i915_gem.c 138.5 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
46
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
47
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
48

49 50 51 52 53 54
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

55 56
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
57 58 59
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

60 61 62 63 64 65
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

66
static int
67
insert_mappable_node(struct i915_ggtt *ggtt,
68 69 70
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
71 72 73
	return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
						   size, 0, -1,
						   0, ggtt->mappable_end,
74 75 76 77 78 79 80 81 82 83
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

84 85
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86
				  u64 size)
87
{
88
	spin_lock(&dev_priv->mm.object_stat_lock);
89 90
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
91
	spin_unlock(&dev_priv->mm.object_stat_lock);
92 93 94
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95
				     u64 size)
96
{
97
	spin_lock(&dev_priv->mm.object_stat_lock);
98 99
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
100
	spin_unlock(&dev_priv->mm.object_stat_lock);
101 102
}

103
static int
104
i915_gem_wait_for_error(struct i915_gpu_error *error)
105 106 107
{
	int ret;

108 109
	might_sleep();

110
	if (!i915_reset_in_progress(error))
111 112
		return 0;

113 114 115 116 117
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
118
	ret = wait_event_interruptible_timeout(error->reset_queue,
119
					       !i915_reset_in_progress(error),
120
					       I915_RESET_TIMEOUT);
121 122 123 124
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
125
		return ret;
126 127
	} else {
		return 0;
128
	}
129 130
}

131
int i915_mutex_lock_interruptible(struct drm_device *dev)
132
{
133
	struct drm_i915_private *dev_priv = to_i915(dev);
134 135
	int ret;

136
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137 138 139 140 141 142 143 144 145
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
146

147 148
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
149
			    struct drm_file *file)
150
{
151
	struct drm_i915_private *dev_priv = to_i915(dev);
152
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
153
	struct drm_i915_gem_get_aperture *args = data;
154
	struct i915_vma *vma;
155
	size_t pinned;
156

157
	pinned = 0;
158
	mutex_lock(&dev->struct_mutex);
159
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
163
		if (i915_vma_is_pinned(vma))
164
			pinned += vma->node.size;
165
	mutex_unlock(&dev->struct_mutex);
166

167
	args->aper_size = ggtt->base.total;
168
	args->aper_available_size = args->aper_size - pinned;
169

170 171 172
	return 0;
}

173
static struct sg_table *
174
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
175
{
176
	struct address_space *mapping = obj->base.filp->f_mapping;
177 178 179 180
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
181

182
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
183
		return ERR_PTR(-EINVAL);
184 185 186 187 188 189 190

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
191
			return ERR_CAST(page);
192 193 194 195 196 197

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

198
		put_page(page);
199 200 201
		vaddr += PAGE_SIZE;
	}

202
	i915_gem_chipset_flush(to_i915(obj->base.dev));
203 204 205

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
206
		return ERR_PTR(-ENOMEM);
207 208 209

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
210
		return ERR_PTR(-ENOMEM);
211 212 213 214 215
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
216

217 218 219
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

220
	return st;
221 222 223
}

static void
224
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj)
225
{
C
Chris Wilson 已提交
226
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
227

C
Chris Wilson 已提交
228 229
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
230

231 232 233 234 235 236 237 238 239 240 241 242 243
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		i915_gem_clflush_object(obj, false);

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
	__i915_gem_object_release_shmem(obj);

C
Chris Wilson 已提交
244
	if (obj->mm.dirty) {
245
		struct address_space *mapping = obj->base.filp->f_mapping;
246
		char *vaddr = obj->phys_handle->vaddr;
247 248 249
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
250 251 252 253 254 255 256 257 258 259 260 261 262
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
263
			if (obj->mm.madv == I915_MADV_WILLNEED)
264
				mark_page_accessed(page);
265
			put_page(page);
266 267
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
268
		obj->mm.dirty = false;
269 270
	}

271 272
	sg_free_table(pages);
	kfree(pages);
273 274 275 276 277 278
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
C
Chris Wilson 已提交
279
	i915_gem_object_unpin_pages(obj);
280 281 282 283 284 285 286 287
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

288
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
289 290 291
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
292 293 294
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
295

296 297 298 299
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
300
	 */
301 302 303 304 305 306
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
307 308 309 310 311
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

312 313 314 315 316 317 318 319 320 321 322 323 324
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

325 326 327 328 329
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
330
{
331
	struct drm_i915_gem_request *rq;
332

333
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
334

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
367 368
	}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

	if (rps && rq->fence.seqno == rq->engine->last_submitted_seqno) {
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
405 406
		int ret;

407 408
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
409 410 411
		if (ret)
			return ret;

412 413 414 415 416 417
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
			if (timeout <= 0)
				break;
418

419 420 421 422 423 424 425 426
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
427 428
	}

429 430 431 432 433 434
	if (excl && timeout > 0)
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
435 436
}

437 438 439 440 441 442
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
443
 */
444 445 446 447 448
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
449
{
450
	struct reservation_object *resv;
451 452
	struct i915_gem_active *active;
	unsigned long active_mask;
453
	int idx;
454

455 456 457 458 459 460 461
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
462

463
	if (flags & I915_WAIT_ALL) {
464
		active = obj->last_read;
465
		active_mask = i915_gem_object_get_active(obj);
466 467 468 469 470
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

471
	for_each_active(active_mask, idx) {
472 473 474 475 476 477 478 479 480 481 482
		struct drm_i915_gem_request *request;

		request = i915_gem_active_get_unlocked(&active[idx]);
		if (request) {
			timeout = i915_gem_object_wait_fence(&request->fence,
							     flags, timeout,
							     rps);
			i915_gem_request_put(request);
		}
		if (timeout < 0)
			return timeout;
483 484
	}

485 486 487 488 489 490
	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv)
		timeout = i915_gem_object_wait_reservation(resv,
							   flags, timeout,
							   rps);
	return timeout < 0 ? timeout : 0;
491 492 493 494 495 496 497 498 499
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

500 501 502 503 504
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
505
	int ret;
506 507 508 509 510 511 512 513

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

C
Chris Wilson 已提交
514
	if (obj->mm.madv != I915_MADV_WILLNEED)
515 516 517 518 519
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
520 521 522 523
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

524 525 526
	__i915_gem_object_put_pages(obj);
	if (obj->mm.pages)
		return -EBUSY;
527

528 529 530 531 532 533
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
534 535
	obj->ops = &i915_gem_phys_ops;

C
Chris Wilson 已提交
536
	return i915_gem_object_pin_pages(obj);
537 538 539 540 541
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
542
		     struct drm_file *file)
543 544 545
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
546
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
547
	int ret;
548 549 550 551

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
552 553 554 555 556 557
	lockdep_assert_held(&obj->base.dev->struct_mutex);
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
558
				   to_rps_client(file));
559 560
	if (ret)
		return ret;
561

562
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
563 564 565 566 567 568 569 570 571 572
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
573 574 575 576
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
577 578
	}

579
	drm_clflush_virt_range(vaddr, args->size);
580
	i915_gem_chipset_flush(to_i915(dev));
581 582

out:
583
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
584
	return ret;
585 586
}

587 588
void *i915_gem_object_alloc(struct drm_device *dev)
{
589
	struct drm_i915_private *dev_priv = to_i915(dev);
590
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
591 592 593 594
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
595
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
596
	kmem_cache_free(dev_priv->objects, obj);
597 598
}

599 600 601 602 603
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
604
{
605
	struct drm_i915_gem_object *obj;
606 607
	int ret;
	u32 handle;
608

609
	size = roundup(size, PAGE_SIZE);
610 611
	if (size == 0)
		return -EINVAL;
612 613

	/* Allocate the new object */
614
	obj = i915_gem_object_create(dev, size);
615 616
	if (IS_ERR(obj))
		return PTR_ERR(obj);
617

618
	ret = drm_gem_handle_create(file, &obj->base, &handle);
619
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
620
	i915_gem_object_put(obj);
621 622
	if (ret)
		return ret;
623

624
	*handle_p = handle;
625 626 627
	return 0;
}

628 629 630 631 632 633
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
634
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
635 636
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
637
			       args->size, &args->handle);
638 639 640 641
}

/**
 * Creates a new mm object and returns a handle to it.
642 643 644
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
645 646 647 648 649 650
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
651

652 653
	i915_gem_flush_free_objects(to_i915(dev));

654
	return i915_gem_create(file, dev,
655
			       args->size, &args->handle);
656 657
}

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

684
static inline int
685 686
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

710 711 712 713 714 715
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
716
				    unsigned int *needs_clflush)
717 718 719
{
	int ret;

720
	lockdep_assert_held(&obj->base.dev->struct_mutex);
721

722
	*needs_clflush = 0;
723 724
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
725

726 727 728 729 730
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
731 732 733
	if (ret)
		return ret;

C
Chris Wilson 已提交
734
	ret = i915_gem_object_pin_pages(obj);
735 736 737
	if (ret)
		return ret;

738 739
	i915_gem_object_flush_gtt_write_domain(obj);

740 741 742 743 744 745
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
746 747
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
748 749 750

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
751 752 753
		if (ret)
			goto err_unpin;

754
		*needs_clflush = 0;
755 756
	}

757
	/* return with the pages pinned */
758
	return 0;
759 760 761 762

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
763 764 765 766 767 768 769
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

770 771
	lockdep_assert_held(&obj->base.dev->struct_mutex);

772 773 774 775
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

776 777 778 779 780 781
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
782 783 784
	if (ret)
		return ret;

C
Chris Wilson 已提交
785
	ret = i915_gem_object_pin_pages(obj);
786 787 788
	if (ret)
		return ret;

789 790
	i915_gem_object_flush_gtt_write_domain(obj);

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
808 809 810
		if (ret)
			goto err_unpin;

811 812 813 814 815 816 817
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
818
	obj->mm.dirty = true;
819
	/* return with the pages pinned */
820
	return 0;
821 822 823 824

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
825 826
}

827 828 829 830
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
831
	if (unlikely(swizzled)) {
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

849 850 851
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
852
shmem_pread_slow(struct page *page, int offset, int length,
853 854 855 856 857 858 859 860
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
861
		shmem_clflush_swizzled_range(vaddr + offset, length,
862
					     page_do_bit17_swizzling);
863 864

	if (page_do_bit17_swizzling)
865
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
866
	else
867
		ret = __copy_to_user(user_data, vaddr + offset, length);
868 869
	kunmap(page);

870
	return ret ? - EFAULT : 0;
871 872
}

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
949 950
{
	void *vaddr;
951
	unsigned long unwritten;
952 953

	/* We can use the cpu mem copy function because this is X86. */
954 955 956 957 958 959 960 961 962
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
963 964 965 966
	return unwritten;
}

static int
967 968
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
969
{
970 971
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
972
	struct drm_mm_node node;
973 974 975
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
976 977
	int ret;

978 979 980 981 982 983 984
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
985 986 987
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
988
		ret = i915_vma_put_fence(vma);
989 990 991 992 993
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
994
	if (IS_ERR(vma)) {
995
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
996
		if (ret)
997 998
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
999 1000 1001 1002 1003 1004
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1005
	mutex_unlock(&i915->drm.struct_mutex);
1006

1007 1008 1009
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1026
					       node.start, I915_CACHE_NONE, 0);
1027 1028 1029 1030
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1031 1032 1033

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1034 1035 1036 1037 1038 1039 1040 1041 1042
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1043
	mutex_lock(&i915->drm.struct_mutex);
1044 1045 1046 1047
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1048
				       node.start, node.size);
1049 1050
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1051
		i915_vma_unpin(vma);
1052
	}
1053 1054 1055
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1056

1057 1058 1059
	return ret;
}

1060 1061
/**
 * Reads data from the object referenced by handle.
1062 1063 1064
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1065 1066 1067 1068 1069
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1070
		     struct drm_file *file)
1071 1072
{
	struct drm_i915_gem_pread *args = data;
1073
	struct drm_i915_gem_object *obj;
1074
	int ret;
1075

1076 1077 1078 1079
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1080
		       u64_to_user_ptr(args->data_ptr),
1081 1082 1083
		       args->size))
		return -EFAULT;

1084
	obj = i915_gem_object_lookup(file, args->handle);
1085 1086
	if (!obj)
		return -ENOENT;
1087

1088
	/* Bounds check source.  */
1089 1090
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1091
		ret = -EINVAL;
1092
		goto out;
C
Chris Wilson 已提交
1093 1094
	}

C
Chris Wilson 已提交
1095 1096
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1097 1098 1099 1100
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1101
	if (ret)
1102
		goto out;
1103

1104
	ret = i915_gem_object_pin_pages(obj);
1105
	if (ret)
1106
		goto out;
1107

1108
	ret = i915_gem_shmem_pread(obj, args);
1109
	if (ret == -EFAULT || ret == -ENODEV)
1110
		ret = i915_gem_gtt_pread(obj, args);
1111

1112 1113
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1114
	i915_gem_object_put(obj);
1115
	return ret;
1116 1117
}

1118 1119
/* This is the fast write path which cannot handle
 * page faults in the source data
1120
 */
1121

1122 1123 1124 1125
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1126
{
1127
	void *vaddr;
1128
	unsigned long unwritten;
1129

1130
	/* We can use the cpu mem copy function because this is X86. */
1131 1132
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1133
						      user_data, length);
1134 1135 1136 1137 1138 1139 1140
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1141 1142 1143 1144

	return unwritten;
}

1145 1146 1147
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1148
 * @obj: i915 GEM object
1149
 * @args: pwrite arguments structure
1150
 */
1151
static int
1152 1153
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1154
{
1155
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1156 1157
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1158 1159 1160
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1161
	int ret;
1162

1163 1164 1165
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1166

1167
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1168
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1169
				       PIN_MAPPABLE | PIN_NONBLOCK);
1170 1171 1172
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1173
		ret = i915_vma_put_fence(vma);
1174 1175 1176 1177 1178
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1179
	if (IS_ERR(vma)) {
1180
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1181
		if (ret)
1182 1183
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1184
	}
D
Daniel Vetter 已提交
1185 1186 1187 1188 1189

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1190 1191
	mutex_unlock(&i915->drm.struct_mutex);

1192
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1193

1194 1195 1196 1197
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1198 1199
		/* Operation in this page
		 *
1200 1201 1202
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1203
		 */
1204
		u32 page_base = node.start;
1205 1206
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1217
		/* If we get a fault while copying data, then (presumably) our
1218 1219
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1220 1221
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1222
		 */
1223 1224 1225 1226
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1227
		}
1228

1229 1230 1231
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1232
	}
1233
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1234 1235

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1236
out_unpin:
1237 1238 1239
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1240
				       node.start, node.size);
1241 1242
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1243
		i915_vma_unpin(vma);
1244
	}
1245
out_unlock:
1246
	intel_runtime_pm_put(i915);
1247
	mutex_unlock(&i915->drm.struct_mutex);
1248
	return ret;
1249 1250
}

1251
static int
1252
shmem_pwrite_slow(struct page *page, int offset, int length,
1253 1254 1255 1256
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1257
{
1258 1259
	char *vaddr;
	int ret;
1260

1261
	vaddr = kmap(page);
1262
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1263
		shmem_clflush_swizzled_range(vaddr + offset, length,
1264
					     page_do_bit17_swizzling);
1265
	if (page_do_bit17_swizzling)
1266 1267
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1268
	else
1269
		ret = __copy_from_user(vaddr + offset, user_data, length);
1270
	if (needs_clflush_after)
1271
		shmem_clflush_swizzled_range(vaddr + offset, length,
1272
					     page_do_bit17_swizzling);
1273
	kunmap(page);
1274

1275
	return ret ? -EFAULT : 0;
1276 1277
}

1278 1279 1280 1281 1282
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1283
static int
1284 1285 1286 1287
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1288
{
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1321
	unsigned int needs_clflush;
1322 1323
	unsigned int offset, idx;
	int ret;
1324

1325
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1326 1327 1328
	if (ret)
		return ret;

1329 1330 1331 1332
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1333

1334 1335 1336
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1337

1338 1339 1340 1341 1342 1343 1344
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1345

1346 1347 1348 1349 1350 1351
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1352

1353 1354 1355
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1356

1357 1358 1359 1360
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1361
		if (ret)
1362
			break;
1363

1364 1365 1366
		remain -= length;
		user_data += length;
		offset = 0;
1367
	}
1368

1369
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1370
	i915_gem_obj_finish_shmem_access(obj);
1371
	return ret;
1372 1373 1374 1375
}

/**
 * Writes data to the object referenced by handle.
1376 1377 1378
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1379 1380 1381 1382 1383
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1384
		      struct drm_file *file)
1385 1386
{
	struct drm_i915_gem_pwrite *args = data;
1387
	struct drm_i915_gem_object *obj;
1388 1389 1390 1391 1392 1393
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1394
		       u64_to_user_ptr(args->data_ptr),
1395 1396 1397
		       args->size))
		return -EFAULT;

1398
	obj = i915_gem_object_lookup(file, args->handle);
1399 1400
	if (!obj)
		return -ENOENT;
1401

1402
	/* Bounds check destination. */
1403 1404
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1405
		ret = -EINVAL;
1406
		goto err;
C
Chris Wilson 已提交
1407 1408
	}

C
Chris Wilson 已提交
1409 1410
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1411 1412 1413 1414 1415
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1416 1417 1418
	if (ret)
		goto err;

1419
	ret = i915_gem_object_pin_pages(obj);
1420
	if (ret)
1421
		goto err;
1422

D
Daniel Vetter 已提交
1423
	ret = -EFAULT;
1424 1425 1426 1427 1428 1429
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1430
	if (!i915_gem_object_has_struct_page(obj) ||
1431
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1432 1433
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1434 1435
		 * textures). Fallback to the shmem path in that case.
		 */
1436
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1437

1438
	if (ret == -EFAULT || ret == -ENOSPC) {
1439 1440
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1441
		else
1442
			ret = i915_gem_shmem_pwrite(obj, args);
1443
	}
1444

1445
	i915_gem_object_unpin_pages(obj);
1446
err:
C
Chris Wilson 已提交
1447
	i915_gem_object_put(obj);
1448
	return ret;
1449 1450
}

1451
static inline enum fb_op_origin
1452 1453
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1454 1455
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1456 1457
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
			continue;

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
	list_move_tail(&obj->global_list, list);
}

1482
/**
1483 1484
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1485 1486 1487
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1488 1489 1490
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1491
			  struct drm_file *file)
1492 1493
{
	struct drm_i915_gem_set_domain *args = data;
1494
	struct drm_i915_gem_object *obj;
1495 1496
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1497
	int err;
1498

1499
	/* Only handle setting domains to types used by the CPU. */
1500
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1501 1502 1503 1504 1505 1506 1507 1508
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1509
	obj = i915_gem_object_lookup(file, args->handle);
1510 1511
	if (!obj)
		return -ENOENT;
1512

1513 1514 1515 1516
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1517
	err = i915_gem_object_wait(obj,
1518 1519 1520 1521
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1522
	if (err)
C
Chris Wilson 已提交
1523
		goto out;
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1535
		goto out;
1536 1537 1538

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1539
		goto out_unpin;
1540

1541
	if (read_domains & I915_GEM_DOMAIN_GTT)
1542
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1543
	else
1544
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1545

1546 1547
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1548

1549
	mutex_unlock(&dev->struct_mutex);
1550

1551 1552 1553
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1554
out_unpin:
1555
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1556 1557
out:
	i915_gem_object_put(obj);
1558
	return err;
1559 1560 1561 1562
}

/**
 * Called when user space has done writes to this buffer
1563 1564 1565
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1566 1567 1568
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1569
			 struct drm_file *file)
1570 1571
{
	struct drm_i915_gem_sw_finish *args = data;
1572
	struct drm_i915_gem_object *obj;
1573
	int err = 0;
1574

1575
	obj = i915_gem_object_lookup(file, args->handle);
1576 1577
	if (!obj)
		return -ENOENT;
1578 1579

	/* Pinned buffers may be scanout, so flush the cache */
1580 1581 1582 1583 1584 1585 1586
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1587

C
Chris Wilson 已提交
1588
	i915_gem_object_put(obj);
1589
	return err;
1590 1591 1592
}

/**
1593 1594 1595 1596 1597
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1598 1599 1600
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1611 1612 1613
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1614
		    struct drm_file *file)
1615 1616
{
	struct drm_i915_gem_mmap *args = data;
1617
	struct drm_i915_gem_object *obj;
1618 1619
	unsigned long addr;

1620 1621 1622
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1623
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1624 1625
		return -ENODEV;

1626 1627
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1628
		return -ENOENT;
1629

1630 1631 1632
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1633
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1634
		i915_gem_object_put(obj);
1635 1636 1637
		return -EINVAL;
	}

1638
	addr = vm_mmap(obj->base.filp, 0, args->size,
1639 1640
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1641 1642 1643 1644
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1645
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1646
			i915_gem_object_put(obj);
1647 1648
			return -EINTR;
		}
1649 1650 1651 1652 1653 1654 1655
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1656 1657

		/* This may race, but that's ok, it only gets set */
1658
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1659
	}
C
Chris Wilson 已提交
1660
	i915_gem_object_put(obj);
1661 1662 1663 1664 1665 1666 1667 1668
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
	u64 size;

	size = i915_gem_object_get_stride(obj);
	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;

	return size >> PAGE_SHIFT;
}

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1729 1730
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1731
 * @area: CPU VMA in question
1732
 * @vmf: fault info
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1744 1745 1746
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1747
 */
C
Chris Wilson 已提交
1748
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1749
{
1750
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1751
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1752
	struct drm_device *dev = obj->base.dev;
1753 1754
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1755
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1756
	struct i915_vma *vma;
1757
	pgoff_t page_offset;
1758
	unsigned int flags;
1759
	int ret;
1760

1761
	/* We don't use vmf->pgoff since that has the fake offset */
C
Chris Wilson 已提交
1762
	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1763 1764
		PAGE_SHIFT;

C
Chris Wilson 已提交
1765 1766
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1767
	/* Try to flush the object off the GPU first without holding the lock.
1768
	 * Upon acquiring the lock, we will perform our sanity checks and then
1769 1770 1771
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1772 1773 1774 1775
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1776
	if (ret)
1777 1778
		goto err;

1779 1780 1781 1782
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1783 1784 1785 1786 1787
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1788

1789 1790
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1791
		ret = -EFAULT;
1792
		goto err_unlock;
1793 1794
	}

1795 1796 1797 1798 1799 1800 1801 1802
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1803
	/* Now pin it into the GTT as needed */
1804
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1805 1806
	if (IS_ERR(vma)) {
		struct i915_ggtt_view view;
1807 1808
		unsigned int chunk_size;

1809
		/* Use a partial view if it is bigger than available space */
1810 1811 1812
		chunk_size = MIN_CHUNK_PAGES;
		if (i915_gem_object_is_tiled(obj))
			chunk_size = max(chunk_size, tile_row_pages(obj));
1813

1814 1815 1816 1817
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
1818
			min_t(unsigned int, chunk_size,
1819
			      vma_pages(area) - view.params.partial.offset);
1820

1821 1822 1823 1824 1825 1826
		/* If the partial covers the entire object, just create a
		 * normal VMA.
		 */
		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
			view.type = I915_GGTT_VIEW_NORMAL;

1827 1828 1829 1830 1831
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1832 1833
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1834 1835
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1836
		goto err_unlock;
C
Chris Wilson 已提交
1837
	}
1838

1839 1840
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1841
		goto err_unpin;
1842

1843
	ret = i915_vma_get_fence(vma);
1844
	if (ret)
1845
		goto err_unpin;
1846

1847
	/* Mark as being mmapped into userspace for later revocation */
1848
	assert_rpm_wakelock_held(dev_priv);
1849 1850 1851
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1852
	/* Finally, remap it using the new GTT offset */
1853 1854 1855 1856 1857
	ret = remap_io_mapping(area,
			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1858

1859
err_unpin:
C
Chris Wilson 已提交
1860
	__i915_vma_unpin(vma);
1861
err_unlock:
1862
	mutex_unlock(&dev->struct_mutex);
1863 1864
err_rpm:
	intel_runtime_pm_put(dev_priv);
1865
	i915_gem_object_unpin_pages(obj);
1866
err:
1867
	switch (ret) {
1868
	case -EIO:
1869 1870 1871 1872 1873 1874 1875
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1876 1877 1878
			ret = VM_FAULT_SIGBUS;
			break;
		}
1879
	case -EAGAIN:
D
Daniel Vetter 已提交
1880 1881 1882 1883
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1884
		 */
1885 1886
	case 0:
	case -ERESTARTSYS:
1887
	case -EINTR:
1888 1889 1890 1891 1892
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1893 1894
		ret = VM_FAULT_NOPAGE;
		break;
1895
	case -ENOMEM:
1896 1897
		ret = VM_FAULT_OOM;
		break;
1898
	case -ENOSPC:
1899
	case -EFAULT:
1900 1901
		ret = VM_FAULT_SIGBUS;
		break;
1902
	default:
1903
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1904 1905
		ret = VM_FAULT_SIGBUS;
		break;
1906
	}
1907
	return ret;
1908 1909
}

1910 1911 1912 1913
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1914
 * Preserve the reservation of the mmapping with the DRM core code, but
1915 1916 1917 1918 1919 1920 1921 1922 1923
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1924
void
1925
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1926
{
1927 1928
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1929 1930 1931
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1932 1933 1934 1935
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1936
	 */
1937
	lockdep_assert_held(&i915->drm.struct_mutex);
1938
	intel_runtime_pm_get(i915);
1939

1940
	if (list_empty(&obj->userfault_link))
1941
		goto out;
1942

1943
	list_del_init(&obj->userfault_link);
1944 1945
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1946 1947 1948 1949 1950 1951 1952 1953 1954

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
1955 1956 1957

out:
	intel_runtime_pm_put(i915);
1958 1959
}

1960
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1961
{
1962
	struct drm_i915_gem_object *obj, *on;
1963
	int i;
1964

1965 1966 1967 1968 1969 1970
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
1971

1972 1973 1974
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
1975 1976 1977
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

		if (WARN_ON(reg->pin_count))
			continue;

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
1995 1996
}

1997 1998
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1999
 * @dev_priv: i915 device
2000 2001 2002 2003 2004 2005
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
2006 2007
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
2008
{
2009
	u64 ggtt_size;
2010

2011 2012
	GEM_BUG_ON(size == 0);

2013
	if (INTEL_GEN(dev_priv) >= 4 ||
2014 2015
	    tiling_mode == I915_TILING_NONE)
		return size;
2016 2017

	/* Previous chips need a power-of-two fence region when tiling */
2018
	if (IS_GEN3(dev_priv))
2019
		ggtt_size = 1024*1024;
2020
	else
2021
		ggtt_size = 512*1024;
2022

2023 2024
	while (ggtt_size < size)
		ggtt_size <<= 1;
2025

2026
	return ggtt_size;
2027 2028
}

2029
/**
2030
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
2031
 * @dev_priv: i915 device
2032 2033
 * @size: object size
 * @tiling_mode: tiling mode
2034
 * @fenced: is fenced alignment required or not
2035
 *
2036
 * Return the required global GTT alignment for an object, taking into account
2037
 * potential fence register mapping.
2038
 */
2039
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2040
				int tiling_mode, bool fenced)
2041
{
2042 2043
	GEM_BUG_ON(size == 0);

2044 2045 2046 2047
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2048
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2049
	    tiling_mode == I915_TILING_NONE)
2050 2051
		return 4096;

2052 2053 2054 2055
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2056
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2057 2058
}

2059 2060
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2061
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2062
	int err;
2063

2064 2065 2066
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
2067

2068 2069 2070
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
2071
	 */
2072
	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2073 2074 2075 2076 2077 2078 2079 2080 2081
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
2082

2083
	return err;
2084 2085 2086 2087 2088 2089 2090
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2091
int
2092 2093
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2094
		  uint32_t handle,
2095
		  uint64_t *offset)
2096
{
2097
	struct drm_i915_gem_object *obj;
2098 2099
	int ret;

2100
	obj = i915_gem_object_lookup(file, handle);
2101 2102
	if (!obj)
		return -ENOENT;
2103

2104
	ret = i915_gem_object_create_mmap_offset(obj);
2105 2106
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2107

C
Chris Wilson 已提交
2108
	i915_gem_object_put(obj);
2109
	return ret;
2110 2111
}

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2133
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2134 2135
}

D
Daniel Vetter 已提交
2136 2137 2138
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2139
{
2140
	i915_gem_object_free_mmap_offset(obj);
2141

2142 2143
	if (obj->base.filp == NULL)
		return;
2144

D
Daniel Vetter 已提交
2145 2146 2147 2148 2149
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2150
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2151
	obj->mm.madv = __I915_MADV_PURGED;
D
Daniel Vetter 已提交
2152
}
2153

2154
/* Try to discard unwanted pages */
2155
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2156
{
2157 2158
	struct address_space *mapping;

2159 2160 2161
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2162
	switch (obj->mm.madv) {
2163 2164 2165 2166 2167 2168 2169 2170 2171
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2172
	mapping = obj->base.filp->f_mapping,
2173
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2174 2175
}

2176
static void
2177 2178
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2179
{
2180 2181
	struct sgt_iter sgt_iter;
	struct page *page;
2182

2183
	__i915_gem_object_release_shmem(obj);
2184

2185
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2186

2187
	if (i915_gem_object_needs_bit17_swizzle(obj))
2188
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2189

2190
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2191
		if (obj->mm.dirty)
2192
			set_page_dirty(page);
2193

C
Chris Wilson 已提交
2194
		if (obj->mm.madv == I915_MADV_WILLNEED)
2195
			mark_page_accessed(page);
2196

2197
		put_page(page);
2198
	}
C
Chris Wilson 已提交
2199
	obj->mm.dirty = false;
2200

2201 2202
	sg_free_table(pages);
	kfree(pages);
2203
}
C
Chris Wilson 已提交
2204

2205 2206 2207 2208 2209
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2210 2211
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2212 2213
}

2214
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2215
{
2216
	struct sg_table *pages;
2217

C
Chris Wilson 已提交
2218
	if (i915_gem_object_has_pinned_pages(obj))
2219
		return;
2220

2221
	GEM_BUG_ON(obj->bind_count);
2222 2223 2224 2225 2226 2227 2228
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
	mutex_lock_nested(&obj->mm.lock, SINGLE_DEPTH_NESTING);
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2229

2230 2231 2232
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2233 2234
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2235

C
Chris Wilson 已提交
2236
	if (obj->mm.mapping) {
2237 2238
		void *ptr;

C
Chris Wilson 已提交
2239
		ptr = ptr_mask_bits(obj->mm.mapping);
2240 2241
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2242
		else
2243 2244
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2245
		obj->mm.mapping = NULL;
2246 2247
	}

2248 2249
	__i915_gem_object_reset_page_iter(obj);

2250
	obj->ops->put_pages(obj, pages);
2251 2252
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2253 2254
}

2255
static unsigned int swiotlb_max_size(void)
2256 2257 2258 2259 2260 2261 2262 2263
{
#if IS_ENABLED(CONFIG_SWIOTLB)
	return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
#else
	return 0;
#endif
}

2264
static struct sg_table *
C
Chris Wilson 已提交
2265
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2266
{
2267
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2268 2269
	int page_count, i;
	struct address_space *mapping;
2270 2271
	struct sg_table *st;
	struct scatterlist *sg;
2272
	struct sgt_iter sgt_iter;
2273
	struct page *page;
2274
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2275
	unsigned int max_segment;
I
Imre Deak 已提交
2276
	int ret;
C
Chris Wilson 已提交
2277
	gfp_t gfp;
2278

C
Chris Wilson 已提交
2279 2280 2281 2282
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2283 2284
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2285

2286 2287
	max_segment = swiotlb_max_size();
	if (!max_segment)
2288
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2289

2290 2291
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2292
		return ERR_PTR(-ENOMEM);
2293

2294
	page_count = obj->base.size / PAGE_SIZE;
2295 2296
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2297
		return ERR_PTR(-ENOMEM);
2298
	}
2299

2300 2301 2302 2303 2304
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2305
	mapping = obj->base.filp->f_mapping;
2306
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2307
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2308 2309 2310
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2311 2312
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2313 2314 2315 2316 2317
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2318 2319 2320 2321 2322 2323 2324
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2325
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2326 2327
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2328
				goto err_pages;
I
Imre Deak 已提交
2329
			}
C
Chris Wilson 已提交
2330
		}
2331 2332 2333
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2334 2335 2336 2337 2338 2339 2340 2341
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2342 2343 2344

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2345
	}
2346
	if (sg) /* loop terminated early; short sg table */
2347
		sg_mark_end(sg);
2348

2349
	ret = i915_gem_gtt_prepare_pages(obj, st);
I
Imre Deak 已提交
2350 2351 2352
	if (ret)
		goto err_pages;

2353
	if (i915_gem_object_needs_bit17_swizzle(obj))
2354
		i915_gem_object_do_bit_17_swizzle(obj, st);
2355

2356
	if (i915_gem_object_is_tiled(obj) &&
2357
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
C
Chris Wilson 已提交
2358
		__i915_gem_object_pin_pages(obj);
2359

2360
	return st;
2361 2362

err_pages:
2363
	sg_mark_end(sg);
2364 2365
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2366 2367
	sg_free_table(st);
	kfree(st);
2368 2369 2370 2371 2372 2373 2374 2375 2376

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2377 2378 2379
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2380 2381 2382 2383 2384 2385
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2386
	lockdep_assert_held(&obj->mm.lock);
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2409 2410
}

2411
/* Ensure that the associated pages are gathered from the backing storage
2412
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2413
 * multiple times before they are released by a single call to
2414
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2415 2416 2417
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2418
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2419
{
2420
	int err;
2421

2422 2423 2424
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2425

2426 2427 2428 2429 2430 2431
	if (likely(obj->mm.pages)) {
		__i915_gem_object_pin_pages(obj);
		goto unlock;
	}

	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2432

2433
	err = ____i915_gem_object_get_pages(obj);
2434 2435
	if (!err)
		atomic_set_release(&obj->mm.pages_pin_count, 1);
2436

2437 2438
unlock:
	mutex_unlock(&obj->mm.lock);
2439
	return err;
2440 2441
}

2442
/* The 'mapping' part of i915_gem_object_pin_map() below */
2443 2444
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2445 2446
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2447
	struct sg_table *sgt = obj->mm.pages;
2448 2449
	struct sgt_iter sgt_iter;
	struct page *page;
2450 2451
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2452
	unsigned long i = 0;
2453
	pgprot_t pgprot;
2454 2455 2456
	void *addr;

	/* A single page can always be kmapped */
2457
	if (n_pages == 1 && type == I915_MAP_WB)
2458 2459
		return kmap(sg_page(sgt->sgl));

2460 2461 2462 2463 2464 2465
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2466

2467 2468
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2469 2470 2471 2472

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2473 2474 2475 2476 2477 2478 2479 2480 2481
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2482

2483 2484
	if (pages != stack_pages)
		drm_free_large(pages);
2485 2486 2487 2488 2489

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2490 2491
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2492
{
2493 2494 2495
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2496 2497
	int ret;

2498
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2499

2500
	ret = mutex_lock_interruptible(&obj->mm.lock);
2501 2502 2503
	if (ret)
		return ERR_PTR(ret);

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
		ret = ____i915_gem_object_get_pages(obj);
		if (ret)
			goto err_unlock;

		GEM_BUG_ON(atomic_read(&obj->mm.pages_pin_count));
		atomic_set_release(&obj->mm.pages_pin_count, 1);
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2515

C
Chris Wilson 已提交
2516
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2517 2518 2519
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2520
			goto err_unpin;
2521
		}
2522 2523 2524 2525 2526 2527

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2528
		ptr = obj->mm.mapping = NULL;
2529 2530
	}

2531 2532 2533 2534
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2535
			goto err_unpin;
2536 2537
		}

C
Chris Wilson 已提交
2538
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2539 2540
	}

2541 2542
out_unlock:
	mutex_unlock(&obj->mm.lock);
2543 2544
	return ptr;

2545 2546 2547 2548 2549
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2550 2551
}

2552
static void
2553 2554
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2555
{
2556 2557
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2558

2559
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2560 2561
}

2562
static void
2563 2564
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2565
{
2566 2567 2568
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2569

2570
	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2571

2572 2573
	i915_gem_object_clear_active(obj, idx);
	if (i915_gem_object_is_active(obj))
2574
		return;
2575

2576 2577 2578 2579
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2580 2581 2582
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2583

2584 2585 2586 2587
	if (i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_clear_active_reference(obj);
		i915_gem_object_put(obj);
	}
2588 2589
}

2590
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2591
{
2592
	unsigned long elapsed;
2593

2594
	if (ctx->hang_stats.banned)
2595 2596
		return true;

2597
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2598 2599
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2600 2601
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2602 2603 2604 2605 2606
	}

	return false;
}

2607
static void i915_set_reset_status(struct i915_gem_context *ctx,
2608
				  const bool guilty)
2609
{
2610
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2611 2612

	if (guilty) {
2613
		hs->banned = i915_context_is_banned(ctx);
2614 2615 2616 2617
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2618 2619 2620
	}
}

2621
struct drm_i915_gem_request *
2622
i915_gem_find_active_request(struct intel_engine_cs *engine)
2623
{
2624 2625
	struct drm_i915_gem_request *request;

2626 2627 2628 2629 2630 2631 2632 2633
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2634
	list_for_each_entry(request, &engine->request_list, link) {
2635
		if (i915_gem_request_completed(request))
2636
			continue;
2637

2638 2639 2640
		if (!i915_sw_fence_done(&request->submit))
			break;

2641
		return request;
2642
	}
2643 2644 2645 2646

	return NULL;
}

2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
static void reset_request(struct drm_i915_gem_request *request)
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
}

static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2665 2666
{
	struct drm_i915_gem_request *request;
2667
	struct i915_gem_context *incomplete_ctx;
2668 2669
	bool ring_hung;

2670 2671 2672
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2673
	request = i915_gem_find_active_request(engine);
2674
	if (!request)
2675 2676
		return;

2677
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2678 2679 2680
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
		ring_hung = false;

2681
	i915_set_reset_status(request->ctx, ring_hung);
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
	if (!ring_hung)
		return;

	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
			 engine->name, request->fence.seqno);

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);

	/* Users of the default context do not rely on logical state
	 * preserved between batches. They have to emit full state on
	 * every batch and so it is safe to execute queued requests following
	 * the hang.
	 *
	 * Other contexts preserve state, now corrupt. We want to skip all
	 * queued requests that reference the corrupt context.
	 */
	incomplete_ctx = request->ctx;
	if (i915_gem_context_is_default(incomplete_ctx))
		return;

2703
	list_for_each_entry_continue(request, &engine->request_list, link)
2704 2705
		if (request->ctx == incomplete_ctx)
			reset_request(request);
2706
}
2707

2708
void i915_gem_reset(struct drm_i915_private *dev_priv)
2709
{
2710
	struct intel_engine_cs *engine;
2711
	enum intel_engine_id id;
2712

2713 2714
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2715 2716
	i915_gem_retire_requests(dev_priv);

2717
	for_each_engine(engine, dev_priv, id)
2718 2719 2720
		i915_gem_reset_engine(engine);

	i915_gem_restore_fences(&dev_priv->drm);
2721 2722 2723 2724 2725 2726 2727

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2728 2729 2730 2731 2732 2733 2734 2735 2736
}

static void nop_submit_request(struct drm_i915_gem_request *request)
{
}

static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
{
	engine->submit_request = nop_submit_request;
2737

2738 2739 2740 2741
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2742
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2743

2744 2745 2746 2747 2748 2749
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2750
	if (i915.enable_execlists) {
2751 2752 2753 2754 2755 2756
		spin_lock(&engine->execlist_lock);
		INIT_LIST_HEAD(&engine->execlist_queue);
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
		spin_unlock(&engine->execlist_lock);
2757 2758
	}

2759
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2760 2761
}

2762
void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2763
{
2764
	struct intel_engine_cs *engine;
2765
	enum intel_engine_id id;
2766

2767 2768
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2769

2770
	i915_gem_context_lost(dev_priv);
2771
	for_each_engine(engine, dev_priv, id)
2772
		i915_gem_cleanup_engine(engine);
2773
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2774

2775
	i915_gem_retire_requests(dev_priv);
2776 2777
}

2778
static void
2779 2780
i915_gem_retire_work_handler(struct work_struct *work)
{
2781
	struct drm_i915_private *dev_priv =
2782
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2783
	struct drm_device *dev = &dev_priv->drm;
2784

2785
	/* Come back later if the device is busy... */
2786
	if (mutex_trylock(&dev->struct_mutex)) {
2787
		i915_gem_retire_requests(dev_priv);
2788
		mutex_unlock(&dev->struct_mutex);
2789
	}
2790 2791 2792 2793 2794

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2795 2796
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2797 2798
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2799
				   round_jiffies_up_relative(HZ));
2800
	}
2801
}
2802

2803 2804 2805 2806
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2807
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2808
	struct drm_device *dev = &dev_priv->drm;
2809
	struct intel_engine_cs *engine;
2810
	enum intel_engine_id id;
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2832

2833
	for_each_engine(engine, dev_priv, id)
2834
		i915_gem_batch_pool_fini(&engine->batch_pool);
2835

2836 2837 2838
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2839

2840 2841 2842 2843 2844
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2845

2846 2847 2848 2849
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2850
	}
2851 2852
}

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
2863 2864 2865 2866 2867 2868

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
2869 2870 2871
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

2883 2884
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2885 2886 2887
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2912 2913
	ktime_t start;
	long ret;
2914

2915 2916 2917
	if (args->flags != 0)
		return -EINVAL;

2918
	obj = i915_gem_object_lookup(file, args->bo_handle);
2919
	if (!obj)
2920 2921
		return -ENOENT;

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
2933 2934
	}

C
Chris Wilson 已提交
2935
	i915_gem_object_put(obj);
2936
	return ret;
2937 2938
}

2939 2940
static void __i915_vma_iounmap(struct i915_vma *vma)
{
2941
	GEM_BUG_ON(i915_vma_is_pinned(vma));
2942 2943 2944 2945 2946 2947 2948 2949

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2950
int i915_vma_unbind(struct i915_vma *vma)
2951
{
2952
	struct drm_i915_gem_object *obj = vma->obj;
2953
	unsigned long active;
2954
	int ret;
2955

2956 2957
	lockdep_assert_held(&obj->base.dev->struct_mutex);

2958 2959 2960 2961
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2962
	if (active) {
2963 2964
		int idx;

2965 2966 2967 2968 2969
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
2970
		__i915_vma_pin(vma);
2971

2972 2973 2974 2975
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2976
				break;
2977 2978
		}

2979
		__i915_vma_unpin(vma);
2980 2981 2982
		if (ret)
			return ret;

2983 2984 2985
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

2986
	if (i915_vma_is_pinned(vma))
2987 2988
		return -EBUSY;

2989 2990
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2991

2992
	GEM_BUG_ON(obj->bind_count == 0);
C
Chris Wilson 已提交
2993
	GEM_BUG_ON(!obj->mm.pages);
2994

2995
	if (i915_vma_is_map_and_fenceable(vma)) {
2996
		/* release the fence reg _after_ flushing */
2997
		ret = i915_vma_put_fence(vma);
2998 2999
		if (ret)
			return ret;
3000

3001 3002 3003
		/* Force a pagefault for domain tracking on next user access */
		i915_gem_release_mmap(obj);

3004
		__i915_vma_iounmap(vma);
3005
		vma->flags &= ~I915_VMA_CAN_FENCE;
3006
	}
3007

3008 3009 3010 3011
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
3012
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
3013

3014 3015 3016
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

C
Chris Wilson 已提交
3017
	if (vma->pages != obj->mm.pages) {
3018 3019 3020
		GEM_BUG_ON(!vma->pages);
		sg_free_table(vma->pages);
		kfree(vma->pages);
3021
	}
3022
	vma->pages = NULL;
3023

B
Ben Widawsky 已提交
3024
	/* Since the unbound list is global, only move to that list if
3025
	 * no more VMAs exist. */
3026 3027 3028
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
3029

3030 3031 3032 3033 3034 3035
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3036
destroy:
3037
	if (unlikely(i915_vma_is_closed(vma)))
3038 3039
		i915_vma_destroy(vma);

3040
	return 0;
3041 3042
}

3043
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3044
			   unsigned int flags)
3045
{
3046
	struct intel_engine_cs *engine;
3047
	enum intel_engine_id id;
3048
	int ret;
3049

3050
	for_each_engine(engine, dev_priv, id) {
3051 3052 3053
		if (engine->last_context == NULL)
			continue;

3054
		ret = intel_engine_idle(engine, flags);
3055 3056 3057
		if (ret)
			return ret;
	}
3058

3059
	return 0;
3060 3061
}

3062
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3063 3064
				     unsigned long cache_level)
{
3065
	struct drm_mm_node *gtt_space = &vma->node;
3066 3067
	struct drm_mm_node *other;

3068 3069 3070 3071 3072 3073
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3074
	 */
3075
	if (vma->vm->mm.color_adjust == NULL)
3076 3077
		return true;

3078
	if (!drm_mm_node_allocated(gtt_space))
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3095
/**
3096 3097
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
3098
 * @size: requested size in bytes (can be larger than the VMA)
3099
 * @alignment: required alignment
3100
 * @flags: mask of PIN_* flags to use
3101 3102 3103 3104 3105 3106 3107
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
3108
 */
3109 3110
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3111
{
3112 3113
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
3114
	u64 start, end;
3115
	int ret;
3116

3117
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3118
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3119 3120 3121

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
3122 3123
		size = i915_gem_get_ggtt_size(dev_priv, size,
					      i915_gem_object_get_tiling(obj));
3124

3125 3126 3127 3128
	alignment = max(max(alignment, vma->display_alignment),
			i915_gem_get_ggtt_alignment(dev_priv, size,
						    i915_gem_object_get_tiling(obj),
						    flags & PIN_MAPPABLE));
3129

3130
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3131 3132

	end = vma->vm->total;
3133
	if (flags & PIN_MAPPABLE)
3134
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3135
	if (flags & PIN_ZONE_4G)
3136
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3137

3138 3139 3140
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3141
	 */
3142
	if (size > end) {
3143
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3144
			  size, obj->base.size,
3145
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3146
			  end);
3147
		return -E2BIG;
3148 3149
	}

C
Chris Wilson 已提交
3150
	ret = i915_gem_object_pin_pages(obj);
C
Chris Wilson 已提交
3151
	if (ret)
3152
		return ret;
C
Chris Wilson 已提交
3153

3154
	if (flags & PIN_OFFSET_FIXED) {
3155
		u64 offset = flags & PIN_OFFSET_MASK;
3156
		if (offset & (alignment - 1) || offset > end - size) {
3157
			ret = -EINVAL;
3158
			goto err_unpin;
3159
		}
3160

3161 3162 3163
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3164
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3165 3166 3167
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3168 3169 3170
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3171
		}
3172
	} else {
3173 3174
		u32 search_flag, alloc_flag;

3175 3176 3177 3178 3179 3180 3181
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3182

3183 3184 3185 3186 3187 3188 3189 3190 3191
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3192
search_free:
3193 3194
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3195 3196 3197 3198 3199 3200
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3201
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3202 3203 3204 3205 3206
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3207

3208
			goto err_unpin;
3209
		}
3210 3211 3212

		GEM_BUG_ON(vma->node.start < start);
		GEM_BUG_ON(vma->node.start + vma->node.size > end);
3213
	}
3214
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3215

3216
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3217
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3218
	obj->bind_count++;
3219

3220
	return 0;
B
Ben Widawsky 已提交
3221

3222
err_unpin:
B
Ben Widawsky 已提交
3223
	i915_gem_object_unpin_pages(obj);
3224
	return ret;
3225 3226
}

3227
bool
3228 3229
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3230 3231 3232 3233 3234
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
C
Chris Wilson 已提交
3235
	if (!obj->mm.pages)
3236
		return false;
3237

3238 3239 3240 3241
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3242
	if (obj->stolen || obj->phys_handle)
3243
		return false;
3244

3245 3246 3247 3248 3249 3250 3251 3252
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3253 3254
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3255
		return false;
3256
	}
3257

C
Chris Wilson 已提交
3258
	trace_i915_gem_object_clflush(obj);
C
Chris Wilson 已提交
3259
	drm_clflush_sg(obj->mm.pages);
3260
	obj->cache_dirty = false;
3261 3262

	return true;
3263 3264 3265 3266
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3267
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3268
{
3269
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3270

3271
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3272 3273
		return;

3274
	/* No actual flushing is required for the GTT write domain.  Writes
3275
	 * to it "immediately" go to main memory as far as we know, so there's
3276
	 * no chipset flush.  It also doesn't land in render cache.
3277 3278 3279 3280
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3281 3282 3283 3284 3285 3286 3287
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3288
	 */
3289
	wmb();
3290
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3291
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3292

3293
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3294

3295
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3296
	trace_i915_gem_object_change_domain(obj,
3297
					    obj->base.read_domains,
3298
					    I915_GEM_DOMAIN_GTT);
3299 3300 3301 3302
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3303
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3304
{
3305
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3306 3307
		return;

3308
	if (i915_gem_clflush_object(obj, obj->pin_display))
3309
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3310

3311
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3312

3313
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3314
	trace_i915_gem_object_change_domain(obj,
3315
					    obj->base.read_domains,
3316
					    I915_GEM_DOMAIN_CPU);
3317 3318
}

3319 3320
/**
 * Moves a single object to the GTT read, and possibly write domain.
3321 3322
 * @obj: object to act on
 * @write: ask for write access or read only
3323 3324 3325 3326
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3327
int
3328
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3329
{
C
Chris Wilson 已提交
3330
	uint32_t old_write_domain, old_read_domains;
3331
	int ret;
3332

3333
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3334

3335 3336 3337 3338 3339 3340
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3341 3342 3343
	if (ret)
		return ret;

3344 3345 3346
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3347 3348 3349 3350 3351 3352 3353 3354
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3355
	ret = i915_gem_object_pin_pages(obj);
3356 3357 3358
	if (ret)
		return ret;

3359
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3360

3361 3362 3363 3364 3365 3366 3367
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3368 3369
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3370

3371 3372 3373
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3374
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3375
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3376
	if (write) {
3377 3378
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3379
		obj->mm.dirty = true;
3380 3381
	}

C
Chris Wilson 已提交
3382 3383 3384 3385
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

C
Chris Wilson 已提交
3386
	i915_gem_object_unpin_pages(obj);
3387 3388 3389
	return 0;
}

3390 3391
/**
 * Changes the cache-level of an object across all VMA.
3392 3393
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3405 3406 3407
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3408
	struct i915_vma *vma;
3409
	int ret = 0;
3410

3411 3412
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3413
	if (obj->cache_level == cache_level)
3414
		goto out;
3415

3416 3417 3418 3419 3420
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3421 3422
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3423 3424 3425
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3426
		if (i915_vma_is_pinned(vma)) {
3427 3428 3429 3430
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3443 3444
	}

3445 3446 3447 3448 3449 3450 3451
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3452
	if (obj->bind_count) {
3453 3454 3455 3456
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3457 3458 3459 3460 3461 3462
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3463 3464 3465
		if (ret)
			return ret;

3466
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3483 3484 3485 3486 3487
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3488 3489 3490 3491 3492 3493 3494 3495
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3496 3497
		}

3498
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3499 3500 3501 3502 3503 3504 3505
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3506 3507
	}

3508
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3509 3510 3511
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3512
out:
3513 3514 3515 3516
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3517
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3518
		if (i915_gem_clflush_object(obj, true))
3519
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3520 3521 3522 3523 3524
	}

	return 0;
}

B
Ben Widawsky 已提交
3525 3526
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3527
{
B
Ben Widawsky 已提交
3528
	struct drm_i915_gem_caching *args = data;
3529
	struct drm_i915_gem_object *obj;
3530
	int err = 0;
3531

3532 3533 3534 3535 3536 3537
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3538

3539 3540 3541 3542 3543 3544
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3545 3546 3547 3548
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3549 3550 3551 3552
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3553 3554 3555
out:
	rcu_read_unlock();
	return err;
3556 3557
}

B
Ben Widawsky 已提交
3558 3559
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3560
{
3561
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3562
	struct drm_i915_gem_caching *args = data;
3563 3564 3565 3566
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3567 3568
	switch (args->caching) {
	case I915_CACHING_NONE:
3569 3570
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3571
	case I915_CACHING_CACHED:
3572 3573 3574 3575 3576 3577
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3578
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3579 3580
			return -ENODEV;

3581 3582
		level = I915_CACHE_LLC;
		break;
3583
	case I915_CACHING_DISPLAY:
3584
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3585
		break;
3586 3587 3588 3589
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3590 3591
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3592
		return ret;
B
Ben Widawsky 已提交
3593

3594 3595
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3596 3597 3598 3599 3600
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);
3601
	i915_gem_object_put(obj);
3602 3603 3604 3605 3606
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3607
/*
3608 3609 3610
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3611
 */
C
Chris Wilson 已提交
3612
struct i915_vma *
3613 3614
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3615
				     const struct i915_ggtt_view *view)
3616
{
C
Chris Wilson 已提交
3617
	struct i915_vma *vma;
3618
	u32 old_read_domains, old_write_domain;
3619 3620
	int ret;

3621 3622
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3623 3624 3625
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3626
	obj->pin_display++;
3627

3628 3629 3630 3631 3632 3633 3634 3635 3636
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3637
	ret = i915_gem_object_set_cache_level(obj,
3638 3639
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3640 3641
	if (ret) {
		vma = ERR_PTR(ret);
3642
		goto err_unpin_display;
C
Chris Wilson 已提交
3643
	}
3644

3645 3646
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3647 3648 3649 3650
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3651
	 */
3652 3653 3654 3655 3656 3657
	vma = ERR_PTR(-ENOSPC);
	if (view->type == I915_GGTT_VIEW_NORMAL)
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
	if (IS_ERR(vma))
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0);
C
Chris Wilson 已提交
3658
	if (IS_ERR(vma))
3659
		goto err_unpin_display;
3660

3661 3662
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3663
	i915_gem_object_flush_cpu_write_domain(obj);
3664

3665
	old_write_domain = obj->base.write_domain;
3666
	old_read_domains = obj->base.read_domains;
3667 3668 3669 3670

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3671
	obj->base.write_domain = 0;
3672
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3673 3674 3675

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3676
					    old_write_domain);
3677

C
Chris Wilson 已提交
3678
	return vma;
3679 3680

err_unpin_display:
3681
	obj->pin_display--;
C
Chris Wilson 已提交
3682
	return vma;
3683 3684 3685
}

void
C
Chris Wilson 已提交
3686
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3687
{
3688 3689
	lockdep_assert_held(&vma->vm->dev->struct_mutex);

C
Chris Wilson 已提交
3690
	if (WARN_ON(vma->obj->pin_display == 0))
3691 3692
		return;

3693 3694
	if (--vma->obj->pin_display == 0)
		vma->display_alignment = 0;
3695

3696 3697 3698 3699
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
	if (!i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);

C
Chris Wilson 已提交
3700
	i915_vma_unpin(vma);
3701 3702
}

3703 3704
/**
 * Moves a single object to the CPU read, and possibly write domain.
3705 3706
 * @obj: object to act on
 * @write: requesting write or read-only access
3707 3708 3709 3710
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3711
int
3712
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3713
{
C
Chris Wilson 已提交
3714
	uint32_t old_write_domain, old_read_domains;
3715 3716
	int ret;

3717
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3718

3719 3720 3721 3722 3723 3724
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3725 3726 3727
	if (ret)
		return ret;

3728 3729 3730
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3731
	i915_gem_object_flush_gtt_write_domain(obj);
3732

3733 3734
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3735

3736
	/* Flush the CPU cache if it's still invalid. */
3737
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3738
		i915_gem_clflush_object(obj, false);
3739

3740
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3741 3742 3743 3744 3745
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3746
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3747 3748 3749 3750 3751

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3752 3753
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3754
	}
3755

C
Chris Wilson 已提交
3756 3757 3758 3759
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3760 3761 3762
	return 0;
}

3763 3764 3765
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3766 3767 3768 3769
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3770 3771 3772
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3773
static int
3774
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3775
{
3776
	struct drm_i915_private *dev_priv = to_i915(dev);
3777
	struct drm_i915_file_private *file_priv = file->driver_priv;
3778
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3779
	struct drm_i915_gem_request *request, *target = NULL;
3780
	long ret;
3781

3782 3783 3784
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3785

3786
	spin_lock(&file_priv->mm.lock);
3787
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3788 3789
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3790

3791 3792 3793 3794 3795 3796 3797
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3798
		target = request;
3799
	}
3800
	if (target)
3801
		i915_gem_request_get(target);
3802
	spin_unlock(&file_priv->mm.lock);
3803

3804
	if (target == NULL)
3805
		return 0;
3806

3807 3808 3809
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3810
	i915_gem_request_put(target);
3811

3812
	return ret < 0 ? ret : 0;
3813 3814
}

3815
static bool
3816
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3817
{
3818 3819 3820
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3821 3822 3823 3824
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3825 3826
		return true;

3827
	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3828 3829 3830 3831 3832 3833
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3834 3835 3836 3837
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3838 3839 3840
	return false;
}

3841 3842 3843
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3844
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3845 3846 3847
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3848
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3849
					    vma->size,
3850
					    i915_gem_object_get_tiling(obj));
3851
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3852
						      vma->size,
3853
						      i915_gem_object_get_tiling(obj),
3854
						      true);
3855 3856 3857 3858 3859

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3860
		    dev_priv->ggtt.mappable_end);
3861

3862 3863 3864 3865 3866 3867
	/*
	 * Explicitly disable for rotated VMA since the display does not
	 * need the fence and the VMA is not accessible to other users.
	 */
	if (mappable && fenceable &&
	    vma->ggtt_view.type != I915_GGTT_VIEW_ROTATED)
3868 3869 3870
		vma->flags |= I915_VMA_CAN_FENCE;
	else
		vma->flags &= ~I915_VMA_CAN_FENCE;
3871 3872
}

3873 3874
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3875
{
3876
	unsigned int bound = vma->flags;
3877 3878
	int ret;

3879
	lockdep_assert_held(&vma->vm->dev->struct_mutex);
3880
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3881
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3882

3883 3884 3885 3886
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3887

3888
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3889 3890 3891
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3892
	}
3893

3894
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3895
	if (ret)
3896
		goto err;
3897

3898
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3899
		__i915_vma_set_map_and_fenceable(vma);
3900

3901
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3902 3903
	return 0;

3904 3905 3906
err:
	__i915_vma_unpin(vma);
	return ret;
3907 3908
}

C
Chris Wilson 已提交
3909
struct i915_vma *
3910 3911
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3912
			 u64 size,
3913 3914
			 u64 alignment,
			 u64 flags)
3915
{
3916 3917
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3918 3919
	struct i915_vma *vma;
	int ret;
3920

3921 3922
	lockdep_assert_held(&obj->base.dev->struct_mutex);

C
Chris Wilson 已提交
3923
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3924
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3925
		return vma;
3926 3927 3928 3929

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3930
			return ERR_PTR(-ENOSPC);
3931

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
		if (flags & PIN_MAPPABLE) {
			u32 fence_size;

			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
							    i915_gem_object_get_tiling(obj));
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
			if (fence_size > dev_priv->ggtt.mappable_end)
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
			    fence_size > dev_priv->ggtt.mappable_end / 2)
				return ERR_PTR(-ENOSPC);
		}

3967 3968
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3969 3970 3971
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3972
		     !!(flags & PIN_MAPPABLE),
3973
		     i915_vma_is_map_and_fenceable(vma));
3974 3975
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3976
			return ERR_PTR(ret);
3977 3978
	}

C
Chris Wilson 已提交
3979 3980 3981
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3982

C
Chris Wilson 已提交
3983
	return vma;
3984 3985
}

3986
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4001 4002 4003 4004 4005 4006 4007 4008 4009
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4010 4011
}

4012
static __always_inline unsigned int
4013 4014 4015
__busy_set_if_active(const struct i915_gem_active *active,
		     unsigned int (*flag)(unsigned int id))
{
4016
	struct drm_i915_gem_request *request;
4017

4018 4019 4020
	request = rcu_dereference(active->request);
	if (!request || i915_gem_request_completed(request))
		return 0;
4021

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
	/* This is racy. See __i915_gem_active_get_rcu() for an in detail
	 * discussion of how to handle the race correctly, but for reporting
	 * the busy state we err on the side of potentially reporting the
	 * wrong engine as being busy (but we guarantee that the result
	 * is at least self-consistent).
	 *
	 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
	 * whilst we are inspecting it, even under the RCU read lock as we are.
	 * This means that there is a small window for the engine and/or the
	 * seqno to have been overwritten. The seqno will always be in the
	 * future compared to the intended, and so we know that if that
	 * seqno is idle (on whatever engine) our request is idle and the
	 * return 0 above is correct.
	 *
	 * The issue is that if the engine is switched, it is just as likely
	 * to report that it is busy (but since the switch happened, we know
	 * the request should be idle). So there is a small chance that a busy
	 * result is actually the wrong engine.
	 *
	 * So why don't we care?
	 *
	 * For starters, the busy ioctl is a heuristic that is by definition
	 * racy. Even with perfect serialisation in the driver, the hardware
	 * state is constantly advancing - the state we report to the user
	 * is stale.
	 *
	 * The critical information for the busy-ioctl is whether the object
	 * is idle as userspace relies on that to detect whether its next
	 * access will stall, or if it has missed submitting commands to
	 * the hardware allowing the GPU to stall. We never generate a
	 * false-positive for idleness, thus busy-ioctl is reliable at the
	 * most fundamental level, and we maintain the guarantee that a
	 * busy object left to itself will eventually become idle (and stay
	 * idle!).
	 *
	 * We allow ourselves the leeway of potentially misreporting the busy
	 * state because that is an optimisation heuristic that is constantly
	 * in flux. Being quickly able to detect the busy/idle state is much
	 * more important than accurate logging of exactly which engines were
	 * busy.
	 *
	 * For accuracy in reporting the engine, we could use
	 *
	 *	result = 0;
	 *	request = __i915_gem_active_get_rcu(active);
	 *	if (request) {
	 *		if (!i915_gem_request_completed(request))
	 *			result = flag(request->engine->exec_id);
	 *		i915_gem_request_put(request);
	 *	}
	 *
	 * but that still remains susceptible to both hardware and userspace
	 * races. So we accept making the result of that race slightly worse,
	 * given the rarity of the race and its low impact on the result.
	 */
	return flag(READ_ONCE(request->engine->exec_id));
4078 4079
}

4080
static __always_inline unsigned int
4081 4082 4083 4084 4085
busy_check_reader(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_read_flag);
}

4086
static __always_inline unsigned int
4087 4088 4089 4090 4091
busy_check_writer(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_write_id);
}

4092 4093
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4094
		    struct drm_file *file)
4095 4096
{
	struct drm_i915_gem_busy *args = data;
4097
	struct drm_i915_gem_object *obj;
4098
	unsigned long active;
4099
	int err;
4100

4101 4102 4103 4104 4105 4106
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
4107

4108
	args->busy = 0;
4109 4110 4111
	active = __I915_BO_ACTIVE(obj);
	if (active) {
		int idx;
4112

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
		/* Yes, the lookups are intentionally racy.
		 *
		 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
		 * to regard the value as stale and as our ABI guarantees
		 * forward progress, we confirm the status of each active
		 * request with the hardware.
		 *
		 * Even though we guard the pointer lookup by RCU, that only
		 * guarantees that the pointer and its contents remain
		 * dereferencable and does *not* mean that the request we
		 * have is the same as the one being tracked by the object.
		 *
		 * Consider that we lookup the request just as it is being
		 * retired and freed. We take a local copy of the pointer,
		 * but before we add its engine into the busy set, the other
		 * thread reallocates it and assigns it to a task on another
4129 4130 4131 4132 4133 4134
		 * engine with a fresh and incomplete seqno. Guarding against
		 * that requires careful serialisation and reference counting,
		 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
		 * instead we expect that if the result is busy, which engines
		 * are busy is not completely reliable - we only guarantee
		 * that the object was busy.
4135 4136 4137 4138 4139 4140
		 */

		for_each_active(active, idx)
			args->busy |= busy_check_reader(&obj->last_read[idx]);

		/* For ABI sanity, we only care that the write engine is in
4141 4142 4143 4144 4145
		 * the set of read engines. This should be ensured by the
		 * ordering of setting last_read/last_write in
		 * i915_vma_move_to_active(), and then in reverse in retire.
		 * However, for good measure, we always report the last_write
		 * request as a busy read as well as being a busy write.
4146 4147 4148 4149 4150 4151 4152
		 *
		 * We don't care that the set of active read/write engines
		 * may change during construction of the result, as it is
		 * equally liable to change before userspace can inspect
		 * the result.
		 */
		args->busy |= busy_check_writer(&obj->last_write);
4153
	}
4154

4155 4156 4157
out:
	rcu_read_unlock();
	return err;
4158 4159 4160 4161 4162 4163
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4164
	return i915_gem_ring_throttle(dev, file_priv);
4165 4166
}

4167 4168 4169 4170
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4171
	struct drm_i915_private *dev_priv = to_i915(dev);
4172
	struct drm_i915_gem_madvise *args = data;
4173
	struct drm_i915_gem_object *obj;
4174
	int err;
4175 4176 4177 4178 4179 4180 4181 4182 4183

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4184
	obj = i915_gem_object_lookup(file_priv, args->handle);
4185 4186 4187 4188 4189 4190
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4191

C
Chris Wilson 已提交
4192
	if (obj->mm.pages &&
4193
	    i915_gem_object_is_tiled(obj) &&
4194
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
C
Chris Wilson 已提交
4195 4196
		if (obj->mm.madv == I915_MADV_WILLNEED)
			__i915_gem_object_unpin_pages(obj);
4197
		if (args->madv == I915_MADV_WILLNEED)
C
Chris Wilson 已提交
4198
			__i915_gem_object_pin_pages(obj);
4199 4200
	}

C
Chris Wilson 已提交
4201 4202
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4203

C
Chris Wilson 已提交
4204
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4205
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4206 4207
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4208
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4209
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4210

4211
out:
4212
	i915_gem_object_put(obj);
4213
	return err;
4214 4215
}

4216 4217
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4218
{
4219 4220
	int i;

4221 4222
	mutex_init(&obj->mm.lock);

4223
	INIT_LIST_HEAD(&obj->global_list);
4224
	INIT_LIST_HEAD(&obj->userfault_link);
4225
	for (i = 0; i < I915_NUM_ENGINES; i++)
4226 4227 4228 4229
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
4230
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4231
	INIT_LIST_HEAD(&obj->vma_list);
4232
	INIT_LIST_HEAD(&obj->batch_pool_link);
4233

4234 4235
	obj->ops = ops;

4236
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
C
Chris Wilson 已提交
4237 4238 4239 4240

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4241

4242
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4243 4244
}

4245
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4246
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4247 4248 4249 4250
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4251 4252 4253 4254 4255 4256
/* Note we don't consider signbits :| */
#define overflows_type(x, T) \
	(sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))

struct drm_i915_gem_object *
i915_gem_object_create(struct drm_device *dev, u64 size)
4257
{
4258
	struct drm_i915_gem_object *obj;
4259
	struct address_space *mapping;
D
Daniel Vetter 已提交
4260
	gfp_t mask;
4261
	int ret;
4262

4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4274
	obj = i915_gem_object_alloc(dev);
4275
	if (obj == NULL)
4276
		return ERR_PTR(-ENOMEM);
4277

4278 4279 4280
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4281

4282 4283 4284 4285 4286 4287 4288
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4289
	mapping = obj->base.filp->f_mapping;
4290
	mapping_set_gfp_mask(mapping, mask);
4291

4292
	i915_gem_object_init(obj, &i915_gem_object_ops);
4293

4294 4295
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4296

4297 4298
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4314 4315
	trace_i915_gem_object_create(obj);

4316
	return obj;
4317 4318 4319 4320

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4321 4322
}

4323 4324 4325 4326 4327 4328 4329 4330
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4331
	if (obj->mm.madv != I915_MADV_WILLNEED)
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4347 4348
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4349
{
4350
	struct drm_i915_gem_object *obj, *on;
4351

4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}

		list_del(&obj->global_list);
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4379

4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
		__i915_gem_object_put_pages(obj);
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4410

4411 4412 4413 4414 4415 4416 4417
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4418

4419 4420 4421
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4422

4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4437

4438 4439 4440
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4441

4442
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4443
		obj->mm.madv = I915_MADV_DONTNEED;
4444

4445 4446 4447 4448
	if (obj->mm.pages && obj->mm.madv == I915_MADV_WILLNEED &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    i915_gem_object_is_tiled(obj))
		__i915_gem_object_unpin_pages(obj);
4449

4450 4451 4452 4453 4454 4455
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4456 4457
}

4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4469
int i915_gem_suspend(struct drm_device *dev)
4470
{
4471
	struct drm_i915_private *dev_priv = to_i915(dev);
4472
	int ret;
4473

4474 4475
	intel_suspend_gt_powersave(dev_priv);

4476
	mutex_lock(&dev->struct_mutex);
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4490 4491 4492
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4493
	if (ret)
4494
		goto err;
4495

4496
	i915_gem_retire_requests(dev_priv);
4497

4498
	i915_gem_context_lost(dev_priv);
4499 4500
	mutex_unlock(&dev->struct_mutex);

4501
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4502 4503
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4504
	flush_work(&dev_priv->mm.free_work);
4505

4506 4507 4508
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4509
	WARN_ON(dev_priv->gt.awake);
4510

4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
	if (HAS_HW_CONTEXTS(dev)) {
		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}

4535
	return 0;
4536 4537 4538 4539

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4540 4541
}

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4553
	dev_priv->gt.resume(dev_priv);
4554 4555 4556 4557

	mutex_unlock(&dev->struct_mutex);
}

4558 4559
void i915_gem_init_swizzling(struct drm_device *dev)
{
4560
	struct drm_i915_private *dev_priv = to_i915(dev);
4561

4562
	if (INTEL_INFO(dev)->gen < 5 ||
4563 4564 4565 4566 4567 4568
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4569
	if (IS_GEN5(dev_priv))
4570 4571
		return;

4572
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4573
	if (IS_GEN6(dev_priv))
4574
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4575
	else if (IS_GEN7(dev_priv))
4576
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4577
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4578
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4579 4580
	else
		BUG();
4581
}
D
Daniel Vetter 已提交
4582

4583
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4584 4585 4586 4587 4588 4589 4590
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4591
static void init_unused_rings(struct drm_i915_private *dev_priv)
4592
{
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4605 4606 4607
	}
}

4608 4609 4610
int
i915_gem_init_hw(struct drm_device *dev)
{
4611
	struct drm_i915_private *dev_priv = to_i915(dev);
4612
	struct intel_engine_cs *engine;
4613
	enum intel_engine_id id;
C
Chris Wilson 已提交
4614
	int ret;
4615

4616 4617
	dev_priv->gt.last_init_time = ktime_get();

4618 4619 4620
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4621
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4622
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4623

4624
	if (IS_HASWELL(dev_priv))
4625
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4626
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4627

4628
	if (HAS_PCH_NOP(dev_priv)) {
4629
		if (IS_IVYBRIDGE(dev_priv)) {
4630 4631 4632 4633 4634 4635 4636 4637
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4638 4639
	}

4640 4641
	i915_gem_init_swizzling(dev);

4642 4643 4644 4645 4646 4647
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4648
	init_unused_rings(dev_priv);
4649

4650
	BUG_ON(!dev_priv->kernel_context);
4651

4652 4653 4654 4655 4656 4657 4658
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4659
	for_each_engine(engine, dev_priv, id) {
4660
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4661
		if (ret)
4662
			goto out;
D
Daniel Vetter 已提交
4663
	}
4664

4665 4666
	intel_mocs_init_l3cc_table(dev);

4667
	/* We can't enable contexts until all firmware is loaded */
4668 4669 4670
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4671

4672 4673
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4674
	return ret;
4675 4676
}

4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4698 4699
int i915_gem_init(struct drm_device *dev)
{
4700
	struct drm_i915_private *dev_priv = to_i915(dev);
4701 4702 4703
	int ret;

	mutex_lock(&dev->struct_mutex);
4704

4705
	if (!i915.enable_execlists) {
4706
		dev_priv->gt.resume = intel_legacy_submission_resume;
4707
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4708
	} else {
4709
		dev_priv->gt.resume = intel_lr_context_resume;
4710
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4711 4712
	}

4713 4714 4715 4716 4717 4718 4719 4720
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4721
	i915_gem_init_userptr(dev_priv);
4722 4723 4724 4725

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4726

4727
	ret = i915_gem_context_init(dev);
4728 4729
	if (ret)
		goto out_unlock;
4730

4731
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4732
	if (ret)
4733
		goto out_unlock;
4734

4735
	ret = i915_gem_init_hw(dev);
4736
	if (ret == -EIO) {
4737
		/* Allow engine initialisation to fail by marking the GPU as
4738 4739 4740 4741
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4742
		i915_gem_set_wedged(dev_priv);
4743
		ret = 0;
4744
	}
4745 4746

out_unlock:
4747
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4748
	mutex_unlock(&dev->struct_mutex);
4749

4750
	return ret;
4751 4752
}

4753
void
4754
i915_gem_cleanup_engines(struct drm_device *dev)
4755
{
4756
	struct drm_i915_private *dev_priv = to_i915(dev);
4757
	struct intel_engine_cs *engine;
4758
	enum intel_engine_id id;
4759

4760
	for_each_engine(engine, dev_priv, id)
4761
		dev_priv->gt.cleanup_engine(engine);
4762 4763
}

4764 4765 4766
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4767
	struct drm_device *dev = &dev_priv->drm;
4768
	int i;
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4779
	if (intel_vgpu_active(dev_priv))
4780 4781 4782 4783
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4784 4785 4786 4787 4788 4789 4790
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4791 4792 4793 4794 4795
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4796
void
4797
i915_gem_load_init(struct drm_device *dev)
4798
{
4799
	struct drm_i915_private *dev_priv = to_i915(dev);
4800

4801
	dev_priv->objects =
4802 4803 4804 4805
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4806 4807 4808 4809 4810
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4811 4812 4813
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
4814 4815 4816
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_DESTROY_BY_RCU,
4817
				  NULL);
4818

4819
	INIT_LIST_HEAD(&dev_priv->context_list);
4820 4821
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4822 4823
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4824
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4825
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4826
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4827
			  i915_gem_retire_work_handler);
4828
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4829
			  i915_gem_idle_work_handler);
4830
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4831
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4832

4833 4834
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4835
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4836

4837 4838
	dev_priv->mm.interruptible = true;

4839 4840
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4841
	spin_lock_init(&dev_priv->fb_tracking.lock);
4842
}
4843

4844 4845 4846 4847 4848 4849 4850
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4851 4852 4853

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4854 4855
}

4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	intel_runtime_pm_get(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_runtime_pm_put(dev_priv);

	return 0;
}

4869 4870 4871
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4872 4873 4874 4875 4876
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4877 4878 4879 4880 4881 4882 4883 4884 4885 4886

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4887 4888 4889
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4890 4891
	 */

4892 4893
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4894

4895 4896 4897 4898 4899
	for (p = phases; *p; p++) {
		list_for_each_entry(obj, *p, global_list) {
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4900
	}
4901
	mutex_unlock(&dev_priv->drm.struct_mutex);
4902 4903 4904 4905

	return 0;
}

4906
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4907
{
4908
	struct drm_i915_file_private *file_priv = file->driver_priv;
4909
	struct drm_i915_gem_request *request;
4910 4911 4912 4913 4914

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4915
	spin_lock(&file_priv->mm.lock);
4916
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4917
		request->file_priv = NULL;
4918
	spin_unlock(&file_priv->mm.lock);
4919

4920
	if (!list_empty(&file_priv->rps.link)) {
4921
		spin_lock(&to_i915(dev)->rps.client_lock);
4922
		list_del(&file_priv->rps.link);
4923
		spin_unlock(&to_i915(dev)->rps.client_lock);
4924
	}
4925 4926 4927 4928 4929
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4930
	int ret;
4931 4932 4933 4934 4935 4936 4937 4938

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4939
	file_priv->dev_priv = to_i915(dev);
4940
	file_priv->file = file;
4941
	INIT_LIST_HEAD(&file_priv->rps.link);
4942 4943 4944 4945

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4946
	file_priv->bsd_engine = -1;
4947

4948 4949 4950
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4951

4952
	return ret;
4953 4954
}

4955 4956
/**
 * i915_gem_track_fb - update frontbuffer tracking
4957 4958 4959
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4960 4961 4962 4963
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4964 4965 4966 4967
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4968 4969 4970 4971 4972 4973 4974 4975 4976
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4977
	if (old) {
4978 4979
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4980 4981 4982
	}

	if (new) {
4983 4984
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4985 4986 4987
	}
}

4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4998
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4999
	if (IS_ERR(obj))
5000 5001 5002 5003 5004 5005
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
5006
	ret = i915_gem_object_pin_pages(obj);
5007 5008 5009
	if (ret)
		goto fail;

C
Chris Wilson 已提交
5010
	sg = obj->mm.pages;
5011
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
5012
	obj->mm.dirty = true; /* Backing store is now out of date */
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
5024
	i915_gem_object_put(obj);
5025 5026
	return ERR_PTR(ret);
}
5027 5028 5029 5030 5031 5032

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5033
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5034 5035 5036 5037 5038
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5039
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5164
	if (!obj->mm.dirty)
5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}