i915_gem.c 133.8 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/dma-fence-array.h>
39
#include <linux/kthread.h>
40
#include <linux/reservation.h>
41
#include <linux/shmem_fs.h>
42
#include <linux/slab.h>
43
#include <linux/stop_machine.h>
44
#include <linux/swap.h>
J
Jesse Barnes 已提交
45
#include <linux/pci.h>
46
#include <linux/dma-buf.h>
47

48
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
50
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
51

52 53
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
54 55 56
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

57
	if (!i915_gem_object_is_coherent(obj))
58 59 60 61 62
		return true;

	return obj->pin_display;
}

63
static int
64
insert_mappable_node(struct i915_ggtt *ggtt,
65 66 67
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
68 69 70 71
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
72 73 74 75 76 77 78 79
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82
				  u64 size)
83
{
84
	spin_lock(&dev_priv->mm.object_stat_lock);
85 86
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
87
	spin_unlock(&dev_priv->mm.object_stat_lock);
88 89 90
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91
				     u64 size)
92
{
93
	spin_lock(&dev_priv->mm.object_stat_lock);
94 95
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
96
	spin_unlock(&dev_priv->mm.object_stat_lock);
97 98
}

99
static int
100
i915_gem_wait_for_error(struct i915_gpu_error *error)
101 102 103
{
	int ret;

104 105
	might_sleep();

106
	if (!i915_reset_in_progress(error))
107 108
		return 0;

109 110 111 112 113
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
114
	ret = wait_event_interruptible_timeout(error->reset_queue,
115
					       !i915_reset_in_progress(error),
116
					       I915_RESET_TIMEOUT);
117 118 119 120
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
121
		return ret;
122 123
	} else {
		return 0;
124
	}
125 126
}

127
int i915_mutex_lock_interruptible(struct drm_device *dev)
128
{
129
	struct drm_i915_private *dev_priv = to_i915(dev);
130 131
	int ret;

132
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
133 134 135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
142

143 144
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
145
			    struct drm_file *file)
146
{
147
	struct drm_i915_private *dev_priv = to_i915(dev);
148
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
149
	struct drm_i915_gem_get_aperture *args = data;
150
	struct i915_vma *vma;
151
	size_t pinned;
152

153
	pinned = 0;
154
	mutex_lock(&dev->struct_mutex);
155
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
156
		if (i915_vma_is_pinned(vma))
157
			pinned += vma->node.size;
158
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
159
		if (i915_vma_is_pinned(vma))
160
			pinned += vma->node.size;
161
	mutex_unlock(&dev->struct_mutex);
162

163
	args->aper_size = ggtt->base.total;
164
	args->aper_available_size = args->aper_size - pinned;
165

166 167 168
	return 0;
}

169
static struct sg_table *
170
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
171
{
172
	struct address_space *mapping = obj->base.filp->f_mapping;
173
	drm_dma_handle_t *phys;
174 175
	struct sg_table *st;
	struct scatterlist *sg;
176
	char *vaddr;
177
	int i;
178

179
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180
		return ERR_PTR(-EINVAL);
181

182 183 184 185 186 187 188 189 190 191 192
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
193 194 195 196 197
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
198 199 200 201
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
202 203 204 205 206 207

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

208
		put_page(page);
209 210 211
		vaddr += PAGE_SIZE;
	}

212
	i915_gem_chipset_flush(to_i915(obj->base.dev));
213 214

	st = kmalloc(sizeof(*st), GFP_KERNEL);
215 216 217 218
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
219 220 221

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
222 223
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
224 225 226 227 228
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
229

230
	sg_dma_address(sg) = phys->busaddr;
231 232
	sg_dma_len(sg) = obj->base.size;

233 234 235 236 237
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
238
	return st;
239 240 241
}

static void
242
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
243 244
				struct sg_table *pages,
				bool needs_clflush)
245
{
C
Chris Wilson 已提交
246
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
247

C
Chris Wilson 已提交
248 249
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
250

251 252
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
253
	    !i915_gem_object_is_coherent(obj))
254
		drm_clflush_sg(pages);
255 256 257 258 259 260 261 262 263

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
264
	__i915_gem_object_release_shmem(obj, pages, false);
265

C
Chris Wilson 已提交
266
	if (obj->mm.dirty) {
267
		struct address_space *mapping = obj->base.filp->f_mapping;
268
		char *vaddr = obj->phys_handle->vaddr;
269 270 271
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
272 273 274 275 276 277 278 279 280 281 282 283 284
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
285
			if (obj->mm.madv == I915_MADV_WILLNEED)
286
				mark_page_accessed(page);
287
			put_page(page);
288 289
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
290
		obj->mm.dirty = false;
291 292
	}

293 294
	sg_free_table(pages);
	kfree(pages);
295 296

	drm_pci_free(obj->base.dev, obj->phys_handle);
297 298 299 300 301
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
302
	i915_gem_object_unpin_pages(obj);
303 304 305 306 307 308 309 310
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

311 312
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

313
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
314 315 316
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
317 318 319
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
320

321 322 323 324
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
325
	 */
326 327 328 329 330 331
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
332 333 334 335 336
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

337 338 339 340 341 342 343 344 345 346 347 348 349
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

350 351 352 353 354
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
355
{
356
	struct drm_i915_gem_request *rq;
357

358
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
392 393
	}

394 395 396 397 398 399
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

400
	if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
425
	unsigned int seq = __read_seqcount_begin(&resv->seq);
426
	struct dma_fence *excl;
427
	bool prune_fences = false;
428 429 430 431

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
432 433
		int ret;

434 435
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
436 437 438
		if (ret)
			return ret;

439 440 441 442
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
443
			if (timeout < 0)
444
				break;
445

446 447 448 449 450 451
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
452 453

		prune_fences = count && timeout >= 0;
454 455
	} else {
		excl = reservation_object_get_excl_rcu(resv);
456 457
	}

458
	if (excl && timeout >= 0) {
459
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
460 461
		prune_fences = timeout >= 0;
	}
462 463 464

	dma_fence_put(excl);

465 466 467 468 469 470 471
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
		reservation_object_lock(resv, NULL);
		if (!__read_seqcount_retry(&resv->seq, seq))
			reservation_object_add_excl_fence(resv, NULL);
		reservation_object_unlock(resv);
	}

472
	return timeout;
473 474
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

539 540 541 542 543 544
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
545
 */
546 547 548 549 550
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
551
{
552 553 554 555 556 557 558
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
559

560 561 562
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
563
	return timeout < 0 ? timeout : 0;
564 565 566 567 568 569 570 571 572
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

573 574 575 576
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
577
	int ret;
578

579 580
	if (align > obj->base.size)
		return -EINVAL;
581

582
	if (obj->ops == &i915_gem_phys_ops)
583 584
		return 0;

C
Chris Wilson 已提交
585
	if (obj->mm.madv != I915_MADV_WILLNEED)
586 587 588 589 590
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
591 592 593 594
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

595
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
596 597
	if (obj->mm.pages)
		return -EBUSY;
598

599
	GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
600 601
	obj->ops = &i915_gem_phys_ops;

602 603 604 605 606 607 608 609 610
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err_xfer;

	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	return ret;
611 612 613 614 615
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
616
		     struct drm_file *file)
617 618
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
619
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
620 621 622 623

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
624
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
625 626
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
627

628
	drm_clflush_virt_range(vaddr, args->size);
629
	i915_gem_chipset_flush(to_i915(obj->base.dev));
630

631
	intel_fb_obj_flush(obj, ORIGIN_CPU);
632
	return 0;
633 634
}

635
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
636
{
637
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
638 639 640 641
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
642
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
643
	kmem_cache_free(dev_priv->objects, obj);
644 645
}

646 647
static int
i915_gem_create(struct drm_file *file,
648
		struct drm_i915_private *dev_priv,
649 650
		uint64_t size,
		uint32_t *handle_p)
651
{
652
	struct drm_i915_gem_object *obj;
653 654
	int ret;
	u32 handle;
655

656
	size = roundup(size, PAGE_SIZE);
657 658
	if (size == 0)
		return -EINVAL;
659 660

	/* Allocate the new object */
661
	obj = i915_gem_object_create(dev_priv, size);
662 663
	if (IS_ERR(obj))
		return PTR_ERR(obj);
664

665
	ret = drm_gem_handle_create(file, &obj->base, &handle);
666
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
667
	i915_gem_object_put(obj);
668 669
	if (ret)
		return ret;
670

671
	*handle_p = handle;
672 673 674
	return 0;
}

675 676 677 678 679 680
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
681
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
682
	args->size = args->pitch * args->height;
683
	return i915_gem_create(file, to_i915(dev),
684
			       args->size, &args->handle);
685 686 687 688
}

/**
 * Creates a new mm object and returns a handle to it.
689 690 691
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
692 693 694 695 696
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
697
	struct drm_i915_private *dev_priv = to_i915(dev);
698
	struct drm_i915_gem_create *args = data;
699

700
	i915_gem_flush_free_objects(dev_priv);
701

702
	return i915_gem_create(file, dev_priv,
703
			       args->size, &args->handle);
704 705
}

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

732
static inline int
733 734
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

758 759 760 761 762 763
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
764
				    unsigned int *needs_clflush)
765 766 767
{
	int ret;

768
	lockdep_assert_held(&obj->base.dev->struct_mutex);
769

770
	*needs_clflush = 0;
771 772
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
773

774 775 776 777 778
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
779 780 781
	if (ret)
		return ret;

C
Chris Wilson 已提交
782
	ret = i915_gem_object_pin_pages(obj);
783 784 785
	if (ret)
		return ret;

786 787
	i915_gem_object_flush_gtt_write_domain(obj);

788 789 790 791 792 793
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
794
		*needs_clflush = !i915_gem_object_is_coherent(obj);
795 796 797

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
798 799 800
		if (ret)
			goto err_unpin;

801
		*needs_clflush = 0;
802 803
	}

804
	/* return with the pages pinned */
805
	return 0;
806 807 808 809

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
810 811 812 813 814 815 816
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

817 818
	lockdep_assert_held(&obj->base.dev->struct_mutex);

819 820 821 822
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

823 824 825 826 827 828
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
829 830 831
	if (ret)
		return ret;

C
Chris Wilson 已提交
832
	ret = i915_gem_object_pin_pages(obj);
833 834 835
	if (ret)
		return ret;

836 837
	i915_gem_object_flush_gtt_write_domain(obj);

838 839 840 841 842 843 844 845 846 847 848 849
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
850
		*needs_clflush |= !i915_gem_object_is_coherent(obj);
851 852 853

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
854 855 856
		if (ret)
			goto err_unpin;

857 858 859 860 861 862 863
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
864
	obj->mm.dirty = true;
865
	/* return with the pages pinned */
866
	return 0;
867 868 869 870

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
871 872
}

873 874 875 876
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
877
	if (unlikely(swizzled)) {
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

895 896 897
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
898
shmem_pread_slow(struct page *page, int offset, int length,
899 900 901 902 903 904 905 906
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
907
		shmem_clflush_swizzled_range(vaddr + offset, length,
908
					     page_do_bit17_swizzling);
909 910

	if (page_do_bit17_swizzling)
911
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
912
	else
913
		ret = __copy_to_user(user_data, vaddr + offset, length);
914 915
	kunmap(page);

916
	return ret ? - EFAULT : 0;
917 918
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
995 996
{
	void *vaddr;
997
	unsigned long unwritten;
998 999

	/* We can use the cpu mem copy function because this is X86. */
1000 1001 1002 1003 1004 1005 1006 1007 1008
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
1009 1010 1011 1012
	return unwritten;
}

static int
1013 1014
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1015
{
1016 1017
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1018
	struct drm_mm_node node;
1019 1020 1021
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1022 1023
	int ret;

1024 1025 1026 1027 1028 1029 1030
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1031 1032 1033
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1034
		ret = i915_vma_put_fence(vma);
1035 1036 1037 1038 1039
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1040
	if (IS_ERR(vma)) {
1041
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1042
		if (ret)
1043 1044
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1045 1046 1047 1048 1049 1050
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1051
	mutex_unlock(&i915->drm.struct_mutex);
1052

1053 1054 1055
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1072
					       node.start, I915_CACHE_NONE, 0);
1073 1074 1075 1076
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1077 1078 1079

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1080 1081 1082 1083 1084 1085 1086 1087 1088
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1089
	mutex_lock(&i915->drm.struct_mutex);
1090 1091 1092 1093
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1094
				       node.start, node.size);
1095 1096
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1097
		i915_vma_unpin(vma);
1098
	}
1099 1100 1101
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1102

1103 1104 1105
	return ret;
}

1106 1107
/**
 * Reads data from the object referenced by handle.
1108 1109 1110
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1111 1112 1113 1114 1115
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1116
		     struct drm_file *file)
1117 1118
{
	struct drm_i915_gem_pread *args = data;
1119
	struct drm_i915_gem_object *obj;
1120
	int ret;
1121

1122 1123 1124 1125
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1126
		       u64_to_user_ptr(args->data_ptr),
1127 1128 1129
		       args->size))
		return -EFAULT;

1130
	obj = i915_gem_object_lookup(file, args->handle);
1131 1132
	if (!obj)
		return -ENOENT;
1133

1134
	/* Bounds check source.  */
1135
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1136
		ret = -EINVAL;
1137
		goto out;
C
Chris Wilson 已提交
1138 1139
	}

C
Chris Wilson 已提交
1140 1141
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1142 1143 1144 1145
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1146
	if (ret)
1147
		goto out;
1148

1149
	ret = i915_gem_object_pin_pages(obj);
1150
	if (ret)
1151
		goto out;
1152

1153
	ret = i915_gem_shmem_pread(obj, args);
1154
	if (ret == -EFAULT || ret == -ENODEV)
1155
		ret = i915_gem_gtt_pread(obj, args);
1156

1157 1158
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1159
	i915_gem_object_put(obj);
1160
	return ret;
1161 1162
}

1163 1164
/* This is the fast write path which cannot handle
 * page faults in the source data
1165
 */
1166

1167 1168 1169 1170
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1171
{
1172
	void *vaddr;
1173
	unsigned long unwritten;
1174

1175
	/* We can use the cpu mem copy function because this is X86. */
1176 1177
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1178
						      user_data, length);
1179 1180 1181 1182 1183 1184 1185
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1186 1187 1188 1189

	return unwritten;
}

1190 1191 1192
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1193
 * @obj: i915 GEM object
1194
 * @args: pwrite arguments structure
1195
 */
1196
static int
1197 1198
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1199
{
1200
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1201 1202
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1203 1204 1205
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1206
	int ret;
1207

1208 1209 1210
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1211

1212
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1213
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1214
				       PIN_MAPPABLE | PIN_NONBLOCK);
1215 1216 1217
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1218
		ret = i915_vma_put_fence(vma);
1219 1220 1221 1222 1223
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1224
	if (IS_ERR(vma)) {
1225
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1226
		if (ret)
1227 1228
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1229
	}
D
Daniel Vetter 已提交
1230 1231 1232 1233 1234

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1235 1236
	mutex_unlock(&i915->drm.struct_mutex);

1237
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1238

1239 1240 1241 1242
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1243 1244
		/* Operation in this page
		 *
1245 1246 1247
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1248
		 */
1249
		u32 page_base = node.start;
1250 1251
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1262
		/* If we get a fault while copying data, then (presumably) our
1263 1264
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1265 1266
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1267
		 */
1268 1269 1270 1271
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1272
		}
1273

1274 1275 1276
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1277
	}
1278
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1279 1280

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1281
out_unpin:
1282 1283 1284
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1285
				       node.start, node.size);
1286 1287
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1288
		i915_vma_unpin(vma);
1289
	}
1290
out_unlock:
1291
	intel_runtime_pm_put(i915);
1292
	mutex_unlock(&i915->drm.struct_mutex);
1293
	return ret;
1294 1295
}

1296
static int
1297
shmem_pwrite_slow(struct page *page, int offset, int length,
1298 1299 1300 1301
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1302
{
1303 1304
	char *vaddr;
	int ret;
1305

1306
	vaddr = kmap(page);
1307
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1308
		shmem_clflush_swizzled_range(vaddr + offset, length,
1309
					     page_do_bit17_swizzling);
1310
	if (page_do_bit17_swizzling)
1311 1312
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1313
	else
1314
		ret = __copy_from_user(vaddr + offset, user_data, length);
1315
	if (needs_clflush_after)
1316
		shmem_clflush_swizzled_range(vaddr + offset, length,
1317
					     page_do_bit17_swizzling);
1318
	kunmap(page);
1319

1320
	return ret ? -EFAULT : 0;
1321 1322
}

1323 1324 1325 1326 1327
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1328
static int
1329 1330 1331 1332
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1333
{
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1366
	unsigned int needs_clflush;
1367 1368
	unsigned int offset, idx;
	int ret;
1369

1370
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1371 1372 1373
	if (ret)
		return ret;

1374 1375 1376 1377
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1378

1379 1380 1381
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1382

1383 1384 1385 1386 1387 1388 1389
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1390

1391 1392 1393 1394 1395 1396
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1397

1398 1399 1400
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1401

1402 1403 1404 1405
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1406
		if (ret)
1407
			break;
1408

1409 1410 1411
		remain -= length;
		user_data += length;
		offset = 0;
1412
	}
1413

1414
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1415
	i915_gem_obj_finish_shmem_access(obj);
1416
	return ret;
1417 1418 1419 1420
}

/**
 * Writes data to the object referenced by handle.
1421 1422 1423
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1424 1425 1426 1427 1428
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1429
		      struct drm_file *file)
1430 1431
{
	struct drm_i915_gem_pwrite *args = data;
1432
	struct drm_i915_gem_object *obj;
1433 1434 1435 1436 1437 1438
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1439
		       u64_to_user_ptr(args->data_ptr),
1440 1441 1442
		       args->size))
		return -EFAULT;

1443
	obj = i915_gem_object_lookup(file, args->handle);
1444 1445
	if (!obj)
		return -ENOENT;
1446

1447
	/* Bounds check destination. */
1448
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1449
		ret = -EINVAL;
1450
		goto err;
C
Chris Wilson 已提交
1451 1452
	}

C
Chris Wilson 已提交
1453 1454
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1455 1456 1457 1458 1459
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1460 1461 1462
	if (ret)
		goto err;

1463
	ret = i915_gem_object_pin_pages(obj);
1464
	if (ret)
1465
		goto err;
1466

D
Daniel Vetter 已提交
1467
	ret = -EFAULT;
1468 1469 1470 1471 1472 1473
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1474
	if (!i915_gem_object_has_struct_page(obj) ||
1475
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1476 1477
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1478 1479
		 * textures). Fallback to the shmem path in that case.
		 */
1480
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1481

1482
	if (ret == -EFAULT || ret == -ENOSPC) {
1483 1484
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1485
		else
1486
			ret = i915_gem_shmem_pwrite(obj, args);
1487
	}
1488

1489
	i915_gem_object_unpin_pages(obj);
1490
err:
C
Chris Wilson 已提交
1491
	i915_gem_object_put(obj);
1492
	return ret;
1493 1494
}

1495
static inline enum fb_op_origin
1496 1497
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1498 1499
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1500 1501
}

1502 1503 1504 1505 1506 1507 1508 1509
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1510
			break;
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1523
	list_move_tail(&obj->global_link, list);
1524 1525
}

1526
/**
1527 1528
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1529 1530 1531
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1532 1533 1534
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1535
			  struct drm_file *file)
1536 1537
{
	struct drm_i915_gem_set_domain *args = data;
1538
	struct drm_i915_gem_object *obj;
1539 1540
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1541
	int err;
1542

1543
	/* Only handle setting domains to types used by the CPU. */
1544
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1545 1546 1547 1548 1549 1550 1551 1552
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1553
	obj = i915_gem_object_lookup(file, args->handle);
1554 1555
	if (!obj)
		return -ENOENT;
1556

1557 1558 1559 1560
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1561
	err = i915_gem_object_wait(obj,
1562 1563 1564 1565
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1566
	if (err)
C
Chris Wilson 已提交
1567
		goto out;
1568

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1579
		goto out;
1580 1581 1582

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1583
		goto out_unpin;
1584

1585
	if (read_domains & I915_GEM_DOMAIN_GTT)
1586
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1587
	else
1588
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1589

1590 1591
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1592

1593
	mutex_unlock(&dev->struct_mutex);
1594

1595 1596 1597
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1598
out_unpin:
1599
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1600 1601
out:
	i915_gem_object_put(obj);
1602
	return err;
1603 1604 1605 1606
}

/**
 * Called when user space has done writes to this buffer
1607 1608 1609
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1610 1611 1612
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1613
			 struct drm_file *file)
1614 1615
{
	struct drm_i915_gem_sw_finish *args = data;
1616
	struct drm_i915_gem_object *obj;
1617

1618
	obj = i915_gem_object_lookup(file, args->handle);
1619 1620
	if (!obj)
		return -ENOENT;
1621 1622

	/* Pinned buffers may be scanout, so flush the cache */
1623
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1624
	i915_gem_object_put(obj);
1625 1626

	return 0;
1627 1628 1629
}

/**
1630 1631 1632 1633 1634
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1635 1636 1637
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1648 1649 1650
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1651
		    struct drm_file *file)
1652 1653
{
	struct drm_i915_gem_mmap *args = data;
1654
	struct drm_i915_gem_object *obj;
1655 1656
	unsigned long addr;

1657 1658 1659
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1660
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1661 1662
		return -ENODEV;

1663 1664
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1665
		return -ENOENT;
1666

1667 1668 1669
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1670
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1671
		i915_gem_object_put(obj);
1672 1673 1674
		return -EINVAL;
	}

1675
	addr = vm_mmap(obj->base.filp, 0, args->size,
1676 1677
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1678 1679 1680 1681
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1682
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1683
			i915_gem_object_put(obj);
1684 1685
			return -EINTR;
		}
1686 1687 1688 1689 1690 1691 1692
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1693 1694

		/* This may race, but that's ok, it only gets set */
1695
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1696
	}
C
Chris Wilson 已提交
1697
	i915_gem_object_put(obj);
1698 1699 1700 1701 1702 1703 1704 1705
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1706 1707
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1708
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1709 1710
}

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1772 1773
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1774
		min_t(unsigned int, chunk,
1775
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1776 1777 1778 1779 1780 1781 1782 1783

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1784 1785
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1786
 * @area: CPU VMA in question
1787
 * @vmf: fault info
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1799 1800 1801
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1802
 */
C
Chris Wilson 已提交
1803
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1804
{
1805
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1806
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1807
	struct drm_device *dev = obj->base.dev;
1808 1809
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1810
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1811
	struct i915_vma *vma;
1812
	pgoff_t page_offset;
1813
	unsigned int flags;
1814
	int ret;
1815

1816
	/* We don't use vmf->pgoff since that has the fake offset */
1817
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1818

C
Chris Wilson 已提交
1819 1820
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1821
	/* Try to flush the object off the GPU first without holding the lock.
1822
	 * Upon acquiring the lock, we will perform our sanity checks and then
1823 1824 1825
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1826 1827 1828 1829
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1830
	if (ret)
1831 1832
		goto err;

1833 1834 1835 1836
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1837 1838 1839 1840 1841
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1842

1843
	/* Access to snoopable pages through the GTT is incoherent. */
1844
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1845
		ret = -EFAULT;
1846
		goto err_unlock;
1847 1848
	}

1849 1850 1851 1852 1853 1854 1855 1856
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1857
	/* Now pin it into the GTT as needed */
1858
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1859 1860
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1861
		struct i915_ggtt_view view =
1862
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1863

1864 1865 1866 1867 1868
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1869 1870
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1871 1872
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1873
		goto err_unlock;
C
Chris Wilson 已提交
1874
	}
1875

1876 1877
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1878
		goto err_unpin;
1879

1880
	ret = i915_vma_get_fence(vma);
1881
	if (ret)
1882
		goto err_unpin;
1883

1884
	/* Mark as being mmapped into userspace for later revocation */
1885
	assert_rpm_wakelock_held(dev_priv);
1886 1887 1888
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1889
	/* Finally, remap it using the new GTT offset */
1890
	ret = remap_io_mapping(area,
1891
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1892 1893 1894
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1895

1896
err_unpin:
C
Chris Wilson 已提交
1897
	__i915_vma_unpin(vma);
1898
err_unlock:
1899
	mutex_unlock(&dev->struct_mutex);
1900 1901
err_rpm:
	intel_runtime_pm_put(dev_priv);
1902
	i915_gem_object_unpin_pages(obj);
1903
err:
1904
	switch (ret) {
1905
	case -EIO:
1906 1907 1908 1909 1910 1911 1912
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1913 1914 1915
			ret = VM_FAULT_SIGBUS;
			break;
		}
1916
	case -EAGAIN:
D
Daniel Vetter 已提交
1917 1918 1919 1920
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1921
		 */
1922 1923
	case 0:
	case -ERESTARTSYS:
1924
	case -EINTR:
1925 1926 1927 1928 1929
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1930 1931
		ret = VM_FAULT_NOPAGE;
		break;
1932
	case -ENOMEM:
1933 1934
		ret = VM_FAULT_OOM;
		break;
1935
	case -ENOSPC:
1936
	case -EFAULT:
1937 1938
		ret = VM_FAULT_SIGBUS;
		break;
1939
	default:
1940
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1941 1942
		ret = VM_FAULT_SIGBUS;
		break;
1943
	}
1944
	return ret;
1945 1946
}

1947 1948 1949 1950
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1951
 * Preserve the reservation of the mmapping with the DRM core code, but
1952 1953 1954 1955 1956 1957 1958 1959 1960
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1961
void
1962
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1963
{
1964 1965
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1966 1967 1968
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1969 1970 1971 1972
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1973
	 */
1974
	lockdep_assert_held(&i915->drm.struct_mutex);
1975
	intel_runtime_pm_get(i915);
1976

1977
	if (list_empty(&obj->userfault_link))
1978
		goto out;
1979

1980
	list_del_init(&obj->userfault_link);
1981 1982
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1983 1984 1985 1986 1987 1988 1989 1990 1991

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
1992 1993 1994

out:
	intel_runtime_pm_put(i915);
1995 1996
}

1997
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1998
{
1999
	struct drm_i915_gem_object *obj, *on;
2000
	int i;
2001

2002 2003 2004 2005 2006 2007
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2008

2009 2010 2011
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2012 2013 2014
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2015 2016 2017 2018 2019 2020 2021 2022

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2033 2034 2035 2036 2037 2038 2039

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2040 2041
}

2042 2043
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2044
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2045
	int err;
2046

2047
	err = drm_gem_create_mmap_offset(&obj->base);
2048
	if (likely(!err))
2049
		return 0;
2050

2051 2052 2053 2054 2055
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2056

2057
		i915_gem_drain_freed_objects(dev_priv);
2058
		err = drm_gem_create_mmap_offset(&obj->base);
2059 2060 2061 2062
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2063

2064
	return err;
2065 2066 2067 2068 2069 2070 2071
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2072
int
2073 2074
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2075
		  uint32_t handle,
2076
		  uint64_t *offset)
2077
{
2078
	struct drm_i915_gem_object *obj;
2079 2080
	int ret;

2081
	obj = i915_gem_object_lookup(file, handle);
2082 2083
	if (!obj)
		return -ENOENT;
2084

2085
	ret = i915_gem_object_create_mmap_offset(obj);
2086 2087
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2088

C
Chris Wilson 已提交
2089
	i915_gem_object_put(obj);
2090
	return ret;
2091 2092
}

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2114
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2115 2116
}

D
Daniel Vetter 已提交
2117 2118 2119
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2120
{
2121
	i915_gem_object_free_mmap_offset(obj);
2122

2123 2124
	if (obj->base.filp == NULL)
		return;
2125

D
Daniel Vetter 已提交
2126 2127 2128 2129 2130
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2131
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2132
	obj->mm.madv = __I915_MADV_PURGED;
D
Daniel Vetter 已提交
2133
}
2134

2135
/* Try to discard unwanted pages */
2136
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2137
{
2138 2139
	struct address_space *mapping;

2140 2141 2142
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2143
	switch (obj->mm.madv) {
2144 2145 2146 2147 2148 2149 2150 2151 2152
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2153
	mapping = obj->base.filp->f_mapping,
2154
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2155 2156
}

2157
static void
2158 2159
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2160
{
2161 2162
	struct sgt_iter sgt_iter;
	struct page *page;
2163

2164
	__i915_gem_object_release_shmem(obj, pages, true);
2165

2166
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2167

2168
	if (i915_gem_object_needs_bit17_swizzle(obj))
2169
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2170

2171
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2172
		if (obj->mm.dirty)
2173
			set_page_dirty(page);
2174

C
Chris Wilson 已提交
2175
		if (obj->mm.madv == I915_MADV_WILLNEED)
2176
			mark_page_accessed(page);
2177

2178
		put_page(page);
2179
	}
C
Chris Wilson 已提交
2180
	obj->mm.dirty = false;
2181

2182 2183
	sg_free_table(pages);
	kfree(pages);
2184
}
C
Chris Wilson 已提交
2185

2186 2187 2188 2189 2190
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2191 2192
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2193 2194
}

2195 2196
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2197
{
2198
	struct sg_table *pages;
2199

C
Chris Wilson 已提交
2200
	if (i915_gem_object_has_pinned_pages(obj))
2201
		return;
2202

2203
	GEM_BUG_ON(obj->bind_count);
2204 2205 2206 2207
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2208
	mutex_lock_nested(&obj->mm.lock, subclass);
2209 2210
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2211

2212 2213 2214
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2215 2216
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2217

C
Chris Wilson 已提交
2218
	if (obj->mm.mapping) {
2219 2220
		void *ptr;

C
Chris Wilson 已提交
2221
		ptr = ptr_mask_bits(obj->mm.mapping);
2222 2223
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2224
		else
2225 2226
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2227
		obj->mm.mapping = NULL;
2228 2229
	}

2230 2231
	__i915_gem_object_reset_page_iter(obj);

2232
	obj->ops->put_pages(obj, pages);
2233 2234
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2235 2236
}

2237
static bool i915_sg_trim(struct sg_table *orig_st)
2238 2239 2240 2241 2242 2243
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2244
		return false;
2245

2246
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2247
		return false;
2248 2249 2250 2251 2252 2253 2254

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2255
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2256 2257 2258 2259

	sg_free_table(orig_st);

	*orig_st = new_st;
2260
	return true;
2261 2262
}

2263
static struct sg_table *
C
Chris Wilson 已提交
2264
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2265
{
2266
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2267 2268
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2269
	struct address_space *mapping;
2270 2271
	struct sg_table *st;
	struct scatterlist *sg;
2272
	struct sgt_iter sgt_iter;
2273
	struct page *page;
2274
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2275
	unsigned int max_segment;
I
Imre Deak 已提交
2276
	int ret;
C
Chris Wilson 已提交
2277
	gfp_t gfp;
2278

C
Chris Wilson 已提交
2279 2280 2281 2282
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2283 2284
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2285

2286
	max_segment = swiotlb_max_segment();
2287
	if (!max_segment)
2288
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2289

2290 2291
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2292
		return ERR_PTR(-ENOMEM);
2293

2294
rebuild_st:
2295 2296
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2297
		return ERR_PTR(-ENOMEM);
2298
	}
2299

2300 2301 2302 2303 2304
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2305
	mapping = obj->base.filp->f_mapping;
2306
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2307
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2308 2309 2310
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2311 2312
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2313 2314 2315 2316 2317
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2318 2319 2320 2321 2322 2323 2324
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2325
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2326 2327
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
2328
				goto err_sg;
I
Imre Deak 已提交
2329
			}
C
Chris Wilson 已提交
2330
		}
2331 2332 2333
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2334 2335 2336 2337 2338 2339 2340 2341
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2342 2343 2344

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2345
	}
2346
	if (sg) /* loop terminated early; short sg table */
2347
		sg_mark_end(sg);
2348

2349 2350 2351
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2352
	ret = i915_gem_gtt_prepare_pages(obj, st);
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2372

2373
	if (i915_gem_object_needs_bit17_swizzle(obj))
2374
		i915_gem_object_do_bit_17_swizzle(obj, st);
2375

2376
	return st;
2377

2378
err_sg:
2379
	sg_mark_end(sg);
2380
err_pages:
2381 2382
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2383 2384
	sg_free_table(st);
	kfree(st);
2385 2386 2387 2388 2389 2390 2391 2392 2393

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2394 2395 2396
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2397 2398 2399 2400 2401 2402
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2403
	lockdep_assert_held(&obj->mm.lock);
2404 2405 2406 2407 2408

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2409 2410 2411 2412 2413 2414 2415

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2416 2417 2418 2419 2420 2421
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2422 2423
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2435 2436
}

2437
/* Ensure that the associated pages are gathered from the backing storage
2438
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2439
 * multiple times before they are released by a single call to
2440
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2441 2442 2443
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2444
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2445
{
2446
	int err;
2447

2448 2449 2450
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2451

2452 2453 2454 2455
	if (unlikely(!obj->mm.pages)) {
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2456

2457 2458 2459
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2460

2461 2462
unlock:
	mutex_unlock(&obj->mm.lock);
2463
	return err;
2464 2465
}

2466
/* The 'mapping' part of i915_gem_object_pin_map() below */
2467 2468
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2469 2470
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2471
	struct sg_table *sgt = obj->mm.pages;
2472 2473
	struct sgt_iter sgt_iter;
	struct page *page;
2474 2475
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2476
	unsigned long i = 0;
2477
	pgprot_t pgprot;
2478 2479 2480
	void *addr;

	/* A single page can always be kmapped */
2481
	if (n_pages == 1 && type == I915_MAP_WB)
2482 2483
		return kmap(sg_page(sgt->sgl));

2484 2485 2486 2487 2488 2489
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2490

2491 2492
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2493 2494 2495 2496

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2497 2498 2499 2500 2501 2502 2503 2504 2505
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2506

2507 2508
	if (pages != stack_pages)
		drm_free_large(pages);
2509 2510 2511 2512 2513

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2514 2515
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2516
{
2517 2518 2519
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2520 2521
	int ret;

2522
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2523

2524
	ret = mutex_lock_interruptible(&obj->mm.lock);
2525 2526 2527
	if (ret)
		return ERR_PTR(ret);

2528 2529
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2530 2531 2532 2533
		if (unlikely(!obj->mm.pages)) {
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2534

2535 2536 2537
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2538 2539 2540
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2541

C
Chris Wilson 已提交
2542
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2543 2544 2545
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2546
			goto err_unpin;
2547
		}
2548 2549 2550 2551 2552 2553

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2554
		ptr = obj->mm.mapping = NULL;
2555 2556
	}

2557 2558 2559 2560
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2561
			goto err_unpin;
2562 2563
		}

C
Chris Wilson 已提交
2564
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2565 2566
	}

2567 2568
out_unlock:
	mutex_unlock(&obj->mm.lock);
2569 2570
	return ptr;

2571 2572 2573 2574 2575
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2576 2577
}

2578
static bool ban_context(const struct i915_gem_context *ctx)
2579
{
2580 2581
	return (i915_gem_context_is_bannable(ctx) &&
		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2582 2583
}

2584
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2585
{
2586
	ctx->guilty_count++;
2587 2588 2589
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
	if (ban_context(ctx))
		i915_gem_context_set_banned(ctx);
2590 2591

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2592
			 ctx->name, ctx->ban_score,
2593
			 yesno(i915_gem_context_is_banned(ctx)));
2594

2595
	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2596 2597
		return;

2598 2599 2600
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2601 2602 2603 2604
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2605
	ctx->active_count++;
2606 2607
}

2608
struct drm_i915_gem_request *
2609
i915_gem_find_active_request(struct intel_engine_cs *engine)
2610
{
2611 2612
	struct drm_i915_gem_request *request, *active = NULL;
	unsigned long flags;
2613

2614 2615 2616 2617 2618 2619 2620 2621
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2622
	spin_lock_irqsave(&engine->timeline->lock, flags);
2623
	list_for_each_entry(request, &engine->timeline->requests, link) {
2624 2625
		if (__i915_gem_request_completed(request,
						 request->global_seqno))
2626
			continue;
2627

2628
		GEM_BUG_ON(request->engine != engine);
2629 2630
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2631 2632 2633

		active = request;
		break;
2634
	}
2635
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2636

2637
	return active;
2638 2639
}

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2654
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2655 2656 2657
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
2658
	int err = 0;
2659 2660

	/* Ensure irq handler finishes, and not run again. */
2661 2662 2663
	for_each_engine(engine, dev_priv, id) {
		struct drm_i915_gem_request *request;

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
		/* Prevent the signaler thread from updating the request
		 * state (by calling dma_fence_signal) as we are processing
		 * the reset. The write from the GPU of the seqno is
		 * asynchronous and the signaler thread may see a different
		 * value to us and declare the request complete, even though
		 * the reset routine have picked that request as the active
		 * (incomplete) request. This conflict is not handled
		 * gracefully!
		 */
		kthread_park(engine->breadcrumbs.signaler);

2675 2676 2677 2678 2679 2680 2681 2682
		/* Prevent request submission to the hardware until we have
		 * completed the reset in i915_gem_reset_finish(). If a request
		 * is completed by one engine, it may then queue a request
		 * to a second via its engine->irq_tasklet *just* as we are
		 * calling engine->init_hw() and also writing the ELSP.
		 * Turning off the engine->irq_tasklet until the reset is over
		 * prevents the race.
		 */
2683
		tasklet_kill(&engine->irq_tasklet);
2684
		tasklet_disable(&engine->irq_tasklet);
2685

2686 2687 2688
		if (engine->irq_seqno_barrier)
			engine->irq_seqno_barrier(engine);

2689 2690 2691 2692 2693 2694 2695
		if (engine_stalled(engine)) {
			request = i915_gem_find_active_request(engine);
			if (request && request->fence.error == -EIO)
				err = -EIO; /* Previous reset failed! */
		}
	}

2696
	i915_gem_revoke_fences(dev_priv);
2697 2698

	return err;
2699 2700
}

2701
static void skip_request(struct drm_i915_gem_request *request)
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2716 2717

	dma_fence_set_error(&request->fence, -EIO);
2718 2719
}

2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2743 2744 2745 2746 2747 2748
/* Returns true if the request was guilty of hang */
static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
{
	/* Read once and return the resolution */
	const bool guilty = engine_stalled(request->engine);

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
	if (guilty) {
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
	} else {
		i915_gem_context_mark_innocent(request->ctx);
		dma_fence_set_error(&request->fence, -EAGAIN);
	}

	return guilty;
}

2781
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2782 2783 2784
{
	struct drm_i915_gem_request *request;

2785
	request = i915_gem_find_active_request(engine);
2786 2787 2788
	if (request && i915_gem_reset_request(request)) {
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
2789

2790 2791 2792 2793
		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
	}
2794 2795 2796

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2797
}
2798

2799
void i915_gem_reset(struct drm_i915_private *dev_priv)
2800
{
2801
	struct intel_engine_cs *engine;
2802
	enum intel_engine_id id;
2803

2804 2805
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2806 2807
	i915_gem_retire_requests(dev_priv);

2808 2809 2810
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

2811
		i915_gem_reset_engine(engine);
2812 2813 2814 2815
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
	}
2816

2817
	i915_gem_restore_fences(dev_priv);
2818 2819 2820 2821 2822 2823 2824

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2825 2826
}

2827 2828
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
2829 2830 2831
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

2832
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2833

2834
	for_each_engine(engine, dev_priv, id) {
2835
		tasklet_enable(&engine->irq_tasklet);
2836 2837
		kthread_unpark(engine->breadcrumbs.signaler);
	}
2838 2839
}

2840 2841
static void nop_submit_request(struct drm_i915_gem_request *request)
{
2842
	dma_fence_set_error(&request->fence, -EIO);
2843 2844
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2845 2846
}

2847
static void engine_set_wedged(struct intel_engine_cs *engine)
2848
{
2849 2850 2851
	struct drm_i915_gem_request *request;
	unsigned long flags;

2852 2853 2854 2855 2856 2857
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
2858
	engine->submit_request = nop_submit_request;
2859

2860 2861 2862 2863 2864 2865
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
		dma_fence_set_error(&request->fence, -EIO);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

2866 2867 2868 2869
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2870
	intel_engine_init_global_seqno(engine,
2871
				       intel_engine_last_submit(engine));
2872

2873 2874 2875 2876 2877 2878
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2879
	if (i915.enable_execlists) {
2880 2881 2882 2883
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline->lock, flags);

2884 2885 2886
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2887 2888
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
2889 2890

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2891
	}
2892 2893
}

2894
static int __i915_gem_set_wedged_BKL(void *data)
2895
{
2896
	struct drm_i915_private *i915 = data;
2897
	struct intel_engine_cs *engine;
2898
	enum intel_engine_id id;
2899

2900
	for_each_engine(engine, i915, id)
2901
		engine_set_wedged(engine);
2902 2903 2904 2905 2906 2907

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
2908 2909
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2910

2911
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2912

2913
	i915_gem_context_lost(dev_priv);
2914
	i915_gem_retire_requests(dev_priv);
2915 2916

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2917 2918
}

2919
static void
2920 2921
i915_gem_retire_work_handler(struct work_struct *work)
{
2922
	struct drm_i915_private *dev_priv =
2923
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2924
	struct drm_device *dev = &dev_priv->drm;
2925

2926
	/* Come back later if the device is busy... */
2927
	if (mutex_trylock(&dev->struct_mutex)) {
2928
		i915_gem_retire_requests(dev_priv);
2929
		mutex_unlock(&dev->struct_mutex);
2930
	}
2931 2932 2933 2934 2935

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2936 2937
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2938 2939
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2940
				   round_jiffies_up_relative(HZ));
2941
	}
2942
}
2943

2944 2945 2946 2947
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2948
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2949
	struct drm_device *dev = &dev_priv->drm;
2950
	struct intel_engine_cs *engine;
2951
	enum intel_engine_id id;
2952 2953 2954 2955 2956
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

2957 2958 2959 2960 2961 2962 2963
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
		 intel_execlists_idle(dev_priv), 10);

2964
	if (READ_ONCE(dev_priv->gt.active_requests))
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2978 2979 2980 2981 2982 2983 2984
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

2985
	if (dev_priv->gt.active_requests)
2986
		goto out_unlock;
2987

2988 2989 2990
	if (wait_for(intel_execlists_idle(dev_priv), 10))
		DRM_ERROR("Timeout waiting for engines to idle\n");

2991 2992
	for_each_engine(engine, dev_priv, id) {
		intel_engine_disarm_breadcrumbs(engine);
2993
		i915_gem_batch_pool_fini(&engine->batch_pool);
2994
	}
2995

2996 2997 2998
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2999

3000 3001 3002 3003 3004
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3005

3006 3007 3008 3009
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3010
	}
3011 3012
}

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
3023 3024 3025 3026 3027 3028

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
3029 3030 3031
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3043 3044
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3045 3046 3047
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3072 3073
	ktime_t start;
	long ret;
3074

3075 3076 3077
	if (args->flags != 0)
		return -EINVAL;

3078
	obj = i915_gem_object_lookup(file, args->bo_handle);
3079
	if (!obj)
3080 3081
		return -ENOENT;

3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3103 3104
	}

C
Chris Wilson 已提交
3105
	i915_gem_object_put(obj);
3106
	return ret;
3107 3108
}

3109
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3110
{
3111
	int ret, i;
3112

3113 3114 3115 3116 3117
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3118

3119 3120 3121 3122 3123 3124 3125
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3138 3139 3140
		if (ret)
			return ret;
	}
3141

3142
	return 0;
3143 3144
}

3145 3146
/** Flushes the GTT write domain for the object if it's dirty. */
static void
3147
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3148
{
3149
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3150

3151
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3152 3153
		return;

3154
	/* No actual flushing is required for the GTT write domain.  Writes
3155
	 * to it "immediately" go to main memory as far as we know, so there's
3156
	 * no chipset flush.  It also doesn't land in render cache.
3157 3158 3159 3160
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3161 3162 3163 3164 3165 3166 3167
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3168
	 */
3169
	wmb();
3170
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3171
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3172

3173
	intel_fb_obj_flush(obj, write_origin(obj, I915_GEM_DOMAIN_GTT));
3174

3175
	obj->base.write_domain = 0;
3176 3177 3178 3179
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3180
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3181
{
3182
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3183 3184
		return;

3185
	i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3186
	obj->base.write_domain = 0;
3187 3188
}

3189 3190 3191 3192 3193
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU && !obj->cache_dirty)
		return;

3194
	i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
	obj->base.write_domain = 0;
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
	if (!READ_ONCE(obj->pin_display))
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3208 3209
/**
 * Moves a single object to the GTT read, and possibly write domain.
3210 3211
 * @obj: object to act on
 * @write: ask for write access or read only
3212 3213 3214 3215
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3216
int
3217
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3218
{
3219
	int ret;
3220

3221
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3222

3223 3224 3225 3226 3227 3228
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3229 3230 3231
	if (ret)
		return ret;

3232 3233 3234
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3235 3236 3237 3238 3239 3240 3241 3242
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3243
	ret = i915_gem_object_pin_pages(obj);
3244 3245 3246
	if (ret)
		return ret;

3247
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3248

3249 3250 3251 3252 3253 3254 3255
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3256 3257 3258
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3259
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3260
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3261
	if (write) {
3262 3263
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3264
		obj->mm.dirty = true;
3265 3266
	}

C
Chris Wilson 已提交
3267
	i915_gem_object_unpin_pages(obj);
3268 3269 3270
	return 0;
}

3271 3272
/**
 * Changes the cache-level of an object across all VMA.
3273 3274
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3286 3287 3288
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3289
	struct i915_vma *vma;
3290
	int ret;
3291

3292 3293
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3294
	if (obj->cache_level == cache_level)
3295
		return 0;
3296

3297 3298 3299 3300 3301
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3302 3303
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3304 3305 3306
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3307
		if (i915_vma_is_pinned(vma)) {
3308 3309 3310 3311
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3324 3325
	}

3326 3327 3328 3329 3330 3331 3332
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3333
	if (obj->bind_count) {
3334 3335 3336 3337
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3338 3339 3340 3341 3342 3343
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3344 3345 3346
		if (ret)
			return ret;

3347 3348
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3365 3366 3367 3368 3369
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3370 3371 3372 3373 3374 3375 3376 3377
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3378 3379
		}

3380
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3381 3382 3383 3384 3385 3386 3387
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3388 3389
	}

3390
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3391
	    i915_gem_object_is_coherent(obj))
3392 3393
		obj->cache_dirty = true;

3394
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3395 3396 3397
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3398 3399 3400
	return 0;
}

B
Ben Widawsky 已提交
3401 3402
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3403
{
B
Ben Widawsky 已提交
3404
	struct drm_i915_gem_caching *args = data;
3405
	struct drm_i915_gem_object *obj;
3406
	int err = 0;
3407

3408 3409 3410 3411 3412 3413
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3414

3415 3416 3417 3418 3419 3420
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3421 3422 3423 3424
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3425 3426 3427 3428
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3429 3430 3431
out:
	rcu_read_unlock();
	return err;
3432 3433
}

B
Ben Widawsky 已提交
3434 3435
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3436
{
3437
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3438
	struct drm_i915_gem_caching *args = data;
3439 3440
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3441
	int ret = 0;
3442

B
Ben Widawsky 已提交
3443 3444
	switch (args->caching) {
	case I915_CACHING_NONE:
3445 3446
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3447
	case I915_CACHING_CACHED:
3448 3449 3450 3451 3452 3453
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3454
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3455 3456
			return -ENODEV;

3457 3458
		level = I915_CACHE_LLC;
		break;
3459
	case I915_CACHING_DISPLAY:
3460
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3461
		break;
3462 3463 3464 3465
	default:
		return -EINVAL;
	}

3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3477
	if (ret)
3478
		goto out;
B
Ben Widawsky 已提交
3479

3480 3481 3482
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3483 3484 3485

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3486 3487 3488

out:
	i915_gem_object_put(obj);
3489 3490 3491
	return ret;
}

3492
/*
3493 3494 3495
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3496
 */
C
Chris Wilson 已提交
3497
struct i915_vma *
3498 3499
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3500
				     const struct i915_ggtt_view *view)
3501
{
C
Chris Wilson 已提交
3502
	struct i915_vma *vma;
3503 3504
	int ret;

3505 3506
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3507 3508 3509
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3510
	obj->pin_display++;
3511

3512 3513 3514 3515 3516 3517 3518 3519 3520
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3521
	ret = i915_gem_object_set_cache_level(obj,
3522 3523
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3524 3525
	if (ret) {
		vma = ERR_PTR(ret);
3526
		goto err_unpin_display;
C
Chris Wilson 已提交
3527
	}
3528

3529 3530
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3531 3532 3533 3534
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3535
	 */
3536
	vma = ERR_PTR(-ENOSPC);
3537
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3538 3539
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3556
	if (IS_ERR(vma))
3557
		goto err_unpin_display;
3558

3559 3560
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3561
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3562
	__i915_gem_object_flush_for_display(obj);
3563
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3564

3565 3566 3567
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3568
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3569

C
Chris Wilson 已提交
3570
	return vma;
3571 3572

err_unpin_display:
3573
	obj->pin_display--;
C
Chris Wilson 已提交
3574
	return vma;
3575 3576 3577
}

void
C
Chris Wilson 已提交
3578
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3579
{
3580
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3581

C
Chris Wilson 已提交
3582
	if (WARN_ON(vma->obj->pin_display == 0))
3583 3584
		return;

3585
	if (--vma->obj->pin_display == 0)
3586
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3587

3588
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3589
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3590

C
Chris Wilson 已提交
3591
	i915_vma_unpin(vma);
3592 3593
}

3594 3595
/**
 * Moves a single object to the CPU read, and possibly write domain.
3596 3597
 * @obj: object to act on
 * @write: requesting write or read-only access
3598 3599 3600 3601
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3602
int
3603
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3604 3605 3606
{
	int ret;

3607
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3608

3609 3610 3611 3612 3613 3614
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3615 3616 3617
	if (ret)
		return ret;

3618 3619 3620
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3621
	i915_gem_object_flush_gtt_write_domain(obj);
3622

3623
	/* Flush the CPU cache if it's still invalid. */
3624
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3625
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3626
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3627 3628 3629 3630 3631
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3632
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3633 3634 3635 3636 3637

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3638 3639
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3640
	}
3641 3642 3643 3644

	return 0;
}

3645 3646 3647
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3648 3649 3650 3651
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3652 3653 3654
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3655
static int
3656
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3657
{
3658
	struct drm_i915_private *dev_priv = to_i915(dev);
3659
	struct drm_i915_file_private *file_priv = file->driver_priv;
3660
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3661
	struct drm_i915_gem_request *request, *target = NULL;
3662
	long ret;
3663

3664 3665 3666
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3667

3668
	spin_lock(&file_priv->mm.lock);
3669
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3670 3671
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3672

3673 3674 3675 3676 3677 3678 3679
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3680
		target = request;
3681
	}
3682
	if (target)
3683
		i915_gem_request_get(target);
3684
	spin_unlock(&file_priv->mm.lock);
3685

3686
	if (target == NULL)
3687
		return 0;
3688

3689 3690 3691
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3692
	i915_gem_request_put(target);
3693

3694
	return ret < 0 ? ret : 0;
3695 3696
}

C
Chris Wilson 已提交
3697
struct i915_vma *
3698 3699
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3700
			 u64 size,
3701 3702
			 u64 alignment,
			 u64 flags)
3703
{
3704 3705
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3706 3707
	struct i915_vma *vma;
	int ret;
3708

3709 3710
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3711
	vma = i915_vma_instance(obj, vm, view);
3712
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3713
		return vma;
3714 3715 3716 3717

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3718
			return ERR_PTR(-ENOSPC);
3719

3720 3721 3722 3723 3724 3725 3726 3727
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
3728
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
3747
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3748 3749 3750
				return ERR_PTR(-ENOSPC);
		}

3751 3752
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3753 3754 3755
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3756
		     !!(flags & PIN_MAPPABLE),
3757
		     i915_vma_is_map_and_fenceable(vma));
3758 3759
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3760
			return ERR_PTR(ret);
3761 3762
	}

C
Chris Wilson 已提交
3763 3764 3765
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3766

C
Chris Wilson 已提交
3767
	return vma;
3768 3769
}

3770
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3785 3786 3787 3788 3789 3790 3791 3792 3793
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3794 3795
}

3796
static __always_inline unsigned int
3797
__busy_set_if_active(const struct dma_fence *fence,
3798 3799
		     unsigned int (*flag)(unsigned int id))
{
3800
	struct drm_i915_gem_request *rq;
3801

3802 3803 3804 3805
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3806
	 *
3807
	 * Note we only report on the status of native fences.
3808
	 */
3809 3810 3811 3812 3813 3814 3815 3816 3817
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
3818 3819
}

3820
static __always_inline unsigned int
3821
busy_check_reader(const struct dma_fence *fence)
3822
{
3823
	return __busy_set_if_active(fence, __busy_read_flag);
3824 3825
}

3826
static __always_inline unsigned int
3827
busy_check_writer(const struct dma_fence *fence)
3828
{
3829 3830 3831 3832
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3833 3834
}

3835 3836
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3837
		    struct drm_file *file)
3838 3839
{
	struct drm_i915_gem_busy *args = data;
3840
	struct drm_i915_gem_object *obj;
3841 3842
	struct reservation_object_list *list;
	unsigned int seq;
3843
	int err;
3844

3845
	err = -ENOENT;
3846 3847
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3848
	if (!obj)
3849
		goto out;
3850

3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3869

3870 3871
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3872

3873 3874 3875 3876
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3877

3878 3879 3880 3881 3882 3883
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3884
	}
3885

3886 3887 3888 3889
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3890 3891 3892
out:
	rcu_read_unlock();
	return err;
3893 3894 3895 3896 3897 3898
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3899
	return i915_gem_ring_throttle(dev, file_priv);
3900 3901
}

3902 3903 3904 3905
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3906
	struct drm_i915_private *dev_priv = to_i915(dev);
3907
	struct drm_i915_gem_madvise *args = data;
3908
	struct drm_i915_gem_object *obj;
3909
	int err;
3910 3911 3912 3913 3914 3915 3916 3917 3918

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3919
	obj = i915_gem_object_lookup(file_priv, args->handle);
3920 3921 3922 3923 3924 3925
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
3926

C
Chris Wilson 已提交
3927
	if (obj->mm.pages &&
3928
	    i915_gem_object_is_tiled(obj) &&
3929
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3930 3931
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
3932
			__i915_gem_object_unpin_pages(obj);
3933 3934 3935
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
3936
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
3937
			__i915_gem_object_pin_pages(obj);
3938 3939
			obj->mm.quirked = true;
		}
3940 3941
	}

C
Chris Wilson 已提交
3942 3943
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
3944

C
Chris Wilson 已提交
3945
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
3946
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3947 3948
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
3949
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3950
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
3951

3952
out:
3953
	i915_gem_object_put(obj);
3954
	return err;
3955 3956
}

3957 3958 3959 3960 3961 3962 3963
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

3964
	intel_fb_obj_flush(obj, ORIGIN_CS);
3965 3966
}

3967 3968
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3969
{
3970 3971
	mutex_init(&obj->mm.lock);

3972
	INIT_LIST_HEAD(&obj->global_link);
3973
	INIT_LIST_HEAD(&obj->userfault_link);
3974
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3975
	INIT_LIST_HEAD(&obj->vma_list);
3976
	INIT_LIST_HEAD(&obj->batch_pool_link);
3977

3978 3979
	obj->ops = ops;

3980 3981 3982
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

3983
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3984
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
3985 3986 3987 3988

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
3989

3990
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3991 3992
}

3993
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3994 3995
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
3996 3997 3998 3999
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4000
struct drm_i915_gem_object *
4001
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4002
{
4003
	struct drm_i915_gem_object *obj;
4004
	struct address_space *mapping;
D
Daniel Vetter 已提交
4005
	gfp_t mask;
4006
	int ret;
4007

4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4019
	obj = i915_gem_object_alloc(dev_priv);
4020
	if (obj == NULL)
4021
		return ERR_PTR(-ENOMEM);
4022

4023
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4024 4025
	if (ret)
		goto fail;
4026

4027
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4028
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4029 4030 4031 4032 4033
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4034
	mapping = obj->base.filp->f_mapping;
4035
	mapping_set_gfp_mask(mapping, mask);
4036

4037
	i915_gem_object_init(obj, &i915_gem_object_ops);
4038

4039 4040
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4041

4042
	if (HAS_LLC(dev_priv)) {
4043
		/* On some devices, we can have the GPU use the LLC (the CPU
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4059 4060
	trace_i915_gem_object_create(obj);

4061
	return obj;
4062 4063 4064 4065

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4066 4067
}

4068 4069 4070 4071 4072 4073 4074 4075
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4076
	if (obj->mm.madv != I915_MADV_WILLNEED)
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4092 4093
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4094
{
4095
	struct drm_i915_gem_object *obj, *on;
4096

4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4112 4113
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4114

4115
		list_del(&obj->global_link);
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4126

4127 4128
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4129
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4130 4131 4132 4133 4134
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4135
		reservation_object_fini(&obj->__builtin_resv);
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4158

4159 4160 4161 4162 4163 4164 4165
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4166

4167 4168 4169
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4170

4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4185

4186 4187 4188
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4189

4190 4191 4192
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4193
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4194
		obj->mm.madv = I915_MADV_DONTNEED;
4195

4196 4197 4198 4199 4200 4201
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4202 4203
}

4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4215 4216 4217 4218 4219 4220
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4221 4222
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4223 4224
}

4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
void i915_gem_sanitize(struct drm_i915_private *i915)
{
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
	 * of the reset, so we only reset recent machines with logical
	 * context support (that must be reset to remove any stray contexts).
	 */
	if (HAS_HW_CONTEXTS(i915)) {
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4242
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4243
{
4244
	struct drm_device *dev = &dev_priv->drm;
4245
	int ret;
4246

4247
	intel_runtime_pm_get(dev_priv);
4248 4249
	intel_suspend_gt_powersave(dev_priv);

4250
	mutex_lock(&dev->struct_mutex);
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
4262
		goto err_unlock;
4263

4264 4265 4266
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4267
	if (ret)
4268
		goto err_unlock;
4269

4270
	i915_gem_retire_requests(dev_priv);
4271
	GEM_BUG_ON(dev_priv->gt.active_requests);
4272

4273
	assert_kernel_context_is_current(dev_priv);
4274
	i915_gem_context_lost(dev_priv);
4275 4276
	mutex_unlock(&dev->struct_mutex);

4277
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4278
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4279 4280 4281 4282 4283 4284 4285 4286

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

	i915_gem_drain_freed_objects(dev_priv);
4287

4288 4289 4290
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4291
	WARN_ON(dev_priv->gt.awake);
4292
	WARN_ON(!intel_execlists_idle(dev_priv));
4293

4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4313
	i915_gem_sanitize(dev_priv);
4314
	goto out_rpm_put;
4315

4316
err_unlock:
4317
	mutex_unlock(&dev->struct_mutex);
4318 4319
out_rpm_put:
	intel_runtime_pm_put(dev_priv);
4320
	return ret;
4321 4322
}

4323
void i915_gem_resume(struct drm_i915_private *dev_priv)
4324
{
4325
	struct drm_device *dev = &dev_priv->drm;
4326

4327 4328
	WARN_ON(dev_priv->gt.awake);

4329
	mutex_lock(&dev->struct_mutex);
4330
	i915_gem_restore_gtt_mappings(dev_priv);
4331 4332 4333 4334 4335

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4336
	dev_priv->gt.resume(dev_priv);
4337 4338 4339 4340

	mutex_unlock(&dev->struct_mutex);
}

4341
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4342
{
4343
	if (INTEL_GEN(dev_priv) < 5 ||
4344 4345 4346 4347 4348 4349
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4350
	if (IS_GEN5(dev_priv))
4351 4352
		return;

4353
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4354
	if (IS_GEN6(dev_priv))
4355
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4356
	else if (IS_GEN7(dev_priv))
4357
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4358
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4359
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4360 4361
	else
		BUG();
4362
}
D
Daniel Vetter 已提交
4363

4364
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4365 4366 4367 4368 4369 4370 4371
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4372
static void init_unused_rings(struct drm_i915_private *dev_priv)
4373
{
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4386 4387 4388
	}
}

4389
static int __i915_gem_restart_engines(void *data)
4390
{
4391
	struct drm_i915_private *i915 = data;
4392
	struct intel_engine_cs *engine;
4393
	enum intel_engine_id id;
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4407
	int ret;
4408

4409 4410
	dev_priv->gt.last_init_time = ktime_get();

4411 4412 4413
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4414
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4415
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4416

4417
	if (IS_HASWELL(dev_priv))
4418
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4419
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4420

4421
	if (HAS_PCH_NOP(dev_priv)) {
4422
		if (IS_IVYBRIDGE(dev_priv)) {
4423 4424 4425
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4426
		} else if (INTEL_GEN(dev_priv) >= 7) {
4427 4428 4429 4430
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4431 4432
	}

4433
	i915_gem_init_swizzling(dev_priv);
4434

4435 4436 4437 4438 4439 4440
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4441
	init_unused_rings(dev_priv);
4442

4443
	BUG_ON(!dev_priv->kernel_context);
4444

4445
	ret = i915_ppgtt_init_hw(dev_priv);
4446 4447 4448 4449 4450 4451
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4452 4453 4454
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4455

4456
	intel_mocs_init_l3cc_table(dev_priv);
4457

4458
	/* We can't enable contexts until all firmware is loaded */
4459
	ret = intel_guc_setup(dev_priv);
4460 4461
	if (ret)
		goto out;
4462

4463 4464
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4465
	return ret;
4466 4467
}

4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4489
int i915_gem_init(struct drm_i915_private *dev_priv)
4490 4491 4492
{
	int ret;

4493
	mutex_lock(&dev_priv->drm.struct_mutex);
4494

4495 4496
	i915_gem_clflush_init(dev_priv);

4497
	if (!i915.enable_execlists) {
4498
		dev_priv->gt.resume = intel_legacy_submission_resume;
4499
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4500
	} else {
4501
		dev_priv->gt.resume = intel_lr_context_resume;
4502
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4503 4504
	}

4505 4506 4507 4508 4509 4510 4511 4512
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4513
	i915_gem_init_userptr(dev_priv);
4514 4515 4516 4517

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4518

4519
	ret = i915_gem_context_init(dev_priv);
4520 4521
	if (ret)
		goto out_unlock;
4522

4523
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4524
	if (ret)
4525
		goto out_unlock;
4526

4527
	ret = i915_gem_init_hw(dev_priv);
4528
	if (ret == -EIO) {
4529
		/* Allow engine initialisation to fail by marking the GPU as
4530 4531 4532 4533
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4534
		i915_gem_set_wedged(dev_priv);
4535
		ret = 0;
4536
	}
4537 4538

out_unlock:
4539
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4540
	mutex_unlock(&dev_priv->drm.struct_mutex);
4541

4542
	return ret;
4543 4544
}

4545 4546 4547 4548 4549
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4550
void
4551
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4552
{
4553
	struct intel_engine_cs *engine;
4554
	enum intel_engine_id id;
4555

4556
	for_each_engine(engine, dev_priv, id)
4557
		dev_priv->gt.cleanup_engine(engine);
4558 4559
}

4560 4561 4562
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4563
	int i;
4564 4565 4566 4567

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4568 4569 4570
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4571 4572 4573 4574
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4575
	if (intel_vgpu_active(dev_priv))
4576 4577 4578 4579
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4580 4581 4582 4583 4584 4585 4586
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4587
	i915_gem_restore_fences(dev_priv);
4588

4589
	i915_gem_detect_bit_6_swizzle(dev_priv);
4590 4591
}

4592
int
4593
i915_gem_load_init(struct drm_i915_private *dev_priv)
4594
{
4595
	int err = -ENOMEM;
4596

4597 4598
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4599 4600
		goto err_out;

4601 4602
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4603 4604
		goto err_objects;

4605 4606 4607 4608 4609
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4610 4611
		goto err_vmas;

4612 4613 4614 4615 4616 4617
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4618 4619
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4620
	err = i915_gem_timeline_init__global(dev_priv);
4621 4622
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4623
		goto err_dependencies;
4624

4625
	INIT_LIST_HEAD(&dev_priv->context_list);
4626 4627
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4628 4629
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4630
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4631
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4632
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4633
			  i915_gem_retire_work_handler);
4634
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4635
			  i915_gem_idle_work_handler);
4636
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4637
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4638

4639
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4640

4641 4642
	dev_priv->mm.interruptible = true;

4643 4644
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4645
	spin_lock_init(&dev_priv->fb_tracking.lock);
4646 4647 4648

	return 0;

4649 4650
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4651 4652 4653 4654 4655 4656 4657 4658
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4659
}
4660

4661
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4662
{
4663
	i915_gem_drain_freed_objects(dev_priv);
4664
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4665
	WARN_ON(dev_priv->mm.object_count);
4666

4667 4668 4669 4670 4671
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4672
	kmem_cache_destroy(dev_priv->dependencies);
4673 4674 4675
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4676 4677 4678

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4679 4680
}

4681 4682 4683 4684 4685 4686 4687 4688 4689
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;
}

4690 4691 4692
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4693 4694 4695 4696 4697
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4708 4709 4710
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4711 4712
	 */

4713 4714
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4715

4716
	for (p = phases; *p; p++) {
4717
		list_for_each_entry(obj, *p, global_link) {
4718 4719 4720
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4721
	}
4722
	mutex_unlock(&dev_priv->drm.struct_mutex);
4723 4724 4725 4726

	return 0;
}

4727
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4728
{
4729
	struct drm_i915_file_private *file_priv = file->driver_priv;
4730
	struct drm_i915_gem_request *request;
4731 4732 4733 4734 4735

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4736
	spin_lock(&file_priv->mm.lock);
4737
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4738
		request->file_priv = NULL;
4739
	spin_unlock(&file_priv->mm.lock);
4740

4741
	if (!list_empty(&file_priv->rps.link)) {
4742
		spin_lock(&to_i915(dev)->rps.client_lock);
4743
		list_del(&file_priv->rps.link);
4744
		spin_unlock(&to_i915(dev)->rps.client_lock);
4745
	}
4746 4747 4748 4749 4750
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4751
	int ret;
4752

4753
	DRM_DEBUG("\n");
4754 4755 4756 4757 4758 4759

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4760
	file_priv->dev_priv = to_i915(dev);
4761
	file_priv->file = file;
4762
	INIT_LIST_HEAD(&file_priv->rps.link);
4763 4764 4765 4766

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4767
	file_priv->bsd_engine = -1;
4768

4769 4770 4771
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4772

4773
	return ret;
4774 4775
}

4776 4777
/**
 * i915_gem_track_fb - update frontbuffer tracking
4778 4779 4780
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4781 4782 4783 4784
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4785 4786 4787 4788
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4789 4790 4791 4792 4793 4794 4795 4796 4797
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4798
	if (old) {
4799 4800
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4801 4802 4803
	}

	if (new) {
4804 4805
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4806 4807 4808
	}
}

4809 4810
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
4811
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4812 4813 4814 4815 4816 4817 4818
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4819
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4820
	if (IS_ERR(obj))
4821 4822 4823 4824 4825 4826
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4827
	ret = i915_gem_object_pin_pages(obj);
4828 4829 4830
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4831
	sg = obj->mm.pages;
4832
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
4833
	obj->mm.dirty = true; /* Backing store is now out of date */
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4845
	i915_gem_object_put(obj);
4846 4847
	return ERR_PTR(ret);
}
4848 4849 4850 4851 4852 4853

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
4854
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4855 4856 4857 4858 4859
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
4860
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
4985
	if (!obj->mm.dirty)
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5001 5002 5003

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5004
#include "selftests/mock_gem_device.c"
5005
#include "selftests/huge_gem_object.c"
5006
#include "selftests/i915_gem_object.c"
5007
#include "selftests/i915_gem_coherency.c"
5008
#endif