i915_gem.c 129.9 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_frontbuffer.h"
36
#include "intel_mocs.h"
37
#include <linux/dma-fence-array.h>
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/stop_machine.h>
42
#include <linux/swap.h>
J
Jesse Barnes 已提交
43
#include <linux/pci.h>
44
#include <linux/dma-buf.h>
45

46
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
47
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
48
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
49

50 51 52
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
53
	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
54 55
}

56 57
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
58 59 60
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

61 62 63 64 65 66
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

67
static int
68
insert_mappable_node(struct i915_ggtt *ggtt,
69 70 71
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
72
	return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
73 74
						   size, 0,
						   I915_COLOR_UNEVICTABLE,
75
						   0, ggtt->mappable_end,
76 77 78 79 80 81 82 83 84 85
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
88
				  u64 size)
89
{
90
	spin_lock(&dev_priv->mm.object_stat_lock);
91 92
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
93
	spin_unlock(&dev_priv->mm.object_stat_lock);
94 95 96
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
97
				     u64 size)
98
{
99
	spin_lock(&dev_priv->mm.object_stat_lock);
100 101
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
102
	spin_unlock(&dev_priv->mm.object_stat_lock);
103 104
}

105
static int
106
i915_gem_wait_for_error(struct i915_gpu_error *error)
107 108 109
{
	int ret;

110 111
	might_sleep();

112
	if (!i915_reset_in_progress(error))
113 114
		return 0;

115 116 117 118 119
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
120
	ret = wait_event_interruptible_timeout(error->reset_queue,
121
					       !i915_reset_in_progress(error),
122
					       I915_RESET_TIMEOUT);
123 124 125 126
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
127
		return ret;
128 129
	} else {
		return 0;
130
	}
131 132
}

133
int i915_mutex_lock_interruptible(struct drm_device *dev)
134
{
135
	struct drm_i915_private *dev_priv = to_i915(dev);
136 137
	int ret;

138
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
139 140 141 142 143 144 145 146 147
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
148

149 150
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
151
			    struct drm_file *file)
152
{
153
	struct drm_i915_private *dev_priv = to_i915(dev);
154
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
155
	struct drm_i915_gem_get_aperture *args = data;
156
	struct i915_vma *vma;
157
	size_t pinned;
158

159
	pinned = 0;
160
	mutex_lock(&dev->struct_mutex);
161
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
162
		if (i915_vma_is_pinned(vma))
163
			pinned += vma->node.size;
164
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
165
		if (i915_vma_is_pinned(vma))
166
			pinned += vma->node.size;
167
	mutex_unlock(&dev->struct_mutex);
168

169
	args->aper_size = ggtt->base.total;
170
	args->aper_available_size = args->aper_size - pinned;
171

172 173 174
	return 0;
}

175
static struct sg_table *
176
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
177
{
178
	struct address_space *mapping = obj->base.filp->f_mapping;
179
	drm_dma_handle_t *phys;
180 181
	struct sg_table *st;
	struct scatterlist *sg;
182
	char *vaddr;
183
	int i;
184

185
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
186
		return ERR_PTR(-EINVAL);
187

188 189 190 191 192 193 194 195 196 197 198
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
199 200 201 202 203
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
204 205 206 207
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
208 209 210 211 212 213

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

214
		put_page(page);
215 216 217
		vaddr += PAGE_SIZE;
	}

218
	i915_gem_chipset_flush(to_i915(obj->base.dev));
219 220

	st = kmalloc(sizeof(*st), GFP_KERNEL);
221 222 223 224
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
225 226 227

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
228 229
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
230 231 232 233 234
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
235

236
	sg_dma_address(sg) = phys->busaddr;
237 238
	sg_dma_len(sg) = obj->base.size;

239 240 241 242 243
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
244
	return st;
245 246 247
}

static void
248
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
249 250
				struct sg_table *pages,
				bool needs_clflush)
251
{
C
Chris Wilson 已提交
252
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
253

C
Chris Wilson 已提交
254 255
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
256

257 258
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
259
	    !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
260
		drm_clflush_sg(pages);
261 262 263 264 265 266 267 268 269

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
270
	__i915_gem_object_release_shmem(obj, pages, false);
271

C
Chris Wilson 已提交
272
	if (obj->mm.dirty) {
273
		struct address_space *mapping = obj->base.filp->f_mapping;
274
		char *vaddr = obj->phys_handle->vaddr;
275 276 277
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
278 279 280 281 282 283 284 285 286 287 288 289 290
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
291
			if (obj->mm.madv == I915_MADV_WILLNEED)
292
				mark_page_accessed(page);
293
			put_page(page);
294 295
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
296
		obj->mm.dirty = false;
297 298
	}

299 300
	sg_free_table(pages);
	kfree(pages);
301 302

	drm_pci_free(obj->base.dev, obj->phys_handle);
303 304 305 306 307
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
308
	i915_gem_object_unpin_pages(obj);
309 310 311 312 313 314 315 316
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

317
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
318 319 320
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
321 322 323
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
324

325 326 327 328
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
329
	 */
330 331 332 333 334 335
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
336 337 338 339 340
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

341 342 343 344 345 346 347 348 349 350 351 352 353
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

354 355 356 357 358
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
359
{
360
	struct drm_i915_gem_request *rq;
361

362
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
363

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
396 397
	}

398 399 400 401 402 403
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

404
	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
434 435
		int ret;

436 437
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
438 439 440
		if (ret)
			return ret;

441 442 443 444 445 446
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
			if (timeout <= 0)
				break;
447

448 449 450 451 452 453 454 455
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
456 457
	}

458 459 460 461 462 463
	if (excl && timeout > 0)
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
464 465
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

530 531 532 533 534 535
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
536
 */
537 538 539 540 541
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
542
{
543 544 545 546 547 548 549
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
550

551 552 553
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
554
	return timeout < 0 ? timeout : 0;
555 556 557 558 559 560 561 562 563
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

564 565 566 567
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
568
	int ret;
569

570 571
	if (align > obj->base.size)
		return -EINVAL;
572

573
	if (obj->ops == &i915_gem_phys_ops)
574 575
		return 0;

C
Chris Wilson 已提交
576
	if (obj->mm.madv != I915_MADV_WILLNEED)
577 578 579 580 581
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
582 583 584 585
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

586
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
587 588
	if (obj->mm.pages)
		return -EBUSY;
589 590 591

	obj->ops = &i915_gem_phys_ops;

C
Chris Wilson 已提交
592
	return i915_gem_object_pin_pages(obj);
593 594 595 596 597
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
598
		     struct drm_file *file)
599 600
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
601
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
602 603 604 605

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
606
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
607 608
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
609

610
	drm_clflush_virt_range(vaddr, args->size);
611
	i915_gem_chipset_flush(to_i915(obj->base.dev));
612

613
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
614
	return 0;
615 616
}

617
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
618
{
619
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
620 621 622 623
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
624
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
625
	kmem_cache_free(dev_priv->objects, obj);
626 627
}

628 629
static int
i915_gem_create(struct drm_file *file,
630
		struct drm_i915_private *dev_priv,
631 632
		uint64_t size,
		uint32_t *handle_p)
633
{
634
	struct drm_i915_gem_object *obj;
635 636
	int ret;
	u32 handle;
637

638
	size = roundup(size, PAGE_SIZE);
639 640
	if (size == 0)
		return -EINVAL;
641 642

	/* Allocate the new object */
643
	obj = i915_gem_object_create(dev_priv, size);
644 645
	if (IS_ERR(obj))
		return PTR_ERR(obj);
646

647
	ret = drm_gem_handle_create(file, &obj->base, &handle);
648
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
649
	i915_gem_object_put(obj);
650 651
	if (ret)
		return ret;
652

653
	*handle_p = handle;
654 655 656
	return 0;
}

657 658 659 660 661 662
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
663
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
664
	args->size = args->pitch * args->height;
665
	return i915_gem_create(file, to_i915(dev),
666
			       args->size, &args->handle);
667 668 669 670
}

/**
 * Creates a new mm object and returns a handle to it.
671 672 673
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
674 675 676 677 678
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
679
	struct drm_i915_private *dev_priv = to_i915(dev);
680
	struct drm_i915_gem_create *args = data;
681

682
	i915_gem_flush_free_objects(dev_priv);
683

684
	return i915_gem_create(file, dev_priv,
685
			       args->size, &args->handle);
686 687
}

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

714
static inline int
715 716
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

740 741 742 743 744 745
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
746
				    unsigned int *needs_clflush)
747 748 749
{
	int ret;

750
	lockdep_assert_held(&obj->base.dev->struct_mutex);
751

752
	*needs_clflush = 0;
753 754
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
755

756 757 758 759 760
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
761 762 763
	if (ret)
		return ret;

C
Chris Wilson 已提交
764
	ret = i915_gem_object_pin_pages(obj);
765 766 767
	if (ret)
		return ret;

768 769
	i915_gem_object_flush_gtt_write_domain(obj);

770 771 772 773 774 775
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
776 777
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
778 779 780

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
781 782 783
		if (ret)
			goto err_unpin;

784
		*needs_clflush = 0;
785 786
	}

787
	/* return with the pages pinned */
788
	return 0;
789 790 791 792

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
793 794 795 796 797 798 799
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

800 801
	lockdep_assert_held(&obj->base.dev->struct_mutex);

802 803 804 805
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

806 807 808 809 810 811
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
812 813 814
	if (ret)
		return ret;

C
Chris Wilson 已提交
815
	ret = i915_gem_object_pin_pages(obj);
816 817 818
	if (ret)
		return ret;

819 820
	i915_gem_object_flush_gtt_write_domain(obj);

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
838 839 840
		if (ret)
			goto err_unpin;

841 842 843 844 845 846 847
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
848
	obj->mm.dirty = true;
849
	/* return with the pages pinned */
850
	return 0;
851 852 853 854

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
855 856
}

857 858 859 860
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
861
	if (unlikely(swizzled)) {
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

879 880 881
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
882
shmem_pread_slow(struct page *page, int offset, int length,
883 884 885 886 887 888 889 890
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
891
		shmem_clflush_swizzled_range(vaddr + offset, length,
892
					     page_do_bit17_swizzling);
893 894

	if (page_do_bit17_swizzling)
895
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
896
	else
897
		ret = __copy_to_user(user_data, vaddr + offset, length);
898 899
	kunmap(page);

900
	return ret ? - EFAULT : 0;
901 902
}

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
979 980
{
	void *vaddr;
981
	unsigned long unwritten;
982 983

	/* We can use the cpu mem copy function because this is X86. */
984 985 986 987 988 989 990 991 992
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
993 994 995 996
	return unwritten;
}

static int
997 998
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
999
{
1000 1001
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1002
	struct drm_mm_node node;
1003 1004 1005
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1006 1007
	int ret;

1008 1009 1010 1011 1012 1013 1014
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1015 1016 1017
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1018
		ret = i915_vma_put_fence(vma);
1019 1020 1021 1022 1023
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1024
	if (IS_ERR(vma)) {
1025
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1026
		if (ret)
1027 1028
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1029 1030 1031 1032 1033 1034
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1035
	mutex_unlock(&i915->drm.struct_mutex);
1036

1037 1038 1039
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1056
					       node.start, I915_CACHE_NONE, 0);
1057 1058 1059 1060
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1061 1062 1063

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1064 1065 1066 1067 1068 1069 1070 1071 1072
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1073
	mutex_lock(&i915->drm.struct_mutex);
1074 1075 1076 1077
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1078
				       node.start, node.size);
1079 1080
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1081
		i915_vma_unpin(vma);
1082
	}
1083 1084 1085
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1086

1087 1088 1089
	return ret;
}

1090 1091
/**
 * Reads data from the object referenced by handle.
1092 1093 1094
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1095 1096 1097 1098 1099
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1100
		     struct drm_file *file)
1101 1102
{
	struct drm_i915_gem_pread *args = data;
1103
	struct drm_i915_gem_object *obj;
1104
	int ret;
1105

1106 1107 1108 1109
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1110
		       u64_to_user_ptr(args->data_ptr),
1111 1112 1113
		       args->size))
		return -EFAULT;

1114
	obj = i915_gem_object_lookup(file, args->handle);
1115 1116
	if (!obj)
		return -ENOENT;
1117

1118
	/* Bounds check source.  */
1119
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1120
		ret = -EINVAL;
1121
		goto out;
C
Chris Wilson 已提交
1122 1123
	}

C
Chris Wilson 已提交
1124 1125
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1126 1127 1128 1129
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1130
	if (ret)
1131
		goto out;
1132

1133
	ret = i915_gem_object_pin_pages(obj);
1134
	if (ret)
1135
		goto out;
1136

1137
	ret = i915_gem_shmem_pread(obj, args);
1138
	if (ret == -EFAULT || ret == -ENODEV)
1139
		ret = i915_gem_gtt_pread(obj, args);
1140

1141 1142
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1143
	i915_gem_object_put(obj);
1144
	return ret;
1145 1146
}

1147 1148
/* This is the fast write path which cannot handle
 * page faults in the source data
1149
 */
1150

1151 1152 1153 1154
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1155
{
1156
	void *vaddr;
1157
	unsigned long unwritten;
1158

1159
	/* We can use the cpu mem copy function because this is X86. */
1160 1161
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1162
						      user_data, length);
1163 1164 1165 1166 1167 1168 1169
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1170 1171 1172 1173

	return unwritten;
}

1174 1175 1176
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1177
 * @obj: i915 GEM object
1178
 * @args: pwrite arguments structure
1179
 */
1180
static int
1181 1182
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1183
{
1184
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1185 1186
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1187 1188 1189
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1190
	int ret;
1191

1192 1193 1194
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1195

1196
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1197
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1198
				       PIN_MAPPABLE | PIN_NONBLOCK);
1199 1200 1201
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1202
		ret = i915_vma_put_fence(vma);
1203 1204 1205 1206 1207
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1208
	if (IS_ERR(vma)) {
1209
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1210
		if (ret)
1211 1212
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1213
	}
D
Daniel Vetter 已提交
1214 1215 1216 1217 1218

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1219 1220
	mutex_unlock(&i915->drm.struct_mutex);

1221
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1222

1223 1224 1225 1226
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1227 1228
		/* Operation in this page
		 *
1229 1230 1231
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1232
		 */
1233
		u32 page_base = node.start;
1234 1235
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1246
		/* If we get a fault while copying data, then (presumably) our
1247 1248
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1249 1250
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1251
		 */
1252 1253 1254 1255
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1256
		}
1257

1258 1259 1260
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1261
	}
1262
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1263 1264

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1265
out_unpin:
1266 1267 1268
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1269
				       node.start, node.size);
1270 1271
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1272
		i915_vma_unpin(vma);
1273
	}
1274
out_unlock:
1275
	intel_runtime_pm_put(i915);
1276
	mutex_unlock(&i915->drm.struct_mutex);
1277
	return ret;
1278 1279
}

1280
static int
1281
shmem_pwrite_slow(struct page *page, int offset, int length,
1282 1283 1284 1285
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1286
{
1287 1288
	char *vaddr;
	int ret;
1289

1290
	vaddr = kmap(page);
1291
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1292
		shmem_clflush_swizzled_range(vaddr + offset, length,
1293
					     page_do_bit17_swizzling);
1294
	if (page_do_bit17_swizzling)
1295 1296
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1297
	else
1298
		ret = __copy_from_user(vaddr + offset, user_data, length);
1299
	if (needs_clflush_after)
1300
		shmem_clflush_swizzled_range(vaddr + offset, length,
1301
					     page_do_bit17_swizzling);
1302
	kunmap(page);
1303

1304
	return ret ? -EFAULT : 0;
1305 1306
}

1307 1308 1309 1310 1311
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1312
static int
1313 1314 1315 1316
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1317
{
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1350
	unsigned int needs_clflush;
1351 1352
	unsigned int offset, idx;
	int ret;
1353

1354
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1355 1356 1357
	if (ret)
		return ret;

1358 1359 1360 1361
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1362

1363 1364 1365
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1366

1367 1368 1369 1370 1371 1372 1373
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1374

1375 1376 1377 1378 1379 1380
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1381

1382 1383 1384
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1385

1386 1387 1388 1389
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1390
		if (ret)
1391
			break;
1392

1393 1394 1395
		remain -= length;
		user_data += length;
		offset = 0;
1396
	}
1397

1398
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1399
	i915_gem_obj_finish_shmem_access(obj);
1400
	return ret;
1401 1402 1403 1404
}

/**
 * Writes data to the object referenced by handle.
1405 1406 1407
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1408 1409 1410 1411 1412
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1413
		      struct drm_file *file)
1414 1415
{
	struct drm_i915_gem_pwrite *args = data;
1416
	struct drm_i915_gem_object *obj;
1417 1418 1419 1420 1421 1422
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1423
		       u64_to_user_ptr(args->data_ptr),
1424 1425 1426
		       args->size))
		return -EFAULT;

1427
	obj = i915_gem_object_lookup(file, args->handle);
1428 1429
	if (!obj)
		return -ENOENT;
1430

1431
	/* Bounds check destination. */
1432
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1433
		ret = -EINVAL;
1434
		goto err;
C
Chris Wilson 已提交
1435 1436
	}

C
Chris Wilson 已提交
1437 1438
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1439 1440 1441 1442 1443
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1444 1445 1446
	if (ret)
		goto err;

1447
	ret = i915_gem_object_pin_pages(obj);
1448
	if (ret)
1449
		goto err;
1450

D
Daniel Vetter 已提交
1451
	ret = -EFAULT;
1452 1453 1454 1455 1456 1457
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1458
	if (!i915_gem_object_has_struct_page(obj) ||
1459
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1460 1461
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1462 1463
		 * textures). Fallback to the shmem path in that case.
		 */
1464
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1465

1466
	if (ret == -EFAULT || ret == -ENOSPC) {
1467 1468
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1469
		else
1470
			ret = i915_gem_shmem_pwrite(obj, args);
1471
	}
1472

1473
	i915_gem_object_unpin_pages(obj);
1474
err:
C
Chris Wilson 已提交
1475
	i915_gem_object_put(obj);
1476
	return ret;
1477 1478
}

1479
static inline enum fb_op_origin
1480 1481
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1482 1483
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1484 1485
}

1486 1487 1488 1489 1490 1491 1492 1493
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1494
			break;
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1507
	list_move_tail(&obj->global_link, list);
1508 1509
}

1510
/**
1511 1512
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1513 1514 1515
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1516 1517 1518
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1519
			  struct drm_file *file)
1520 1521
{
	struct drm_i915_gem_set_domain *args = data;
1522
	struct drm_i915_gem_object *obj;
1523 1524
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1525
	int err;
1526

1527
	/* Only handle setting domains to types used by the CPU. */
1528
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1529 1530 1531 1532 1533 1534 1535 1536
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1537
	obj = i915_gem_object_lookup(file, args->handle);
1538 1539
	if (!obj)
		return -ENOENT;
1540

1541 1542 1543 1544
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1545
	err = i915_gem_object_wait(obj,
1546 1547 1548 1549
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1550
	if (err)
C
Chris Wilson 已提交
1551
		goto out;
1552

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1563
		goto out;
1564 1565 1566

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1567
		goto out_unpin;
1568

1569
	if (read_domains & I915_GEM_DOMAIN_GTT)
1570
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1571
	else
1572
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1573

1574 1575
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1576

1577
	mutex_unlock(&dev->struct_mutex);
1578

1579 1580 1581
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1582
out_unpin:
1583
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1584 1585
out:
	i915_gem_object_put(obj);
1586
	return err;
1587 1588 1589 1590
}

/**
 * Called when user space has done writes to this buffer
1591 1592 1593
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1594 1595 1596
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1597
			 struct drm_file *file)
1598 1599
{
	struct drm_i915_gem_sw_finish *args = data;
1600
	struct drm_i915_gem_object *obj;
1601
	int err = 0;
1602

1603
	obj = i915_gem_object_lookup(file, args->handle);
1604 1605
	if (!obj)
		return -ENOENT;
1606 1607

	/* Pinned buffers may be scanout, so flush the cache */
1608 1609 1610 1611 1612 1613 1614
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1615

C
Chris Wilson 已提交
1616
	i915_gem_object_put(obj);
1617
	return err;
1618 1619 1620
}

/**
1621 1622 1623 1624 1625
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1626 1627 1628
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1639 1640 1641
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1642
		    struct drm_file *file)
1643 1644
{
	struct drm_i915_gem_mmap *args = data;
1645
	struct drm_i915_gem_object *obj;
1646 1647
	unsigned long addr;

1648 1649 1650
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1651
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1652 1653
		return -ENODEV;

1654 1655
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1656
		return -ENOENT;
1657

1658 1659 1660
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1661
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1662
		i915_gem_object_put(obj);
1663 1664 1665
		return -EINVAL;
	}

1666
	addr = vm_mmap(obj->base.filp, 0, args->size,
1667 1668
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1669 1670 1671 1672
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1673
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1674
			i915_gem_object_put(obj);
1675 1676
			return -EINTR;
		}
1677 1678 1679 1680 1681 1682 1683
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1684 1685

		/* This may race, but that's ok, it only gets set */
1686
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1687
	}
C
Chris Wilson 已提交
1688
	i915_gem_object_put(obj);
1689 1690 1691 1692 1693 1694 1695 1696
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1697 1698
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1699
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1700 1701
}

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1763 1764
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1765
		min_t(unsigned int, chunk,
1766
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1767 1768 1769 1770 1771 1772 1773 1774

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1775 1776
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1777
 * @area: CPU VMA in question
1778
 * @vmf: fault info
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1790 1791 1792
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1793
 */
C
Chris Wilson 已提交
1794
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1795
{
1796
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1797
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1798
	struct drm_device *dev = obj->base.dev;
1799 1800
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1801
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1802
	struct i915_vma *vma;
1803
	pgoff_t page_offset;
1804
	unsigned int flags;
1805
	int ret;
1806

1807
	/* We don't use vmf->pgoff since that has the fake offset */
1808
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1809

C
Chris Wilson 已提交
1810 1811
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1812
	/* Try to flush the object off the GPU first without holding the lock.
1813
	 * Upon acquiring the lock, we will perform our sanity checks and then
1814 1815 1816
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1817 1818 1819 1820
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1821
	if (ret)
1822 1823
		goto err;

1824 1825 1826 1827
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1828 1829 1830 1831 1832
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1833

1834
	/* Access to snoopable pages through the GTT is incoherent. */
1835
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1836
		ret = -EFAULT;
1837
		goto err_unlock;
1838 1839
	}

1840 1841 1842 1843 1844 1845 1846 1847
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1848
	/* Now pin it into the GTT as needed */
1849
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1850 1851
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1852
		struct i915_ggtt_view view =
1853
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1854

1855 1856 1857 1858 1859
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1860 1861
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1862 1863
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1864
		goto err_unlock;
C
Chris Wilson 已提交
1865
	}
1866

1867 1868
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1869
		goto err_unpin;
1870

1871
	ret = i915_vma_get_fence(vma);
1872
	if (ret)
1873
		goto err_unpin;
1874

1875
	/* Mark as being mmapped into userspace for later revocation */
1876
	assert_rpm_wakelock_held(dev_priv);
1877 1878 1879
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1880
	/* Finally, remap it using the new GTT offset */
1881
	ret = remap_io_mapping(area,
1882
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1883 1884 1885
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1886

1887
err_unpin:
C
Chris Wilson 已提交
1888
	__i915_vma_unpin(vma);
1889
err_unlock:
1890
	mutex_unlock(&dev->struct_mutex);
1891 1892
err_rpm:
	intel_runtime_pm_put(dev_priv);
1893
	i915_gem_object_unpin_pages(obj);
1894
err:
1895
	switch (ret) {
1896
	case -EIO:
1897 1898 1899 1900 1901 1902 1903
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1904 1905 1906
			ret = VM_FAULT_SIGBUS;
			break;
		}
1907
	case -EAGAIN:
D
Daniel Vetter 已提交
1908 1909 1910 1911
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1912
		 */
1913 1914
	case 0:
	case -ERESTARTSYS:
1915
	case -EINTR:
1916 1917 1918 1919 1920
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1921 1922
		ret = VM_FAULT_NOPAGE;
		break;
1923
	case -ENOMEM:
1924 1925
		ret = VM_FAULT_OOM;
		break;
1926
	case -ENOSPC:
1927
	case -EFAULT:
1928 1929
		ret = VM_FAULT_SIGBUS;
		break;
1930
	default:
1931
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1932 1933
		ret = VM_FAULT_SIGBUS;
		break;
1934
	}
1935
	return ret;
1936 1937
}

1938 1939 1940 1941
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1942
 * Preserve the reservation of the mmapping with the DRM core code, but
1943 1944 1945 1946 1947 1948 1949 1950 1951
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1952
void
1953
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1954
{
1955 1956
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1957 1958 1959
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1960 1961 1962 1963
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1964
	 */
1965
	lockdep_assert_held(&i915->drm.struct_mutex);
1966
	intel_runtime_pm_get(i915);
1967

1968
	if (list_empty(&obj->userfault_link))
1969
		goto out;
1970

1971
	list_del_init(&obj->userfault_link);
1972 1973
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1974 1975 1976 1977 1978 1979 1980 1981 1982

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
1983 1984 1985

out:
	intel_runtime_pm_put(i915);
1986 1987
}

1988
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1989
{
1990
	struct drm_i915_gem_object *obj, *on;
1991
	int i;
1992

1993 1994 1995 1996 1997 1998
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
1999

2000 2001 2002
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2003 2004 2005
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

		if (WARN_ON(reg->pin_count))
			continue;

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2023 2024
}

2025 2026
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2027
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2028
	int err;
2029

2030
	err = drm_gem_create_mmap_offset(&obj->base);
2031
	if (likely(!err))
2032
		return 0;
2033

2034 2035 2036 2037 2038
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2039

2040
		i915_gem_drain_freed_objects(dev_priv);
2041
		err = drm_gem_create_mmap_offset(&obj->base);
2042 2043 2044 2045
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2046

2047
	return err;
2048 2049 2050 2051 2052 2053 2054
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2055
int
2056 2057
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2058
		  uint32_t handle,
2059
		  uint64_t *offset)
2060
{
2061
	struct drm_i915_gem_object *obj;
2062 2063
	int ret;

2064
	obj = i915_gem_object_lookup(file, handle);
2065 2066
	if (!obj)
		return -ENOENT;
2067

2068
	ret = i915_gem_object_create_mmap_offset(obj);
2069 2070
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2071

C
Chris Wilson 已提交
2072
	i915_gem_object_put(obj);
2073
	return ret;
2074 2075
}

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2097
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2098 2099
}

D
Daniel Vetter 已提交
2100 2101 2102
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2103
{
2104
	i915_gem_object_free_mmap_offset(obj);
2105

2106 2107
	if (obj->base.filp == NULL)
		return;
2108

D
Daniel Vetter 已提交
2109 2110 2111 2112 2113
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2114
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2115
	obj->mm.madv = __I915_MADV_PURGED;
D
Daniel Vetter 已提交
2116
}
2117

2118
/* Try to discard unwanted pages */
2119
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2120
{
2121 2122
	struct address_space *mapping;

2123 2124 2125
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2126
	switch (obj->mm.madv) {
2127 2128 2129 2130 2131 2132 2133 2134 2135
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2136
	mapping = obj->base.filp->f_mapping,
2137
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2138 2139
}

2140
static void
2141 2142
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2143
{
2144 2145
	struct sgt_iter sgt_iter;
	struct page *page;
2146

2147
	__i915_gem_object_release_shmem(obj, pages, true);
2148

2149
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2150

2151
	if (i915_gem_object_needs_bit17_swizzle(obj))
2152
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2153

2154
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2155
		if (obj->mm.dirty)
2156
			set_page_dirty(page);
2157

C
Chris Wilson 已提交
2158
		if (obj->mm.madv == I915_MADV_WILLNEED)
2159
			mark_page_accessed(page);
2160

2161
		put_page(page);
2162
	}
C
Chris Wilson 已提交
2163
	obj->mm.dirty = false;
2164

2165 2166
	sg_free_table(pages);
	kfree(pages);
2167
}
C
Chris Wilson 已提交
2168

2169 2170 2171 2172 2173
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2174 2175
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2176 2177
}

2178 2179
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2180
{
2181
	struct sg_table *pages;
2182

C
Chris Wilson 已提交
2183
	if (i915_gem_object_has_pinned_pages(obj))
2184
		return;
2185

2186
	GEM_BUG_ON(obj->bind_count);
2187 2188 2189 2190
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2191
	mutex_lock_nested(&obj->mm.lock, subclass);
2192 2193
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2194

2195 2196 2197
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2198 2199
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2200

C
Chris Wilson 已提交
2201
	if (obj->mm.mapping) {
2202 2203
		void *ptr;

C
Chris Wilson 已提交
2204
		ptr = ptr_mask_bits(obj->mm.mapping);
2205 2206
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2207
		else
2208 2209
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2210
		obj->mm.mapping = NULL;
2211 2212
	}

2213 2214
	__i915_gem_object_reset_page_iter(obj);

2215
	obj->ops->put_pages(obj, pages);
2216 2217
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2218 2219
}

2220 2221 2222 2223 2224 2225 2226 2227 2228
static void i915_sg_trim(struct sg_table *orig_st)
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
		return;

2229
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2230 2231 2232 2233 2234 2235 2236 2237
		return;

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2238
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2239 2240 2241 2242 2243 2244

	sg_free_table(orig_st);

	*orig_st = new_st;
}

2245
static struct sg_table *
C
Chris Wilson 已提交
2246
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2247
{
2248
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2249 2250
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2251
	struct address_space *mapping;
2252 2253
	struct sg_table *st;
	struct scatterlist *sg;
2254
	struct sgt_iter sgt_iter;
2255
	struct page *page;
2256
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2257
	unsigned int max_segment;
I
Imre Deak 已提交
2258
	int ret;
C
Chris Wilson 已提交
2259
	gfp_t gfp;
2260

C
Chris Wilson 已提交
2261 2262 2263 2264
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2265 2266
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2267

2268
	max_segment = swiotlb_max_segment();
2269
	if (!max_segment)
2270
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2271

2272 2273
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2274
		return ERR_PTR(-ENOMEM);
2275

2276
rebuild_st:
2277 2278
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2279
		return ERR_PTR(-ENOMEM);
2280
	}
2281

2282 2283 2284 2285 2286
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2287
	mapping = obj->base.filp->f_mapping;
2288
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2289
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2290 2291 2292
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2293 2294
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2295 2296 2297 2298 2299
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2300 2301 2302 2303 2304 2305 2306
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2307
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2308 2309
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
2310
				goto err_sg;
I
Imre Deak 已提交
2311
			}
C
Chris Wilson 已提交
2312
		}
2313 2314 2315
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2316 2317 2318 2319 2320 2321 2322 2323
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2324 2325 2326

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2327
	}
2328
	if (sg) /* loop terminated early; short sg table */
2329
		sg_mark_end(sg);
2330

2331 2332 2333
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2334
	ret = i915_gem_gtt_prepare_pages(obj, st);
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2354

2355
	if (i915_gem_object_needs_bit17_swizzle(obj))
2356
		i915_gem_object_do_bit_17_swizzle(obj, st);
2357

2358
	return st;
2359

2360
err_sg:
2361
	sg_mark_end(sg);
2362
err_pages:
2363 2364
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2365 2366
	sg_free_table(st);
	kfree(st);
2367 2368 2369 2370 2371 2372 2373 2374 2375

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2376 2377 2378
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2379 2380 2381 2382 2383 2384
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2385
	lockdep_assert_held(&obj->mm.lock);
2386 2387 2388 2389 2390

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2391 2392 2393 2394 2395 2396 2397

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2398 2399 2400 2401 2402 2403
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2404 2405
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2417 2418
}

2419
/* Ensure that the associated pages are gathered from the backing storage
2420
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2421
 * multiple times before they are released by a single call to
2422
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2423 2424 2425
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2426
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2427
{
2428
	int err;
2429

2430 2431 2432
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2433

2434 2435 2436 2437
	if (unlikely(!obj->mm.pages)) {
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2438

2439 2440 2441
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2442

2443 2444
unlock:
	mutex_unlock(&obj->mm.lock);
2445
	return err;
2446 2447
}

2448
/* The 'mapping' part of i915_gem_object_pin_map() below */
2449 2450
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2451 2452
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2453
	struct sg_table *sgt = obj->mm.pages;
2454 2455
	struct sgt_iter sgt_iter;
	struct page *page;
2456 2457
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2458
	unsigned long i = 0;
2459
	pgprot_t pgprot;
2460 2461 2462
	void *addr;

	/* A single page can always be kmapped */
2463
	if (n_pages == 1 && type == I915_MAP_WB)
2464 2465
		return kmap(sg_page(sgt->sgl));

2466 2467 2468 2469 2470 2471
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2472

2473 2474
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2475 2476 2477 2478

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2479 2480 2481 2482 2483 2484 2485 2486 2487
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2488

2489 2490
	if (pages != stack_pages)
		drm_free_large(pages);
2491 2492 2493 2494 2495

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2496 2497
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2498
{
2499 2500 2501
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2502 2503
	int ret;

2504
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2505

2506
	ret = mutex_lock_interruptible(&obj->mm.lock);
2507 2508 2509
	if (ret)
		return ERR_PTR(ret);

2510 2511
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2512 2513 2514 2515
		if (unlikely(!obj->mm.pages)) {
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2516

2517 2518 2519
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2520 2521 2522
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2523

C
Chris Wilson 已提交
2524
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2525 2526 2527
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2528
			goto err_unpin;
2529
		}
2530 2531 2532 2533 2534 2535

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2536
		ptr = obj->mm.mapping = NULL;
2537 2538
	}

2539 2540 2541 2542
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2543
			goto err_unpin;
2544 2545
		}

C
Chris Wilson 已提交
2546
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2547 2548
	}

2549 2550
out_unlock:
	mutex_unlock(&obj->mm.lock);
2551 2552
	return ptr;

2553 2554 2555 2556 2557
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2558 2559
}

2560
static bool ban_context(const struct i915_gem_context *ctx)
2561
{
2562 2563
	return (i915_gem_context_is_bannable(ctx) &&
		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2564 2565
}

2566
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2567
{
2568
	ctx->guilty_count++;
2569 2570 2571
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
	if (ban_context(ctx))
		i915_gem_context_set_banned(ctx);
2572 2573

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2574
			 ctx->name, ctx->ban_score,
2575
			 yesno(i915_gem_context_is_banned(ctx)));
2576

2577
	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2578 2579
		return;

2580 2581 2582
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2583 2584 2585 2586
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2587
	ctx->active_count++;
2588 2589
}

2590
struct drm_i915_gem_request *
2591
i915_gem_find_active_request(struct intel_engine_cs *engine)
2592
{
2593 2594
	struct drm_i915_gem_request *request;

2595 2596 2597 2598 2599 2600 2601 2602
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2603
	list_for_each_entry(request, &engine->timeline->requests, link) {
C
Chris Wilson 已提交
2604
		if (__i915_gem_request_completed(request))
2605
			continue;
2606

2607
		return request;
2608
	}
2609 2610 2611 2612

	return NULL;
}

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
static void reset_request(struct drm_i915_gem_request *request)
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2628 2629

	dma_fence_set_error(&request->fence, -EIO);
2630 2631
}

2632 2633 2634 2635 2636
void i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
{
	i915_gem_revoke_fences(dev_priv);
}

2637
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2638 2639
{
	struct drm_i915_gem_request *request;
2640
	struct i915_gem_context *hung_ctx;
C
Chris Wilson 已提交
2641
	struct intel_timeline *timeline;
2642
	unsigned long flags;
2643 2644
	bool ring_hung;

2645 2646 2647
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2648
	request = i915_gem_find_active_request(engine);
2649
	if (!request)
2650 2651
		return;

2652 2653
	hung_ctx = request->ctx;

2654 2655 2656 2657 2658
	ring_hung = engine->hangcheck.stalled;
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned, was guilty? %s\n",
				 engine->name,
				 yesno(ring_hung));
2659
		ring_hung = false;
2660
	}
2661

2662
	if (ring_hung) {
2663
		i915_gem_context_mark_guilty(hung_ctx);
2664 2665
		reset_request(request);
	} else {
2666
		i915_gem_context_mark_innocent(hung_ctx);
2667
		dma_fence_set_error(&request->fence, -EAGAIN);
2668
		return;
2669
	}
2670 2671

	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2672
			 engine->name, request->global_seqno);
2673 2674 2675 2676

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);

2677 2678 2679 2680
	/* If this context is now banned, skip all of its pending requests. */
	if (!i915_gem_context_is_banned(hung_ctx))
		return;

2681 2682 2683 2684 2685 2686 2687 2688
	/* Users of the default context do not rely on logical state
	 * preserved between batches. They have to emit full state on
	 * every batch and so it is safe to execute queued requests following
	 * the hang.
	 *
	 * Other contexts preserve state, now corrupt. We want to skip all
	 * queued requests that reference the corrupt context.
	 */
2689
	if (i915_gem_context_is_default(hung_ctx))
2690 2691
		return;

2692
	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2693 2694 2695 2696

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

2697
	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2698
		if (request->ctx == hung_ctx)
2699
			reset_request(request);
C
Chris Wilson 已提交
2700 2701 2702

	list_for_each_entry(request, &timeline->requests, link)
		reset_request(request);
2703 2704 2705

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2706
}
2707

2708
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2709
{
2710
	struct intel_engine_cs *engine;
2711
	enum intel_engine_id id;
2712

2713 2714
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2715 2716
	i915_gem_retire_requests(dev_priv);

2717
	for_each_engine(engine, dev_priv, id)
2718 2719
		i915_gem_reset_engine(engine);

2720
	i915_gem_restore_fences(dev_priv);
2721 2722 2723 2724 2725 2726 2727

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2728 2729 2730 2731
}

static void nop_submit_request(struct drm_i915_gem_request *request)
{
2732
	dma_fence_set_error(&request->fence, -EIO);
2733 2734
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2735 2736
}

2737
static void engine_set_wedged(struct intel_engine_cs *engine)
2738
{
2739 2740 2741
	struct drm_i915_gem_request *request;
	unsigned long flags;

2742 2743 2744 2745 2746 2747
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
2748
	engine->submit_request = nop_submit_request;
2749

2750 2751 2752 2753 2754 2755
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
		dma_fence_set_error(&request->fence, -EIO);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

2756 2757 2758 2759
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2760
	intel_engine_init_global_seqno(engine,
2761
				       intel_engine_last_submit(engine));
2762

2763 2764 2765 2766 2767 2768
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2769
	if (i915.enable_execlists) {
2770 2771 2772 2773
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline->lock, flags);

2774 2775 2776
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2777 2778
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
2779 2780

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2781
	}
2782 2783
}

2784
static int __i915_gem_set_wedged_BKL(void *data)
2785
{
2786
	struct drm_i915_private *i915 = data;
2787
	struct intel_engine_cs *engine;
2788
	enum intel_engine_id id;
2789

2790
	for_each_engine(engine, i915, id)
2791
		engine_set_wedged(engine);
2792 2793 2794 2795 2796 2797

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
2798 2799
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2800

2801
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2802

2803
	i915_gem_context_lost(dev_priv);
2804
	i915_gem_retire_requests(dev_priv);
2805 2806

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2807 2808
}

2809
static void
2810 2811
i915_gem_retire_work_handler(struct work_struct *work)
{
2812
	struct drm_i915_private *dev_priv =
2813
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2814
	struct drm_device *dev = &dev_priv->drm;
2815

2816
	/* Come back later if the device is busy... */
2817
	if (mutex_trylock(&dev->struct_mutex)) {
2818
		i915_gem_retire_requests(dev_priv);
2819
		mutex_unlock(&dev->struct_mutex);
2820
	}
2821 2822 2823 2824 2825

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2826 2827
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2828 2829
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2830
				   round_jiffies_up_relative(HZ));
2831
	}
2832
}
2833

2834 2835 2836 2837
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2838
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2839
	struct drm_device *dev = &dev_priv->drm;
2840
	struct intel_engine_cs *engine;
2841
	enum intel_engine_id id;
2842 2843 2844 2845 2846
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

2847 2848 2849 2850 2851 2852 2853
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
		 intel_execlists_idle(dev_priv), 10);

2854
	if (READ_ONCE(dev_priv->gt.active_requests))
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2868 2869 2870 2871 2872 2873 2874
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

2875
	if (dev_priv->gt.active_requests)
2876
		goto out_unlock;
2877

2878 2879 2880
	if (wait_for(intel_execlists_idle(dev_priv), 10))
		DRM_ERROR("Timeout waiting for engines to idle\n");

2881
	for_each_engine(engine, dev_priv, id)
2882
		i915_gem_batch_pool_fini(&engine->batch_pool);
2883

2884 2885 2886
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2887

2888 2889 2890 2891 2892
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2893

2894 2895 2896 2897
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2898
	}
2899 2900
}

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
2911 2912 2913 2914 2915 2916

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
2917 2918 2919
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

2931 2932
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2933 2934 2935
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2960 2961
	ktime_t start;
	long ret;
2962

2963 2964 2965
	if (args->flags != 0)
		return -EINVAL;

2966
	obj = i915_gem_object_lookup(file, args->bo_handle);
2967
	if (!obj)
2968 2969
		return -ENOENT;

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
2981 2982
	}

C
Chris Wilson 已提交
2983
	i915_gem_object_put(obj);
2984
	return ret;
2985 2986
}

2987
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
2988
{
2989
	int ret, i;
2990

2991 2992 2993 2994 2995
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
2996

2997 2998 2999 3000 3001 3002 3003
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3016 3017 3018
		if (ret)
			return ret;
	}
3019

3020
	return 0;
3021 3022
}

3023 3024
void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			     bool force)
3025 3026 3027 3028 3029
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
C
Chris Wilson 已提交
3030
	if (!obj->mm.pages)
3031
		return;
3032

3033 3034 3035 3036
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3037
	if (obj->stolen || obj->phys_handle)
3038
		return;
3039

3040 3041 3042 3043 3044 3045 3046 3047
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3048 3049
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3050
		return;
3051
	}
3052

C
Chris Wilson 已提交
3053
	trace_i915_gem_object_clflush(obj);
C
Chris Wilson 已提交
3054
	drm_clflush_sg(obj->mm.pages);
3055
	obj->cache_dirty = false;
3056 3057 3058 3059
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3060
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3061
{
3062
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3063

3064
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3065 3066
		return;

3067
	/* No actual flushing is required for the GTT write domain.  Writes
3068
	 * to it "immediately" go to main memory as far as we know, so there's
3069
	 * no chipset flush.  It also doesn't land in render cache.
3070 3071 3072 3073
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3074 3075 3076 3077 3078 3079 3080
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3081
	 */
3082
	wmb();
3083
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3084
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3085

3086
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3087

3088
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3089
	trace_i915_gem_object_change_domain(obj,
3090
					    obj->base.read_domains,
3091
					    I915_GEM_DOMAIN_GTT);
3092 3093 3094 3095
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3096
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3097
{
3098
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3099 3100
		return;

3101
	i915_gem_clflush_object(obj, obj->pin_display);
3102
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3103

3104
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3105
	trace_i915_gem_object_change_domain(obj,
3106
					    obj->base.read_domains,
3107
					    I915_GEM_DOMAIN_CPU);
3108 3109
}

3110 3111
/**
 * Moves a single object to the GTT read, and possibly write domain.
3112 3113
 * @obj: object to act on
 * @write: ask for write access or read only
3114 3115 3116 3117
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3118
int
3119
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3120
{
C
Chris Wilson 已提交
3121
	uint32_t old_write_domain, old_read_domains;
3122
	int ret;
3123

3124
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3125

3126 3127 3128 3129 3130 3131
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3132 3133 3134
	if (ret)
		return ret;

3135 3136 3137
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3138 3139 3140 3141 3142 3143 3144 3145
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3146
	ret = i915_gem_object_pin_pages(obj);
3147 3148 3149
	if (ret)
		return ret;

3150
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3151

3152 3153 3154 3155 3156 3157 3158
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3159 3160
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3161

3162 3163 3164
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3165
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3166
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3167
	if (write) {
3168 3169
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3170
		obj->mm.dirty = true;
3171 3172
	}

C
Chris Wilson 已提交
3173 3174 3175 3176
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

C
Chris Wilson 已提交
3177
	i915_gem_object_unpin_pages(obj);
3178 3179 3180
	return 0;
}

3181 3182
/**
 * Changes the cache-level of an object across all VMA.
3183 3184
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3196 3197 3198
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3199
	struct i915_vma *vma;
3200
	int ret;
3201

3202 3203
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3204
	if (obj->cache_level == cache_level)
3205
		return 0;
3206

3207 3208 3209 3210 3211
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3212 3213
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3214 3215 3216
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3217
		if (i915_vma_is_pinned(vma)) {
3218 3219 3220 3221
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3234 3235
	}

3236 3237 3238 3239 3240 3241 3242
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3243
	if (obj->bind_count) {
3244 3245 3246 3247
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3248 3249 3250 3251 3252 3253
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3254 3255 3256
		if (ret)
			return ret;

3257 3258
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3275 3276 3277 3278 3279
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3280 3281 3282 3283 3284 3285 3286 3287
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3288 3289
		}

3290
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3291 3292 3293 3294 3295 3296 3297
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3298 3299
	}

3300 3301 3302 3303
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
	    cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		obj->cache_dirty = true;

3304
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3305 3306 3307
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3308 3309 3310
	return 0;
}

B
Ben Widawsky 已提交
3311 3312
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3313
{
B
Ben Widawsky 已提交
3314
	struct drm_i915_gem_caching *args = data;
3315
	struct drm_i915_gem_object *obj;
3316
	int err = 0;
3317

3318 3319 3320 3321 3322 3323
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3324

3325 3326 3327 3328 3329 3330
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3331 3332 3333 3334
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3335 3336 3337 3338
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3339 3340 3341
out:
	rcu_read_unlock();
	return err;
3342 3343
}

B
Ben Widawsky 已提交
3344 3345
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3346
{
3347
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3348
	struct drm_i915_gem_caching *args = data;
3349 3350 3351 3352
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3353 3354
	switch (args->caching) {
	case I915_CACHING_NONE:
3355 3356
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3357
	case I915_CACHING_CACHED:
3358 3359 3360 3361 3362 3363
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3364
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3365 3366
			return -ENODEV;

3367 3368
		level = I915_CACHE_LLC;
		break;
3369
	case I915_CACHING_DISPLAY:
3370
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3371
		break;
3372 3373 3374 3375
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3376 3377
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3378
		return ret;
B
Ben Widawsky 已提交
3379

3380 3381
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3382 3383 3384 3385 3386
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);
3387
	i915_gem_object_put(obj);
3388 3389 3390 3391 3392
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3393
/*
3394 3395 3396
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3397
 */
C
Chris Wilson 已提交
3398
struct i915_vma *
3399 3400
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3401
				     const struct i915_ggtt_view *view)
3402
{
C
Chris Wilson 已提交
3403
	struct i915_vma *vma;
3404
	u32 old_read_domains, old_write_domain;
3405 3406
	int ret;

3407 3408
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3409 3410 3411
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3412
	obj->pin_display++;
3413

3414 3415 3416 3417 3418 3419 3420 3421 3422
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3423
	ret = i915_gem_object_set_cache_level(obj,
3424 3425
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3426 3427
	if (ret) {
		vma = ERR_PTR(ret);
3428
		goto err_unpin_display;
C
Chris Wilson 已提交
3429
	}
3430

3431 3432
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3433 3434 3435 3436
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3437
	 */
3438
	vma = ERR_PTR(-ENOSPC);
3439
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3440 3441
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3458
	if (IS_ERR(vma))
3459
		goto err_unpin_display;
3460

3461 3462
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3463 3464 3465 3466 3467
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
	if (obj->cache_dirty) {
		i915_gem_clflush_object(obj, true);
		intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
	}
3468

3469
	old_write_domain = obj->base.write_domain;
3470
	old_read_domains = obj->base.read_domains;
3471 3472 3473 3474

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3475
	obj->base.write_domain = 0;
3476
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3477 3478 3479

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3480
					    old_write_domain);
3481

C
Chris Wilson 已提交
3482
	return vma;
3483 3484

err_unpin_display:
3485
	obj->pin_display--;
C
Chris Wilson 已提交
3486
	return vma;
3487 3488 3489
}

void
C
Chris Wilson 已提交
3490
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3491
{
3492
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3493

C
Chris Wilson 已提交
3494
	if (WARN_ON(vma->obj->pin_display == 0))
3495 3496
		return;

3497
	if (--vma->obj->pin_display == 0)
3498
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3499

3500 3501 3502 3503
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
	if (!i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);

C
Chris Wilson 已提交
3504
	i915_vma_unpin(vma);
3505 3506
}

3507 3508
/**
 * Moves a single object to the CPU read, and possibly write domain.
3509 3510
 * @obj: object to act on
 * @write: requesting write or read-only access
3511 3512 3513 3514
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3515
int
3516
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3517
{
C
Chris Wilson 已提交
3518
	uint32_t old_write_domain, old_read_domains;
3519 3520
	int ret;

3521
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3522

3523 3524 3525 3526 3527 3528
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3529 3530 3531
	if (ret)
		return ret;

3532 3533 3534
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3535
	i915_gem_object_flush_gtt_write_domain(obj);
3536

3537 3538
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3539

3540
	/* Flush the CPU cache if it's still invalid. */
3541
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3542
		i915_gem_clflush_object(obj, false);
3543

3544
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3545 3546 3547 3548 3549
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3550
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3551 3552 3553 3554 3555

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3556 3557
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3558
	}
3559

C
Chris Wilson 已提交
3560 3561 3562 3563
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3564 3565 3566
	return 0;
}

3567 3568 3569
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3570 3571 3572 3573
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3574 3575 3576
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3577
static int
3578
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3579
{
3580
	struct drm_i915_private *dev_priv = to_i915(dev);
3581
	struct drm_i915_file_private *file_priv = file->driver_priv;
3582
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3583
	struct drm_i915_gem_request *request, *target = NULL;
3584
	long ret;
3585

3586 3587 3588
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3589

3590
	spin_lock(&file_priv->mm.lock);
3591
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3592 3593
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3594

3595 3596 3597 3598 3599 3600 3601
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3602
		target = request;
3603
	}
3604
	if (target)
3605
		i915_gem_request_get(target);
3606
	spin_unlock(&file_priv->mm.lock);
3607

3608
	if (target == NULL)
3609
		return 0;
3610

3611 3612 3613
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3614
	i915_gem_request_put(target);
3615

3616
	return ret < 0 ? ret : 0;
3617 3618
}

C
Chris Wilson 已提交
3619
struct i915_vma *
3620 3621
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3622
			 u64 size,
3623 3624
			 u64 alignment,
			 u64 flags)
3625
{
3626 3627
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3628 3629
	struct i915_vma *vma;
	int ret;
3630

3631 3632
	lockdep_assert_held(&obj->base.dev->struct_mutex);

C
Chris Wilson 已提交
3633
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3634
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3635
		return vma;
3636 3637 3638 3639

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3640
			return ERR_PTR(-ENOSPC);
3641

3642 3643 3644 3645 3646 3647 3648 3649
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
3650
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
3669
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3670 3671 3672
				return ERR_PTR(-ENOSPC);
		}

3673 3674
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3675 3676 3677
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3678
		     !!(flags & PIN_MAPPABLE),
3679
		     i915_vma_is_map_and_fenceable(vma));
3680 3681
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3682
			return ERR_PTR(ret);
3683 3684
	}

C
Chris Wilson 已提交
3685 3686 3687
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3688

C
Chris Wilson 已提交
3689
	return vma;
3690 3691
}

3692
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3707 3708 3709 3710 3711 3712 3713 3714 3715
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3716 3717
}

3718
static __always_inline unsigned int
3719
__busy_set_if_active(const struct dma_fence *fence,
3720 3721
		     unsigned int (*flag)(unsigned int id))
{
3722
	struct drm_i915_gem_request *rq;
3723

3724 3725 3726 3727
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3728
	 *
3729
	 * Note we only report on the status of native fences.
3730
	 */
3731 3732 3733 3734 3735 3736 3737 3738 3739
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
3740 3741
}

3742
static __always_inline unsigned int
3743
busy_check_reader(const struct dma_fence *fence)
3744
{
3745
	return __busy_set_if_active(fence, __busy_read_flag);
3746 3747
}

3748
static __always_inline unsigned int
3749
busy_check_writer(const struct dma_fence *fence)
3750
{
3751 3752 3753 3754
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3755 3756
}

3757 3758
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3759
		    struct drm_file *file)
3760 3761
{
	struct drm_i915_gem_busy *args = data;
3762
	struct drm_i915_gem_object *obj;
3763 3764
	struct reservation_object_list *list;
	unsigned int seq;
3765
	int err;
3766

3767
	err = -ENOENT;
3768 3769
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3770
	if (!obj)
3771
		goto out;
3772

3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3791

3792 3793
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3794

3795 3796 3797 3798
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3799

3800 3801 3802 3803 3804 3805
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3806
	}
3807

3808 3809 3810 3811
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3812 3813 3814
out:
	rcu_read_unlock();
	return err;
3815 3816 3817 3818 3819 3820
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3821
	return i915_gem_ring_throttle(dev, file_priv);
3822 3823
}

3824 3825 3826 3827
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3828
	struct drm_i915_private *dev_priv = to_i915(dev);
3829
	struct drm_i915_gem_madvise *args = data;
3830
	struct drm_i915_gem_object *obj;
3831
	int err;
3832 3833 3834 3835 3836 3837 3838 3839 3840

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3841
	obj = i915_gem_object_lookup(file_priv, args->handle);
3842 3843 3844 3845 3846 3847
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
3848

C
Chris Wilson 已提交
3849
	if (obj->mm.pages &&
3850
	    i915_gem_object_is_tiled(obj) &&
3851
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3852 3853
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
3854
			__i915_gem_object_unpin_pages(obj);
3855 3856 3857
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
3858
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
3859
			__i915_gem_object_pin_pages(obj);
3860 3861
			obj->mm.quirked = true;
		}
3862 3863
	}

C
Chris Wilson 已提交
3864 3865
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
3866

C
Chris Wilson 已提交
3867
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
3868
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3869 3870
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
3871
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3872
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
3873

3874
out:
3875
	i915_gem_object_put(obj);
3876
	return err;
3877 3878
}

3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

	intel_fb_obj_flush(obj, true, ORIGIN_CS);
}

3889 3890
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3891
{
3892 3893
	mutex_init(&obj->mm.lock);

3894
	INIT_LIST_HEAD(&obj->global_link);
3895
	INIT_LIST_HEAD(&obj->userfault_link);
3896
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3897
	INIT_LIST_HEAD(&obj->vma_list);
3898
	INIT_LIST_HEAD(&obj->batch_pool_link);
3899

3900 3901
	obj->ops = ops;

3902 3903 3904
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

3905
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3906
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
3907 3908 3909 3910

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
3911

3912
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3913 3914
}

3915
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3916 3917
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
3918 3919 3920 3921
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3922
struct drm_i915_gem_object *
3923
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
3924
{
3925
	struct drm_i915_gem_object *obj;
3926
	struct address_space *mapping;
D
Daniel Vetter 已提交
3927
	gfp_t mask;
3928
	int ret;
3929

3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

3941
	obj = i915_gem_object_alloc(dev_priv);
3942
	if (obj == NULL)
3943
		return ERR_PTR(-ENOMEM);
3944

3945
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
3946 3947
	if (ret)
		goto fail;
3948

3949
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3950
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
3951 3952 3953 3954 3955
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

3956
	mapping = obj->base.filp->f_mapping;
3957
	mapping_set_gfp_mask(mapping, mask);
3958

3959
	i915_gem_object_init(obj, &i915_gem_object_ops);
3960

3961 3962
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3963

3964
	if (HAS_LLC(dev_priv)) {
3965
		/* On some devices, we can have the GPU use the LLC (the CPU
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3981 3982
	trace_i915_gem_object_create(obj);

3983
	return obj;
3984 3985 3986 3987

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
3988 3989
}

3990 3991 3992 3993 3994 3995 3996 3997
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
3998
	if (obj->mm.madv != I915_MADV_WILLNEED)
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4014 4015
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4016
{
4017
	struct drm_i915_gem_object *obj, *on;
4018

4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4034 4035
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4036

4037
		list_del(&obj->global_link);
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4048

4049 4050
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4051
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4052 4053 4054 4055 4056
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4057
		reservation_object_fini(&obj->__builtin_resv);
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4080

4081 4082 4083 4084 4085 4086 4087
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4088

4089 4090 4091
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4092

4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4107

4108 4109 4110
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4111

4112 4113 4114
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4115
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4116
		obj->mm.madv = I915_MADV_DONTNEED;
4117

4118 4119 4120 4121 4122 4123
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4124 4125
}

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4137 4138 4139 4140 4141 4142
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4143 4144
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4145 4146
}

4147
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4148
{
4149
	struct drm_device *dev = &dev_priv->drm;
4150
	int ret;
4151

4152 4153
	intel_suspend_gt_powersave(dev_priv);

4154
	mutex_lock(&dev->struct_mutex);
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4168 4169 4170
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4171
	if (ret)
4172
		goto err;
4173

4174
	i915_gem_retire_requests(dev_priv);
4175
	GEM_BUG_ON(dev_priv->gt.active_requests);
4176

4177
	assert_kernel_context_is_current(dev_priv);
4178
	i915_gem_context_lost(dev_priv);
4179 4180
	mutex_unlock(&dev->struct_mutex);

4181
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4182
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4183 4184 4185 4186 4187 4188 4189 4190

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

	i915_gem_drain_freed_objects(dev_priv);
4191

4192 4193 4194
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4195
	WARN_ON(dev_priv->gt.awake);
4196
	WARN_ON(!intel_execlists_idle(dev_priv));
4197

4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4217
	if (HAS_HW_CONTEXTS(dev_priv)) {
4218 4219 4220 4221
		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}

4222
	return 0;
4223 4224 4225 4226

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4227 4228
}

4229
void i915_gem_resume(struct drm_i915_private *dev_priv)
4230
{
4231
	struct drm_device *dev = &dev_priv->drm;
4232

4233 4234
	WARN_ON(dev_priv->gt.awake);

4235
	mutex_lock(&dev->struct_mutex);
4236
	i915_gem_restore_gtt_mappings(dev_priv);
4237 4238 4239 4240 4241

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4242
	dev_priv->gt.resume(dev_priv);
4243 4244 4245 4246

	mutex_unlock(&dev->struct_mutex);
}

4247
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4248
{
4249
	if (INTEL_GEN(dev_priv) < 5 ||
4250 4251 4252 4253 4254 4255
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4256
	if (IS_GEN5(dev_priv))
4257 4258
		return;

4259
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4260
	if (IS_GEN6(dev_priv))
4261
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4262
	else if (IS_GEN7(dev_priv))
4263
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4264
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4265
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4266 4267
	else
		BUG();
4268
}
D
Daniel Vetter 已提交
4269

4270
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4271 4272 4273 4274 4275 4276 4277
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4278
static void init_unused_rings(struct drm_i915_private *dev_priv)
4279
{
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4292 4293 4294
	}
}

4295
int
4296
i915_gem_init_hw(struct drm_i915_private *dev_priv)
4297
{
4298
	struct intel_engine_cs *engine;
4299
	enum intel_engine_id id;
C
Chris Wilson 已提交
4300
	int ret;
4301

4302 4303
	dev_priv->gt.last_init_time = ktime_get();

4304 4305 4306
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4307
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4308
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4309

4310
	if (IS_HASWELL(dev_priv))
4311
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4312
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4313

4314
	if (HAS_PCH_NOP(dev_priv)) {
4315
		if (IS_IVYBRIDGE(dev_priv)) {
4316 4317 4318
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4319
		} else if (INTEL_GEN(dev_priv) >= 7) {
4320 4321 4322 4323
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4324 4325
	}

4326
	i915_gem_init_swizzling(dev_priv);
4327

4328 4329 4330 4331 4332 4333
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4334
	init_unused_rings(dev_priv);
4335

4336
	BUG_ON(!dev_priv->kernel_context);
4337

4338
	ret = i915_ppgtt_init_hw(dev_priv);
4339 4340 4341 4342 4343 4344
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4345
	for_each_engine(engine, dev_priv, id) {
4346
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4347
		if (ret)
4348
			goto out;
D
Daniel Vetter 已提交
4349
	}
4350

4351
	intel_mocs_init_l3cc_table(dev_priv);
4352

4353
	/* We can't enable contexts until all firmware is loaded */
4354
	ret = intel_guc_setup(dev_priv);
4355 4356
	if (ret)
		goto out;
4357

4358 4359
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4360
	return ret;
4361 4362
}

4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4384
int i915_gem_init(struct drm_i915_private *dev_priv)
4385 4386 4387
{
	int ret;

4388
	mutex_lock(&dev_priv->drm.struct_mutex);
4389

4390
	if (!i915.enable_execlists) {
4391
		dev_priv->gt.resume = intel_legacy_submission_resume;
4392
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4393
	} else {
4394
		dev_priv->gt.resume = intel_lr_context_resume;
4395
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4396 4397
	}

4398 4399 4400 4401 4402 4403 4404 4405
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4406
	i915_gem_init_userptr(dev_priv);
4407 4408 4409 4410

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4411

4412
	ret = i915_gem_context_init(dev_priv);
4413 4414
	if (ret)
		goto out_unlock;
4415

4416
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4417
	if (ret)
4418
		goto out_unlock;
4419

4420
	ret = i915_gem_init_hw(dev_priv);
4421
	if (ret == -EIO) {
4422
		/* Allow engine initialisation to fail by marking the GPU as
4423 4424 4425 4426
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4427
		i915_gem_set_wedged(dev_priv);
4428
		ret = 0;
4429
	}
4430 4431

out_unlock:
4432
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4433
	mutex_unlock(&dev_priv->drm.struct_mutex);
4434

4435
	return ret;
4436 4437
}

4438
void
4439
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4440
{
4441
	struct intel_engine_cs *engine;
4442
	enum intel_engine_id id;
4443

4444
	for_each_engine(engine, dev_priv, id)
4445
		dev_priv->gt.cleanup_engine(engine);
4446 4447
}

4448 4449 4450
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4451
	int i;
4452 4453 4454 4455

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4456 4457 4458
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4459 4460 4461 4462
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4463
	if (intel_vgpu_active(dev_priv))
4464 4465 4466 4467
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4468 4469 4470 4471 4472 4473 4474
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4475
	i915_gem_restore_fences(dev_priv);
4476

4477
	i915_gem_detect_bit_6_swizzle(dev_priv);
4478 4479
}

4480
int
4481
i915_gem_load_init(struct drm_i915_private *dev_priv)
4482
{
4483
	int err = -ENOMEM;
4484

4485 4486
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4487 4488
		goto err_out;

4489 4490
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4491 4492
		goto err_objects;

4493 4494 4495 4496 4497
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4498 4499
		goto err_vmas;

4500 4501 4502 4503 4504 4505
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4506 4507
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4508
	err = i915_gem_timeline_init__global(dev_priv);
4509 4510
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4511
		goto err_dependencies;
4512

4513
	INIT_LIST_HEAD(&dev_priv->context_list);
4514 4515
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4516 4517
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4518
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4519
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4520
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4521
			  i915_gem_retire_work_handler);
4522
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4523
			  i915_gem_idle_work_handler);
4524
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4525
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4526

4527 4528
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4529
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4530

4531 4532
	dev_priv->mm.interruptible = true;

4533 4534
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4535
	spin_lock_init(&dev_priv->fb_tracking.lock);
4536 4537 4538

	return 0;

4539 4540
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4541 4542 4543 4544 4545 4546 4547 4548
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4549
}
4550

4551
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4552
{
4553 4554
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));

4555 4556 4557 4558 4559
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4560
	kmem_cache_destroy(dev_priv->dependencies);
4561 4562 4563
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4564 4565 4566

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4567 4568
}

4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	intel_runtime_pm_get(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_runtime_pm_put(dev_priv);

	return 0;
}

4582 4583 4584
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4585 4586 4587 4588 4589
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4600 4601 4602
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4603 4604
	 */

4605 4606
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4607

4608
	for (p = phases; *p; p++) {
4609
		list_for_each_entry(obj, *p, global_link) {
4610 4611 4612
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4613
	}
4614
	mutex_unlock(&dev_priv->drm.struct_mutex);
4615 4616 4617 4618

	return 0;
}

4619
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4620
{
4621
	struct drm_i915_file_private *file_priv = file->driver_priv;
4622
	struct drm_i915_gem_request *request;
4623 4624 4625 4626 4627

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4628
	spin_lock(&file_priv->mm.lock);
4629
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4630
		request->file_priv = NULL;
4631
	spin_unlock(&file_priv->mm.lock);
4632

4633
	if (!list_empty(&file_priv->rps.link)) {
4634
		spin_lock(&to_i915(dev)->rps.client_lock);
4635
		list_del(&file_priv->rps.link);
4636
		spin_unlock(&to_i915(dev)->rps.client_lock);
4637
	}
4638 4639 4640 4641 4642
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4643
	int ret;
4644

4645
	DRM_DEBUG("\n");
4646 4647 4648 4649 4650 4651

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4652
	file_priv->dev_priv = to_i915(dev);
4653
	file_priv->file = file;
4654
	INIT_LIST_HEAD(&file_priv->rps.link);
4655 4656 4657 4658

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4659
	file_priv->bsd_engine = -1;
4660

4661 4662 4663
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4664

4665
	return ret;
4666 4667
}

4668 4669
/**
 * i915_gem_track_fb - update frontbuffer tracking
4670 4671 4672
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4673 4674 4675 4676
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4677 4678 4679 4680
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4681 4682 4683 4684 4685 4686 4687 4688 4689
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4690
	if (old) {
4691 4692
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4693 4694 4695
	}

	if (new) {
4696 4697
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4698 4699 4700
	}
}

4701 4702
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
4703
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4704 4705 4706 4707 4708 4709 4710
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4711
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4712
	if (IS_ERR(obj))
4713 4714 4715 4716 4717 4718
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4719
	ret = i915_gem_object_pin_pages(obj);
4720 4721 4722
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4723
	sg = obj->mm.pages;
4724
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
4725
	obj->mm.dirty = true; /* Backing store is now out of date */
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4737
	i915_gem_object_put(obj);
4738 4739
	return ERR_PTR(ret);
}
4740 4741 4742 4743 4744 4745

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
4746
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4747 4748 4749 4750 4751
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
4752
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
4877
	if (!obj->mm.dirty)
4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}