i915_gem.c 132.4 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43
static __must_check int
44 45
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
46 47 48
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

49 50 51 52 53 54
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

55 56 57 58 59 60
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

61 62 63 64 65 66 67 68
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

69 70 71 72 73 74 75 76
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
77
	obj->fence_dirty = false;
78 79 80
	obj->fence_reg = I915_FENCE_REG_NONE;
}

81 82 83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
85
	spin_lock(&dev_priv->mm.object_stat_lock);
86 87
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
88
	spin_unlock(&dev_priv->mm.object_stat_lock);
89 90 91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
94
	spin_lock(&dev_priv->mm.object_stat_lock);
95 96
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
97
	spin_unlock(&dev_priv->mm.object_stat_lock);
98 99
}

100
static int
101
i915_gem_wait_for_error(struct i915_gpu_error *error)
102 103 104
{
	int ret;

105 106
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
107
	if (EXIT_COND)
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115 116 117
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123
	}
124
#undef EXIT_COND
125

126
	return 0;
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = dev->dev_private;
151
	struct drm_i915_gem_get_aperture *args = data;
152 153
	struct drm_i915_gem_object *obj;
	size_t pinned;
154

155
	pinned = 0;
156
	mutex_lock(&dev->struct_mutex);
157
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
158
		if (i915_gem_obj_is_pinned(obj))
159
			pinned += i915_gem_obj_ggtt_size(obj);
160
	mutex_unlock(&dev->struct_mutex);
161

162
	args->aper_size = dev_priv->gtt.base.total;
163
	args->aper_available_size = args->aper_size - pinned;
164

165 166 167
	return 0;
}

168 169
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170
{
171 172 173 174 175
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
226

227 228 229 230 231 232 233 234 235 236 237 238 239
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			page_cache_release(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342 343
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(dev);
372 373 374 375

out:
	intel_fb_obj_flush(obj, false);
	return ret;
376 377
}

378 379 380
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
381
	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
382 383 384 385 386 387 388 389
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	kmem_cache_free(dev_priv->slab, obj);
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_alloc_object(dev, size);
406 407 408
	if (obj == NULL)
		return -ENOMEM;

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432 433 434 435 436 437 438
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
439

440
	return i915_gem_create(file, dev,
441
			       args->size, &args->handle);
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

470
static inline int
471 472
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
521 522

		i915_gem_object_retire(obj);
523 524 525 526 527 528 529 530 531 532 533
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

534 535 536
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
537
static int
538 539 540 541 542 543 544
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

545
	if (unlikely(page_do_bit17_swizzling))
546 547 548 549 550 551 552 553 554 555 556
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

557
	return ret ? -EFAULT : 0;
558 559
}

560 561 562 563
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
564
	if (unlikely(swizzled)) {
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

582 583 584 585 586 587 588 589 590 591 592 593
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
594 595 596
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
597 598 599 600 601 602 603 604 605 606 607

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

608
	return ret ? - EFAULT : 0;
609 610
}

611
static int
612 613 614 615
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
616
{
617
	char __user *user_data;
618
	ssize_t remain;
619
	loff_t offset;
620
	int shmem_page_offset, page_length, ret = 0;
621
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
622
	int prefaulted = 0;
623
	int needs_clflush = 0;
624
	struct sg_page_iter sg_iter;
625

V
Ville Syrjälä 已提交
626
	user_data = to_user_ptr(args->data_ptr);
627 628
	remain = args->size;

629
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
630

631
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
632 633 634
	if (ret)
		return ret;

635
	offset = args->offset;
636

637 638
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
639
		struct page *page = sg_page_iter_page(&sg_iter);
640 641 642 643

		if (remain <= 0)
			break;

644 645 646 647 648
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
649
		shmem_page_offset = offset_in_page(offset);
650 651 652 653
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

654 655 656
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

657 658 659 660 661
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
662 663 664

		mutex_unlock(&dev->struct_mutex);

665
		if (likely(!i915.prefault_disable) && !prefaulted) {
666
			ret = fault_in_multipages_writeable(user_data, remain);
667 668 669 670 671 672 673
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
674

675 676 677
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
678

679
		mutex_lock(&dev->struct_mutex);
680 681

		if (ret)
682 683
			goto out;

684
next_page:
685
		remain -= page_length;
686
		user_data += page_length;
687 688 689
		offset += page_length;
	}

690
out:
691 692
	i915_gem_object_unpin_pages(obj);

693 694 695
	return ret;
}

696 697 698 699 700 701 702
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
703
		     struct drm_file *file)
704 705
{
	struct drm_i915_gem_pread *args = data;
706
	struct drm_i915_gem_object *obj;
707
	int ret = 0;
708

709 710 711 712
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
713
		       to_user_ptr(args->data_ptr),
714 715 716
		       args->size))
		return -EFAULT;

717
	ret = i915_mutex_lock_interruptible(dev);
718
	if (ret)
719
		return ret;
720

721
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
722
	if (&obj->base == NULL) {
723 724
		ret = -ENOENT;
		goto unlock;
725
	}
726

727
	/* Bounds check source.  */
728 729
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
730
		ret = -EINVAL;
731
		goto out;
C
Chris Wilson 已提交
732 733
	}

734 735 736 737 738 739 740 741
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
742 743
	trace_i915_gem_object_pread(obj, args->offset, args->size);

744
	ret = i915_gem_shmem_pread(dev, obj, args, file);
745

746
out:
747
	drm_gem_object_unreference(&obj->base);
748
unlock:
749
	mutex_unlock(&dev->struct_mutex);
750
	return ret;
751 752
}

753 754
/* This is the fast write path which cannot handle
 * page faults in the source data
755
 */
756 757 758 759 760 761

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
762
{
763 764
	void __iomem *vaddr_atomic;
	void *vaddr;
765
	unsigned long unwritten;
766

P
Peter Zijlstra 已提交
767
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
768 769 770
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
771
						      user_data, length);
P
Peter Zijlstra 已提交
772
	io_mapping_unmap_atomic(vaddr_atomic);
773
	return unwritten;
774 775
}

776 777 778 779
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
780
static int
781 782
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
783
			 struct drm_i915_gem_pwrite *args,
784
			 struct drm_file *file)
785
{
786
	struct drm_i915_private *dev_priv = dev->dev_private;
787
	ssize_t remain;
788
	loff_t offset, page_base;
789
	char __user *user_data;
D
Daniel Vetter 已提交
790 791
	int page_offset, page_length, ret;

792
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
793 794 795 796 797 798 799 800 801 802
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
803

V
Ville Syrjälä 已提交
804
	user_data = to_user_ptr(args->data_ptr);
805 806
	remain = args->size;

807
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
808

809 810
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);

811 812 813
	while (remain > 0) {
		/* Operation in this page
		 *
814 815 816
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
817
		 */
818 819
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
820 821 822 823 824
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
825 826
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
827
		 */
B
Ben Widawsky 已提交
828
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
829 830
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
831
			goto out_flush;
D
Daniel Vetter 已提交
832
		}
833

834 835 836
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
837 838
	}

839 840
out_flush:
	intel_fb_obj_flush(obj, false);
D
Daniel Vetter 已提交
841
out_unpin:
B
Ben Widawsky 已提交
842
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
843
out:
844
	return ret;
845 846
}

847 848 849 850
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
851
static int
852 853 854 855 856
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
857
{
858
	char *vaddr;
859
	int ret;
860

861
	if (unlikely(page_do_bit17_swizzling))
862
		return -EINVAL;
863

864 865 866 867
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
868 869
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
870 871 872 873
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
874

875
	return ret ? -EFAULT : 0;
876 877
}

878 879
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
880
static int
881 882 883 884 885
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
886
{
887 888
	char *vaddr;
	int ret;
889

890
	vaddr = kmap(page);
891
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892 893 894
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
895 896
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897 898
						user_data,
						page_length);
899 900 901 902 903
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
904 905 906
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
907
	kunmap(page);
908

909
	return ret ? -EFAULT : 0;
910 911 912
}

static int
913 914 915 916
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
917 918
{
	ssize_t remain;
919 920
	loff_t offset;
	char __user *user_data;
921
	int shmem_page_offset, page_length, ret = 0;
922
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923
	int hit_slowpath = 0;
924 925
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
926
	struct sg_page_iter sg_iter;
927

V
Ville Syrjälä 已提交
928
	user_data = to_user_ptr(args->data_ptr);
929 930
	remain = args->size;

931
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932

933 934 935 936 937
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
938
		needs_clflush_after = cpu_write_needs_clflush(obj);
939 940 941
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
942 943

		i915_gem_object_retire(obj);
944
	}
945 946 947 948 949
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
950

951 952 953 954
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

955 956
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);

957 958
	i915_gem_object_pin_pages(obj);

959
	offset = args->offset;
960
	obj->dirty = 1;
961

962 963
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
964
		struct page *page = sg_page_iter_page(&sg_iter);
965
		int partial_cacheline_write;
966

967 968 969
		if (remain <= 0)
			break;

970 971 972 973 974
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
975
		shmem_page_offset = offset_in_page(offset);
976 977 978 979 980

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

981 982 983 984 985 986 987
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

988 989 990
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

991 992 993 994 995 996
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
997 998 999

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1000 1001 1002 1003
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1004

1005
		mutex_lock(&dev->struct_mutex);
1006 1007

		if (ret)
1008 1009
			goto out;

1010
next_page:
1011
		remain -= page_length;
1012
		user_data += page_length;
1013
		offset += page_length;
1014 1015
	}

1016
out:
1017 1018
	i915_gem_object_unpin_pages(obj);

1019
	if (hit_slowpath) {
1020 1021 1022 1023 1024 1025 1026
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 1028
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1029
		}
1030
	}
1031

1032
	if (needs_clflush_after)
1033
		i915_gem_chipset_flush(dev);
1034

1035
	intel_fb_obj_flush(obj, false);
1036
	return ret;
1037 1038 1039 1040 1041 1042 1043 1044 1045
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046
		      struct drm_file *file)
1047
{
1048
	struct drm_i915_private *dev_priv = dev->dev_private;
1049
	struct drm_i915_gem_pwrite *args = data;
1050
	struct drm_i915_gem_object *obj;
1051 1052 1053 1054 1055 1056
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1057
		       to_user_ptr(args->data_ptr),
1058 1059 1060
		       args->size))
		return -EFAULT;

1061
	if (likely(!i915.prefault_disable)) {
1062 1063 1064 1065 1066
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1067

1068 1069
	intel_runtime_pm_get(dev_priv);

1070
	ret = i915_mutex_lock_interruptible(dev);
1071
	if (ret)
1072
		goto put_rpm;
1073

1074
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075
	if (&obj->base == NULL) {
1076 1077
		ret = -ENOENT;
		goto unlock;
1078
	}
1079

1080
	/* Bounds check destination. */
1081 1082
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1083
		ret = -EINVAL;
1084
		goto out;
C
Chris Wilson 已提交
1085 1086
	}

1087 1088 1089 1090 1091 1092 1093 1094
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1095 1096
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1097
	ret = -EFAULT;
1098 1099 1100 1101 1102 1103
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1104 1105 1106
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1107
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1108 1109 1110
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1111
	}
1112

1113 1114 1115 1116 1117 1118
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1119

1120
out:
1121
	drm_gem_object_unreference(&obj->base);
1122
unlock:
1123
	mutex_unlock(&dev->struct_mutex);
1124 1125 1126
put_rpm:
	intel_runtime_pm_put(dev_priv);

1127 1128 1129
	return ret;
}

1130
int
1131
i915_gem_check_wedge(struct i915_gpu_error *error,
1132 1133
		     bool interruptible)
{
1134
	if (i915_reset_in_progress(error)) {
1135 1136 1137 1138 1139
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1140 1141
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1142 1143
			return -EIO;

1144 1145 1146 1147 1148 1149 1150
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1151 1152 1153 1154 1155 1156
	}

	return 0;
}

/*
1157
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1158
 */
1159
int
1160
i915_gem_check_olr(struct drm_i915_gem_request *req)
1161 1162 1163
{
	int ret;

1164
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1165 1166

	ret = 0;
1167
	if (req == req->ring->outstanding_lazy_request)
1168
		ret = i915_add_request(req->ring);
1169 1170 1171 1172

	return ret;
}

1173 1174 1175 1176 1177 1178
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1179
		       struct intel_engine_cs *ring)
1180 1181 1182 1183
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1184 1185 1186 1187 1188 1189 1190 1191
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
{
	if (file_priv == NULL)
		return true;

	return !atomic_xchg(&file_priv->rps_wait_boost, true);
}

1192
/**
1193 1194 1195
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1196 1197 1198
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1199 1200 1201 1202 1203 1204 1205
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1206
 * Returns 0 if the request was found within the alloted time. Else returns the
1207 1208
 * errno with remaining time filled in timeout argument.
 */
1209
int __i915_wait_request(struct drm_i915_gem_request *req,
1210
			unsigned reset_counter,
1211
			bool interruptible,
1212
			s64 *timeout,
1213
			struct drm_i915_file_private *file_priv)
1214
{
1215
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1216
	struct drm_device *dev = ring->dev;
1217
	struct drm_i915_private *dev_priv = dev->dev_private;
1218 1219
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1220
	DEFINE_WAIT(wait);
1221
	unsigned long timeout_expire;
1222
	s64 before, now;
1223 1224
	int ret;

1225
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1226

1227
	if (i915_gem_request_completed(req, true))
1228 1229
		return 0;

1230 1231
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1232

1233
	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1234 1235 1236 1237 1238 1239 1240
		gen6_rps_boost(dev_priv);
		if (file_priv)
			mod_delayed_work(dev_priv->wq,
					 &file_priv->mm.idle_work,
					 msecs_to_jiffies(100));
	}

1241
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1242 1243
		return -ENODEV;

1244
	/* Record current time in case interrupted by signal, or wedged */
1245
	trace_i915_gem_request_wait_begin(req);
1246
	before = ktime_get_raw_ns();
1247 1248
	for (;;) {
		struct timer_list timer;
1249

1250 1251
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1252

1253 1254
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1255 1256 1257 1258 1259 1260 1261 1262
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1263

1264
		if (i915_gem_request_completed(req, false)) {
1265 1266 1267
			ret = 0;
			break;
		}
1268

1269 1270 1271 1272 1273
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1274
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1275 1276 1277 1278 1279 1280
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1281 1282
			unsigned long expire;

1283
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1284
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1285 1286 1287
			mod_timer(&timer, expire);
		}

1288
		io_schedule();
1289 1290 1291 1292 1293 1294

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1295
	now = ktime_get_raw_ns();
1296
	trace_i915_gem_request_wait_end(req);
1297

1298 1299
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1300 1301

	finish_wait(&ring->irq_queue, &wait);
1302 1303

	if (timeout) {
1304 1305 1306
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1317 1318
	}

1319
	return ret;
1320 1321 1322
}

/**
1323
 * Waits for a request to be signaled, and cleans up the
1324 1325 1326
 * request and object lists appropriately for that event.
 */
int
1327
i915_wait_request(struct drm_i915_gem_request *req)
1328
{
1329 1330 1331
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1332
	unsigned reset_counter;
1333 1334
	int ret;

1335 1336 1337 1338 1339 1340
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1341 1342
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1343
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1344 1345 1346
	if (ret)
		return ret;

1347
	ret = i915_gem_check_olr(req);
1348 1349 1350
	if (ret)
		return ret;

1351
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1352
	i915_gem_request_reference(req);
1353 1354
	ret = __i915_wait_request(req, reset_counter,
				  interruptible, NULL, NULL);
1355 1356
	i915_gem_request_unreference(req);
	return ret;
1357 1358
}

1359
static int
1360
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1361
{
1362 1363
	if (!obj->active)
		return 0;
1364 1365 1366 1367

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
1368 1369
	 * Note that the last_write_req is always the earlier of
	 * the two (read/write) requests, so if we haved successfully waited,
1370 1371
	 * we know we have passed the last write.
	 */
1372
	i915_gem_request_assign(&obj->last_write_req, NULL);
1373 1374 1375 1376

	return 0;
}

1377 1378 1379 1380 1381 1382 1383 1384
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1385
	struct drm_i915_gem_request *req;
1386 1387
	int ret;

1388 1389
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1390 1391
		return 0;

1392
	ret = i915_wait_request(req);
1393 1394 1395
	if (ret)
		return ret;

1396
	return i915_gem_object_wait_rendering__tail(obj);
1397 1398
}

1399 1400 1401 1402 1403
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1404
					    struct drm_i915_file_private *file_priv,
1405 1406
					    bool readonly)
{
1407
	struct drm_i915_gem_request *req;
1408 1409
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1410
	unsigned reset_counter;
1411 1412 1413 1414 1415
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1416 1417
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1418 1419
		return 0;

1420
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1421 1422 1423
	if (ret)
		return ret;

1424
	ret = i915_gem_check_olr(req);
1425 1426 1427
	if (ret)
		return ret;

1428
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1429
	i915_gem_request_reference(req);
1430
	mutex_unlock(&dev->struct_mutex);
1431
	ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1432
	mutex_lock(&dev->struct_mutex);
1433
	i915_gem_request_unreference(req);
1434 1435
	if (ret)
		return ret;
1436

1437
	return i915_gem_object_wait_rendering__tail(obj);
1438 1439
}

1440
/**
1441 1442
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1443 1444 1445
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1446
			  struct drm_file *file)
1447 1448
{
	struct drm_i915_gem_set_domain *args = data;
1449
	struct drm_i915_gem_object *obj;
1450 1451
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1452 1453
	int ret;

1454
	/* Only handle setting domains to types used by the CPU. */
1455
	if (write_domain & I915_GEM_GPU_DOMAINS)
1456 1457
		return -EINVAL;

1458
	if (read_domains & I915_GEM_GPU_DOMAINS)
1459 1460 1461 1462 1463 1464 1465 1466
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1467
	ret = i915_mutex_lock_interruptible(dev);
1468
	if (ret)
1469
		return ret;
1470

1471
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1472
	if (&obj->base == NULL) {
1473 1474
		ret = -ENOENT;
		goto unlock;
1475
	}
1476

1477 1478 1479 1480
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1481 1482 1483
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1484 1485 1486
	if (ret)
		goto unref;

1487
	if (read_domains & I915_GEM_DOMAIN_GTT)
1488
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1489
	else
1490
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1491

1492
unref:
1493
	drm_gem_object_unreference(&obj->base);
1494
unlock:
1495 1496 1497 1498 1499 1500 1501 1502 1503
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1504
			 struct drm_file *file)
1505 1506
{
	struct drm_i915_gem_sw_finish *args = data;
1507
	struct drm_i915_gem_object *obj;
1508 1509
	int ret = 0;

1510
	ret = i915_mutex_lock_interruptible(dev);
1511
	if (ret)
1512
		return ret;
1513

1514
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1515
	if (&obj->base == NULL) {
1516 1517
		ret = -ENOENT;
		goto unlock;
1518 1519 1520
	}

	/* Pinned buffers may be scanout, so flush the cache */
1521
	if (obj->pin_display)
1522
		i915_gem_object_flush_cpu_write_domain(obj);
1523

1524
	drm_gem_object_unreference(&obj->base);
1525
unlock:
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1546 1547 1548
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1549
		    struct drm_file *file)
1550 1551 1552 1553 1554
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1555 1556 1557 1558 1559 1560
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1561
	obj = drm_gem_object_lookup(dev, file, args->handle);
1562
	if (obj == NULL)
1563
		return -ENOENT;
1564

1565 1566 1567 1568 1569 1570 1571 1572
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1573
	addr = vm_mmap(obj->filp, 0, args->size,
1574 1575
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1589
	drm_gem_object_unreference_unlocked(obj);
1590 1591 1592 1593 1594 1595 1596 1597
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1616 1617
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1618
	struct drm_i915_private *dev_priv = dev->dev_private;
1619 1620 1621
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1622
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1623

1624 1625
	intel_runtime_pm_get(dev_priv);

1626 1627 1628 1629
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1630 1631 1632
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1633

C
Chris Wilson 已提交
1634 1635
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1636 1637 1638 1639 1640 1641 1642 1643 1644
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1645 1646
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1647
		ret = -EFAULT;
1648 1649 1650
		goto unlock;
	}

1651
	/* Now bind it into the GTT if needed */
1652
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1653 1654
	if (ret)
		goto unlock;
1655

1656 1657 1658
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1659

1660
	ret = i915_gem_object_get_fence(obj);
1661
	if (ret)
1662
		goto unpin;
1663

1664
	/* Finally, remap it using the new GTT offset */
1665 1666
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
1667

1668
	if (!obj->fault_mappable) {
1669 1670 1671
		unsigned long size = min_t(unsigned long,
					   vma->vm_end - vma->vm_start,
					   obj->base.size);
1672 1673
		int i;

1674
		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
			ret = vm_insert_pfn(vma,
					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}

		obj->fault_mappable = true;
	} else
		ret = vm_insert_pfn(vma,
				    (unsigned long)vmf->virtual_address,
				    pfn + page_offset);
1687
unpin:
B
Ben Widawsky 已提交
1688
	i915_gem_object_ggtt_unpin(obj);
1689
unlock:
1690
	mutex_unlock(&dev->struct_mutex);
1691
out:
1692
	switch (ret) {
1693
	case -EIO:
1694 1695 1696 1697 1698 1699 1700
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1701 1702 1703
			ret = VM_FAULT_SIGBUS;
			break;
		}
1704
	case -EAGAIN:
D
Daniel Vetter 已提交
1705 1706 1707 1708
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1709
		 */
1710 1711
	case 0:
	case -ERESTARTSYS:
1712
	case -EINTR:
1713 1714 1715 1716 1717
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1718 1719
		ret = VM_FAULT_NOPAGE;
		break;
1720
	case -ENOMEM:
1721 1722
		ret = VM_FAULT_OOM;
		break;
1723
	case -ENOSPC:
1724
	case -EFAULT:
1725 1726
		ret = VM_FAULT_SIGBUS;
		break;
1727
	default:
1728
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1729 1730
		ret = VM_FAULT_SIGBUS;
		break;
1731
	}
1732 1733 1734

	intel_runtime_pm_put(dev_priv);
	return ret;
1735 1736
}

1737 1738 1739 1740
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1741
 * Preserve the reservation of the mmapping with the DRM core code, but
1742 1743 1744 1745 1746 1747 1748 1749 1750
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1751
void
1752
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1753
{
1754 1755
	if (!obj->fault_mappable)
		return;
1756

1757 1758
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1759
	obj->fault_mappable = false;
1760 1761
}

1762 1763 1764 1765 1766 1767 1768 1769 1770
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1771
uint32_t
1772
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1773
{
1774
	uint32_t gtt_size;
1775 1776

	if (INTEL_INFO(dev)->gen >= 4 ||
1777 1778
	    tiling_mode == I915_TILING_NONE)
		return size;
1779 1780 1781

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1782
		gtt_size = 1024*1024;
1783
	else
1784
		gtt_size = 512*1024;
1785

1786 1787
	while (gtt_size < size)
		gtt_size <<= 1;
1788

1789
	return gtt_size;
1790 1791
}

1792 1793 1794 1795 1796
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1797
 * potential fence register mapping.
1798
 */
1799 1800 1801
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1802 1803 1804 1805 1806
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1807
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1808
	    tiling_mode == I915_TILING_NONE)
1809 1810
		return 4096;

1811 1812 1813 1814
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1815
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1816 1817
}

1818 1819 1820 1821 1822
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1823
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1824 1825
		return 0;

1826 1827
	dev_priv->mm.shrinker_no_lock_stealing = true;

1828 1829
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1830
		goto out;
1831 1832 1833 1834 1835 1836 1837 1838

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1839 1840 1841 1842 1843
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1844 1845
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1846
		goto out;
1847 1848

	i915_gem_shrink_all(dev_priv);
1849 1850 1851 1852 1853
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1854 1855 1856 1857 1858 1859 1860
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1861
int
1862 1863
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1864
		  uint32_t handle,
1865
		  uint64_t *offset)
1866
{
1867
	struct drm_i915_private *dev_priv = dev->dev_private;
1868
	struct drm_i915_gem_object *obj;
1869 1870
	int ret;

1871
	ret = i915_mutex_lock_interruptible(dev);
1872
	if (ret)
1873
		return ret;
1874

1875
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1876
	if (&obj->base == NULL) {
1877 1878 1879
		ret = -ENOENT;
		goto unlock;
	}
1880

B
Ben Widawsky 已提交
1881
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1882
		ret = -E2BIG;
1883
		goto out;
1884 1885
	}

1886
	if (obj->madv != I915_MADV_WILLNEED) {
1887
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1888
		ret = -EFAULT;
1889
		goto out;
1890 1891
	}

1892 1893 1894
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1895

1896
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1897

1898
out:
1899
	drm_gem_object_unreference(&obj->base);
1900
unlock:
1901
	mutex_unlock(&dev->struct_mutex);
1902
	return ret;
1903 1904
}

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1926
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1927 1928
}

D
Daniel Vetter 已提交
1929 1930 1931
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1932
{
1933
	i915_gem_object_free_mmap_offset(obj);
1934

1935 1936
	if (obj->base.filp == NULL)
		return;
1937

D
Daniel Vetter 已提交
1938 1939 1940 1941 1942
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1943
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1944 1945
	obj->madv = __I915_MADV_PURGED;
}
1946

1947 1948 1949
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1950
{
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1965 1966
}

1967
static void
1968
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1969
{
1970 1971
	struct sg_page_iter sg_iter;
	int ret;
1972

1973
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1974

C
Chris Wilson 已提交
1975 1976 1977 1978 1979 1980
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
1981
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
1982 1983 1984
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1985
	if (i915_gem_object_needs_bit17_swizzle(obj))
1986 1987
		i915_gem_object_save_bit_17_swizzle(obj);

1988 1989
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1990

1991
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1992
		struct page *page = sg_page_iter_page(&sg_iter);
1993

1994
		if (obj->dirty)
1995
			set_page_dirty(page);
1996

1997
		if (obj->madv == I915_MADV_WILLNEED)
1998
			mark_page_accessed(page);
1999

2000
		page_cache_release(page);
2001
	}
2002
	obj->dirty = 0;
2003

2004 2005
	sg_free_table(obj->pages);
	kfree(obj->pages);
2006
}
C
Chris Wilson 已提交
2007

2008
int
2009 2010 2011 2012
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2013
	if (obj->pages == NULL)
2014 2015
		return 0;

2016 2017 2018
	if (obj->pages_pin_count)
		return -EBUSY;

2019
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2020

2021 2022 2023
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2024
	list_del(&obj->global_list);
2025

2026
	ops->put_pages(obj);
2027
	obj->pages = NULL;
2028

2029
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2030 2031 2032 2033

	return 0;
}

2034
static int
C
Chris Wilson 已提交
2035
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2036
{
C
Chris Wilson 已提交
2037
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2038 2039
	int page_count, i;
	struct address_space *mapping;
2040 2041
	struct sg_table *st;
	struct scatterlist *sg;
2042
	struct sg_page_iter sg_iter;
2043
	struct page *page;
2044
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2045
	gfp_t gfp;
2046

C
Chris Wilson 已提交
2047 2048 2049 2050 2051 2052 2053
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2054 2055 2056 2057
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2058
	page_count = obj->base.size / PAGE_SIZE;
2059 2060
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2061
		return -ENOMEM;
2062
	}
2063

2064 2065 2066 2067 2068
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2069
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2070
	gfp = mapping_gfp_mask(mapping);
2071
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2072
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2073 2074 2075
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2076 2077
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2078 2079 2080 2081 2082
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2083 2084 2085 2086 2087 2088 2089 2090
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2091
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2092 2093 2094
			if (IS_ERR(page))
				goto err_pages;
		}
2095 2096 2097 2098 2099 2100 2101 2102
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2103 2104 2105 2106 2107 2108 2109 2110 2111
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2112 2113 2114

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2115
	}
2116 2117 2118 2119
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2120 2121
	obj->pages = st;

2122
	if (i915_gem_object_needs_bit17_swizzle(obj))
2123 2124
		i915_gem_object_do_bit_17_swizzle(obj);

2125 2126 2127 2128
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2129 2130 2131
	return 0;

err_pages:
2132 2133
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2134
		page_cache_release(sg_page_iter_page(&sg_iter));
2135 2136
	sg_free_table(st);
	kfree(st);
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2150 2151
}

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2166
	if (obj->pages)
2167 2168
		return 0;

2169
	if (obj->madv != I915_MADV_WILLNEED) {
2170
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2171
		return -EFAULT;
2172 2173
	}

2174 2175
	BUG_ON(obj->pages_pin_count);

2176 2177 2178 2179
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2180
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2181
	return 0;
2182 2183
}

B
Ben Widawsky 已提交
2184
static void
2185
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2186
			       struct intel_engine_cs *ring)
2187
{
2188 2189
	struct drm_i915_gem_request *req;
	struct intel_engine_cs *old_ring;
2190

2191
	BUG_ON(ring == NULL);
2192 2193 2194 2195 2196

	req = intel_ring_get_request(ring);
	old_ring = i915_gem_request_get_ring(obj->last_read_req);

	if (old_ring != ring && obj->last_write_req) {
2197 2198
		/* Keep the request relative to the current ring */
		i915_gem_request_assign(&obj->last_write_req, req);
2199
	}
2200 2201

	/* Add a reference if we're newly entering the active list. */
2202 2203 2204
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2205
	}
2206

2207
	list_move_tail(&obj->ring_list, &ring->active_list);
2208

2209
	i915_gem_request_assign(&obj->last_read_req, req);
2210 2211
}

B
Ben Widawsky 已提交
2212
void i915_vma_move_to_active(struct i915_vma *vma,
2213
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2214 2215 2216 2217 2218
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2219 2220
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2221
{
2222
	struct i915_vma *vma;
2223

2224
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2225
	BUG_ON(!obj->active);
2226

2227 2228 2229
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2230
	}
2231

2232 2233
	intel_fb_obj_flush(obj, true);

2234
	list_del_init(&obj->ring_list);
2235

2236 2237
	i915_gem_request_assign(&obj->last_read_req, NULL);
	i915_gem_request_assign(&obj->last_write_req, NULL);
2238 2239
	obj->base.write_domain = 0;

2240
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2241 2242 2243 2244 2245

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2246
}
2247

2248 2249 2250
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2251
	if (obj->last_read_req == NULL)
2252 2253
		return;

2254
	if (i915_gem_request_completed(obj->last_read_req, true))
2255 2256 2257
		i915_gem_object_move_to_inactive(obj);
}

2258
static int
2259
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2260
{
2261
	struct drm_i915_private *dev_priv = dev->dev_private;
2262
	struct intel_engine_cs *ring;
2263
	int ret, i, j;
2264

2265
	/* Carefully retire all requests without writing to the rings */
2266
	for_each_ring(ring, dev_priv, i) {
2267 2268 2269
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2270 2271
	}
	i915_gem_retire_requests(dev);
2272 2273

	/* Finally reset hw state */
2274
	for_each_ring(ring, dev_priv, i) {
2275
		intel_ring_init_seqno(ring, seqno);
2276

2277 2278
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2279
	}
2280

2281
	return 0;
2282 2283
}

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2310 2311
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2312
{
2313 2314 2315 2316
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2317
		int ret = i915_gem_init_seqno(dev, 0);
2318 2319
		if (ret)
			return ret;
2320

2321 2322
		dev_priv->next_seqno = 1;
	}
2323

2324
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2325
	return 0;
2326 2327
}

2328
int __i915_add_request(struct intel_engine_cs *ring,
2329
		       struct drm_file *file,
2330
		       struct drm_i915_gem_object *obj)
2331
{
2332
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2333
	struct drm_i915_gem_request *request;
2334
	struct intel_ringbuffer *ringbuf;
2335
	u32 request_start;
2336 2337
	int ret;

2338
	request = ring->outstanding_lazy_request;
2339 2340 2341 2342
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
2343
		ringbuf = request->ctx->engine[ring->id].ringbuf;
2344 2345 2346 2347
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2348 2349 2350 2351 2352 2353 2354
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2355
	if (i915.enable_execlists) {
2356
		ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2357 2358 2359 2360 2361 2362 2363
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2364

2365 2366 2367 2368 2369
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2370
	request->postfix = intel_ring_get_tail(ringbuf);
2371

2372
	if (i915.enable_execlists) {
2373
		ret = ring->emit_request(ringbuf, request);
2374 2375 2376 2377 2378 2379 2380
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
	}
2381

2382
	request->head = request_start;
2383
	request->tail = intel_ring_get_tail(ringbuf);
2384 2385 2386 2387 2388 2389 2390

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2391
	request->batch_obj = obj;
2392

2393 2394 2395 2396 2397 2398 2399 2400
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2401

2402
	request->emitted_jiffies = jiffies;
2403
	list_add_tail(&request->list, &ring->request_list);
2404
	request->file_priv = NULL;
2405

C
Chris Wilson 已提交
2406 2407 2408
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2409
		spin_lock(&file_priv->mm.lock);
2410
		request->file_priv = file_priv;
2411
		list_add_tail(&request->client_list,
2412
			      &file_priv->mm.request_list);
2413
		spin_unlock(&file_priv->mm.lock);
2414 2415

		request->pid = get_pid(task_pid(current));
2416
	}
2417

2418
	trace_i915_gem_request_add(request);
2419
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2420

2421
	i915_queue_hangcheck(ring->dev);
2422

2423 2424 2425 2426 2427
	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2428

2429
	return 0;
2430 2431
}

2432 2433
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2434
{
2435
	struct drm_i915_file_private *file_priv = request->file_priv;
2436

2437 2438
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2439

2440
	spin_lock(&file_priv->mm.lock);
2441 2442
	list_del(&request->client_list);
	request->file_priv = NULL;
2443
	spin_unlock(&file_priv->mm.lock);
2444 2445
}

2446
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2447
				   const struct intel_context *ctx)
2448
{
2449
	unsigned long elapsed;
2450

2451 2452 2453
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2454 2455
		return true;

2456 2457
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2458
		if (!i915_gem_context_is_default(ctx)) {
2459
			DRM_DEBUG("context hanging too fast, banning!\n");
2460
			return true;
2461 2462 2463
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2464
			return true;
2465
		}
2466 2467 2468 2469 2470
	}

	return false;
}

2471
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2472
				  struct intel_context *ctx,
2473
				  const bool guilty)
2474
{
2475 2476 2477 2478
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2479

2480 2481 2482
	hs = &ctx->hang_stats;

	if (guilty) {
2483
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2484 2485 2486 2487
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2488 2489 2490
	}
}

2491 2492 2493 2494 2495
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

2496 2497
	put_pid(request->pid);

2498 2499 2500 2501 2502 2503 2504 2505 2506
	i915_gem_request_unreference(request);
}

void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2507 2508
	if (ctx) {
		if (i915.enable_execlists) {
2509
			struct intel_engine_cs *ring = req->ring;
2510

2511 2512 2513
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2514

2515 2516
		i915_gem_context_unreference(ctx);
	}
2517 2518

	kfree(req);
2519 2520
}

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
int i915_gem_request_alloc(struct intel_engine_cs *ring,
			   struct intel_context *ctx)
{
	int ret;
	struct drm_i915_gem_request *request;
	struct drm_i915_private *dev_private = ring->dev->dev_private;

	if (ring->outstanding_lazy_request)
		return 0;

	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL)
		return -ENOMEM;

	ret = i915_gem_get_seqno(ring->dev, &request->seqno);
	if (ret) {
		kfree(request);
		return ret;
	}

	kref_init(&request->ref);
	request->ring = ring;
	request->uniq = dev_private->request_uniq++;

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(request, ctx);
	else
		ret = intel_ring_alloc_request_extras(request);
	if (ret) {
		kfree(request);
		return ret;
	}

	ring->outstanding_lazy_request = request;
	return 0;
}

2558
struct drm_i915_gem_request *
2559
i915_gem_find_active_request(struct intel_engine_cs *ring)
2560
{
2561 2562 2563
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2564
		if (i915_gem_request_completed(request, false))
2565
			continue;
2566

2567
		return request;
2568
	}
2569 2570 2571 2572 2573

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2574
				       struct intel_engine_cs *ring)
2575 2576 2577 2578
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2579
	request = i915_gem_find_active_request(ring);
2580 2581 2582 2583 2584 2585

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2586
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2587 2588

	list_for_each_entry_continue(request, &ring->request_list, list)
2589
		i915_set_reset_status(dev_priv, request->ctx, false);
2590
}
2591

2592
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2593
					struct intel_engine_cs *ring)
2594
{
2595
	while (!list_empty(&ring->active_list)) {
2596
		struct drm_i915_gem_object *obj;
2597

2598 2599 2600
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2601

2602
		i915_gem_object_move_to_inactive(obj);
2603
	}
2604

2605 2606 2607 2608 2609 2610
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2611
		struct drm_i915_gem_request *submit_req;
2612 2613

		submit_req = list_first_entry(&ring->execlist_queue,
2614
				struct drm_i915_gem_request,
2615 2616 2617
				execlist_link);
		list_del(&submit_req->execlist_link);
		intel_runtime_pm_put(dev_priv);
2618 2619 2620 2621

		if (submit_req->ctx != ring->default_context)
			intel_lr_context_unpin(ring, submit_req->ctx);

2622
		i915_gem_request_unreference(submit_req);
2623 2624
	}

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2641

2642 2643
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2644 2645
}

2646
void i915_gem_restore_fences(struct drm_device *dev)
2647 2648 2649 2650
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2651
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2652
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2653

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2664 2665 2666
	}
}

2667
void i915_gem_reset(struct drm_device *dev)
2668
{
2669
	struct drm_i915_private *dev_priv = dev->dev_private;
2670
	struct intel_engine_cs *ring;
2671
	int i;
2672

2673 2674 2675 2676 2677 2678 2679 2680
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2681
	for_each_ring(ring, dev_priv, i)
2682
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2683

2684 2685
	i915_gem_context_reset(dev);

2686
	i915_gem_restore_fences(dev);
2687 2688 2689 2690 2691
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2692
void
2693
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2694
{
C
Chris Wilson 已提交
2695
	if (list_empty(&ring->request_list))
2696 2697
		return;

C
Chris Wilson 已提交
2698
	WARN_ON(i915_verify_lists(ring->dev));
2699

2700 2701 2702 2703
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2704
	 */
2705
	while (!list_empty(&ring->request_list)) {
2706 2707
		struct drm_i915_gem_request *request;

2708
		request = list_first_entry(&ring->request_list,
2709 2710 2711
					   struct drm_i915_gem_request,
					   list);

2712
		if (!i915_gem_request_completed(request, true))
2713 2714
			break;

2715
		trace_i915_gem_request_retire(request);
2716

2717 2718 2719 2720 2721
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2722
		request->ringbuf->last_retired_head = request->postfix;
2723

2724
		i915_gem_free_request(request);
2725
	}
2726

2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

		if (!i915_gem_request_completed(obj->last_read_req, true))
			break;

		i915_gem_object_move_to_inactive(obj);
	}

2744 2745
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2746
		ring->irq_put(ring);
2747
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2748
	}
2749

C
Chris Wilson 已提交
2750
	WARN_ON(i915_verify_lists(ring->dev));
2751 2752
}

2753
bool
2754 2755
i915_gem_retire_requests(struct drm_device *dev)
{
2756
	struct drm_i915_private *dev_priv = dev->dev_private;
2757
	struct intel_engine_cs *ring;
2758
	bool idle = true;
2759
	int i;
2760

2761
	for_each_ring(ring, dev_priv, i) {
2762
		i915_gem_retire_requests_ring(ring);
2763
		idle &= list_empty(&ring->request_list);
2764 2765 2766 2767 2768 2769 2770 2771 2772
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2773 2774 2775 2776 2777 2778 2779 2780
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2781 2782
}

2783
static void
2784 2785
i915_gem_retire_work_handler(struct work_struct *work)
{
2786 2787 2788
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2789
	bool idle;
2790

2791
	/* Come back later if the device is busy... */
2792 2793 2794 2795
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2796
	}
2797
	if (!idle)
2798 2799
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2800
}
2801

2802 2803 2804 2805 2806 2807 2808
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);

	intel_mark_idle(dev_priv->dev);
2809 2810
}

2811 2812 2813 2814 2815 2816 2817 2818
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2819
	struct intel_engine_cs *ring;
2820 2821 2822
	int ret;

	if (obj->active) {
2823 2824
		ring = i915_gem_request_get_ring(obj->last_read_req);

2825
		ret = i915_gem_check_olr(obj->last_read_req);
2826 2827 2828
		if (ret)
			return ret;

2829
		i915_gem_retire_requests_ring(ring);
2830 2831 2832 2833 2834
	}

	return 0;
}

2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2860
	struct drm_i915_private *dev_priv = dev->dev_private;
2861 2862
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2863
	struct drm_i915_gem_request *req;
2864
	unsigned reset_counter;
2865 2866
	int ret = 0;

2867 2868 2869
	if (args->flags != 0)
		return -EINVAL;

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2880 2881
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2882 2883 2884
	if (ret)
		goto out;

2885 2886
	if (!obj->active || !obj->last_read_req)
		goto out;
2887

2888
	req = obj->last_read_req;
2889 2890

	/* Do this after OLR check to make sure we make forward progress polling
2891
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
2892
	 */
2893
	if (args->timeout_ns == 0) {
2894 2895 2896 2897 2898
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2899
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2900
	i915_gem_request_reference(req);
2901 2902
	mutex_unlock(&dev->struct_mutex);

2903 2904
	ret = __i915_wait_request(req, reset_counter, true,
				  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2905
				  file->driver_priv);
2906
	i915_gem_request_unreference__unlocked(req);
2907
	return ret;
2908 2909 2910 2911 2912 2913 2914

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2927 2928
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2929
		     struct intel_engine_cs *to)
2930
{
2931
	struct intel_engine_cs *from;
2932 2933 2934
	u32 seqno;
	int ret, idx;

2935 2936
	from = i915_gem_request_get_ring(obj->last_read_req);

2937 2938 2939
	if (from == NULL || to == from)
		return 0;

2940
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2941
		return i915_gem_object_wait_rendering(obj, false);
2942 2943 2944

	idx = intel_ring_sync_index(from, to);

2945
	seqno = i915_gem_request_get_seqno(obj->last_read_req);
R
Rodrigo Vivi 已提交
2946 2947
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
2948
	if (seqno <= from->semaphore.sync_seqno[idx])
2949 2950
		return 0;

2951
	ret = i915_gem_check_olr(obj->last_read_req);
2952 2953
	if (ret)
		return ret;
2954

2955
	trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2956
	ret = to->semaphore.sync_to(to, from, seqno);
2957
	if (!ret)
2958
		/* We use last_read_req because sync_to()
2959 2960 2961
		 * might have just caused seqno wrap under
		 * the radar.
		 */
2962 2963
		from->semaphore.sync_seqno[idx] =
				i915_gem_request_get_seqno(obj->last_read_req);
2964

2965
	return ret;
2966 2967
}

2968 2969 2970 2971 2972 2973 2974
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2975 2976 2977
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2978 2979 2980
	/* Wait for any direct GTT access to complete */
	mb();

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2992
int i915_vma_unbind(struct i915_vma *vma)
2993
{
2994
	struct drm_i915_gem_object *obj = vma->obj;
2995
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2996
	int ret;
2997

2998
	if (list_empty(&vma->vma_link))
2999 3000
		return 0;

3001 3002 3003 3004
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3005

B
Ben Widawsky 已提交
3006
	if (vma->pin_count)
3007
		return -EBUSY;
3008

3009 3010
	BUG_ON(obj->pages == NULL);

3011
	ret = i915_gem_object_finish_gpu(obj);
3012
	if (ret)
3013 3014 3015 3016 3017 3018
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3019 3020
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3021
		i915_gem_object_finish_gtt(obj);
3022

3023 3024 3025 3026 3027
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3028

3029
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3030

3031 3032
	vma->unbind_vma(vma);

3033
	list_del_init(&vma->mm_list);
3034 3035 3036 3037 3038 3039 3040 3041 3042
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3043

B
Ben Widawsky 已提交
3044 3045 3046 3047
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3048
	 * no more VMAs exist. */
3049
	if (list_empty(&obj->vma_list)) {
3050 3051 3052 3053
		/* Throw away the active reference before
		 * moving to the unbound list. */
		i915_gem_object_retire(obj);

3054
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3055
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3056
	}
3057

3058 3059 3060 3061 3062 3063
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3064
	return 0;
3065 3066
}

3067
int i915_gpu_idle(struct drm_device *dev)
3068
{
3069
	struct drm_i915_private *dev_priv = dev->dev_private;
3070
	struct intel_engine_cs *ring;
3071
	int ret, i;
3072 3073

	/* Flush everything onto the inactive list. */
3074
	for_each_ring(ring, dev_priv, i) {
3075 3076 3077 3078 3079
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3080

3081
		ret = intel_ring_idle(ring);
3082 3083 3084
		if (ret)
			return ret;
	}
3085

3086
	return 0;
3087 3088
}

3089 3090
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3091
{
3092
	struct drm_i915_private *dev_priv = dev->dev_private;
3093 3094
	int fence_reg;
	int fence_pitch_shift;
3095

3096 3097 3098 3099 3100 3101 3102 3103
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3118
	if (obj) {
3119
		u32 size = i915_gem_obj_ggtt_size(obj);
3120
		uint64_t val;
3121

3122 3123 3124 3125 3126 3127 3128
		/* Adjust fence size to match tiled area */
		if (obj->tiling_mode != I915_TILING_NONE) {
			uint32_t row_size = obj->stride *
				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
			size = (size / row_size) * row_size;
		}

3129
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3130
				 0xfffff000) << 32;
3131
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3132
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3133 3134 3135
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3136

3137 3138 3139 3140 3141 3142 3143 3144 3145
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3146 3147
}

3148 3149
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3150
{
3151
	struct drm_i915_private *dev_priv = dev->dev_private;
3152
	u32 val;
3153

3154
	if (obj) {
3155
		u32 size = i915_gem_obj_ggtt_size(obj);
3156 3157
		int pitch_val;
		int tile_width;
3158

3159
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3160
		     (size & -size) != size ||
3161 3162 3163
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3164

3165 3166 3167 3168 3169 3170 3171 3172 3173
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3174
		val = i915_gem_obj_ggtt_offset(obj);
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3190 3191
}

3192 3193
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3194
{
3195
	struct drm_i915_private *dev_priv = dev->dev_private;
3196 3197
	uint32_t val;

3198
	if (obj) {
3199
		u32 size = i915_gem_obj_ggtt_size(obj);
3200
		uint32_t pitch_val;
3201

3202
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3203
		     (size & -size) != size ||
3204 3205 3206
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3207

3208 3209
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3210

3211
		val = i915_gem_obj_ggtt_offset(obj);
3212 3213 3214 3215 3216 3217 3218
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3219

3220 3221 3222 3223
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3224 3225 3226 3227 3228
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3229 3230 3231
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3232 3233 3234 3235 3236 3237 3238 3239
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3240 3241 3242 3243
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3244 3245 3246 3247 3248 3249
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3250 3251 3252 3253 3254 3255

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3256 3257
}

3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3268
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3269 3270 3271
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3272 3273

	if (enable) {
3274
		obj->fence_reg = reg;
3275 3276 3277 3278 3279 3280 3281
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3282
	obj->fence_dirty = false;
3283 3284
}

3285
static int
3286
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3287
{
3288
	if (obj->last_fenced_req) {
3289
		int ret = i915_wait_request(obj->last_fenced_req);
3290 3291
		if (ret)
			return ret;
3292

3293
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3294 3295 3296 3297 3298 3299 3300 3301
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3302
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3303
	struct drm_i915_fence_reg *fence;
3304 3305
	int ret;

3306
	ret = i915_gem_object_wait_fence(obj);
3307 3308 3309
	if (ret)
		return ret;

3310 3311
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3312

3313 3314
	fence = &dev_priv->fence_regs[obj->fence_reg];

3315 3316 3317
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3318
	i915_gem_object_fence_lost(obj);
3319
	i915_gem_object_update_fence(obj, fence, false);
3320 3321 3322 3323 3324

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3325
i915_find_fence_reg(struct drm_device *dev)
3326 3327
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3328
	struct drm_i915_fence_reg *reg, *avail;
3329
	int i;
3330 3331

	/* First try to find a free reg */
3332
	avail = NULL;
3333 3334 3335
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3336
			return reg;
3337

3338
		if (!reg->pin_count)
3339
			avail = reg;
3340 3341
	}

3342
	if (avail == NULL)
3343
		goto deadlock;
3344 3345

	/* None available, try to steal one or wait for a user to finish */
3346
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3347
		if (reg->pin_count)
3348 3349
			continue;

C
Chris Wilson 已提交
3350
		return reg;
3351 3352
	}

3353 3354 3355 3356 3357 3358
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3359 3360
}

3361
/**
3362
 * i915_gem_object_get_fence - set up fencing for an object
3363 3364 3365 3366 3367 3368 3369 3370 3371
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3372 3373
 *
 * For an untiled surface, this removes any existing fence.
3374
 */
3375
int
3376
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3377
{
3378
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3379
	struct drm_i915_private *dev_priv = dev->dev_private;
3380
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3381
	struct drm_i915_fence_reg *reg;
3382
	int ret;
3383

3384 3385 3386
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3387
	if (obj->fence_dirty) {
3388
		ret = i915_gem_object_wait_fence(obj);
3389 3390 3391
		if (ret)
			return ret;
	}
3392

3393
	/* Just update our place in the LRU if our fence is getting reused. */
3394 3395
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3396
		if (!obj->fence_dirty) {
3397 3398 3399 3400 3401
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3402 3403 3404
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3405
		reg = i915_find_fence_reg(dev);
3406 3407
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3408

3409 3410 3411
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3412
			ret = i915_gem_object_wait_fence(old);
3413 3414 3415
			if (ret)
				return ret;

3416
			i915_gem_object_fence_lost(old);
3417
		}
3418
	} else
3419 3420
		return 0;

3421 3422
	i915_gem_object_update_fence(obj, reg, enable);

3423
	return 0;
3424 3425
}

3426
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3427 3428
				     unsigned long cache_level)
{
3429
	struct drm_mm_node *gtt_space = &vma->node;
3430 3431
	struct drm_mm_node *other;

3432 3433 3434 3435 3436 3437
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3438
	 */
3439
	if (vma->vm->mm.color_adjust == NULL)
3440 3441
		return true;

3442
	if (!drm_mm_node_allocated(gtt_space))
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3459 3460 3461
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3462
static struct i915_vma *
3463 3464
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3465
			   const struct i915_ggtt_view *ggtt_view,
3466
			   unsigned alignment,
3467
			   uint64_t flags)
3468
{
3469
	struct drm_device *dev = obj->base.dev;
3470
	struct drm_i915_private *dev_priv = dev->dev_private;
3471
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3472 3473 3474
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3475
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3476
	struct i915_vma *vma;
3477
	int ret;
3478

3479 3480 3481
	if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return ERR_PTR(-EINVAL);

3482 3483 3484 3485 3486
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3487
						     obj->tiling_mode, true);
3488
	unfenced_alignment =
3489
		i915_gem_get_gtt_alignment(dev,
3490 3491
					   obj->base.size,
					   obj->tiling_mode, false);
3492

3493
	if (alignment == 0)
3494
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3495
						unfenced_alignment;
3496
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3497
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3498
		return ERR_PTR(-EINVAL);
3499 3500
	}

3501
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3502

3503 3504 3505
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3506 3507
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3508
			  obj->base.size,
3509
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3510
			  end);
3511
		return ERR_PTR(-E2BIG);
3512 3513
	}

3514
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3515
	if (ret)
3516
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3517

3518 3519
	i915_gem_object_pin_pages(obj);

3520 3521 3522
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3523
	if (IS_ERR(vma))
3524
		goto err_unpin;
B
Ben Widawsky 已提交
3525

3526
search_free:
3527
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3528
						  size, alignment,
3529 3530
						  obj->cache_level,
						  start, end,
3531 3532
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3533
	if (ret) {
3534
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3535 3536 3537
					       obj->cache_level,
					       start, end,
					       flags);
3538 3539
		if (ret == 0)
			goto search_free;
3540

3541
		goto err_free_vma;
3542
	}
3543
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3544
		ret = -EINVAL;
3545
		goto err_remove_node;
3546 3547
	}

3548
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3549
	if (ret)
3550
		goto err_remove_node;
3551

3552 3553
	/*  allocate before insert / bind */
	if (vma->vm->allocate_va_range) {
3554 3555
		trace_i915_va_alloc(vma->vm, vma->node.start, vma->node.size,
				VM_TO_TRACE_NAME(vma->vm));
3556 3557 3558 3559 3560 3561 3562
		ret = vma->vm->allocate_va_range(vma->vm,
						vma->node.start,
						vma->node.size);
		if (ret)
			goto err_remove_node;
	}

3563 3564 3565 3566 3567 3568
	trace_i915_vma_bind(vma, flags);
	ret = i915_vma_bind(vma, obj->cache_level,
			    flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
	if (ret)
		goto err_finish_gtt;

3569
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3570
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3571

3572
	return vma;
B
Ben Widawsky 已提交
3573

3574 3575
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3576
err_remove_node:
3577
	drm_mm_remove_node(&vma->node);
3578
err_free_vma:
B
Ben Widawsky 已提交
3579
	i915_gem_vma_destroy(vma);
3580
	vma = ERR_PTR(ret);
3581
err_unpin:
B
Ben Widawsky 已提交
3582
	i915_gem_object_unpin_pages(obj);
3583
	return vma;
3584 3585
}

3586
bool
3587 3588
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3589 3590 3591 3592 3593
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3594
	if (obj->pages == NULL)
3595
		return false;
3596

3597 3598 3599 3600
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3601
	if (obj->stolen || obj->phys_handle)
3602
		return false;
3603

3604 3605 3606 3607 3608 3609 3610 3611
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3612 3613
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3614
		return false;
3615
	}
3616

C
Chris Wilson 已提交
3617
	trace_i915_gem_object_clflush(obj);
3618
	drm_clflush_sg(obj->pages);
3619
	obj->cache_dirty = false;
3620 3621

	return true;
3622 3623 3624 3625
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3626
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3627
{
C
Chris Wilson 已提交
3628 3629
	uint32_t old_write_domain;

3630
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3631 3632
		return;

3633
	/* No actual flushing is required for the GTT write domain.  Writes
3634 3635
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3636 3637 3638 3639
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3640
	 */
3641 3642
	wmb();

3643 3644
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3645

3646 3647
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3648
	trace_i915_gem_object_change_domain(obj,
3649
					    obj->base.read_domains,
C
Chris Wilson 已提交
3650
					    old_write_domain);
3651 3652 3653 3654
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3655
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3656
{
C
Chris Wilson 已提交
3657
	uint32_t old_write_domain;
3658

3659
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3660 3661
		return;

3662
	if (i915_gem_clflush_object(obj, obj->pin_display))
3663 3664
		i915_gem_chipset_flush(obj->base.dev);

3665 3666
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3667

3668 3669
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3670
	trace_i915_gem_object_change_domain(obj,
3671
					    obj->base.read_domains,
C
Chris Wilson 已提交
3672
					    old_write_domain);
3673 3674
}

3675 3676 3677 3678 3679 3680
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3681
int
3682
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3683
{
C
Chris Wilson 已提交
3684
	uint32_t old_write_domain, old_read_domains;
3685
	struct i915_vma *vma;
3686
	int ret;
3687

3688 3689 3690
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3691
	ret = i915_gem_object_wait_rendering(obj, !write);
3692 3693 3694
	if (ret)
		return ret;

3695
	i915_gem_object_retire(obj);
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3709
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3710

3711 3712 3713 3714 3715 3716 3717
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3718 3719
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3720

3721 3722 3723
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3724 3725
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3726
	if (write) {
3727 3728 3729
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3730 3731
	}

3732
	if (write)
3733
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3734

C
Chris Wilson 已提交
3735 3736 3737 3738
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3739
	/* And bump the LRU for this access */
3740 3741
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3742
		list_move_tail(&vma->mm_list,
3743
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3744

3745 3746 3747
	return 0;
}

3748 3749 3750
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3751
	struct drm_device *dev = obj->base.dev;
3752
	struct i915_vma *vma, *next;
3753 3754 3755 3756 3757
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3758
	if (i915_gem_obj_is_pinned(obj)) {
3759 3760 3761 3762
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3763
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3764
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3765
			ret = i915_vma_unbind(vma);
3766 3767 3768
			if (ret)
				return ret;
		}
3769 3770
	}

3771
	if (i915_gem_obj_bound_any(obj)) {
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3782
		if (INTEL_INFO(dev)->gen < 6) {
3783 3784 3785 3786 3787
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3788
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3789 3790 3791 3792 3793 3794
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
						    vma->bound & GLOBAL_BIND);
				if (ret)
					return ret;
			}
3795 3796
	}

3797 3798 3799 3800
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3801 3802 3803 3804 3805
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3806 3807 3808 3809 3810
	}

	return 0;
}

B
Ben Widawsky 已提交
3811 3812
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3813
{
B
Ben Widawsky 已提交
3814
	struct drm_i915_gem_caching *args = data;
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3828 3829 3830 3831 3832 3833
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3834 3835 3836 3837
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3838 3839 3840 3841
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3842 3843 3844 3845 3846 3847 3848

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3849 3850
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3851
{
B
Ben Widawsky 已提交
3852
	struct drm_i915_gem_caching *args = data;
3853 3854 3855 3856
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3857 3858
	switch (args->caching) {
	case I915_CACHING_NONE:
3859 3860
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3861
	case I915_CACHING_CACHED:
3862 3863
		level = I915_CACHE_LLC;
		break;
3864 3865 3866
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3867 3868 3869 3870
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3871 3872 3873 3874
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3889 3890
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3891 3892 3893 3894 3895 3896
	struct i915_vma *vma;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

D
Daniel Vetter 已提交
3897
	/* There are 2 sources that pin objects:
3898 3899 3900 3901
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *
	 * We can ignore reservations as we hold the struct_mutex and
D
Daniel Vetter 已提交
3902
	 * are only called outside of the reservation path.
3903
	 */
D
Daniel Vetter 已提交
3904
	return vma->pin_count;
3905 3906
}

3907
/*
3908 3909 3910
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3911 3912
 */
int
3913 3914
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3915 3916
				     struct intel_engine_cs *pipelined,
				     const struct i915_ggtt_view *view)
3917
{
3918
	u32 old_read_domains, old_write_domain;
3919
	bool was_pin_display;
3920 3921
	int ret;

3922
	if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3923 3924
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3925 3926 3927
			return ret;
	}

3928 3929 3930
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3931
	was_pin_display = obj->pin_display;
3932 3933
	obj->pin_display = true;

3934 3935 3936 3937 3938 3939 3940 3941 3942
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3943 3944
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3945
	if (ret)
3946
		goto err_unpin_display;
3947

3948 3949 3950 3951
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3952 3953 3954
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3955
	if (ret)
3956
		goto err_unpin_display;
3957

3958
	i915_gem_object_flush_cpu_write_domain(obj);
3959

3960
	old_write_domain = obj->base.write_domain;
3961
	old_read_domains = obj->base.read_domains;
3962 3963 3964 3965

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3966
	obj->base.write_domain = 0;
3967
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3968 3969 3970

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3971
					    old_write_domain);
3972 3973

	return 0;
3974 3975

err_unpin_display:
3976 3977
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
3978 3979 3980 3981
	return ret;
}

void
3982 3983
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3984
{
3985 3986
	i915_gem_object_ggtt_unpin_view(obj, view);

3987
	obj->pin_display = is_pin_display(obj);
3988 3989
}

3990
int
3991
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3992
{
3993 3994
	int ret;

3995
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3996 3997
		return 0;

3998
	ret = i915_gem_object_wait_rendering(obj, false);
3999 4000 4001
	if (ret)
		return ret;

4002 4003
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4004
	return 0;
4005 4006
}

4007 4008 4009 4010 4011 4012
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4013
int
4014
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4015
{
C
Chris Wilson 已提交
4016
	uint32_t old_write_domain, old_read_domains;
4017 4018
	int ret;

4019 4020 4021
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4022
	ret = i915_gem_object_wait_rendering(obj, !write);
4023 4024 4025
	if (ret)
		return ret;

4026
	i915_gem_object_retire(obj);
4027
	i915_gem_object_flush_gtt_write_domain(obj);
4028

4029 4030
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4031

4032
	/* Flush the CPU cache if it's still invalid. */
4033
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4034
		i915_gem_clflush_object(obj, false);
4035

4036
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4037 4038 4039 4040 4041
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4042
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4043 4044 4045 4046 4047

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4048 4049
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4050
	}
4051

4052
	if (write)
4053
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4054

C
Chris Wilson 已提交
4055 4056 4057 4058
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4059 4060 4061
	return 0;
}

4062 4063 4064
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4065 4066 4067 4068
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4069 4070 4071
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4072
static int
4073
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4074
{
4075 4076
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4077
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4078
	struct drm_i915_gem_request *request, *target = NULL;
4079
	unsigned reset_counter;
4080
	int ret;
4081

4082 4083 4084 4085 4086 4087 4088
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4089

4090
	spin_lock(&file_priv->mm.lock);
4091
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4092 4093
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4094

4095
		target = request;
4096
	}
4097
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4098 4099
	if (target)
		i915_gem_request_reference(target);
4100
	spin_unlock(&file_priv->mm.lock);
4101

4102
	if (target == NULL)
4103
		return 0;
4104

4105
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4106 4107
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4108

4109
	i915_gem_request_unreference__unlocked(target);
4110

4111 4112 4113
	return ret;
}

4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4133 4134 4135 4136 4137 4138
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4139
{
4140
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4141
	struct i915_vma *vma;
4142
	unsigned bound;
4143 4144
	int ret;

4145 4146 4147
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4148
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4149
		return -EINVAL;
4150

4151 4152 4153
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4154 4155 4156 4157 4158 4159 4160 4161 4162
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4163
	if (vma) {
B
Ben Widawsky 已提交
4164 4165 4166
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4167
		if (i915_vma_misplaced(vma, alignment, flags)) {
4168
			unsigned long offset;
4169
			offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4170
					     i915_gem_obj_offset(obj, vm);
B
Ben Widawsky 已提交
4171
			WARN(vma->pin_count,
4172
			     "bo is already pinned in %s with incorrect alignment:"
4173
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4174
			     " obj->map_and_fenceable=%d\n",
4175 4176
			     ggtt_view ? "ggtt" : "ppgtt",
			     offset,
4177
			     alignment,
4178
			     !!(flags & PIN_MAPPABLE),
4179
			     obj->map_and_fenceable);
4180
			ret = i915_vma_unbind(vma);
4181 4182
			if (ret)
				return ret;
4183 4184

			vma = NULL;
4185 4186 4187
		}
	}

4188
	bound = vma ? vma->bound : 0;
4189
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4190 4191 4192 4193
		/* In true PPGTT, bind has possibly changed PDEs, which
		 * means we must do a context switch before the GPU can
		 * accurately read some of the VMAs.
		 */
4194 4195
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4196 4197
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4198
	}
J
Jesse Barnes 已提交
4199

4200 4201 4202 4203 4204
	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
		ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
		if (ret)
			return ret;
	}
4205

4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
	if ((bound ^ vma->bound) & GLOBAL_BIND) {
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4221
		mappable = (vma->node.start + fence_size <=
4222 4223 4224 4225 4226 4227 4228
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;
	}

	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);

4229
	vma->pin_count++;
4230 4231
	if (flags & PIN_MAPPABLE)
		obj->pin_mappable |= true;
4232 4233 4234 4235

	return 0;
}

4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4257
				      alignment, flags | PIN_GLOBAL);
4258 4259
}

4260
void
4261 4262
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4263
{
4264
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4265

B
Ben Widawsky 已提交
4266
	BUG_ON(!vma);
4267
	WARN_ON(vma->pin_count == 0);
4268
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4269

4270
	if (--vma->pin_count == 0 && view->type == I915_GGTT_VIEW_NORMAL)
4271
		obj->pin_mappable = false;
4272 4273
}

4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4300 4301
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4302
		    struct drm_file *file)
4303 4304
{
	struct drm_i915_gem_busy *args = data;
4305
	struct drm_i915_gem_object *obj;
4306 4307
	int ret;

4308
	ret = i915_mutex_lock_interruptible(dev);
4309
	if (ret)
4310
		return ret;
4311

4312
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4313
	if (&obj->base == NULL) {
4314 4315
		ret = -ENOENT;
		goto unlock;
4316
	}
4317

4318 4319 4320 4321
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4322
	 */
4323
	ret = i915_gem_object_flush_active(obj);
4324

4325
	args->busy = obj->active;
4326 4327
	if (obj->last_read_req) {
		struct intel_engine_cs *ring;
4328
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4329 4330
		ring = i915_gem_request_get_ring(obj->last_read_req);
		args->busy |= intel_ring_flag(ring) << 16;
4331
	}
4332

4333
	drm_gem_object_unreference(&obj->base);
4334
unlock:
4335
	mutex_unlock(&dev->struct_mutex);
4336
	return ret;
4337 4338 4339 4340 4341 4342
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4343
	return i915_gem_ring_throttle(dev, file_priv);
4344 4345
}

4346 4347 4348 4349
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4350
	struct drm_i915_private *dev_priv = dev->dev_private;
4351
	struct drm_i915_gem_madvise *args = data;
4352
	struct drm_i915_gem_object *obj;
4353
	int ret;
4354 4355 4356 4357 4358 4359 4360 4361 4362

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4363 4364 4365 4366
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4367
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4368
	if (&obj->base == NULL) {
4369 4370
		ret = -ENOENT;
		goto unlock;
4371 4372
	}

B
Ben Widawsky 已提交
4373
	if (i915_gem_obj_is_pinned(obj)) {
4374 4375
		ret = -EINVAL;
		goto out;
4376 4377
	}

4378 4379 4380 4381 4382 4383 4384 4385 4386
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4387 4388
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4389

C
Chris Wilson 已提交
4390
	/* if the object is no longer attached, discard its backing storage */
4391
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4392 4393
		i915_gem_object_truncate(obj);

4394
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4395

4396
out:
4397
	drm_gem_object_unreference(&obj->base);
4398
unlock:
4399
	mutex_unlock(&dev->struct_mutex);
4400
	return ret;
4401 4402
}

4403 4404
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4405
{
4406
	INIT_LIST_HEAD(&obj->global_list);
4407
	INIT_LIST_HEAD(&obj->ring_list);
4408
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4409
	INIT_LIST_HEAD(&obj->vma_list);
4410
	INIT_LIST_HEAD(&obj->batch_pool_list);
4411

4412 4413
	obj->ops = ops;

4414 4415 4416 4417 4418 4419
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4420 4421 4422 4423 4424
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4425 4426
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4427
{
4428
	struct drm_i915_gem_object *obj;
4429
	struct address_space *mapping;
D
Daniel Vetter 已提交
4430
	gfp_t mask;
4431

4432
	obj = i915_gem_object_alloc(dev);
4433 4434
	if (obj == NULL)
		return NULL;
4435

4436
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4437
		i915_gem_object_free(obj);
4438 4439
		return NULL;
	}
4440

4441 4442 4443 4444 4445 4446 4447
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4448
	mapping = file_inode(obj->base.filp)->i_mapping;
4449
	mapping_set_gfp_mask(mapping, mask);
4450

4451
	i915_gem_object_init(obj, &i915_gem_object_ops);
4452

4453 4454
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4455

4456 4457
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4473 4474
	trace_i915_gem_object_create(obj);

4475
	return obj;
4476 4477
}

4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4502
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4503
{
4504
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4505
	struct drm_device *dev = obj->base.dev;
4506
	struct drm_i915_private *dev_priv = dev->dev_private;
4507
	struct i915_vma *vma, *next;
4508

4509 4510
	intel_runtime_pm_get(dev_priv);

4511 4512
	trace_i915_gem_object_destroy(obj);

4513
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4514 4515 4516 4517
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4518 4519
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4520

4521 4522
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4523

4524
			WARN_ON(i915_vma_unbind(vma));
4525

4526 4527
			dev_priv->mm.interruptible = was_interruptible;
		}
4528 4529
	}

B
Ben Widawsky 已提交
4530 4531 4532 4533 4534
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4535 4536
	WARN_ON(obj->frontbuffer_bits);

4537 4538 4539 4540 4541
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4542 4543
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4544
	if (discard_backing_storage(obj))
4545
		obj->madv = I915_MADV_DONTNEED;
4546
	i915_gem_object_put_pages(obj);
4547
	i915_gem_object_free_mmap_offset(obj);
4548

4549 4550
	BUG_ON(obj->pages);

4551 4552
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4553

4554 4555 4556
	if (obj->ops->release)
		obj->ops->release(obj);

4557 4558
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4559

4560
	kfree(obj->bit_17);
4561
	i915_gem_object_free(obj);
4562 4563

	intel_runtime_pm_put(dev_priv);
4564 4565
}

4566 4567
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4568 4569
{
	struct i915_vma *vma;
4570 4571 4572 4573 4574
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4575
			return vma;
4576 4577 4578 4579 4580 4581 4582 4583 4584
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4585

4586 4587 4588 4589
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4590 4591
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4592
			return vma;
4593 4594 4595
	return NULL;
}

B
Ben Widawsky 已提交
4596 4597
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4598
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4599
	WARN_ON(vma->node.allocated);
4600 4601 4602 4603 4604

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4605 4606
	vm = vma->vm;

4607 4608
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4609

4610
	list_del(&vma->vma_link);
4611

B
Ben Widawsky 已提交
4612 4613 4614
	kfree(vma);
}

4615 4616 4617 4618
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4619
	struct intel_engine_cs *ring;
4620 4621 4622
	int i;

	for_each_ring(ring, dev_priv, i)
4623
		dev_priv->gt.stop_ring(ring);
4624 4625
}

4626
int
4627
i915_gem_suspend(struct drm_device *dev)
4628
{
4629
	struct drm_i915_private *dev_priv = dev->dev_private;
4630
	int ret = 0;
4631

4632
	mutex_lock(&dev->struct_mutex);
4633
	ret = i915_gpu_idle(dev);
4634
	if (ret)
4635
		goto err;
4636

4637
	i915_gem_retire_requests(dev);
4638

4639
	i915_gem_stop_ringbuffers(dev);
4640 4641
	mutex_unlock(&dev->struct_mutex);

4642
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4643
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4644
	flush_delayed_work(&dev_priv->mm.idle_work);
4645

4646 4647 4648 4649 4650
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4651
	return 0;
4652 4653 4654 4655

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4656 4657
}

4658
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4659
{
4660
	struct drm_device *dev = ring->dev;
4661
	struct drm_i915_private *dev_priv = dev->dev_private;
4662 4663
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4664
	int i, ret;
B
Ben Widawsky 已提交
4665

4666
	if (!HAS_L3_DPF(dev) || !remap_info)
4667
		return 0;
B
Ben Widawsky 已提交
4668

4669 4670 4671
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4672

4673 4674 4675 4676 4677
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4678
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4679 4680 4681
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4682 4683
	}

4684
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4685

4686
	return ret;
B
Ben Widawsky 已提交
4687 4688
}

4689 4690
void i915_gem_init_swizzling(struct drm_device *dev)
{
4691
	struct drm_i915_private *dev_priv = dev->dev_private;
4692

4693
	if (INTEL_INFO(dev)->gen < 5 ||
4694 4695 4696 4697 4698 4699
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4700 4701 4702
	if (IS_GEN5(dev))
		return;

4703 4704
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4705
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4706
	else if (IS_GEN7(dev))
4707
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4708 4709
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4710 4711
	else
		BUG();
4712
}
D
Daniel Vetter 已提交
4713

4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4757
int i915_gem_init_rings(struct drm_device *dev)
4758
{
4759
	struct drm_i915_private *dev_priv = dev->dev_private;
4760
	int ret;
4761

4762
	ret = intel_init_render_ring_buffer(dev);
4763
	if (ret)
4764
		return ret;
4765 4766

	if (HAS_BSD(dev)) {
4767
		ret = intel_init_bsd_ring_buffer(dev);
4768 4769
		if (ret)
			goto cleanup_render_ring;
4770
	}
4771

4772
	if (intel_enable_blt(dev)) {
4773 4774 4775 4776 4777
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4778 4779 4780 4781 4782 4783
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4784 4785 4786 4787 4788
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4789

4790
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4791
	if (ret)
4792
		goto cleanup_bsd2_ring;
4793 4794 4795

	return 0;

4796 4797
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4798 4799
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4813
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4814
	struct intel_engine_cs *ring;
4815
	int ret, i;
4816 4817 4818 4819

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4820 4821 4822
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
4823
	if (dev_priv->ellc_size)
4824
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4825

4826 4827 4828
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4829

4830
	if (HAS_PCH_NOP(dev)) {
4831 4832 4833 4834 4835 4836 4837 4838 4839
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4840 4841
	}

4842 4843
	i915_gem_init_swizzling(dev);

4844 4845 4846 4847 4848 4849 4850 4851
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

D
Daniel Vetter 已提交
4852 4853 4854
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
4855
			goto out;
D
Daniel Vetter 已提交
4856
	}
4857

4858 4859 4860
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4861
	ret = i915_ppgtt_init_hw(dev);
4862
	if (ret && ret != -EIO) {
4863
		DRM_ERROR("PPGTT enable failed %d\n", ret);
4864
		i915_gem_cleanup_ringbuffer(dev);
4865 4866
	}

4867
	ret = i915_gem_context_enable(dev_priv);
4868
	if (ret && ret != -EIO) {
4869
		DRM_ERROR("Context enable failed %d\n", ret);
4870
		i915_gem_cleanup_ringbuffer(dev);
4871

4872
		goto out;
4873
	}
D
Daniel Vetter 已提交
4874

4875 4876
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4877
	return ret;
4878 4879
}

4880 4881 4882 4883 4884
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4885 4886 4887
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4888
	mutex_lock(&dev->struct_mutex);
4889 4890 4891

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4892 4893 4894
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4895 4896 4897
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4898
	if (!i915.enable_execlists) {
4899
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4900 4901 4902
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4903
	} else {
4904
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4905 4906 4907
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4908 4909
	}

4910 4911 4912 4913 4914 4915 4916 4917
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4918
	ret = i915_gem_init_userptr(dev);
4919 4920
	if (ret)
		goto out_unlock;
4921

4922
	i915_gem_init_global_gtt(dev);
4923

4924
	ret = i915_gem_context_init(dev);
4925 4926
	if (ret)
		goto out_unlock;
4927

D
Daniel Vetter 已提交
4928 4929
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
4930
		goto out_unlock;
4931

4932
	ret = i915_gem_init_hw(dev);
4933 4934 4935 4936 4937 4938 4939 4940
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4941
	}
4942 4943

out_unlock:
4944
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4945
	mutex_unlock(&dev->struct_mutex);
4946

4947
	return ret;
4948 4949
}

4950 4951 4952
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4953
	struct drm_i915_private *dev_priv = dev->dev_private;
4954
	struct intel_engine_cs *ring;
4955
	int i;
4956

4957
	for_each_ring(ring, dev_priv, i)
4958
		dev_priv->gt.cleanup_ring(ring);
4959 4960
}

4961
static void
4962
init_ring_lists(struct intel_engine_cs *ring)
4963 4964 4965 4966 4967
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4968 4969
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4970
{
4971 4972
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4973 4974 4975 4976
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4977
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4978 4979
}

4980 4981 4982
void
i915_gem_load(struct drm_device *dev)
{
4983
	struct drm_i915_private *dev_priv = dev->dev_private;
4984 4985 4986 4987 4988 4989 4990
	int i;

	dev_priv->slab =
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4991

B
Ben Widawsky 已提交
4992 4993 4994
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

4995
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4996 4997
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4998
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4999 5000
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
5001
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5002
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5003 5004
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5005 5006
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5007
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5008

5009 5010
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5011 5012 5013
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5014 5015 5016 5017
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5018 5019 5020 5021
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

5022
	/* Initialize fence registers to zero */
5023 5024
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5025

5026
	i915_gem_detect_bit_6_swizzle(dev);
5027
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5028

5029 5030
	dev_priv->mm.interruptible = true;

5031
	i915_gem_shrinker_init(dev_priv);
5032

5033 5034
	i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);

5035
	mutex_init(&dev_priv->fb_tracking.lock);
5036
}
5037

5038
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5039
{
5040
	struct drm_i915_file_private *file_priv = file->driver_priv;
5041

5042 5043
	cancel_delayed_work_sync(&file_priv->mm.idle_work);

5044 5045 5046 5047
	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5048
	spin_lock(&file_priv->mm.lock);
5049 5050 5051 5052 5053 5054 5055 5056 5057
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5058
	spin_unlock(&file_priv->mm.lock);
5059
}
5060

5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072
static void
i915_gem_file_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_file_private *file_priv =
		container_of(work, typeof(*file_priv), mm.idle_work.work);

	atomic_set(&file_priv->rps_wait_boost, false);
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5073
	int ret;
5074 5075 5076 5077 5078 5079 5080 5081 5082

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5083
	file_priv->file = file;
5084 5085 5086 5087 5088 5089

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);
	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
			  i915_gem_file_idle_work_handler);

5090 5091 5092
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5093

5094
	return ret;
5095 5096
}

5097 5098 5099 5100 5101 5102 5103 5104 5105
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5123
/* All the new VM stuff */
5124 5125 5126
unsigned long
i915_gem_obj_offset(struct drm_i915_gem_object *o,
		    struct i915_address_space *vm)
5127 5128 5129 5130
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5131
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5132 5133

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5134 5135 5136 5137
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5138 5139
			return vma->node.start;
	}
5140

5141 5142
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5143 5144 5145
	return -1;
}

5146 5147
unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5148
			      const struct i915_ggtt_view *view)
5149
{
5150
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5151 5152 5153
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5154 5155
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
			return vma->node.start;

	WARN(1, "global vma for this object not found.\n");
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5179
				  const struct i915_ggtt_view *view)
5180 5181 5182 5183 5184 5185
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5186
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5187
		    drm_mm_node_allocated(&vma->node))
5188 5189 5190 5191 5192 5193 5194
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5195
	struct i915_vma *vma;
5196

5197 5198
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5210
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5211 5212 5213

	BUG_ON(list_empty(&o->vma_list));

5214 5215 5216 5217
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5218 5219
		if (vma->vm == vm)
			return vma->node.size;
5220
	}
5221 5222 5223
	return 0;
}

5224
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5225 5226
{
	struct i915_vma *vma;
5227 5228 5229 5230 5231 5232 5233 5234
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->pin_count > 0)
			return true;
	}
	return false;
5235
}
5236