i915_gem.c 100.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38

39
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 43 44
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
45 46
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
47
				struct drm_i915_gem_pwrite *args,
48 49
				struct drm_file *file);
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
50

51 52 53 54 55 56
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

57
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58
				    struct shrink_control *sc);
59
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
60

61 62 63 64 65 66 67 68
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
69
	obj->fence_dirty = false;
70 71 72
	obj->fence_reg = I915_FENCE_REG_NONE;
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

88 89
static int
i915_gem_wait_for_error(struct drm_device *dev)
90 91 92 93 94 95 96 97 98 99 100 101 102
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

103 104 105 106 107 108 109 110 111 112 113
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
114 115
}

116
int i915_mutex_lock_interruptible(struct drm_device *dev)
117 118 119
{
	int ret;

120
	ret = i915_gem_wait_for_error(dev);
121 122 123 124 125 126 127
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

128
	WARN_ON(i915_verify_lists(dev));
129 130
	return 0;
}
131

132
static inline bool
133
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
134
{
135
	return obj->gtt_space && !obj->active && obj->pin_count == 0;
136 137
}

J
Jesse Barnes 已提交
138 139
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
140
		    struct drm_file *file)
J
Jesse Barnes 已提交
141 142
{
	struct drm_i915_gem_init *args = data;
143 144 145 146

	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
147

148 149 150 151
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
152
	mutex_lock(&dev->struct_mutex);
153 154
	i915_gem_init_global_gtt(dev, args->gtt_start,
				 args->gtt_end, args->gtt_end);
155 156
	mutex_unlock(&dev->struct_mutex);

157
	return 0;
158 159
}

160 161
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
162
			    struct drm_file *file)
163
{
164
	struct drm_i915_private *dev_priv = dev->dev_private;
165
	struct drm_i915_gem_get_aperture *args = data;
166 167
	struct drm_i915_gem_object *obj;
	size_t pinned;
168 169 170 171

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

172
	pinned = 0;
173
	mutex_lock(&dev->struct_mutex);
174 175
	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
		pinned += obj->gtt_space->size;
176
	mutex_unlock(&dev->struct_mutex);
177

178
	args->aper_size = dev_priv->mm.gtt_total;
179
	args->aper_available_size = args->aper_size - pinned;
180

181 182 183
	return 0;
}

184 185 186 187 188
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
189
{
190
	struct drm_i915_gem_object *obj;
191 192
	int ret;
	u32 handle;
193

194
	size = roundup(size, PAGE_SIZE);
195 196
	if (size == 0)
		return -EINVAL;
197 198

	/* Allocate the new object */
199
	obj = i915_gem_alloc_object(dev, size);
200 201 202
	if (obj == NULL)
		return -ENOMEM;

203
	ret = drm_gem_handle_create(file, &obj->base, &handle);
204
	if (ret) {
205 206
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
207
		kfree(obj);
208
		return ret;
209
	}
210

211
	/* drop reference from allocate - handle holds it now */
212
	drm_gem_object_unreference(&obj->base);
213 214
	trace_i915_gem_object_create(obj);

215
	*handle_p = handle;
216 217 218
	return 0;
}

219 220 221 222 223 224
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
225
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

250
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
251
{
252
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
253 254

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
255
		obj->tiling_mode != I915_TILING_NONE;
256 257
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

284
static inline int
285 286
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

310 311 312
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
313
static int
314 315 316 317 318 319 320
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

321
	if (unlikely(page_do_bit17_swizzling))
322 323 324 325 326 327 328 329 330 331 332 333 334 335
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

	return ret;
}

336 337 338 339
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
340
	if (unlikely(swizzled)) {
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

358 359 360 361 362 363 364 365 366 367 368 369
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
370 371 372
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
373 374 375 376 377 378 379 380 381 382 383 384 385 386

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

	return ret;
}

387
static int
388 389 390 391
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
392
{
393
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
394
	char __user *user_data;
395
	ssize_t remain;
396
	loff_t offset;
397
	int shmem_page_offset, page_length, ret = 0;
398
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
399
	int hit_slowpath = 0;
400
	int prefaulted = 0;
401
	int needs_clflush = 0;
402
	int release_page;
403

404
	user_data = (char __user *) (uintptr_t) args->data_ptr;
405 406
	remain = args->size;

407
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
408

409 410 411 412 413 414 415 416 417 418 419
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			return ret;
	}
420

421
	offset = args->offset;
422 423

	while (remain > 0) {
424 425
		struct page *page;

426 427 428 429 430
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
431
		shmem_page_offset = offset_in_page(offset);
432 433 434 435
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

436 437 438 439 440 441 442 443 444 445
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
446
		}
447

448 449 450
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

451 452 453 454 455
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
456 457

		hit_slowpath = 1;
458
		page_cache_get(page);
459 460
		mutex_unlock(&dev->struct_mutex);

461
		if (!prefaulted) {
462
			ret = fault_in_multipages_writeable(user_data, remain);
463 464 465 466 467 468 469
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
470

471 472 473
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
474

475
		mutex_lock(&dev->struct_mutex);
476
		page_cache_release(page);
477
next_page:
478
		mark_page_accessed(page);
479 480
		if (release_page)
			page_cache_release(page);
481

482 483 484 485 486
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

487
		remain -= page_length;
488
		user_data += page_length;
489 490 491
		offset += page_length;
	}

492
out:
493 494 495 496 497
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
	}
498 499 500 501

	return ret;
}

502 503 504 505 506 507 508
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
509
		     struct drm_file *file)
510 511
{
	struct drm_i915_gem_pread *args = data;
512
	struct drm_i915_gem_object *obj;
513
	int ret = 0;
514

515 516 517 518 519 520 521 522
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

523
	ret = i915_mutex_lock_interruptible(dev);
524
	if (ret)
525
		return ret;
526

527
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
528
	if (&obj->base == NULL) {
529 530
		ret = -ENOENT;
		goto unlock;
531
	}
532

533
	/* Bounds check source.  */
534 535
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
536
		ret = -EINVAL;
537
		goto out;
C
Chris Wilson 已提交
538 539
	}

C
Chris Wilson 已提交
540 541
	trace_i915_gem_object_pread(obj, args->offset, args->size);

542
	ret = i915_gem_shmem_pread(dev, obj, args, file);
543

544
out:
545
	drm_gem_object_unreference(&obj->base);
546
unlock:
547
	mutex_unlock(&dev->struct_mutex);
548
	return ret;
549 550
}

551 552
/* This is the fast write path which cannot handle
 * page faults in the source data
553
 */
554 555 556 557 558 559

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
560
{
561 562
	void __iomem *vaddr_atomic;
	void *vaddr;
563
	unsigned long unwritten;
564

P
Peter Zijlstra 已提交
565
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
566 567 568
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
569
						      user_data, length);
P
Peter Zijlstra 已提交
570
	io_mapping_unmap_atomic(vaddr_atomic);
571
	return unwritten;
572 573
}

574 575 576 577
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
578
static int
579 580
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
581
			 struct drm_i915_gem_pwrite *args,
582
			 struct drm_file *file)
583
{
584
	drm_i915_private_t *dev_priv = dev->dev_private;
585
	ssize_t remain;
586
	loff_t offset, page_base;
587
	char __user *user_data;
D
Daniel Vetter 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600
	int page_offset, page_length, ret;

	ret = i915_gem_object_pin(obj, 0, true);
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
601 602 603 604

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

605
	offset = obj->gtt_offset + args->offset;
606 607 608 609

	while (remain > 0) {
		/* Operation in this page
		 *
610 611 612
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
613
		 */
614 615
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
616 617 618 619 620
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
621 622
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
623
		 */
624
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
D
Daniel Vetter 已提交
625 626 627 628
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
629

630 631 632
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
633 634
	}

D
Daniel Vetter 已提交
635 636 637
out_unpin:
	i915_gem_object_unpin(obj);
out:
638
	return ret;
639 640
}

641 642 643 644
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
645
static int
646 647 648 649 650
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
651
{
652
	char *vaddr;
653
	int ret;
654

655
	if (unlikely(page_do_bit17_swizzling))
656
		return -EINVAL;
657

658 659 660 661 662 663 664 665 666 667 668
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
						user_data,
						page_length);
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
669 670 671 672

	return ret;
}

673 674
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
675
static int
676 677 678 679 680
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
681
{
682 683
	char *vaddr;
	int ret;
684

685
	vaddr = kmap(page);
686
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
687 688 689
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
690 691
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
692 693
						user_data,
						page_length);
694 695 696 697 698
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
699 700 701
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
702
	kunmap(page);
703

704
	return ret;
705 706 707
}

static int
708 709 710 711
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
712
{
713
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
714
	ssize_t remain;
715 716
	loff_t offset;
	char __user *user_data;
717
	int shmem_page_offset, page_length, ret = 0;
718
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
719
	int hit_slowpath = 0;
720 721
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
722
	int release_page;
723

724
	user_data = (char __user *) (uintptr_t) args->data_ptr;
725 726
	remain = args->size;

727
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
728

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush_after = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			return ret;
	}
	/* Same trick applies for invalidate partially written cachelines before
	 * writing.  */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
	    && obj->cache_level == I915_CACHE_NONE)
		needs_clflush_before = 1;

746
	offset = args->offset;
747
	obj->dirty = 1;
748

749
	while (remain > 0) {
750
		struct page *page;
751
		int partial_cacheline_write;
752

753 754 755 756 757
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
758
		shmem_page_offset = offset_in_page(offset);
759 760 761 762 763

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

764 765 766 767 768 769 770
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

771 772 773 774 775 776 777 778 779 780
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
781 782
		}

783 784 785
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

786 787 788 789 790 791
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
792 793

		hit_slowpath = 1;
794
		page_cache_get(page);
795 796
		mutex_unlock(&dev->struct_mutex);

797 798 799 800
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
801

802
		mutex_lock(&dev->struct_mutex);
803
		page_cache_release(page);
804
next_page:
805 806
		set_page_dirty(page);
		mark_page_accessed(page);
807 808
		if (release_page)
			page_cache_release(page);
809

810 811 812 813 814
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

815
		remain -= page_length;
816
		user_data += page_length;
817
		offset += page_length;
818 819
	}

820
out:
821 822 823 824 825 826 827 828 829 830
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
		/* and flush dirty cachelines in case the object isn't in the cpu write
		 * domain anymore. */
		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
			i915_gem_clflush_object(obj);
			intel_gtt_chipset_flush();
		}
831
	}
832

833 834 835
	if (needs_clflush_after)
		intel_gtt_chipset_flush();

836
	return ret;
837 838 839 840 841 842 843 844 845
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
846
		      struct drm_file *file)
847 848
{
	struct drm_i915_gem_pwrite *args = data;
849
	struct drm_i915_gem_object *obj;
850 851 852 853 854 855 856 857 858 859
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

860 861
	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
					   args->size);
862 863
	if (ret)
		return -EFAULT;
864

865
	ret = i915_mutex_lock_interruptible(dev);
866
	if (ret)
867
		return ret;
868

869
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
870
	if (&obj->base == NULL) {
871 872
		ret = -ENOENT;
		goto unlock;
873
	}
874

875
	/* Bounds check destination. */
876 877
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
878
		ret = -EINVAL;
879
		goto out;
C
Chris Wilson 已提交
880 881
	}

C
Chris Wilson 已提交
882 883
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
884
	ret = -EFAULT;
885 886 887 888 889 890
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
891
	if (obj->phys_obj) {
892
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
893 894 895 896
		goto out;
	}

	if (obj->gtt_space &&
897
	    obj->cache_level == I915_CACHE_NONE &&
898
	    obj->tiling_mode == I915_TILING_NONE &&
899
	    obj->map_and_fenceable &&
900
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
901
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
902 903 904
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
905
	}
906

907
	if (ret == -EFAULT)
D
Daniel Vetter 已提交
908
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
909

910
out:
911
	drm_gem_object_unreference(&obj->base);
912
unlock:
913
	mutex_unlock(&dev->struct_mutex);
914 915 916 917
	return ret;
}

/**
918 919
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
920 921 922
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
923
			  struct drm_file *file)
924 925
{
	struct drm_i915_gem_set_domain *args = data;
926
	struct drm_i915_gem_object *obj;
927 928
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
929 930 931 932 933
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

934
	/* Only handle setting domains to types used by the CPU. */
935
	if (write_domain & I915_GEM_GPU_DOMAINS)
936 937
		return -EINVAL;

938
	if (read_domains & I915_GEM_GPU_DOMAINS)
939 940 941 942 943 944 945 946
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

947
	ret = i915_mutex_lock_interruptible(dev);
948
	if (ret)
949
		return ret;
950

951
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
952
	if (&obj->base == NULL) {
953 954
		ret = -ENOENT;
		goto unlock;
955
	}
956

957 958
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
959 960 961 962 963 964 965

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
966
	} else {
967
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
968 969
	}

970
	drm_gem_object_unreference(&obj->base);
971
unlock:
972 973 974 975 976 977 978 979 980
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
981
			 struct drm_file *file)
982 983
{
	struct drm_i915_gem_sw_finish *args = data;
984
	struct drm_i915_gem_object *obj;
985 986 987 988 989
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

990
	ret = i915_mutex_lock_interruptible(dev);
991
	if (ret)
992
		return ret;
993

994
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
995
	if (&obj->base == NULL) {
996 997
		ret = -ENOENT;
		goto unlock;
998 999 1000
	}

	/* Pinned buffers may be scanout, so flush the cache */
1001
	if (obj->pin_count)
1002 1003
		i915_gem_object_flush_cpu_write_domain(obj);

1004
	drm_gem_object_unreference(&obj->base);
1005
unlock:
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1019
		    struct drm_file *file)
1020 1021 1022 1023 1024 1025 1026 1027
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1028
	obj = drm_gem_object_lookup(dev, file, args->handle);
1029
	if (obj == NULL)
1030
		return -ENOENT;
1031 1032 1033 1034 1035 1036

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1037
	drm_gem_object_unreference_unlocked(obj);
1038 1039 1040 1041 1042 1043 1044 1045
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1064 1065
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1066
	drm_i915_private_t *dev_priv = dev->dev_private;
1067 1068 1069
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1070
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1071 1072 1073 1074 1075

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1076 1077 1078
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1079

C
Chris Wilson 已提交
1080 1081
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1082
	/* Now bind it into the GTT if needed */
1083 1084 1085 1086
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1087
	}
1088
	if (!obj->gtt_space) {
1089
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1090 1091
		if (ret)
			goto unlock;
1092

1093 1094 1095 1096
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1097

1098 1099 1100
	if (!obj->has_global_gtt_mapping)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

1101
	ret = i915_gem_object_get_fence(obj);
1102 1103
	if (ret)
		goto unlock;
1104

1105 1106
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1107

1108 1109
	obj->fault_mappable = true;

1110
	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1111 1112 1113 1114
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1115
unlock:
1116
	mutex_unlock(&dev->struct_mutex);
1117
out:
1118
	switch (ret) {
1119
	case -EIO:
1120
	case -EAGAIN:
1121 1122 1123 1124 1125 1126 1127
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1128
		set_need_resched();
1129 1130
	case 0:
	case -ERESTARTSYS:
1131
	case -EINTR:
1132
		return VM_FAULT_NOPAGE;
1133 1134 1135
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1136
		return VM_FAULT_SIGBUS;
1137 1138 1139
	}
}

1140 1141 1142 1143
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1144
 * Preserve the reservation of the mmapping with the DRM core code, but
1145 1146 1147 1148 1149 1150 1151 1152 1153
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1154
void
1155
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1156
{
1157 1158
	if (!obj->fault_mappable)
		return;
1159

1160 1161 1162 1163
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1164

1165
	obj->fault_mappable = false;
1166 1167
}

1168
static uint32_t
1169
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1170
{
1171
	uint32_t gtt_size;
1172 1173

	if (INTEL_INFO(dev)->gen >= 4 ||
1174 1175
	    tiling_mode == I915_TILING_NONE)
		return size;
1176 1177 1178

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1179
		gtt_size = 1024*1024;
1180
	else
1181
		gtt_size = 512*1024;
1182

1183 1184
	while (gtt_size < size)
		gtt_size <<= 1;
1185

1186
	return gtt_size;
1187 1188
}

1189 1190 1191 1192 1193
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1194
 * potential fence register mapping.
1195 1196
 */
static uint32_t
1197 1198 1199
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1200 1201 1202 1203 1204
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1205
	if (INTEL_INFO(dev)->gen >= 4 ||
1206
	    tiling_mode == I915_TILING_NONE)
1207 1208
		return 4096;

1209 1210 1211 1212
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1213
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1214 1215
}

1216 1217 1218
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1219 1220 1221
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1222 1223 1224 1225
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1226
uint32_t
1227 1228 1229
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1230 1231 1232 1233 1234
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1235
	    tiling_mode == I915_TILING_NONE)
1236 1237
		return 4096;

1238 1239 1240
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1241
	 */
1242
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1243 1244
}

1245
int
1246 1247 1248 1249
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1250
{
1251
	struct drm_i915_private *dev_priv = dev->dev_private;
1252
	struct drm_i915_gem_object *obj;
1253 1254 1255 1256 1257
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1258
	ret = i915_mutex_lock_interruptible(dev);
1259
	if (ret)
1260
		return ret;
1261

1262
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1263
	if (&obj->base == NULL) {
1264 1265 1266
		ret = -ENOENT;
		goto unlock;
	}
1267

1268
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1269
		ret = -E2BIG;
1270
		goto out;
1271 1272
	}

1273
	if (obj->madv != I915_MADV_WILLNEED) {
1274
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1275 1276
		ret = -EINVAL;
		goto out;
1277 1278
	}

1279
	if (!obj->base.map_list.map) {
1280
		ret = drm_gem_create_mmap_offset(&obj->base);
1281 1282
		if (ret)
			goto out;
1283 1284
	}

1285
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1286

1287
out:
1288
	drm_gem_object_unreference(&obj->base);
1289
unlock:
1290
	mutex_unlock(&dev->struct_mutex);
1291
	return ret;
1292 1293
}

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}


1322
static int
1323
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1334 1335 1336 1337
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1338 1339
		return -ENOMEM;

1340
	inode = obj->base.filp->f_path.dentry->d_inode;
1341
	mapping = inode->i_mapping;
1342 1343
	gfpmask |= mapping_gfp_mask(mapping);

1344
	for (i = 0; i < page_count; i++) {
1345
		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1346 1347 1348
		if (IS_ERR(page))
			goto err_pages;

1349
		obj->pages[i] = page;
1350 1351
	}

1352
	if (i915_gem_object_needs_bit17_swizzle(obj))
1353 1354 1355 1356 1357 1358
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1359
		page_cache_release(obj->pages[i]);
1360

1361 1362
	drm_free_large(obj->pages);
	obj->pages = NULL;
1363 1364 1365
	return PTR_ERR(page);
}

1366
static void
1367
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1368
{
1369
	int page_count = obj->base.size / PAGE_SIZE;
1370 1371
	int i;

1372
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1373

1374
	if (i915_gem_object_needs_bit17_swizzle(obj))
1375 1376
		i915_gem_object_save_bit_17_swizzle(obj);

1377 1378
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1379 1380

	for (i = 0; i < page_count; i++) {
1381 1382
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1383

1384 1385
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1386

1387
		page_cache_release(obj->pages[i]);
1388
	}
1389
	obj->dirty = 0;
1390

1391 1392
	drm_free_large(obj->pages);
	obj->pages = NULL;
1393 1394
}

1395
void
1396
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1397 1398
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1399
{
1400
	struct drm_device *dev = obj->base.dev;
1401
	struct drm_i915_private *dev_priv = dev->dev_private;
1402

1403
	BUG_ON(ring == NULL);
1404
	obj->ring = ring;
1405 1406

	/* Add a reference if we're newly entering the active list. */
1407 1408 1409
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1410
	}
1411

1412
	/* Move from whatever list we were on to the tail of execution. */
1413 1414
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1415

1416
	obj->last_rendering_seqno = seqno;
1417

1418
	if (obj->fenced_gpu_access) {
1419 1420
		obj->last_fenced_seqno = seqno;

1421 1422 1423 1424 1425 1426 1427 1428
		/* Bump MRU to take account of the delayed flush */
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
			struct drm_i915_fence_reg *reg;

			reg = &dev_priv->fence_regs[obj->fence_reg];
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
		}
1429 1430 1431 1432 1433 1434 1435 1436
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1437
	obj->last_fenced_seqno = 0;
1438 1439
}

1440
static void
1441
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1442
{
1443
	struct drm_device *dev = obj->base.dev;
1444 1445
	drm_i915_private_t *dev_priv = dev->dev_private;

1446 1447
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (obj->pin_count != 0)
		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
	else
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1471
	obj->pending_gpu_write = false;
1472 1473 1474
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1475
}
1476

1477 1478
/* Immediately discard the backing storage */
static void
1479
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1480
{
C
Chris Wilson 已提交
1481
	struct inode *inode;
1482

1483 1484 1485
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
1486
	 * backing pages, *now*.
1487
	 */
1488
	inode = obj->base.filp->f_path.dentry->d_inode;
1489
	shmem_truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1490

1491 1492 1493
	if (obj->base.map_list.map)
		drm_gem_free_mmap_offset(&obj->base);

1494
	obj->madv = __I915_MADV_PURGED;
1495 1496 1497
}

static inline int
1498
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1499
{
1500
	return obj->madv == I915_MADV_DONTNEED;
1501 1502
}

1503
static void
C
Chris Wilson 已提交
1504 1505
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
			       uint32_t flush_domains)
1506
{
1507
	struct drm_i915_gem_object *obj, *next;
1508

1509
	list_for_each_entry_safe(obj, next,
1510
				 &ring->gpu_write_list,
1511
				 gpu_write_list) {
1512 1513
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1514

1515 1516
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1517
			i915_gem_object_move_to_active(obj, ring,
C
Chris Wilson 已提交
1518
						       i915_gem_next_request_seqno(ring));
1519 1520

			trace_i915_gem_object_change_domain(obj,
1521
							    obj->base.read_domains,
1522 1523 1524 1525
							    old_write_domain);
		}
	}
}
1526

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
static u32
i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

u32
i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
{
	if (ring->outstanding_lazy_request == 0)
		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);

	return ring->outstanding_lazy_request;
}

1549
int
C
Chris Wilson 已提交
1550
i915_add_request(struct intel_ring_buffer *ring,
1551
		 struct drm_file *file,
C
Chris Wilson 已提交
1552
		 struct drm_i915_gem_request *request)
1553
{
C
Chris Wilson 已提交
1554
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1555
	uint32_t seqno;
1556
	u32 request_ring_position;
1557
	int was_empty;
1558 1559 1560
	int ret;

	BUG_ON(request == NULL);
1561
	seqno = i915_gem_next_request_seqno(ring);
1562

1563 1564 1565 1566 1567 1568 1569
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

1570 1571 1572
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1573

C
Chris Wilson 已提交
1574
	trace_i915_gem_request_add(ring, seqno);
1575 1576

	request->seqno = seqno;
1577
	request->ring = ring;
1578
	request->tail = request_ring_position;
1579
	request->emitted_jiffies = jiffies;
1580 1581 1582
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

C
Chris Wilson 已提交
1583 1584 1585
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1586
		spin_lock(&file_priv->mm.lock);
1587
		request->file_priv = file_priv;
1588
		list_add_tail(&request->client_list,
1589
			      &file_priv->mm.request_list);
1590
		spin_unlock(&file_priv->mm.lock);
1591
	}
1592

1593
	ring->outstanding_lazy_request = 0;
C
Chris Wilson 已提交
1594

B
Ben Gamari 已提交
1595
	if (!dev_priv->mm.suspended) {
1596 1597 1598 1599 1600
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
B
Ben Gamari 已提交
1601
		if (was_empty)
1602 1603
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1604
	}
1605
	return 0;
1606 1607
}

1608 1609
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1610
{
1611
	struct drm_i915_file_private *file_priv = request->file_priv;
1612

1613 1614
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1615

1616
	spin_lock(&file_priv->mm.lock);
1617 1618 1619 1620
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
1621
	spin_unlock(&file_priv->mm.lock);
1622 1623
}

1624 1625
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1626
{
1627 1628
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1629

1630 1631 1632
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1633

1634
		list_del(&request->list);
1635
		i915_gem_request_remove_from_client(request);
1636 1637
		kfree(request);
	}
1638

1639
	while (!list_empty(&ring->active_list)) {
1640
		struct drm_i915_gem_object *obj;
1641

1642 1643 1644
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1645

1646 1647 1648
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1649 1650 1651
	}
}

1652 1653 1654 1655 1656
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

1657
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1658
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1659

1660
		i915_gem_write_fence(dev, i, NULL);
1661

1662 1663
		if (reg->obj)
			i915_gem_object_fence_lost(reg->obj);
1664

1665 1666 1667
		reg->pin_count = 0;
		reg->obj = NULL;
		INIT_LIST_HEAD(&reg->lru_list);
1668
	}
1669 1670

	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1671 1672
}

1673
void i915_gem_reset(struct drm_device *dev)
1674
{
1675
	struct drm_i915_private *dev_priv = dev->dev_private;
1676
	struct drm_i915_gem_object *obj;
1677
	int i;
1678

1679 1680
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1681 1682 1683 1684 1685 1686

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1687
		obj = list_first_entry(&dev_priv->mm.flushing_list,
1688 1689
				      struct drm_i915_gem_object,
				      mm_list);
1690

1691 1692 1693
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1694 1695 1696 1697 1698
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1699
	list_for_each_entry(obj,
1700
			    &dev_priv->mm.inactive_list,
1701
			    mm_list)
1702
	{
1703
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1704
	}
1705 1706

	/* The fence registers are invalidated so clear them out */
1707
	i915_gem_reset_fences(dev);
1708 1709 1710 1711 1712
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1713
void
C
Chris Wilson 已提交
1714
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1715 1716
{
	uint32_t seqno;
1717
	int i;
1718

C
Chris Wilson 已提交
1719
	if (list_empty(&ring->request_list))
1720 1721
		return;

C
Chris Wilson 已提交
1722
	WARN_ON(i915_verify_lists(ring->dev));
1723

1724
	seqno = ring->get_seqno(ring);
1725

1726
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1727 1728 1729
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1730
	while (!list_empty(&ring->request_list)) {
1731 1732
		struct drm_i915_gem_request *request;

1733
		request = list_first_entry(&ring->request_list,
1734 1735 1736
					   struct drm_i915_gem_request,
					   list);

1737
		if (!i915_seqno_passed(seqno, request->seqno))
1738 1739
			break;

C
Chris Wilson 已提交
1740
		trace_i915_gem_request_retire(ring, request->seqno);
1741 1742 1743 1744 1745 1746
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
		ring->last_retired_head = request->tail;
1747 1748

		list_del(&request->list);
1749
		i915_gem_request_remove_from_client(request);
1750 1751
		kfree(request);
	}
1752

1753 1754 1755 1756
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1757
		struct drm_i915_gem_object *obj;
1758

1759
		obj = list_first_entry(&ring->active_list,
1760 1761
				      struct drm_i915_gem_object,
				      ring_list);
1762

1763
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1764
			break;
1765

1766
		if (obj->base.write_domain != 0)
1767 1768 1769
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1770
	}
1771

C
Chris Wilson 已提交
1772 1773
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1774
		ring->irq_put(ring);
C
Chris Wilson 已提交
1775
		ring->trace_irq_seqno = 0;
1776
	}
1777

C
Chris Wilson 已提交
1778
	WARN_ON(i915_verify_lists(ring->dev));
1779 1780
}

1781 1782 1783 1784
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1785
	int i;
1786

1787
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1788
	    struct drm_i915_gem_object *obj, *next;
1789 1790 1791 1792 1793 1794

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
1795
	    list_for_each_entry_safe(obj, next,
1796
				     &dev_priv->mm.deferred_free_list,
1797
				     mm_list)
1798
		    i915_gem_free_object_tail(obj);
1799 1800
	}

1801
	for (i = 0; i < I915_NUM_RINGS; i++)
C
Chris Wilson 已提交
1802
		i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1803 1804
}

1805
static void
1806 1807 1808 1809
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1810 1811
	bool idle;
	int i;
1812 1813 1814 1815 1816

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1817 1818 1819 1820 1821 1822
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1823
	i915_gem_retire_requests(dev);
1824

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct intel_ring_buffer *ring = &dev_priv->ring[i];

		if (!list_empty(&ring->gpu_write_list)) {
			struct drm_i915_gem_request *request;
			int ret;

C
Chris Wilson 已提交
1836 1837
			ret = i915_gem_flush_ring(ring,
						  0, I915_GEM_GPU_DOMAINS);
1838 1839
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (ret || request == NULL ||
C
Chris Wilson 已提交
1840
			    i915_add_request(ring, NULL, request))
1841 1842 1843 1844 1845 1846 1847
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
1848
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1849

1850 1851 1852
	mutex_unlock(&dev->struct_mutex);
}

C
Chris Wilson 已提交
1853 1854 1855 1856
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
1857
int
C
Chris Wilson 已提交
1858
i915_wait_request(struct intel_ring_buffer *ring,
1859 1860
		  uint32_t seqno,
		  bool do_retire)
1861
{
C
Chris Wilson 已提交
1862
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1863
	u32 ier;
1864 1865 1866 1867
	int ret = 0;

	BUG_ON(seqno == 0);

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		return recovery_complete ? -EIO : -EAGAIN;
	}
1880

1881
	if (seqno == ring->outstanding_lazy_request) {
1882 1883 1884 1885
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
1886
			return -ENOMEM;
1887

C
Chris Wilson 已提交
1888
		ret = i915_add_request(ring, NULL, request);
1889 1890 1891 1892 1893 1894
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
1895
	}
1896

1897
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
C
Chris Wilson 已提交
1898
		if (HAS_PCH_SPLIT(ring->dev))
1899
			ier = I915_READ(DEIER) | I915_READ(GTIER);
1900 1901
		else if (IS_VALLEYVIEW(ring->dev))
			ier = I915_READ(GTIER) | I915_READ(VLV_IER);
1902 1903
		else
			ier = I915_READ(IER);
1904 1905 1906
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
1907 1908
			ring->dev->driver->irq_preinstall(ring->dev);
			ring->dev->driver->irq_postinstall(ring->dev);
1909 1910
		}

C
Chris Wilson 已提交
1911
		trace_i915_gem_request_wait_begin(ring, seqno);
C
Chris Wilson 已提交
1912

1913
		ring->waiting_seqno = seqno;
1914
		if (ring->irq_get(ring)) {
1915
			if (dev_priv->mm.interruptible)
1916 1917 1918 1919 1920 1921 1922 1923 1924
				ret = wait_event_interruptible(ring->irq_queue,
							       i915_seqno_passed(ring->get_seqno(ring), seqno)
							       || atomic_read(&dev_priv->mm.wedged));
			else
				wait_event(ring->irq_queue,
					   i915_seqno_passed(ring->get_seqno(ring), seqno)
					   || atomic_read(&dev_priv->mm.wedged));

			ring->irq_put(ring);
1925 1926 1927
		} else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
							     seqno) ||
					   atomic_read(&dev_priv->mm.wedged), 3000))
1928
			ret = -EBUSY;
1929
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
1930

C
Chris Wilson 已提交
1931
		trace_i915_gem_request_wait_end(ring, seqno);
1932
	}
1933
	if (atomic_read(&dev_priv->mm.wedged))
1934
		ret = -EAGAIN;
1935 1936 1937 1938 1939 1940

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
1941
	if (ret == 0 && do_retire)
C
Chris Wilson 已提交
1942
		i915_gem_retire_requests_ring(ring);
1943 1944 1945 1946 1947 1948 1949 1950

	return ret;
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1951
int
1952
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
1953 1954 1955
{
	int ret;

1956 1957
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1958
	 */
1959
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
1960 1961 1962 1963

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
1964
	if (obj->active) {
1965 1966
		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
					true);
1967
		if (ret)
1968 1969 1970 1971 1972 1973
			return ret;
	}

	return 0;
}

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

1997
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
		return i915_gem_object_wait_rendering(obj);

	idx = intel_ring_sync_index(from, to);

	seqno = obj->last_rendering_seqno;
	if (seqno <= from->sync_seqno[idx])
		return 0;

	if (seqno == from->outstanding_lazy_request) {
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;

		ret = i915_add_request(from, NULL, request);
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
	}


2023
	ret = to->sync_to(to, from, seqno);
2024 2025
	if (!ret)
		from->sync_seqno[idx] = seqno;
2026

2027
	return ret;
2028 2029
}

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2040 2041 2042
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2054 2055 2056
/**
 * Unbinds an object from the GTT aperture.
 */
2057
int
2058
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2059
{
2060
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2061 2062
	int ret = 0;

2063
	if (obj->gtt_space == NULL)
2064 2065
		return 0;

2066
	if (obj->pin_count != 0) {
2067 2068 2069 2070
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2071 2072 2073 2074 2075 2076 2077 2078
	ret = i915_gem_object_finish_gpu(obj);
	if (ret == -ERESTARTSYS)
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2079
	i915_gem_object_finish_gtt(obj);
2080

2081 2082
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
2083
	 * are flushed when we go to remap it.
2084
	 */
2085 2086
	if (ret == 0)
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2087
	if (ret == -ERESTARTSYS)
2088
		return ret;
2089
	if (ret) {
2090 2091 2092
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2093
		i915_gem_clflush_object(obj);
2094
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2095
	}
2096

2097
	/* release the fence reg _after_ flushing */
2098 2099 2100
	ret = i915_gem_object_put_fence(obj);
	if (ret == -ERESTARTSYS)
		return ret;
2101

C
Chris Wilson 已提交
2102 2103
	trace_i915_gem_object_unbind(obj);

2104 2105
	if (obj->has_global_gtt_mapping)
		i915_gem_gtt_unbind_object(obj);
2106 2107 2108 2109
	if (obj->has_aliasing_ppgtt_mapping) {
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
		obj->has_aliasing_ppgtt_mapping = 0;
	}
2110
	i915_gem_gtt_finish_object(obj);
2111

2112
	i915_gem_object_put_pages_gtt(obj);
2113

2114
	list_del_init(&obj->gtt_list);
2115
	list_del_init(&obj->mm_list);
2116
	/* Avoid an unnecessary call to unbind on rebind. */
2117
	obj->map_and_fenceable = true;
2118

2119 2120 2121
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2122

2123
	if (i915_gem_object_is_purgeable(obj))
2124 2125
		i915_gem_object_truncate(obj);

2126
	return ret;
2127 2128
}

2129
int
C
Chris Wilson 已提交
2130
i915_gem_flush_ring(struct intel_ring_buffer *ring,
2131 2132 2133
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2134 2135
	int ret;

2136 2137 2138
	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
		return 0;

C
Chris Wilson 已提交
2139 2140
	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);

2141 2142 2143 2144
	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

2145 2146 2147
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		i915_gem_process_flushing_list(ring, flush_domains);

2148
	return 0;
2149 2150
}

2151
static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
2152
{
2153 2154
	int ret;

2155
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2156 2157
		return 0;

2158
	if (!list_empty(&ring->gpu_write_list)) {
C
Chris Wilson 已提交
2159
		ret = i915_gem_flush_ring(ring,
2160
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2161 2162 2163 2164
		if (ret)
			return ret;
	}

2165 2166
	return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
				 do_retire);
2167 2168
}

2169
int i915_gpu_idle(struct drm_device *dev, bool do_retire)
2170 2171
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2172
	int ret, i;
2173 2174

	/* Flush everything onto the inactive list. */
2175
	for (i = 0; i < I915_NUM_RINGS; i++) {
2176
		ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
2177 2178 2179
		if (ret)
			return ret;
	}
2180

2181
	return 0;
2182 2183
}

2184 2185
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
					struct drm_i915_gem_object *obj)
2186 2187 2188 2189
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2190 2191
	if (obj) {
		u32 size = obj->gtt_space->size;
2192

2193 2194 2195 2196 2197
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= (uint64_t)((obj->stride / 128) - 1) <<
			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2198

2199 2200 2201 2202 2203
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2204

2205 2206
	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2207 2208
}

2209 2210
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2211 2212 2213 2214
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2215 2216
	if (obj) {
		u32 size = obj->gtt_space->size;
2217

2218 2219 2220 2221 2222 2223 2224 2225 2226
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2227

2228 2229
	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2230 2231
}

2232 2233
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2234 2235
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2236
	u32 val;
2237

2238 2239 2240 2241
	if (obj) {
		u32 size = obj->gtt_space->size;
		int pitch_val;
		int tile_width;
2242

2243 2244 2245 2246 2247
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     obj->gtt_offset, obj->map_and_fenceable, size);
2248

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
2274 2275
}

2276 2277
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
2278 2279 2280 2281
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t val;

2282 2283 2284
	if (obj) {
		u32 size = obj->gtt_space->size;
		uint32_t pitch_val;
2285

2286 2287 2288 2289 2290
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		     obj->gtt_offset, size);
2291

2292 2293
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
2294

2295 2296 2297 2298 2299 2300 2301 2302
		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
2303

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
	switch (INTEL_INFO(dev)->gen) {
	case 7:
	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
	default: break;
	}
2320 2321
}

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);

	if (enable) {
		obj->fence_reg = reg;
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
}

2348
static int
C
Chris Wilson 已提交
2349
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2350 2351 2352 2353
{
	int ret;

	if (obj->fenced_gpu_access) {
2354
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2355
			ret = i915_gem_flush_ring(obj->ring,
2356 2357 2358 2359
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2360 2361 2362 2363

		obj->fenced_gpu_access = false;
	}

2364
	if (obj->last_fenced_seqno) {
2365 2366
		ret = i915_wait_request(obj->ring,
					obj->last_fenced_seqno,
2367
					false);
2368 2369
		if (ret)
			return ret;
2370 2371 2372 2373

		obj->last_fenced_seqno = 0;
	}

2374 2375 2376 2377 2378 2379
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2380 2381 2382 2383 2384 2385
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
2386
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2387 2388
	int ret;

C
Chris Wilson 已提交
2389
	ret = i915_gem_object_flush_fence(obj);
2390 2391 2392
	if (ret)
		return ret;

2393 2394
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
2395

2396 2397 2398 2399
	i915_gem_object_update_fence(obj,
				     &dev_priv->fence_regs[obj->fence_reg],
				     false);
	i915_gem_object_fence_lost(obj);
2400 2401 2402 2403 2404

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
2405
i915_find_fence_reg(struct drm_device *dev)
2406 2407
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
2408
	struct drm_i915_fence_reg *reg, *avail;
2409
	int i;
2410 2411

	/* First try to find a free reg */
2412
	avail = NULL;
2413 2414 2415
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2416
			return reg;
2417

2418
		if (!reg->pin_count)
2419
			avail = reg;
2420 2421
	}

2422 2423
	if (avail == NULL)
		return NULL;
2424 2425

	/* None available, try to steal one or wait for a user to finish */
2426
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2427
		if (reg->pin_count)
2428 2429
			continue;

C
Chris Wilson 已提交
2430
		return reg;
2431 2432
	}

C
Chris Wilson 已提交
2433
	return NULL;
2434 2435
}

2436
/**
2437
 * i915_gem_object_get_fence - set up fencing for an object
2438 2439 2440 2441 2442 2443 2444 2445 2446
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
2447 2448
 *
 * For an untiled surface, this removes any existing fence.
2449
 */
2450
int
2451
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2452
{
2453
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2454
	struct drm_i915_private *dev_priv = dev->dev_private;
2455
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2456
	struct drm_i915_fence_reg *reg;
2457
	int ret;
2458

2459 2460 2461
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
2462
	if (obj->fence_dirty) {
2463 2464 2465 2466
		ret = i915_gem_object_flush_fence(obj);
		if (ret)
			return ret;
	}
2467

2468
	/* Just update our place in the LRU if our fence is getting reused. */
2469 2470
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2471
		if (!obj->fence_dirty) {
2472 2473 2474 2475 2476 2477 2478 2479
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
		reg = i915_find_fence_reg(dev);
		if (reg == NULL)
			return -EDEADLK;
2480

2481 2482 2483 2484
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

			ret = i915_gem_object_flush_fence(old);
2485 2486 2487
			if (ret)
				return ret;

2488
			i915_gem_object_fence_lost(old);
2489
		}
2490
	} else
2491 2492
		return 0;

2493
	i915_gem_object_update_fence(obj, reg, enable);
2494
	obj->fence_dirty = false;
2495

2496
	return 0;
2497 2498
}

2499 2500 2501 2502
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2503
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2504
			    unsigned alignment,
2505
			    bool map_and_fenceable)
2506
{
2507
	struct drm_device *dev = obj->base.dev;
2508 2509
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2510
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2511
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2512
	bool mappable, fenceable;
2513
	int ret;
2514

2515
	if (obj->madv != I915_MADV_WILLNEED) {
2516 2517 2518 2519
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2530

2531
	if (alignment == 0)
2532 2533
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2534
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2535 2536 2537 2538
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2539
	size = map_and_fenceable ? fence_size : obj->base.size;
2540

2541 2542 2543
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2544
	if (obj->base.size >
2545
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2546 2547 2548 2549
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2550
 search_free:
2551
	if (map_and_fenceable)
2552 2553
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2554
						    size, alignment, 0,
2555 2556 2557 2558
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2559
						size, alignment, 0);
2560 2561

	if (free_space != NULL) {
2562
		if (map_and_fenceable)
2563
			obj->gtt_space =
2564
				drm_mm_get_block_range_generic(free_space,
2565
							       size, alignment, 0,
2566 2567 2568
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2569
			obj->gtt_space =
2570
				drm_mm_get_block(free_space, size, alignment);
2571
	}
2572
	if (obj->gtt_space == NULL) {
2573 2574 2575
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2576 2577
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2578
		if (ret)
2579
			return ret;
2580

2581 2582 2583
		goto search_free;
	}

2584
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2585
	if (ret) {
2586 2587
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2588 2589

		if (ret == -ENOMEM) {
2590 2591
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2592 2593
			if (ret) {
				/* now try to shrink everyone else */
2594 2595 2596
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2597 2598
				}

2599
				return -ENOMEM;
2600 2601 2602 2603 2604
			}

			goto search_free;
		}

2605 2606 2607
		return ret;
	}

2608
	ret = i915_gem_gtt_prepare_object(obj);
2609
	if (ret) {
2610
		i915_gem_object_put_pages_gtt(obj);
2611 2612
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2613

2614
		if (i915_gem_evict_everything(dev, false))
2615 2616 2617
			return ret;

		goto search_free;
2618 2619
	}

2620 2621
	if (!dev_priv->mm.aliasing_ppgtt)
		i915_gem_gtt_bind_object(obj, obj->cache_level);
2622

2623
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2624
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2625

2626 2627 2628 2629
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2630 2631
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2632

2633
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2634

2635
	fenceable =
2636
		obj->gtt_space->size == fence_size &&
2637
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2638

2639
	mappable =
2640
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2641

2642
	obj->map_and_fenceable = mappable && fenceable;
2643

C
Chris Wilson 已提交
2644
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2645 2646 2647 2648
	return 0;
}

void
2649
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2650 2651 2652 2653 2654
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2655
	if (obj->pages == NULL)
2656 2657
		return;

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
2669
	trace_i915_gem_object_clflush(obj);
2670

2671
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2672 2673
}

2674
/** Flushes any GPU write domain for the object if it's dirty. */
2675
static int
2676
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2677
{
2678
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2679
		return 0;
2680 2681

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2682
	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2683 2684 2685 2686
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2687
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2688
{
C
Chris Wilson 已提交
2689 2690
	uint32_t old_write_domain;

2691
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2692 2693
		return;

2694
	/* No actual flushing is required for the GTT write domain.  Writes
2695 2696
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2697 2698 2699 2700
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2701
	 */
2702 2703
	wmb();

2704 2705
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2706 2707

	trace_i915_gem_object_change_domain(obj,
2708
					    obj->base.read_domains,
C
Chris Wilson 已提交
2709
					    old_write_domain);
2710 2711 2712 2713
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2714
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2715
{
C
Chris Wilson 已提交
2716
	uint32_t old_write_domain;
2717

2718
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2719 2720 2721
		return;

	i915_gem_clflush_object(obj);
2722
	intel_gtt_chipset_flush();
2723 2724
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2725 2726

	trace_i915_gem_object_change_domain(obj,
2727
					    obj->base.read_domains,
C
Chris Wilson 已提交
2728
					    old_write_domain);
2729 2730
}

2731 2732 2733 2734 2735 2736
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2737
int
2738
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2739
{
C
Chris Wilson 已提交
2740
	uint32_t old_write_domain, old_read_domains;
2741
	int ret;
2742

2743
	/* Not valid to be called on unbound objects. */
2744
	if (obj->gtt_space == NULL)
2745 2746
		return -EINVAL;

2747 2748 2749
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

2750 2751 2752 2753
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2754
	if (obj->pending_gpu_write || write) {
2755
		ret = i915_gem_object_wait_rendering(obj);
2756 2757 2758
		if (ret)
			return ret;
	}
2759

2760
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2761

2762 2763
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2764

2765 2766 2767
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2768 2769
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2770
	if (write) {
2771 2772 2773
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2774 2775
	}

C
Chris Wilson 已提交
2776 2777 2778 2779
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2780 2781 2782
	return 0;
}

2783 2784 2785
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
2786 2787
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
		if (INTEL_INFO(obj->base.dev)->gen < 6) {
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

2815 2816
		if (obj->has_global_gtt_mapping)
			i915_gem_gtt_bind_object(obj, cache_level);
2817 2818 2819
		if (obj->has_aliasing_ppgtt_mapping)
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
					       obj, cache_level);
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
	return 0;
}

2849
/*
2850 2851 2852
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
2853 2854
 */
int
2855 2856
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
2857
				     struct intel_ring_buffer *pipelined)
2858
{
2859
	u32 old_read_domains, old_write_domain;
2860 2861
	int ret;

2862 2863 2864 2865
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2866
	if (pipelined != obj->ring) {
2867 2868
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
2869 2870 2871
			return ret;
	}

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

2885 2886 2887 2888 2889 2890 2891 2892
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
	ret = i915_gem_object_pin(obj, alignment, true);
	if (ret)
		return ret;

2893 2894
	i915_gem_object_flush_cpu_write_domain(obj);

2895
	old_write_domain = obj->base.write_domain;
2896
	old_read_domains = obj->base.read_domains;
2897 2898 2899 2900 2901

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2902
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2903 2904 2905

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2906
					    old_write_domain);
2907 2908 2909 2910

	return 0;
}

2911
int
2912
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
2913
{
2914 2915
	int ret;

2916
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
2917 2918
		return 0;

2919
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
2920
		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2921 2922 2923
		if (ret)
			return ret;
	}
2924

2925 2926 2927 2928
	ret = i915_gem_object_wait_rendering(obj);
	if (ret)
		return ret;

2929 2930
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2931
	return 0;
2932 2933
}

2934 2935 2936 2937 2938 2939
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
2940
int
2941
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2942
{
C
Chris Wilson 已提交
2943
	uint32_t old_write_domain, old_read_domains;
2944 2945
	int ret;

2946 2947 2948
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

2949 2950 2951 2952
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2953 2954 2955 2956 2957
	if (write || obj->pending_gpu_write) {
		ret = i915_gem_object_wait_rendering(obj);
		if (ret)
			return ret;
	}
2958

2959
	i915_gem_object_flush_gtt_write_domain(obj);
2960

2961 2962
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2963

2964
	/* Flush the CPU cache if it's still invalid. */
2965
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2966 2967
		i915_gem_clflush_object(obj);

2968
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2969 2970 2971 2972 2973
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2974
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2975 2976 2977 2978 2979

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
2980 2981
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2982
	}
2983

C
Chris Wilson 已提交
2984 2985 2986 2987
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2988 2989 2990
	return 0;
}

2991 2992 2993
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
2994 2995 2996 2997
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
2998 2999 3000
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3001
static int
3002
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3003
{
3004 3005
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3006
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3007 3008 3009 3010
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3011

3012 3013 3014
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3015
	spin_lock(&file_priv->mm.lock);
3016
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3017 3018
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3019

3020 3021
		ring = request->ring;
		seqno = request->seqno;
3022
	}
3023
	spin_unlock(&file_priv->mm.lock);
3024

3025 3026
	if (seqno == 0)
		return 0;
3027

3028
	ret = 0;
3029
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3030 3031 3032 3033 3034
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3035 3036 3037 3038 3039
		if (ring->irq_get(ring)) {
			ret = wait_event_interruptible(ring->irq_queue,
						       i915_seqno_passed(ring->get_seqno(ring), seqno)
						       || atomic_read(&dev_priv->mm.wedged));
			ring->irq_put(ring);
3040

3041 3042
			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
				ret = -EIO;
3043 3044
		} else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
							     seqno) ||
3045 3046
				    atomic_read(&dev_priv->mm.wedged), 3000)) {
			ret = -EBUSY;
3047
		}
3048 3049
	}

3050 3051
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3052 3053 3054 3055

	return ret;
}

3056
int
3057 3058
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3059
		    bool map_and_fenceable)
3060
{
3061
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
3062
	struct drm_i915_private *dev_priv = dev->dev_private;
3063 3064
	int ret;

3065
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3066
	WARN_ON(i915_verify_lists(dev));
3067

3068 3069 3070 3071
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3072
			     "bo is already pinned with incorrect alignment:"
3073 3074
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3075
			     obj->gtt_offset, alignment,
3076
			     map_and_fenceable,
3077
			     obj->map_and_fenceable);
3078 3079 3080 3081 3082 3083
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3084
	if (obj->gtt_space == NULL) {
3085
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3086
						  map_and_fenceable);
3087
		if (ret)
3088
			return ret;
3089
	}
J
Jesse Barnes 已提交
3090

3091 3092 3093
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

3094 3095 3096
	if (obj->pin_count++ == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
C
Chris Wilson 已提交
3097
				       &dev_priv->mm.pinned_list);
3098
	}
3099
	obj->pin_mappable |= map_and_fenceable;
3100

3101
	WARN_ON(i915_verify_lists(dev));
3102 3103 3104 3105
	return 0;
}

void
3106
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3107
{
3108
	struct drm_device *dev = obj->base.dev;
3109 3110
	drm_i915_private_t *dev_priv = dev->dev_private;

3111
	WARN_ON(i915_verify_lists(dev));
3112 3113
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3114

3115 3116 3117
	if (--obj->pin_count == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
3118
				       &dev_priv->mm.inactive_list);
3119
		obj->pin_mappable = false;
3120
	}
3121
	WARN_ON(i915_verify_lists(dev));
3122 3123 3124 3125
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3126
		   struct drm_file *file)
3127 3128
{
	struct drm_i915_gem_pin *args = data;
3129
	struct drm_i915_gem_object *obj;
3130 3131
	int ret;

3132 3133 3134
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3135

3136
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3137
	if (&obj->base == NULL) {
3138 3139
		ret = -ENOENT;
		goto unlock;
3140 3141
	}

3142
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3143
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3144 3145
		ret = -EINVAL;
		goto out;
3146 3147
	}

3148
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3149 3150
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3151 3152
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3153 3154
	}

3155 3156 3157
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3158
		ret = i915_gem_object_pin(obj, args->alignment, true);
3159 3160
		if (ret)
			goto out;
3161 3162 3163 3164 3165
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3166
	i915_gem_object_flush_cpu_write_domain(obj);
3167
	args->offset = obj->gtt_offset;
3168
out:
3169
	drm_gem_object_unreference(&obj->base);
3170
unlock:
3171
	mutex_unlock(&dev->struct_mutex);
3172
	return ret;
3173 3174 3175 3176
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3177
		     struct drm_file *file)
3178 3179
{
	struct drm_i915_gem_pin *args = data;
3180
	struct drm_i915_gem_object *obj;
3181
	int ret;
3182

3183 3184 3185
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3186

3187
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3188
	if (&obj->base == NULL) {
3189 3190
		ret = -ENOENT;
		goto unlock;
3191
	}
3192

3193
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3194 3195
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3196 3197
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3198
	}
3199 3200 3201
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3202 3203
		i915_gem_object_unpin(obj);
	}
3204

3205
out:
3206
	drm_gem_object_unreference(&obj->base);
3207
unlock:
3208
	mutex_unlock(&dev->struct_mutex);
3209
	return ret;
3210 3211 3212 3213
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3214
		    struct drm_file *file)
3215 3216
{
	struct drm_i915_gem_busy *args = data;
3217
	struct drm_i915_gem_object *obj;
3218 3219
	int ret;

3220
	ret = i915_mutex_lock_interruptible(dev);
3221
	if (ret)
3222
		return ret;
3223

3224
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3225
	if (&obj->base == NULL) {
3226 3227
		ret = -ENOENT;
		goto unlock;
3228
	}
3229

3230 3231 3232 3233
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3234
	 */
3235
	args->busy = obj->active;
3236 3237 3238 3239 3240 3241
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
3242
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3243
			ret = i915_gem_flush_ring(obj->ring,
3244
						  0, obj->base.write_domain);
3245 3246 3247 3248
		} else if (obj->ring->outstanding_lazy_request ==
			   obj->last_rendering_seqno) {
			struct drm_i915_gem_request *request;

3249 3250 3251
			/* This ring is not being cleared by active usage,
			 * so emit a request to do so.
			 */
3252
			request = kzalloc(sizeof(*request), GFP_KERNEL);
3253
			if (request) {
3254
				ret = i915_add_request(obj->ring, NULL, request);
3255 3256 3257
				if (ret)
					kfree(request);
			} else
3258 3259
				ret = -ENOMEM;
		}
3260 3261 3262 3263 3264 3265

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
C
Chris Wilson 已提交
3266
		i915_gem_retire_requests_ring(obj->ring);
3267

3268
		args->busy = obj->active;
3269
	}
3270

3271
	drm_gem_object_unreference(&obj->base);
3272
unlock:
3273
	mutex_unlock(&dev->struct_mutex);
3274
	return ret;
3275 3276 3277 3278 3279 3280
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3281
	return i915_gem_ring_throttle(dev, file_priv);
3282 3283
}

3284 3285 3286 3287 3288
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3289
	struct drm_i915_gem_object *obj;
3290
	int ret;
3291 3292 3293 3294 3295 3296 3297 3298 3299

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3300 3301 3302 3303
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3304
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3305
	if (&obj->base == NULL) {
3306 3307
		ret = -ENOENT;
		goto unlock;
3308 3309
	}

3310
	if (obj->pin_count) {
3311 3312
		ret = -EINVAL;
		goto out;
3313 3314
	}

3315 3316
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3317

3318
	/* if the object is no longer bound, discard its backing storage */
3319 3320
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3321 3322
		i915_gem_object_truncate(obj);

3323
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3324

3325
out:
3326
	drm_gem_object_unreference(&obj->base);
3327
unlock:
3328
	mutex_unlock(&dev->struct_mutex);
3329
	return ret;
3330 3331
}

3332 3333
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3334
{
3335
	struct drm_i915_private *dev_priv = dev->dev_private;
3336
	struct drm_i915_gem_object *obj;
3337
	struct address_space *mapping;
3338

3339 3340 3341
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3342

3343 3344 3345 3346
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3347

3348 3349 3350
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
	mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);

3351 3352
	i915_gem_info_add_obj(dev_priv, size);

3353 3354
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3355

3356 3357
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3373
	obj->base.driver_private = NULL;
3374
	obj->fence_reg = I915_FENCE_REG_NONE;
3375
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3376
	INIT_LIST_HEAD(&obj->gtt_list);
3377
	INIT_LIST_HEAD(&obj->ring_list);
3378
	INIT_LIST_HEAD(&obj->exec_list);
3379 3380
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3381 3382
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3383

3384
	return obj;
3385 3386 3387 3388 3389
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3390

3391 3392 3393
	return 0;
}

3394
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3395
{
3396
	struct drm_device *dev = obj->base.dev;
3397 3398
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3399

3400 3401
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
3402
		list_move(&obj->mm_list,
3403 3404 3405
			  &dev_priv->mm.deferred_free_list);
		return;
	}
3406

3407 3408
	trace_i915_gem_object_destroy(obj);

3409
	if (obj->base.map_list.map)
3410
		drm_gem_free_mmap_offset(&obj->base);
3411

3412 3413
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3414

3415 3416
	kfree(obj->bit_17);
	kfree(obj);
3417 3418
}

3419
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3420
{
3421 3422
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
	struct drm_device *dev = obj->base.dev;
3423

3424
	while (obj->pin_count > 0)
3425 3426
		i915_gem_object_unpin(obj);

3427
	if (obj->phys_obj)
3428 3429 3430 3431 3432
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

3433 3434 3435 3436 3437
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3438

3439
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3440

3441
	if (dev_priv->mm.suspended) {
3442 3443
		mutex_unlock(&dev->struct_mutex);
		return 0;
3444 3445
	}

3446
	ret = i915_gpu_idle(dev, true);
3447 3448
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3449
		return ret;
3450
	}
3451

3452 3453
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3454
		ret = i915_gem_evict_inactive(dev, false);
3455 3456 3457 3458 3459 3460
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

3461 3462
	i915_gem_reset_fences(dev);

3463 3464 3465 3466 3467
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3468
	del_timer_sync(&dev_priv->hangcheck_timer);
3469 3470

	i915_kernel_lost_context(dev);
3471
	i915_gem_cleanup_ringbuffer(dev);
3472

3473 3474
	mutex_unlock(&dev->struct_mutex);

3475 3476 3477
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3478 3479 3480
	return 0;
}

3481 3482 3483 3484
void i915_gem_init_swizzling(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

3485
	if (INTEL_INFO(dev)->gen < 5 ||
3486 3487 3488 3489 3490 3491
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

3492 3493 3494
	if (IS_GEN5(dev))
		return;

3495 3496 3497 3498 3499 3500
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
		I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
	else
		I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
}
D
Daniel Vetter 已提交
3501 3502 3503 3504 3505 3506

void i915_gem_init_ppgtt(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t pd_offset;
	struct intel_ring_buffer *ring;
3507 3508 3509
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
	uint32_t __iomem *pd_addr;
	uint32_t pd_entry;
D
Daniel Vetter 已提交
3510 3511 3512 3513 3514
	int i;

	if (!dev_priv->mm.aliasing_ppgtt)
		return;

3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532

	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
		dma_addr_t pt_addr;

		if (dev_priv->mm.gtt->needs_dmar)
			pt_addr = ppgtt->pt_dma_addr[i];
		else
			pt_addr = page_to_phys(ppgtt->pt_pages[i]);

		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
		pd_entry |= GEN6_PDE_VALID;

		writel(pd_entry, pd_addr + i);
	}
	readl(pd_addr);

	pd_offset = ppgtt->pd_offset;
D
Daniel Vetter 已提交
3533 3534 3535 3536
	pd_offset /= 64; /* in cachelines, */
	pd_offset <<= 16;

	if (INTEL_INFO(dev)->gen == 6) {
3537 3538 3539 3540
		uint32_t ecochk, gab_ctl, ecobits;

		ecobits = I915_READ(GAC_ECO_BITS); 
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3541 3542 3543 3544 3545

		gab_ctl = I915_READ(GAB_CTL);
		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

		ecochk = I915_READ(GAM_ECOCHK);
D
Daniel Vetter 已提交
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
				       ECOCHK_PPGTT_CACHE64B);
		I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
	} else if (INTEL_INFO(dev)->gen >= 7) {
		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
		/* GFX_MODE is per-ring on gen7+ */
	}

	for (i = 0; i < I915_NUM_RINGS; i++) {
		ring = &dev_priv->ring[i];

		if (INTEL_INFO(dev)->gen >= 7)
			I915_WRITE(RING_MODE_GEN7(ring),
				   GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));

		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
	}
}

3566
int
3567
i915_gem_init_hw(struct drm_device *dev)
3568 3569 3570
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3571

3572 3573
	i915_gem_init_swizzling(dev);

3574
	ret = intel_init_render_ring_buffer(dev);
3575
	if (ret)
3576
		return ret;
3577 3578

	if (HAS_BSD(dev)) {
3579
		ret = intel_init_bsd_ring_buffer(dev);
3580 3581
		if (ret)
			goto cleanup_render_ring;
3582
	}
3583

3584 3585 3586 3587 3588 3589
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3590 3591
	dev_priv->next_seqno = 1;

D
Daniel Vetter 已提交
3592 3593
	i915_gem_init_ppgtt(dev);

3594 3595
	return 0;

3596
cleanup_bsd_ring:
3597
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3598
cleanup_render_ring:
3599
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3600 3601 3602 3603 3604 3605 3606
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3607
	int i;
3608

3609 3610
	for (i = 0; i < I915_NUM_RINGS; i++)
		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3611 3612
}

3613 3614 3615 3616 3617
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3618
	int ret, i;
3619

J
Jesse Barnes 已提交
3620 3621 3622
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3623
	if (atomic_read(&dev_priv->mm.wedged)) {
3624
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3625
		atomic_set(&dev_priv->mm.wedged, 0);
3626 3627 3628
	}

	mutex_lock(&dev->struct_mutex);
3629 3630
	dev_priv->mm.suspended = 0;

3631
	ret = i915_gem_init_hw(dev);
3632 3633
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3634
		return ret;
3635
	}
3636

3637
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3638 3639
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3640 3641 3642 3643
	for (i = 0; i < I915_NUM_RINGS; i++) {
		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
	}
3644
	mutex_unlock(&dev->struct_mutex);
3645

3646 3647 3648
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3649

3650
	return 0;
3651 3652 3653 3654 3655 3656 3657 3658

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3659 3660 3661 3662 3663 3664
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3665 3666 3667
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3668
	drm_irq_uninstall(dev);
3669
	return i915_gem_idle(dev);
3670 3671 3672 3673 3674 3675 3676
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3677 3678 3679
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3680 3681 3682
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3683 3684
}

3685 3686 3687 3688 3689 3690 3691 3692
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3693 3694 3695
void
i915_gem_load(struct drm_device *dev)
{
3696
	int i;
3697 3698
	drm_i915_private_t *dev_priv = dev->dev_private;

3699
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3700 3701
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
3702
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3703
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3704
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
D
Daniel Vetter 已提交
3705
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3706 3707
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3708
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3709
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3710 3711
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3712
	init_completion(&dev_priv->error_completion);
3713

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

3724 3725
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3726
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3727 3728
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3729

3730
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3731 3732 3733 3734
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3735
	/* Initialize fence registers to zero */
3736
	i915_gem_reset_fences(dev);
3737

3738
	i915_gem_detect_bit_6_swizzle(dev);
3739
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3740

3741 3742
	dev_priv->mm.interruptible = true;

3743 3744 3745
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3746
}
3747 3748 3749 3750 3751

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3752 3753
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3754 3755 3756 3757 3758 3759 3760 3761
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3762
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3763 3764 3765 3766 3767
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3768
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3781
	kfree(phys_obj);
3782 3783 3784
	return ret;
}

3785
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

3810
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3811 3812 3813 3814
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
3815
				 struct drm_i915_gem_object *obj)
3816
{
3817
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3818
	char *vaddr;
3819 3820 3821
	int i;
	int page_count;

3822
	if (!obj->phys_obj)
3823
		return;
3824
	vaddr = obj->phys_obj->handle->vaddr;
3825

3826
	page_count = obj->base.size / PAGE_SIZE;
3827
	for (i = 0; i < page_count; i++) {
3828
		struct page *page = shmem_read_mapping_page(mapping, i);
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
3840
	}
3841
	intel_gtt_chipset_flush();
3842

3843 3844
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
3845 3846 3847 3848
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
3849
			    struct drm_i915_gem_object *obj,
3850 3851
			    int id,
			    int align)
3852
{
3853
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3854 3855 3856 3857 3858 3859 3860 3861
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

3862 3863
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
3864 3865 3866 3867 3868 3869 3870
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
3871
						obj->base.size, align);
3872
		if (ret) {
3873 3874
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
3875
			return ret;
3876 3877 3878 3879
		}
	}

	/* bind to the object */
3880 3881
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
3882

3883
	page_count = obj->base.size / PAGE_SIZE;
3884 3885

	for (i = 0; i < page_count; i++) {
3886 3887 3888
		struct page *page;
		char *dst, *src;

3889
		page = shmem_read_mapping_page(mapping, i);
3890 3891
		if (IS_ERR(page))
			return PTR_ERR(page);
3892

3893
		src = kmap_atomic(page);
3894
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3895
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
3896
		kunmap_atomic(src);
3897

3898 3899 3900
		mark_page_accessed(page);
		page_cache_release(page);
	}
3901

3902 3903 3904 3905
	return 0;
}

static int
3906 3907
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
3908 3909 3910
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
3911
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
3912
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
3913

3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
3927

3928
	intel_gtt_chipset_flush();
3929 3930
	return 0;
}
3931

3932
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
3933
{
3934
	struct drm_i915_file_private *file_priv = file->driver_priv;
3935 3936 3937 3938 3939

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
3940
	spin_lock(&file_priv->mm.lock);
3941 3942 3943 3944 3945 3946 3947 3948 3949
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
3950
	spin_unlock(&file_priv->mm.lock);
3951
}
3952

3953 3954 3955 3956 3957 3958 3959
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
3960
		      list_empty(&dev_priv->mm.active_list);
3961 3962 3963 3964

	return !lists_empty;
}

3965
static int
3966
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
3967
{
3968 3969 3970 3971 3972 3973
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
3974
	int nr_to_scan = sc->nr_to_scan;
3975 3976 3977
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
3978
		return 0;
3979 3980 3981

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
3982 3983 3984 3985 3986 3987 3988
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
3989 3990
	}

3991
rescan:
3992
	/* first scan for clean buffers */
3993
	i915_gem_retire_requests(dev);
3994

3995 3996 3997 3998
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
3999 4000
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4001
				break;
4002 4003 4004 4005
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4006 4007 4008 4009
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4010 4011
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4012
			nr_to_scan--;
4013
		else
4014 4015 4016 4017
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4018 4019 4020 4021 4022 4023
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4024
		if (i915_gpu_idle(dev, true) == 0)
4025 4026
			goto rescan;
	}
4027 4028
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4029
}