_struct_page(obj) ||
1463
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1464 1465
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1466 1467
		 * textures). Fallback to the shmem path in that case.
		 */
1468
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1469

1470
	if (ret == -EFAULT || ret == -ENOSPC) {
1471 1472
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1473
		else
1474
			ret = i915_gem_shmem_pwrite(obj, args);
1475
	}
1476

1477
	i915_gem_object_unpin_pages(obj);
1478
err:
C
Chris Wilson 已提交
1479
	i915_gem_object_put(obj);
1480
	return ret;
1481 1482
}

1483
static inline enum fb_op_origin
1484 1485
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1486 1487
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1488 1489
}

1490 1491 1492 1493 1494 1495 1496 1497
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1498
			break;
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1511
	list_move_tail(&obj->global_link, list);
1512 1513
}

1514
/**
1515 1516
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1517 1518 1519
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1520 1521 1522
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1523
			  struct drm_file *file)
1524 1525
{
	struct drm_i915_gem_set_domain *args = data;
1526
	struct drm_i915_gem_object *obj;
1527 1528
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1529
	int err;
1530

1531
	/* Only handle setting domains to types used by the CPU. */
1532
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1533 1534 1535 1536 1537 1538 1539 1540
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1541
	obj = i915_gem_object_lookup(file, args->handle);
1542 1543
	if (!obj)
		return -ENOENT;
1544

1545 1546 1547 1548
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1549
	err = i915_gem_object_wait(obj,
1550 1551 1552 1553
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1554
	if (err)
C
Chris Wilson 已提交
1555
		goto out;
1556

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1567
		goto out;
1568 1569 1570

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1571
		goto out_unpin;
1572

1573
	if (read_domains & I915_GEM_DOMAIN_GTT)
1574
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1575
	else
1576
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1577

1578 1579
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1580

1581
	mutex_unlock(&dev->struct_mutex);
1582

1583 1584 1585
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1586
out_unpin:
1587
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1588 1589
out:
	i915_gem_object_put(obj);
1590
	return err;
1591 1592 1593 1594
}

/**
 * Called when user space has done writes to this buffer
1595 1596 1597
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1598 1599 1600
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1601
			 struct drm_file *file)
1602 1603
{
	struct drm_i915_gem_sw_finish *args = data;
1604
	struct drm_i915_gem_object *obj;
1605
	int err = 0;
1606

1607
	obj = i915_gem_object_lookup(file, args->handle);
1608 1609
	if (!obj)
		return -ENOENT;
1610 1611

	/* Pinned buffers may be scanout, so flush the cache */
1612 1613 1614 1615 1616 1617 1618
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1619

C
Chris Wilson 已提交
1620
	i915_gem_object_put(obj);
1621
	return err;
1622 1623 1624
}

/**
1625 1626 1627 1628 1629
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1630 1631 1632
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1643 1644 1645
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1646
		    struct drm_file *file)
1647 1648
{
	struct drm_i915_gem_mmap *args = data;
1649
	struct drm_i915_gem_object *obj;
1650 1651
	unsigned long addr;

1652 1653 1654
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1655
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1656 1657
		return -ENODEV;

1658 1659
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1660
		return -ENOENT;
1661

1662 1663 1664
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1665
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1666
		i915_gem_object_put(obj);
1667 1668 1669
		return -EINVAL;
	}

1670
	addr = vm_mmap(obj->base.filp, 0, args->size,
1671 1672
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1673 1674 1675 1676
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1677
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1678
			i915_gem_object_put(obj);
1679 1680
			return -EINTR;
		}
1681 1682 1683 1684 1685 1686 1687
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1688 1689

		/* This may race, but that's ok, it only gets set */
1690
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1691
	}
C
Chris Wilson 已提交
1692
	i915_gem_object_put(obj);
1693 1694 1695 1696 1697 1698 1699 1700
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1701 1702
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1703
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1704 1705
}

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1767 1768
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1769
		min_t(unsigned int, chunk,
1770
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1771 1772 1773 1774 1775 1776 1777 1778

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1779 1780
/**
 * i915_gem_fault - fault a page into the GTT
1781
 * @vmf: fault info
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1793 1794 1795
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1796
 */
1797
int i915_gem_fault(struct vm_fault *vmf)
1798
{
1799
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1800
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1801
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1802
	struct drm_device *dev = obj->base.dev;
1803 1804
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1805
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1806
	struct i915_vma *vma;
1807
	pgoff_t page_offset;
1808
	unsigned int flags;
1809
	int ret;
1810

1811
	/* We don't use vmf->pgoff since that has the fake offset */
1812
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1813

C
Chris Wilson 已提交
1814 1815
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1816
	/* Try to flush the object off the GPU first without holding the lock.
1817
	 * Upon acquiring the lock, we will perform our sanity checks and then
1818 1819 1820
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1821 1822 1823 1824
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1825
	if (ret)
1826 1827
		goto err;

1828 1829 1830 1831
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1832 1833 1834 1835 1836
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1837

1838
	/* Access to snoopable pages through the GTT is incoherent. */
1839
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1840
		ret = -EFAULT;
1841
		goto err_unlock;
1842 1843
	}

1844 1845 1846 1847 1848 1849 1850 1851
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1852
	/* Now pin it into the GTT as needed */
1853
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1854 1855
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1856
		struct i915_ggtt_view view =
1857
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1858

1859 1860 1861 1862 1863
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1864 1865
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1866 1867
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1868
		goto err_unlock;
C
Chris Wilson 已提交
1869
	}
1870

1871 1872
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1873
		goto err_unpin;
1874

1875
	ret = i915_vma_get_fence(vma);
1876
	if (ret)
1877
		goto err_unpin;
1878

1879
	/* Mark as being mmapped into userspace for later revocation */
1880
	assert_rpm_wakelock_held(dev_priv);
1881 1882 1883
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1884
	/* Finally, remap it using the new GTT offset */
1885
	ret = remap_io_mapping(area,
1886
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1887 1888 1889
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1890

1891
err_unpin:
C
Chris Wilson 已提交
1892
	__i915_vma_unpin(vma);
1893
err_unlock:
1894
	mutex_unlock(&dev->struct_mutex);
1895 1896
err_rpm:
	intel_runtime_pm_put(dev_priv);
1897
	i915_gem_object_unpin_pages(obj);
1898
err:
1899
	switch (ret) {
1900
	case -EIO:
1901 1902 1903 1904 1905 1906 1907
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1908 1909 1910
			ret = VM_FAULT_SIGBUS;
			break;
		}
1911
	case -EAGAIN:
D
Daniel Vetter 已提交
1912 1913 1914 1915
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1916
		 */
1917 1918
	case 0:
	case -ERESTARTSYS:
1919
	case -EINTR:
1920 1921 1922 1923 1924
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1925 1926
		ret = VM_FAULT_NOPAGE;
		break;
1927
	case -ENOMEM:
1928 1929
		ret = VM_FAULT_OOM;
		break;
1930
	case -ENOSPC:
1931
	case -EFAULT:
1932 1933
		ret = VM_FAULT_SIGBUS;
		break;
1934
	default:
1935
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1936 1937
		ret = VM_FAULT_SIGBUS;
		break;
1938
	}
1939
	return ret;
1940 1941
}

1942 1943 1944 1945
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1946
 * Preserve the reservation of the mmapping with the DRM core code, but
1947 1948 1949 1950 1951 1952 1953 1954 1955
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1956
void
1957
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1958
{
1959 1960
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1961 1962 1963
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1964 1965 1966 1967
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1968
	 */
1969
	lockdep_assert_held(&i915->drm.struct_mutex);
1970
	intel_runtime_pm_get(i915);
1971

1972
	if (list_empty(&obj->userfault_link))
1973
		goto out;
1974

1975
	list_del_init(&obj->userfault_link);
1976 1977
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1978 1979 1980 1981 1982 1983 1984 1985 1986

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
1987 1988 1989

out:
	intel_runtime_pm_put(i915);
1990 1991
}

1992
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1993
{
1994
	struct drm_i915_gem_object *obj, *on;
1995
	int i;
1996

1997 1998 1999 2000 2001 2002
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2003

2004 2005 2006
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2007 2008 2009
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2010 2011 2012 2013 2014 2015 2016 2017

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2028 2029 2030 2031 2032 2033 2034

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2035 2036
}

2037 2038
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2039
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2040
	int err;
2041

2042
	err = drm_gem_create_mmap_offset(&obj->base);
2043
	if (likely(!err))
2044
		return 0;
2045

2046 2047 2048 2049 2050
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2051

2052
		i915_gem_drain_freed_objects(dev_priv);
2053
		err = drm_gem_create_mmap_offset(&obj->base);
2054 2055 2056 2057
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2058

2059
	return err;
2060 2061 2062 2063 2064 2065 2066
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2067
int
2068 2069
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2070
		  uint32_t handle,
2071
		  uint64_t *offset)
2072
{
2073
	struct drm_i915_gem_object *obj;
2074 2075
	int ret;

2076
	obj = i915_gem_object_lookup(file, handle);
2077 2078
	if (!obj)
		return -ENOENT;
2079

2080
	ret = i915_gem_object_create_mmap_offset(obj);
2081 2082
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2083

C
Chris Wilson 已提交
2084
	i915_gem_object_put(obj);
2085
	return ret;
2086 2087
}

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2109
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2110 2111
}

D
Daniel Vetter 已提交
2112 2113 2114
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2115
{
2116
	i915_gem_object_free_mmap_offset(obj);
2117

2118 2119
	if (obj->base.filp == NULL)
		return;
2120

D
Daniel Vetter 已提交
2121 2122 2123 2124 2125
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2126
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2127
	obj->mm.madv = __I915_MADV_PURGED;
2128
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2129
}
2130

2131
/* Try to discard unwanted pages */
2132
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2133
{
2134 2135
	struct address_space *mapping;

2136 2137 2138
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2139
	switch (obj->mm.madv) {
2140 2141 2142 2143 2144 2145 2146 2147 2148
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2149
	mapping = obj->base.filp->f_mapping,
2150
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2151 2152
}

2153
static void
2154 2155
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2156
{
2157 2158
	struct sgt_iter sgt_iter;
	struct page *page;
2159

2160
	__i915_gem_object_release_shmem(obj, pages, true);
2161

2162
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2163

2164
	if (i915_gem_object_needs_bit17_swizzle(obj))
2165
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2166

2167
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2168
		if (obj->mm.dirty)
2169
			set_page_dirty(page);
2170

C
Chris Wilson 已提交
2171
		if (obj->mm.madv == I915_MADV_WILLNEED)
2172
			mark_page_accessed(page);
2173

2174
		put_page(page);
2175
	}
C
Chris Wilson 已提交
2176
	obj->mm.dirty = false;
2177

2178 2179
	sg_free_table(pages);
	kfree(pages);
2180
}
C
Chris Wilson 已提交
2181

2182 2183 2184 2185 2186
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2187 2188
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2189 2190
}

2191 2192
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2193
{
2194
	struct sg_table *pages;
2195

C
Chris Wilson 已提交
2196
	if (i915_gem_object_has_pinned_pages(obj))
2197
		return;
2198

2199
	GEM_BUG_ON(obj->bind_count);
2200 2201 2202 2203
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2204
	mutex_lock_nested(&obj->mm.lock, subclass);
2205 2206
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2207

2208 2209 2210
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2211 2212
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2213

C
Chris Wilson 已提交
2214
	if (obj->mm.mapping) {
2215 2216
		void *ptr;

C
Chris Wilson 已提交
2217
		ptr = ptr_mask_bits(obj->mm.mapping);
2218 2219
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2220
		else
2221 2222
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2223
		obj->mm.mapping = NULL;
2224 2225
	}

2226 2227
	__i915_gem_object_reset_page_iter(obj);

2228 2229 2230
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2231 2232
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2233 2234
}

2235 2236 2237 2238 2239 2240 2241 2242 2243
static void i915_sg_trim(struct sg_table *orig_st)
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
		return;

2244
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2245 2246 2247 2248 2249 2250 2251 2252
		return;

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2253
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2254 2255 2256 2257 2258 2259

	sg_free_table(orig_st);

	*orig_st = new_st;
}

2260
static struct sg_table *
C
Chris Wilson 已提交
2261
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2262
{
2263
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2264 2265
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2266
	struct address_space *mapping;
2267 2268
	struct sg_table *st;
	struct scatterlist *sg;
2269
	struct sgt_iter sgt_iter;
2270
	struct page *page;
2271
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2272
	unsigned int max_segment;
I
Imre Deak 已提交
2273
	int ret;
C
Chris Wilson 已提交
2274
	gfp_t gfp;
2275

C
Chris Wilson 已提交
2276 2277 2278 2279
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2280 2281
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2282

2283
	max_segment = swiotlb_max_segment();
2284
	if (!max_segment)
2285
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2286

2287 2288
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2289
		return ERR_PTR(-ENOMEM);
2290

2291
rebuild_st:
2292 2293
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2294
		return ERR_PTR(-ENOMEM);
2295
	}
2296

2297 2298 2299 2300 2301
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2302
	mapping = obj->base.filp->f_mapping;
2303
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2304
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2305 2306 2307
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2308 2309
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2310 2311 2312 2313 2314
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2315 2316 2317 2318 2319 2320 2321
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2322
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2323 2324
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
2325
				goto err_sg;
I
Imre Deak 已提交
2326
			}
C
Chris Wilson 已提交
2327
		}
2328 2329 2330
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2331 2332 2333 2334 2335 2336 2337 2338
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2339 2340 2341

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2342
	}
2343
	if (sg) /* loop terminated early; short sg table */
2344
		sg_mark_end(sg);
2345

2346 2347 2348
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2349
	ret = i915_gem_gtt_prepare_pages(obj, st);
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2369

2370
	if (i915_gem_object_needs_bit17_swizzle(obj))
2371
		i915_gem_object_do_bit_17_swizzle(obj, st);
2372

2373
	return st;
2374

2375
err_sg:
2376
	sg_mark_end(sg);
2377
err_pages:
2378 2379
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2380 2381
	sg_free_table(st);
	kfree(st);
2382 2383 2384 2385 2386 2387 2388 2389 2390

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2391 2392 2393
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2394 2395 2396 2397 2398 2399
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2400
	lockdep_assert_held(&obj->mm.lock);
2401 2402 2403 2404 2405

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2406 2407 2408 2409 2410 2411 2412

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2413 2414 2415 2416 2417 2418
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2419 2420
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2432 2433
}

2434
/* Ensure that the associated pages are gathered from the backing storage
2435
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2436
 * multiple times before they are released by a single call to
2437
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2438 2439 2440
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2441
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2442
{
2443
	int err;
2444

2445 2446 2447
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2448

2449
	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2450 2451 2452
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2453

2454 2455 2456
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2457

2458 2459
unlock:
	mutex_unlock(&obj->mm.lock);
2460
	return err;
2461 2462
}

2463
/* The 'mapping' part of i915_gem_object_pin_map() below */
2464 2465
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2466 2467
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2468
	struct sg_table *sgt = obj->mm.pages;
2469 2470
	struct sgt_iter sgt_iter;
	struct page *page;
2471 2472
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2473
	unsigned long i = 0;
2474
	pgprot_t pgprot;
2475 2476 2477
	void *addr;

	/* A single page can always be kmapped */
2478
	if (n_pages == 1 && type == I915_MAP_WB)
2479 2480
		return kmap(sg_page(sgt->sgl));

2481 2482 2483 2484 2485 2486
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2487

2488 2489
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2490 2491 2492 2493

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2494 2495 2496 2497 2498 2499 2500 2501 2502
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2503

2504 2505
	if (pages != stack_pages)
		drm_free_large(pages);
2506 2507 2508 2509 2510

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2511 2512
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2513
{
2514 2515 2516
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2517 2518
	int ret;

2519
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2520

2521
	ret = mutex_lock_interruptible(&obj->mm.lock);
2522 2523 2524
	if (ret)
		return ERR_PTR(ret);

2525 2526
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2527
		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2528 2529 2530
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2531

2532 2533 2534
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2535 2536 2537
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2538

C
Chris Wilson 已提交
2539
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2540 2541 2542
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2543
			goto err_unpin;
2544
		}
2545 2546 2547 2548 2549 2550

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2551
		ptr = obj->mm.mapping = NULL;
2552 2553
	}

2554 2555 2556 2557
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2558
			goto err_unpin;
2559 2560
		}

C
Chris Wilson 已提交
2561
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2562 2563
	}

2564 2565
out_unlock:
	mutex_unlock(&obj->mm.lock);
2566 2567
	return ptr;

2568 2569 2570 2571 2572
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2573 2574
}

2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
	if (READ_ONCE(obj->mm.pages))
		return -ENODEV;

	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2644
static bool ban_context(const struct i915_gem_context *ctx)
2645
{
2646 2647
	return (i915_gem_context_is_bannable(ctx) &&
		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2648 2649
}

2650
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2651
{
2652
	ctx->guilty_count++;
2653 2654 2655
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
	if (ban_context(ctx))
		i915_gem_context_set_banned(ctx);
2656 2657

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2658
			 ctx->name, ctx->ban_score,
2659
			 yesno(i915_gem_context_is_banned(ctx)));
2660

2661
	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2662 2663
		return;

2664 2665 2666
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2667 2668 2669 2670
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2671
	ctx->active_count++;
2672 2673
}

2674
struct drm_i915_gem_request *
2675
i915_gem_find_active_request(struct intel_engine_cs *engine)
2676
{
2677 2678
	struct drm_i915_gem_request *request;

2679 2680 2681 2682 2683 2684 2685 2686
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2687
	list_for_each_entry(request, &engine->timeline->requests, link) {
C
Chris Wilson 已提交
2688
		if (__i915_gem_request_completed(request))
2689
			continue;
2690

2691
		GEM_BUG_ON(request->engine != engine);
2692
		return request;
2693
	}
2694 2695 2696 2697

	return NULL;
}

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2712
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2713 2714 2715
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
2716
	int err = 0;
2717 2718

	/* Ensure irq handler finishes, and not run again. */
2719 2720 2721
	for_each_engine(engine, dev_priv, id) {
		struct drm_i915_gem_request *request;

2722 2723 2724 2725 2726 2727 2728 2729
		/* Prevent request submission to the hardware until we have
		 * completed the reset in i915_gem_reset_finish(). If a request
		 * is completed by one engine, it may then queue a request
		 * to a second via its engine->irq_tasklet *just* as we are
		 * calling engine->init_hw() and also writing the ELSP.
		 * Turning off the engine->irq_tasklet until the reset is over
		 * prevents the race.
		 */
2730
		tasklet_kill(&engine->irq_tasklet);
2731
		tasklet_disable(&engine->irq_tasklet);
2732

2733 2734 2735 2736 2737 2738 2739
		if (engine_stalled(engine)) {
			request = i915_gem_find_active_request(engine);
			if (request && request->fence.error == -EIO)
				err = -EIO; /* Previous reset failed! */
		}
	}

2740
	i915_gem_revoke_fences(dev_priv);
2741 2742

	return err;
2743 2744
}

2745
static void skip_request(struct drm_i915_gem_request *request)
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2760 2761

	dma_fence_set_error(&request->fence, -EIO);
2762 2763
}

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2787 2788 2789 2790 2791 2792
/* Returns true if the request was guilty of hang */
static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
{
	/* Read once and return the resolution */
	const bool guilty = engine_stalled(request->engine);

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
	if (guilty) {
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
	} else {
		i915_gem_context_mark_innocent(request->ctx);
		dma_fence_set_error(&request->fence, -EAGAIN);
	}

	return guilty;
}

2825
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2826 2827 2828
{
	struct drm_i915_gem_request *request;

2829 2830 2831
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2832
	request = i915_gem_find_active_request(engine);
2833 2834 2835
	if (request && i915_gem_reset_request(request)) {
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
2836

2837 2838 2839 2840
		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
	}
2841 2842 2843

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2844
}
2845

2846
void i915_gem_reset(struct drm_i915_private *dev_priv)
2847
{
2848
	struct intel_engine_cs *engine;
2849
	enum intel_engine_id id;
2850

2851 2852
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2853 2854
	i915_gem_retire_requests(dev_priv);

2855
	for_each_engine(engine, dev_priv, id)
2856 2857
		i915_gem_reset_engine(engine);

2858
	i915_gem_restore_fences(dev_priv);
2859 2860 2861 2862 2863 2864 2865

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2866 2867
}

2868 2869
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
2870 2871 2872
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

2873
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2874 2875 2876

	for_each_engine(engine, dev_priv, id)
		tasklet_enable(&engine->irq_tasklet);
2877 2878
}

2879 2880
static void nop_submit_request(struct drm_i915_gem_request *request)
{
2881
	dma_fence_set_error(&request->fence, -EIO);
2882 2883
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2884 2885
}

2886
static void engine_set_wedged(struct intel_engine_cs *engine)
2887
{
2888 2889 2890
	struct drm_i915_gem_request *request;
	unsigned long flags;

2891 2892 2893 2894 2895 2896
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
2897
	engine->submit_request = nop_submit_request;
2898

2899 2900 2901 2902 2903 2904
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
		dma_fence_set_error(&request->fence, -EIO);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

2905 2906 2907 2908
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2909
	intel_engine_init_global_seqno(engine,
2910
				       intel_engine_last_submit(engine));
2911

2912 2913 2914 2915 2916 2917
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2918
	if (i915.enable_execlists) {
2919 2920 2921 2922
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline->lock, flags);

2923 2924 2925
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2926 2927
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
2928 2929

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2930
	}
2931 2932
}

2933
static int __i915_gem_set_wedged_BKL(void *data)
2934
{
2935
	struct drm_i915_private *i915 = data;
2936
	struct intel_engine_cs *engine;
2937
	enum intel_engine_id id;
2938

2939
	for_each_engine(engine, i915, id)
2940
		engine_set_wedged(engine);
2941 2942 2943 2944 2945 2946

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
2947 2948
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2949

2950
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2951

2952
	i915_gem_context_lost(dev_priv);
2953
	i915_gem_retire_requests(dev_priv);
2954 2955

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2956 2957
}

2958
static void
2959 2960
i915_gem_retire_work_handler(struct work_struct *work)
{
2961
	struct drm_i915_private *dev_priv =
2962
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2963
	struct drm_device *dev = &dev_priv->drm;
2964

2965
	/* Come back later if the device is busy... */
2966
	if (mutex_trylock(&dev->struct_mutex)) {
2967
		i915_gem_retire_requests(dev_priv);
2968
		mutex_unlock(&dev->struct_mutex);
2969
	}
2970 2971 2972 2973 2974

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2975 2976
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2977 2978
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2979
				   round_jiffies_up_relative(HZ));
2980
	}
2981
}
2982

2983 2984 2985 2986
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2987
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2988
	struct drm_device *dev = &dev_priv->drm;
2989
	struct intel_engine_cs *engine;
2990
	enum intel_engine_id id;
2991 2992 2993 2994 2995
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

2996 2997 2998 2999 3000 3001 3002
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
		 intel_execlists_idle(dev_priv), 10);

3003
	if (READ_ONCE(dev_priv->gt.active_requests))
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3017 3018 3019 3020 3021 3022 3023
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

3024
	if (dev_priv->gt.active_requests)
3025
		goto out_unlock;
3026

3027 3028 3029
	if (wait_for(intel_execlists_idle(dev_priv), 10))
		DRM_ERROR("Timeout waiting for engines to idle\n");

3030
	for_each_engine(engine, dev_priv, id)
3031
		i915_gem_batch_pool_fini(&engine->batch_pool);
3032

3033 3034 3035
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3036

3037 3038 3039 3040 3041
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3042

3043 3044 3045 3046
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3047
	}
3048 3049
}

3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
3060 3061 3062 3063 3064 3065

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
3066 3067 3068
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3080 3081
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3082 3083 3084
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3109 3110
	ktime_t start;
	long ret;
3111

3112 3113 3114
	if (args->flags != 0)
		return -EINVAL;

3115
	obj = i915_gem_object_lookup(file, args->bo_handle);
3116
	if (!obj)
3117 3118
		return -ENOENT;

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3140 3141
	}

C
Chris Wilson 已提交
3142
	i915_gem_object_put(obj);
3143
	return ret;
3144 3145
}

3146
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3147
{
3148
	int ret, i;
3149

3150 3151 3152 3153 3154
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3155

3156 3157 3158 3159 3160 3161 3162
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3175 3176 3177
		if (ret)
			return ret;
	}
3178

3179
	return 0;
3180 3181
}

3182 3183
void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			     bool force)
3184 3185 3186 3187 3188
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
C
Chris Wilson 已提交
3189
	if (!obj->mm.pages)
3190
		return;
3191

3192 3193 3194 3195
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3196
	if (obj->stolen || obj->phys_handle)
3197
		return;
3198

3199 3200 3201 3202 3203 3204 3205 3206
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3207 3208
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3209
		return;
3210
	}
3211

C
Chris Wilson 已提交
3212
	trace_i915_gem_object_clflush(obj);
C
Chris Wilson 已提交
3213
	drm_clflush_sg(obj->mm.pages);
3214
	obj->cache_dirty = false;
3215 3216 3217 3218
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3219
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3220
{
3221
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3222

3223
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3224 3225
		return;

3226
	/* No actual flushing is required for the GTT write domain.  Writes
3227
	 * to it "immediately" go to main memory as far as we know, so there's
3228
	 * no chipset flush.  It also doesn't land in render cache.
3229 3230 3231 3232
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3233 3234 3235 3236 3237 3238 3239
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3240
	 */
3241
	wmb();
3242
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3243
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3244

3245
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3246

3247
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3248
	trace_i915_gem_object_change_domain(obj,
3249
					    obj->base.read_domains,
3250
					    I915_GEM_DOMAIN_GTT);
3251 3252 3253 3254
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3255
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3256
{
3257
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3258 3259
		return;

3260
	i915_gem_clflush_object(obj, obj->pin_display);
3261
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3262

3263
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3264
	trace_i915_gem_object_change_domain(obj,
3265
					    obj->base.read_domains,
3266
					    I915_GEM_DOMAIN_CPU);
3267 3268
}

3269 3270
/**
 * Moves a single object to the GTT read, and possibly write domain.
3271 3272
 * @obj: object to act on
 * @write: ask for write access or read only
3273 3274 3275 3276
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3277
int
3278
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3279
{
C
Chris Wilson 已提交
3280
	uint32_t old_write_domain, old_read_domains;
3281
	int ret;
3282

3283
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3284

3285 3286 3287 3288 3289 3290
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3291 3292 3293
	if (ret)
		return ret;

3294 3295 3296
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3297 3298 3299 3300 3301 3302 3303 3304
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3305
	ret = i915_gem_object_pin_pages(obj);
3306 3307 3308
	if (ret)
		return ret;

3309
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3310

3311 3312 3313 3314 3315 3316 3317
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3318 3319
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3320

3321 3322 3323
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3324
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3325
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3326
	if (write) {
3327 3328
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3329
		obj->mm.dirty = true;
3330 3331
	}

C
Chris Wilson 已提交
3332 3333 3334 3335
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

C
Chris Wilson 已提交
3336
	i915_gem_object_unpin_pages(obj);
3337 3338 3339
	return 0;
}

3340 3341
/**
 * Changes the cache-level of an object across all VMA.
3342 3343
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3355 3356 3357
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3358
	struct i915_vma *vma;
3359
	int ret;
3360

3361 3362
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3363
	if (obj->cache_level == cache_level)
3364
		return 0;
3365

3366 3367 3368 3369 3370
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3371 3372
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3373 3374 3375
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3376
		if (i915_vma_is_pinned(vma)) {
3377 3378 3379 3380
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3393 3394
	}

3395 3396 3397 3398 3399 3400 3401
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3402
	if (obj->bind_count) {
3403 3404 3405 3406
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3407 3408 3409 3410 3411 3412
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3413 3414 3415
		if (ret)
			return ret;

3416 3417
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3434 3435 3436 3437 3438
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3439 3440 3441 3442 3443 3444 3445 3446
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3447 3448
		}

3449
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3450 3451 3452 3453 3454 3455 3456
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3457 3458
	}

3459 3460 3461 3462
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
	    cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		obj->cache_dirty = true;

3463
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3464 3465 3466
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3467 3468 3469
	return 0;
}

B
Ben Widawsky 已提交
3470 3471
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3472
{
B
Ben Widawsky 已提交
3473
	struct drm_i915_gem_caching *args = data;
3474
	struct drm_i915_gem_object *obj;
3475
	int err = 0;
3476

3477 3478 3479 3480 3481 3482
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3483

3484 3485 3486 3487 3488 3489
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3490 3491 3492 3493
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3494 3495 3496 3497
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3498 3499 3500
out:
	rcu_read_unlock();
	return err;
3501 3502
}

B
Ben Widawsky 已提交
3503 3504
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3505
{
3506
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3507
	struct drm_i915_gem_caching *args = data;
3508 3509
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3510
	int ret = 0;
3511

B
Ben Widawsky 已提交
3512 3513
	switch (args->caching) {
	case I915_CACHING_NONE:
3514 3515
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3516
	case I915_CACHING_CACHED:
3517 3518 3519 3520 3521 3522
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3523
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3524 3525
			return -ENODEV;

3526 3527
		level = I915_CACHE_LLC;
		break;
3528
	case I915_CACHING_DISPLAY:
3529
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3530
		break;
3531 3532 3533 3534
	default:
		return -EINVAL;
	}

3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3546
	if (ret)
3547
		goto out;
B
Ben Widawsky 已提交
3548

3549 3550 3551
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3552 3553 3554

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3555 3556 3557

out:
	i915_gem_object_put(obj);
3558 3559 3560
	return ret;
}

3561
/*
3562 3563 3564
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3565
 */
C
Chris Wilson 已提交
3566
struct i915_vma *
3567 3568
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3569
				     const struct i915_ggtt_view *view)
3570
{
C
Chris Wilson 已提交
3571
	struct i915_vma *vma;
3572
	u32 old_read_domains, old_write_domain;
3573 3574
	int ret;

3575 3576
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3577 3578 3579
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3580
	obj->pin_display++;
3581

3582 3583 3584 3585 3586 3587 3588 3589 3590
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3591
	ret = i915_gem_object_set_cache_level(obj,
3592 3593
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3594 3595
	if (ret) {
		vma = ERR_PTR(ret);
3596
		goto err_unpin_display;
C
Chris Wilson 已提交
3597
	}
3598

3599 3600
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3601 3602 3603 3604
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3605
	 */
3606
	vma = ERR_PTR(-ENOSPC);
3607
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3608 3609
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3626
	if (IS_ERR(vma))
3627
		goto err_unpin_display;
3628

3629 3630
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3631
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3632
	if (obj->cache_dirty || obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3633 3634 3635
		i915_gem_clflush_object(obj, true);
		intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
	}
3636

3637
	old_write_domain = obj->base.write_domain;
3638
	old_read_domains = obj->base.read_domains;
3639 3640 3641 3642

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3643
	obj->base.write_domain = 0;
3644
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3645 3646 3647

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3648
					    old_write_domain);
3649

C
Chris Wilson 已提交
3650
	return vma;
3651 3652

err_unpin_display:
3653
	obj->pin_display--;
C
Chris Wilson 已提交
3654
	return vma;
3655 3656 3657
}

void
C
Chris Wilson 已提交
3658
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3659
{
3660
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3661

C
Chris Wilson 已提交
3662
	if (WARN_ON(vma->obj->pin_display == 0))
3663 3664
		return;

3665
	if (--vma->obj->pin_display == 0)
3666
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3667

3668
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3669
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3670

C
Chris Wilson 已提交
3671
	i915_vma_unpin(vma);
3672 3673
}

3674 3675
/**
 * Moves a single object to the CPU read, and possibly write domain.
3676 3677
 * @obj: object to act on
 * @write: requesting write or read-only access
3678 3679 3680 3681
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3682
int
3683
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3684
{
C
Chris Wilson 已提交
3685
	uint32_t old_write_domain, old_read_domains;
3686 3687
	int ret;

3688
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3689

3690 3691 3692 3693 3694 3695
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3696 3697 3698
	if (ret)
		return ret;

3699 3700 3701
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3702
	i915_gem_object_flush_gtt_write_domain(obj);
3703

3704 3705
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3706

3707
	/* Flush the CPU cache if it's still invalid. */
3708
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3709
		i915_gem_clflush_object(obj, false);
3710

3711
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3712 3713 3714 3715 3716
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3717
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3718 3719 3720 3721 3722

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3723 3724
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3725
	}
3726

C
Chris Wilson 已提交
3727 3728 3729 3730
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3731 3732 3733
	return 0;
}

3734 3735 3736
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3737 3738 3739 3740
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3741 3742 3743
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3744
static int
3745
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3746
{
3747
	struct drm_i915_private *dev_priv = to_i915(dev);
3748
	struct drm_i915_file_private *file_priv = file->driver_priv;
3749
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3750
	struct drm_i915_gem_request *request, *target = NULL;
3751
	long ret;
3752

3753 3754 3755
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3756

3757
	spin_lock(&file_priv->mm.lock);
3758
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3759 3760
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3761

3762 3763 3764 3765 3766 3767 3768
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3769
		target = request;
3770
	}
3771
	if (target)
3772
		i915_gem_request_get(target);
3773
	spin_unlock(&file_priv->mm.lock);
3774

3775
	if (target == NULL)
3776
		return 0;
3777

3778 3779 3780
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3781
	i915_gem_request_put(target);
3782

3783
	return ret < 0 ? ret : 0;
3784 3785
}

C
Chris Wilson 已提交
3786
struct i915_vma *
3787 3788
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3789
			 u64 size,
3790 3791
			 u64 alignment,
			 u64 flags)
3792
{
3793 3794
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3795 3796
	struct i915_vma *vma;
	int ret;
3797

3798 3799
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3800
	vma = i915_vma_instance(obj, vm, view);
3801
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3802
		return vma;
3803 3804 3805 3806

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3807
			return ERR_PTR(-ENOSPC);
3808

3809 3810 3811 3812 3813 3814 3815 3816
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
3817
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
3836
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3837 3838 3839
				return ERR_PTR(-ENOSPC);
		}

3840 3841
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3842 3843 3844
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3845
		     !!(flags & PIN_MAPPABLE),
3846
		     i915_vma_is_map_and_fenceable(vma));
3847 3848
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3849
			return ERR_PTR(ret);
3850 3851
	}

C
Chris Wilson 已提交
3852 3853 3854
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3855

C
Chris Wilson 已提交
3856
	return vma;
3857 3858
}

3859
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3874 3875 3876 3877 3878 3879 3880 3881 3882
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3883 3884
}

3885
static __always_inline unsigned int
3886
__busy_set_if_active(const struct dma_fence *fence,
3887 3888
		     unsigned int (*flag)(unsigned int id))
{
3889
	struct drm_i915_gem_request *rq;
3890

3891 3892 3893 3894
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3895
	 *
3896
	 * Note we only report on the status of native fences.
3897
	 */
3898 3899 3900 3901 3902 3903 3904 3905 3906
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
3907 3908
}

3909
static __always_inline unsigned int
3910
busy_check_reader(const struct dma_fence *fence)
3911
{
3912
	return __busy_set_if_active(fence, __busy_read_flag);
3913 3914
}

3915
static __always_inline unsigned int
3916
busy_check_writer(const struct dma_fence *fence)
3917
{
3918 3919 3920 3921
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3922 3923
}

3924 3925
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3926
		    struct drm_file *file)
3927 3928
{
	struct drm_i915_gem_busy *args = data;
3929
	struct drm_i915_gem_object *obj;
3930 3931
	struct reservation_object_list *list;
	unsigned int seq;
3932
	int err;
3933

3934
	err = -ENOENT;
3935 3936
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3937
	if (!obj)
3938
		goto out;
3939

3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3958

3959 3960
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3961

3962 3963 3964 3965
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3966

3967 3968 3969 3970 3971 3972
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3973
	}
3974

3975 3976 3977 3978
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3979 3980 3981
out:
	rcu_read_unlock();
	return err;
3982 3983 3984 3985 3986 3987
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3988
	return i915_gem_ring_throttle(dev, file_priv);
3989 3990
}

3991 3992 3993 3994
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3995
	struct drm_i915_private *dev_priv = to_i915(dev);
3996
	struct drm_i915_gem_madvise *args = data;
3997
	struct drm_i915_gem_object *obj;
3998
	int err;
3999 4000 4001 4002 4003 4004 4005 4006 4007

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4008
	obj = i915_gem_object_lookup(file_priv, args->handle);
4009 4010 4011 4012 4013 4014
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4015

C
Chris Wilson 已提交
4016
	if (obj->mm.pages &&
4017
	    i915_gem_object_is_tiled(obj) &&
4018
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4019 4020
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4021
			__i915_gem_object_unpin_pages(obj);
4022 4023 4024
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4025
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4026
			__i915_gem_object_pin_pages(obj);
4027 4028
			obj->mm.quirked = true;
		}
4029 4030
	}

C
Chris Wilson 已提交
4031 4032
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4033

C
Chris Wilson 已提交
4034
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4035
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4036 4037
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4038
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4039
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4040

4041
out:
4042
	i915_gem_object_put(obj);
4043
	return err;
4044 4045
}

4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

	intel_fb_obj_flush(obj, true, ORIGIN_CS);
}

4056 4057
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4058
{
4059 4060
	mutex_init(&obj->mm.lock);

4061
	INIT_LIST_HEAD(&obj->global_link);
4062
	INIT_LIST_HEAD(&obj->userfault_link);
4063
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4064
	INIT_LIST_HEAD(&obj->vma_list);
4065
	INIT_LIST_HEAD(&obj->batch_pool_link);
4066

4067 4068
	obj->ops = ops;

4069 4070 4071
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4072
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4073
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4074 4075 4076 4077

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4078

4079
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4080 4081
}

4082
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4083 4084
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4085

4086 4087
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4088 4089

	.pwrite = i915_gem_object_pwrite_gtt,
4090 4091
};

4092
struct drm_i915_gem_object *
4093
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4094
{
4095
	struct drm_i915_gem_object *obj;
4096
	struct address_space *mapping;
D
Daniel Vetter 已提交
4097
	gfp_t mask;
4098
	int ret;
4099

4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4111
	obj = i915_gem_object_alloc(dev_priv);
4112
	if (obj == NULL)
4113
		return ERR_PTR(-ENOMEM);
4114

4115
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4116 4117
	if (ret)
		goto fail;
4118

4119
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4120
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4121 4122 4123 4124 4125
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4126
	mapping = obj->base.filp->f_mapping;
4127
	mapping_set_gfp_mask(mapping, mask);
4128

4129
	i915_gem_object_init(obj, &i915_gem_object_ops);
4130

4131 4132
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4133

4134
	if (HAS_LLC(dev_priv)) {
4135
		/* On some devices, we can have the GPU use the LLC (the CPU
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4151 4152
	trace_i915_gem_object_create(obj);

4153
	return obj;
4154 4155 4156 4157

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4158 4159
}

4160 4161 4162 4163 4164 4165 4166 4167
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4168
	if (obj->mm.madv != I915_MADV_WILLNEED)
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4184 4185
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4186
{
4187
	struct drm_i915_gem_object *obj, *on;
4188

4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4204 4205
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4206

4207
		list_del(&obj->global_link);
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4218

4219 4220
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4221
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4222 4223 4224 4225 4226
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4227
		reservation_object_fini(&obj->__builtin_resv);
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4250

4251 4252 4253 4254 4255 4256 4257
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4258

4259 4260 4261
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4262

4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4277

4278 4279 4280
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4281

4282 4283 4284
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4285
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4286
		obj->mm.madv = I915_MADV_DONTNEED;
4287

4288 4289 4290 4291 4292 4293
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4294 4295
}

4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4307 4308 4309 4310 4311 4312
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4313 4314
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4315 4316
}

4317
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4318
{
4319
	struct drm_device *dev = &dev_priv->drm;
4320
	int ret;
4321

4322 4323
	intel_suspend_gt_powersave(dev_priv);

4324
	mutex_lock(&dev->struct_mutex);
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4338 4339 4340
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4341
	if (ret)
4342
		goto err;
4343

4344
	i915_gem_retire_requests(dev_priv);
4345
	GEM_BUG_ON(dev_priv->gt.active_requests);
4346

4347
	assert_kernel_context_is_current(dev_priv);
4348
	i915_gem_context_lost(dev_priv);
4349 4350
	mutex_unlock(&dev->struct_mutex);

4351
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4352
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4353 4354 4355 4356 4357 4358 4359 4360

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

	i915_gem_drain_freed_objects(dev_priv);
4361

4362 4363 4364
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4365
	WARN_ON(dev_priv->gt.awake);
4366
	WARN_ON(!intel_execlists_idle(dev_priv));
4367

4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4387
	if (HAS_HW_CONTEXTS(dev_priv)) {
4388 4389 4390 4391
		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}

4392
	return 0;
4393 4394 4395 4396

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4397 4398
}

4399
void i915_gem_resume(struct drm_i915_private *dev_priv)
4400
{
4401
	struct drm_device *dev = &dev_priv->drm;
4402

4403 4404
	WARN_ON(dev_priv->gt.awake);

4405
	mutex_lock(&dev->struct_mutex);
4406
	i915_gem_restore_gtt_mappings(dev_priv);
4407 4408 4409 4410 4411

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4412
	dev_priv->gt.resume(dev_priv);
4413 4414 4415 4416

	mutex_unlock(&dev->struct_mutex);
}

4417
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4418
{
4419
	if (INTEL_GEN(dev_priv) < 5 ||
4420 4421 4422 4423 4424 4425
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4426
	if (IS_GEN5(dev_priv))
4427 4428
		return;

4429
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4430
	if (IS_GEN6(dev_priv))
4431
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4432
	else if (IS_GEN7(dev_priv))
4433
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4434
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4435
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4436 4437
	else
		BUG();
4438
}
D
Daniel Vetter 已提交
4439

4440
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4441 4442 4443 4444 4445 4446 4447
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4448
static void init_unused_rings(struct drm_i915_private *dev_priv)
4449
{
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4462 4463 4464
	}
}

4465
int
4466
i915_gem_init_hw(struct drm_i915_private *dev_priv)
4467
{
4468
	struct intel_engine_cs *engine;
4469
	enum intel_engine_id id;
C
Chris Wilson 已提交
4470
	int ret;
4471

4472 4473
	dev_priv->gt.last_init_time = ktime_get();

4474 4475 4476
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4477
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4478
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4479

4480
	if (IS_HASWELL(dev_priv))
4481
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4482
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4483

4484
	if (HAS_PCH_NOP(dev_priv)) {
4485
		if (IS_IVYBRIDGE(dev_priv)) {
4486 4487 4488
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4489
		} else if (INTEL_GEN(dev_priv) >= 7) {
4490 4491 4492 4493
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4494 4495
	}

4496
	i915_gem_init_swizzling(dev_priv);
4497

4498 4499 4500 4501 4502 4503
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4504
	init_unused_rings(dev_priv);
4505

4506
	BUG_ON(!dev_priv->kernel_context);
4507

4508
	ret = i915_ppgtt_init_hw(dev_priv);
4509 4510 4511 4512 4513 4514
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4515
	for_each_engine(engine, dev_priv, id) {
4516
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4517
		if (ret)
4518
			goto out;
D
Daniel Vetter 已提交
4519
	}
4520

4521
	intel_mocs_init_l3cc_table(dev_priv);
4522

4523
	/* We can't enable contexts until all firmware is loaded */
4524
	ret = intel_guc_setup(dev_priv);
4525 4526
	if (ret)
		goto out;
4527

4528 4529
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4530
	return ret;
4531 4532
}

4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4554
int i915_gem_init(struct drm_i915_private *dev_priv)
4555 4556 4557
{
	int ret;

4558
	mutex_lock(&dev_priv->drm.struct_mutex);
4559

4560
	if (!i915.enable_execlists) {
4561
		dev_priv->gt.resume = intel_legacy_submission_resume;
4562
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4563
	} else {
4564
		dev_priv->gt.resume = intel_lr_context_resume;
4565
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4566 4567
	}

4568 4569 4570 4571 4572 4573 4574 4575
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4576
	i915_gem_init_userptr(dev_priv);
4577 4578 4579 4580

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4581

4582
	ret = i915_gem_context_init(dev_priv);
4583 4584
	if (ret)
		goto out_unlock;
4585

4586
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4587
	if (ret)
4588
		goto out_unlock;
4589

4590
	ret = i915_gem_init_hw(dev_priv);
4591
	if (ret == -EIO) {
4592
		/* Allow engine initialisation to fail by marking the GPU as
4593 4594 4595 4596
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4597
		i915_gem_set_wedged(dev_priv);
4598
		ret = 0;
4599
	}
4600 4601

out_unlock:
4602
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4603
	mutex_unlock(&dev_priv->drm.struct_mutex);
4604

4605
	return ret;
4606 4607
}

4608
void
4609
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4610
{
4611
	struct intel_engine_cs *engine;
4612
	enum intel_engine_id id;
4613

4614
	for_each_engine(engine, dev_priv, id)
4615
		dev_priv->gt.cleanup_engine(engine);
4616 4617
}

4618 4619 4620
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4621
	int i;
4622 4623 4624 4625

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4626 4627 4628
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4629 4630 4631 4632
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4633
	if (intel_vgpu_active(dev_priv))
4634 4635 4636 4637
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4638 4639 4640 4641 4642 4643 4644
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4645
	i915_gem_restore_fences(dev_priv);
4646

4647
	i915_gem_detect_bit_6_swizzle(dev_priv);
4648 4649
}

4650
int
4651
i915_gem_load_init(struct drm_i915_private *dev_priv)
4652
{
4653
	int err = -ENOMEM;
4654

4655 4656
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4657 4658
		goto err_out;

4659 4660
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4661 4662
		goto err_objects;

4663 4664 4665 4666 4667
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4668 4669
		goto err_vmas;

4670 4671 4672 4673 4674 4675
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4676 4677
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4678
	err = i915_gem_timeline_init__global(dev_priv);
4679 4680
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4681
		goto err_dependencies;
4682

4683
	INIT_LIST_HEAD(&dev_priv->context_list);
4684 4685
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4686 4687
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4688
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4689
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4690
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4691
			  i915_gem_retire_work_handler);
4692
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4693
			  i915_gem_idle_work_handler);
4694
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4695
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4696

4697
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4698

4699 4700
	dev_priv->mm.interruptible = true;

4701 4702
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4703
	spin_lock_init(&dev_priv->fb_tracking.lock);
4704 4705 4706

	return 0;

4707 4708
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4709 4710 4711 4712 4713 4714 4715 4716
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4717
}
4718

4719
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4720
{
4721 4722
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));

4723 4724 4725 4726 4727
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4728
	kmem_cache_destroy(dev_priv->dependencies);
4729 4730 4731
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4732 4733 4734

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4735 4736
}

4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	intel_runtime_pm_get(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_runtime_pm_put(dev_priv);

	return 0;
}

4750 4751 4752
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4753 4754 4755 4756 4757
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4768 4769 4770
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4771 4772
	 */

4773 4774
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4775

4776
	for (p = phases; *p; p++) {
4777
		list_for_each_entry(obj, *p, global_link) {
4778 4779 4780
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4781
	}
4782
	mutex_unlock(&dev_priv->drm.struct_mutex);
4783 4784 4785 4786

	return 0;
}

4787
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4788
{
4789
	struct drm_i915_file_private *file_priv = file->driver_priv;
4790
	struct drm_i915_gem_request *request;
4791 4792 4793 4794 4795

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4796
	spin_lock(&file_priv->mm.lock);
4797
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4798
		request->file_priv = NULL;
4799
	spin_unlock(&file_priv->mm.lock);
4800

4801
	if (!list_empty(&file_priv->rps.link)) {
4802
		spin_lock(&to_i915(dev)->rps.client_lock);
4803
		list_del(&file_priv->rps.link);
4804
		spin_unlock(&to_i915(dev)->rps.client_lock);
4805
	}
4806 4807 4808 4809 4810
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4811
	int ret;
4812

4813
	DRM_DEBUG("\n");
4814 4815 4816 4817 4818 4819

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4820
	file_priv->dev_priv = to_i915(dev);
4821
	file_priv->file = file;
4822
	INIT_LIST_HEAD(&file_priv->rps.link);
4823 4824 4825 4826

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4827
	file_priv->bsd_engine = -1;
4828

4829 4830 4831
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4832

4833
	return ret;
4834 4835
}

4836 4837
/**
 * i915_gem_track_fb - update frontbuffer tracking
4838 4839 4840
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4841 4842 4843 4844
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4845 4846 4847 4848
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4849 4850 4851 4852 4853 4854 4855 4856 4857
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4858
	if (old) {
4859 4860
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4861 4862 4863
	}

	if (new) {
4864 4865
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4866 4867 4868
	}
}

4869 4870
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
4871
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4872 4873 4874 4875 4876 4877 4878
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4879
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4880
	if (IS_ERR(obj))
4881 4882 4883 4884 4885 4886
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4887
	ret = i915_gem_object_pin_pages(obj);
4888 4889 4890
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4891
	sg = obj->mm.pages;
4892
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
4893
	obj->mm.dirty = true; /* Backing store is now out of date */
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4905
	i915_gem_object_put(obj);
4906 4907
	return ERR_PTR(ret);
}
4908 4909 4910 4911 4912 4913

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
4914
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4915 4916 4917 4918 4919
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
4920
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5045
	if (!obj->mm.dirty)
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}