i915_gem.c 124.8 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84 85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107
	if (!i915_reset_in_progress(error))
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115
	ret = wait_event_interruptible_timeout(error->reset_queue,
116
					       !i915_reset_in_progress(error),
117
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123 124
	} else {
		return 0;
125
	}
126 127
}

128
int i915_mutex_lock_interruptible(struct drm_device *dev)
129
{
130
	struct drm_i915_private *dev_priv = to_i915(dev);
131 132
	int ret;

133
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 135 136 137 138 139 140 141 142
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
143

144 145
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146
			    struct drm_file *file)
147
{
148
	struct drm_i915_private *dev_priv = to_i915(dev);
149
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
150
	struct drm_i915_gem_get_aperture *args = data;
151
	struct i915_vma *vma;
152
	size_t pinned;
153

154
	pinned = 0;
155
	mutex_lock(&dev->struct_mutex);
156
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157
		if (i915_vma_is_pinned(vma))
158
			pinned += vma->node.size;
159
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	mutex_unlock(&dev->struct_mutex);
163

164
	args->aper_size = ggtt->base.total;
165
	args->aper_available_size = args->aper_size - pinned;
166

167 168 169
	return 0;
}

170 171
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172
{
173
	struct address_space *mapping = obj->base.filp->f_mapping;
174 175 176 177
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

195
		put_page(page);
196 197 198
		vaddr += PAGE_SIZE;
	}

199
	i915_gem_chipset_flush(to_i915(obj->base.dev));
200 201 202 203 204 205 206 207 208 209 210 211 212

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
213

214 215 216 217 218 219 220 221 222 223 224 225 226
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
227

228
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
229
	if (WARN_ON(ret)) {
230 231 232 233 234 235 236 237 238 239
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = obj->base.filp->f_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			put_page(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

282
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 284 285
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
286 287 288
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
289

290 291 292 293
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
294
	 */
295 296 297 298 299 300
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

301 302 303 304 305 306 307 308 309 310 311 312 313
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 * @obj: i915 gem object
 * @readonly: waiting for just read access or read-write access
 */
int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
	struct reservation_object *resv;
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = i915_gem_object_get_active(obj);
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

	for_each_active(active_mask, idx) {
		int ret;

		ret = i915_gem_active_wait(&active[idx],
					   &obj->base.dev->struct_mutex);
		if (ret)
			return ret;
	}

	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

	return 0;
}

361 362 363
/* A nonblocking variant of the above wait. Must be called prior to
 * acquiring the mutex for the object, as the object state may change
 * during this call. A reference must be held by the caller for the object.
364 365
 */
static __must_check int
366 367 368
__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
			struct intel_rps_client *rps,
			bool readonly)
369 370 371
{
	struct i915_gem_active *active;
	unsigned long active_mask;
372
	int idx;
373

374
	active_mask = __I915_BO_ACTIVE(obj);
375 376 377 378 379 380 381 382 383 384
	if (!active_mask)
		return 0;

	if (!readonly) {
		active = obj->last_read;
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

385 386
	for_each_active(active_mask, idx) {
		int ret;
387

388 389 390 391
		ret = i915_gem_active_wait_unlocked(&active[idx],
						    true, NULL, rps);
		if (ret)
			return ret;
392 393
	}

394
	return 0;
395 396 397 398 399 400 401 402 403
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

404 405 406 407 408
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
409
	int ret;
410 411 412 413 414 415 416 417 418 419 420 421 422 423

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
424 425 426 427 428
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
429 430 431
	if (ret)
		return ret;

432 433 434 435 436 437
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
438 439 440
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
441 442 443 444 445 446 447 448 449
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
450
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
451
	int ret = 0;
452 453 454 455 456 457 458

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
459

460
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
461 462 463 464 465 466 467 468 469 470
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
471 472 473 474
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
475 476
	}

477
	drm_clflush_virt_range(vaddr, args->size);
478
	i915_gem_chipset_flush(to_i915(dev));
479 480

out:
481
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
482
	return ret;
483 484
}

485 486
void *i915_gem_object_alloc(struct drm_device *dev)
{
487
	struct drm_i915_private *dev_priv = to_i915(dev);
488
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
489 490 491 492
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
493
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
494
	kmem_cache_free(dev_priv->objects, obj);
495 496
}

497 498 499 500 501
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
502
{
503
	struct drm_i915_gem_object *obj;
504 505
	int ret;
	u32 handle;
506

507
	size = roundup(size, PAGE_SIZE);
508 509
	if (size == 0)
		return -EINVAL;
510 511

	/* Allocate the new object */
512
	obj = i915_gem_object_create(dev, size);
513 514
	if (IS_ERR(obj))
		return PTR_ERR(obj);
515

516
	ret = drm_gem_handle_create(file, &obj->base, &handle);
517
	/* drop reference from allocate - handle holds it now */
518
	i915_gem_object_put_unlocked(obj);
519 520
	if (ret)
		return ret;
521

522
	*handle_p = handle;
523 524 525
	return 0;
}

526 527 528 529 530 531
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
532
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
533 534
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
535
			       args->size, &args->handle);
536 537 538 539
}

/**
 * Creates a new mm object and returns a handle to it.
540 541 542
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
543 544 545 546 547 548
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
549

550
	return i915_gem_create(file, dev,
551
			       args->size, &args->handle);
552 553
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

580
static inline int
581 582
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

606 607 608 609 610 611
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
612
				    unsigned int *needs_clflush)
613 614 615 616 617
{
	int ret;

	*needs_clflush = 0;

618 619
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
620

621 622 623 624
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

625 626 627 628 629 630
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

631 632
	i915_gem_object_flush_gtt_write_domain(obj);

633 634 635 636 637 638
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
639 640
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
641 642 643

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
644 645 646
		if (ret)
			goto err_unpin;

647
		*needs_clflush = 0;
648 649
	}

650
	/* return with the pages pinned */
651
	return 0;
652 653 654 655

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

671 672 673 674 675 676
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

677 678
	i915_gem_object_flush_gtt_write_domain(obj);

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
696 697 698
		if (ret)
			goto err_unpin;

699 700 701 702 703 704 705 706
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
	obj->dirty = 1;
707
	/* return with the pages pinned */
708
	return 0;
709 710 711 712

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
713 714
}

715 716 717
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
718
static int
719 720 721 722 723 724 725
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

726
	if (unlikely(page_do_bit17_swizzling))
727 728 729 730 731 732 733 734 735 736 737
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

738
	return ret ? -EFAULT : 0;
739 740
}

741 742 743 744
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
745
	if (unlikely(swizzled)) {
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

763 764 765 766 767 768 769 770 771 772 773 774
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
775 776 777
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
778 779 780 781 782 783 784 785 786 787 788

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

789
	return ret ? - EFAULT : 0;
790 791
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
819
	struct drm_i915_private *dev_priv = to_i915(dev);
820
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
821
	struct i915_vma *vma;
822 823 824 825 826 827
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

C
Chris Wilson 已提交
828
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
829 830 831
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
832
		ret = i915_vma_put_fence(vma);
833 834 835 836 837
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
838
	if (IS_ERR(vma)) {
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
926
		i915_vma_unpin(vma);
927 928 929 930 931
	}
out:
	return ret;
}

932
static int
933 934 935 936
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
937
{
938
	char __user *user_data;
939
	ssize_t remain;
940
	loff_t offset;
941
	int shmem_page_offset, page_length, ret = 0;
942
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
943
	int prefaulted = 0;
944
	int needs_clflush = 0;
945
	struct sg_page_iter sg_iter;
946

947
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
948 949 950
	if (ret)
		return ret;

951 952
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
953
	offset = args->offset;
954
	remain = args->size;
955

956 957
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
958
		struct page *page = sg_page_iter_page(&sg_iter);
959 960 961 962

		if (remain <= 0)
			break;

963 964 965 966 967
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
968
		shmem_page_offset = offset_in_page(offset);
969 970 971 972
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

973 974 975
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

976 977 978 979 980
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
981 982 983

		mutex_unlock(&dev->struct_mutex);

984
		if (likely(!i915.prefault_disable) && !prefaulted) {
985
			ret = fault_in_multipages_writeable(user_data, remain);
986 987 988 989 990 991 992
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
993

994 995 996
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
997

998
		mutex_lock(&dev->struct_mutex);
999 1000

		if (ret)
1001 1002
			goto out;

1003
next_page:
1004
		remain -= page_length;
1005
		user_data += page_length;
1006 1007 1008
		offset += page_length;
	}

1009
out:
1010
	i915_gem_obj_finish_shmem_access(obj);
1011

1012 1013 1014
	return ret;
}

1015 1016
/**
 * Reads data from the object referenced by handle.
1017 1018 1019
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1020 1021 1022 1023 1024
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1025
		     struct drm_file *file)
1026 1027
{
	struct drm_i915_gem_pread *args = data;
1028
	struct drm_i915_gem_object *obj;
1029
	int ret = 0;
1030

1031 1032 1033 1034
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1035
		       u64_to_user_ptr(args->data_ptr),
1036 1037 1038
		       args->size))
		return -EFAULT;

1039
	obj = i915_gem_object_lookup(file, args->handle);
1040 1041
	if (!obj)
		return -ENOENT;
1042

1043
	/* Bounds check source.  */
1044 1045
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1046
		ret = -EINVAL;
1047
		goto err;
C
Chris Wilson 已提交
1048 1049
	}

C
Chris Wilson 已提交
1050 1051
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1052 1053 1054 1055 1056 1057 1058 1059
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err;

1060
	ret = i915_gem_shmem_pread(dev, obj, args, file);
1061

1062
	/* pread for non shmem backed objects */
1063 1064
	if (ret == -EFAULT || ret == -ENODEV) {
		intel_runtime_pm_get(to_i915(dev));
1065 1066
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);
1067 1068
		intel_runtime_pm_put(to_i915(dev));
	}
1069

1070
	i915_gem_object_put(obj);
1071
	mutex_unlock(&dev->struct_mutex);
1072 1073 1074 1075 1076

	return ret;

err:
	i915_gem_object_put_unlocked(obj);
1077
	return ret;
1078 1079
}

1080 1081
/* This is the fast write path which cannot handle
 * page faults in the source data
1082
 */
1083 1084 1085 1086 1087 1088

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
1089
{
1090 1091
	void __iomem *vaddr_atomic;
	void *vaddr;
1092
	unsigned long unwritten;
1093

P
Peter Zijlstra 已提交
1094
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1095 1096 1097
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
1098
						      user_data, length);
P
Peter Zijlstra 已提交
1099
	io_mapping_unmap_atomic(vaddr_atomic);
1100
	return unwritten;
1101 1102
}

1103 1104 1105
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1106
 * @i915: i915 device private data
1107 1108 1109
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
1110
 */
1111
static int
1112
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1113
			 struct drm_i915_gem_object *obj,
1114
			 struct drm_i915_gem_pwrite *args,
1115
			 struct drm_file *file)
1116
{
1117
	struct i915_ggtt *ggtt = &i915->ggtt;
1118
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
1119
	struct i915_vma *vma;
1120 1121
	struct drm_mm_node node;
	uint64_t remain, offset;
1122
	char __user *user_data;
1123
	int ret;
1124 1125
	bool hit_slow_path = false;

1126
	if (i915_gem_object_is_tiled(obj))
1127
		return -EFAULT;
D
Daniel Vetter 已提交
1128

C
Chris Wilson 已提交
1129
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1130
				       PIN_MAPPABLE | PIN_NONBLOCK);
1131 1132 1133
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1134
		ret = i915_vma_put_fence(vma);
1135 1136 1137 1138 1139
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1140
	if (IS_ERR(vma)) {
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	}
D
Daniel Vetter 已提交
1153 1154 1155 1156 1157

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1158
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1159
	obj->dirty = true;
1160

1161 1162 1163 1164
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1165 1166
		/* Operation in this page
		 *
1167 1168 1169
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1170
		 */
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1184
		/* If we get a fault while copying data, then (presumably) our
1185 1186
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1187 1188
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1189
		 */
1190
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1191
				    page_offset, user_data, page_length)) {
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1204
		}
1205

1206 1207 1208
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1209 1210
	}

1211
out_flush:
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1225
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
D
Daniel Vetter 已提交
1226
out_unpin:
1227 1228 1229 1230 1231 1232 1233 1234
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1235
		i915_vma_unpin(vma);
1236
	}
D
Daniel Vetter 已提交
1237
out:
1238
	return ret;
1239 1240
}

1241 1242 1243 1244
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1245
static int
1246 1247 1248 1249 1250
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1251
{
1252
	char *vaddr;
1253
	int ret;
1254

1255
	if (unlikely(page_do_bit17_swizzling))
1256
		return -EINVAL;
1257

1258 1259 1260 1261
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1262 1263
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1264 1265 1266 1267
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1268

1269
	return ret ? -EFAULT : 0;
1270 1271
}

1272 1273
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1274
static int
1275 1276 1277 1278 1279
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1280
{
1281 1282
	char *vaddr;
	int ret;
1283

1284
	vaddr = kmap(page);
1285
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1286 1287 1288
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1289 1290
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1291 1292
						user_data,
						page_length);
1293 1294 1295 1296 1297
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1298 1299 1300
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1301
	kunmap(page);
1302

1303
	return ret ? -EFAULT : 0;
1304 1305 1306
}

static int
1307 1308 1309 1310
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1311 1312
{
	ssize_t remain;
1313 1314
	loff_t offset;
	char __user *user_data;
1315
	int shmem_page_offset, page_length, ret = 0;
1316
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1317
	int hit_slowpath = 0;
1318
	unsigned int needs_clflush;
1319
	struct sg_page_iter sg_iter;
1320

1321
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1322 1323 1324
	if (ret)
		return ret;

1325 1326
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
1327
	offset = args->offset;
1328
	remain = args->size;
1329

1330 1331
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1332
		struct page *page = sg_page_iter_page(&sg_iter);
1333
		int partial_cacheline_write;
1334

1335 1336 1337
		if (remain <= 0)
			break;

1338 1339 1340 1341 1342
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1343
		shmem_page_offset = offset_in_page(offset);
1344 1345 1346 1347 1348

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1349 1350 1351
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
1352
		partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
1353 1354 1355
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1356 1357 1358
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1359 1360 1361
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1362
					needs_clflush & CLFLUSH_AFTER);
1363 1364
		if (ret == 0)
			goto next_page;
1365 1366 1367

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1368 1369 1370
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1371
					needs_clflush & CLFLUSH_AFTER);
1372

1373
		mutex_lock(&dev->struct_mutex);
1374 1375

		if (ret)
1376 1377
			goto out;

1378
next_page:
1379
		remain -= page_length;
1380
		user_data += page_length;
1381
		offset += page_length;
1382 1383
	}

1384
out:
1385
	i915_gem_obj_finish_shmem_access(obj);
1386

1387
	if (hit_slowpath) {
1388 1389 1390 1391 1392
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
1393
		if (!(needs_clflush & CLFLUSH_AFTER) &&
1394
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1395
			if (i915_gem_clflush_object(obj, obj->pin_display))
1396
				needs_clflush |= CLFLUSH_AFTER;
1397
		}
1398
	}
1399

1400
	if (needs_clflush & CLFLUSH_AFTER)
1401
		i915_gem_chipset_flush(to_i915(dev));
1402

1403
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1404
	return ret;
1405 1406 1407 1408
}

/**
 * Writes data to the object referenced by handle.
1409 1410 1411
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1412 1413 1414 1415 1416
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1417
		      struct drm_file *file)
1418
{
1419
	struct drm_i915_private *dev_priv = to_i915(dev);
1420
	struct drm_i915_gem_pwrite *args = data;
1421
	struct drm_i915_gem_object *obj;
1422 1423 1424 1425 1426 1427
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1428
		       u64_to_user_ptr(args->data_ptr),
1429 1430 1431
		       args->size))
		return -EFAULT;

1432
	if (likely(!i915.prefault_disable)) {
1433
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1434 1435 1436 1437
						   args->size);
		if (ret)
			return -EFAULT;
	}
1438

1439
	obj = i915_gem_object_lookup(file, args->handle);
1440 1441
	if (!obj)
		return -ENOENT;
1442

1443
	/* Bounds check destination. */
1444 1445
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1446
		ret = -EINVAL;
1447
		goto err;
C
Chris Wilson 已提交
1448 1449
	}

C
Chris Wilson 已提交
1450 1451
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
	if (ret)
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;

D
Daniel Vetter 已提交
1462
	ret = -EFAULT;
1463 1464 1465 1466 1467 1468
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1469 1470
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1471
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1472 1473 1474
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1475
	}
1476

1477
	if (ret == -EFAULT || ret == -ENOSPC) {
1478 1479
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1480
		else
1481
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1482
	}
1483

1484
	i915_gem_object_put(obj);
1485
	mutex_unlock(&dev->struct_mutex);
1486 1487
	intel_runtime_pm_put(dev_priv);

1488
	return ret;
1489 1490 1491 1492 1493 1494

err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1495 1496
}

1497
static inline enum fb_op_origin
1498 1499 1500 1501 1502 1503
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1504
/**
1505 1506
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1507 1508 1509
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1510 1511 1512
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1513
			  struct drm_file *file)
1514 1515
{
	struct drm_i915_gem_set_domain *args = data;
1516
	struct drm_i915_gem_object *obj;
1517 1518
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1519 1520
	int ret;

1521
	/* Only handle setting domains to types used by the CPU. */
1522
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1523 1524 1525 1526 1527 1528 1529 1530
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1531
	obj = i915_gem_object_lookup(file, args->handle);
1532 1533
	if (!obj)
		return -ENOENT;
1534

1535 1536 1537 1538
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1539 1540 1541 1542 1543
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
1544
	if (ret)
1545
		goto err;
1546

1547
	if (read_domains & I915_GEM_DOMAIN_GTT)
1548
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1549
	else
1550
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1551

1552
	if (write_domain != 0)
1553
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1554

1555
	i915_gem_object_put(obj);
1556 1557
	mutex_unlock(&dev->struct_mutex);
	return ret;
1558 1559 1560 1561

err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1562 1563 1564 1565
}

/**
 * Called when user space has done writes to this buffer
1566 1567 1568
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1569 1570 1571
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1572
			 struct drm_file *file)
1573 1574
{
	struct drm_i915_gem_sw_finish *args = data;
1575
	struct drm_i915_gem_object *obj;
1576
	int err = 0;
1577

1578
	obj = i915_gem_object_lookup(file, args->handle);
1579 1580
	if (!obj)
		return -ENOENT;
1581 1582

	/* Pinned buffers may be scanout, so flush the cache */
1583 1584 1585 1586 1587 1588 1589
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1590

1591 1592
	i915_gem_object_put_unlocked(obj);
	return err;
1593 1594 1595
}

/**
1596 1597 1598 1599 1600
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1601 1602 1603
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1614 1615 1616
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1617
		    struct drm_file *file)
1618 1619
{
	struct drm_i915_gem_mmap *args = data;
1620
	struct drm_i915_gem_object *obj;
1621 1622
	unsigned long addr;

1623 1624 1625
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1626
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1627 1628
		return -ENODEV;

1629 1630
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1631
		return -ENOENT;
1632

1633 1634 1635
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1636
	if (!obj->base.filp) {
1637
		i915_gem_object_put_unlocked(obj);
1638 1639 1640
		return -EINVAL;
	}

1641
	addr = vm_mmap(obj->base.filp, 0, args->size,
1642 1643
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1644 1645 1646 1647
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1648
		if (down_write_killable(&mm->mmap_sem)) {
1649
			i915_gem_object_put_unlocked(obj);
1650 1651
			return -EINTR;
		}
1652 1653 1654 1655 1656 1657 1658
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1659 1660

		/* This may race, but that's ok, it only gets set */
1661
		WRITE_ONCE(obj->has_wc_mmap, true);
1662
	}
1663
	i915_gem_object_put_unlocked(obj);
1664 1665 1666 1667 1668 1669 1670 1671
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
	u64 size;

	size = i915_gem_object_get_stride(obj);
	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;

	return size >> PAGE_SHIFT;
}

1682 1683
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1684
 * @area: CPU VMA in question
1685
 * @vmf: fault info
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
C
Chris Wilson 已提交
1698
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1699
{
1700
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1701
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1702
	struct drm_device *dev = obj->base.dev;
1703 1704
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1705
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1706
	struct i915_vma *vma;
1707 1708
	pgoff_t page_offset;
	unsigned long pfn;
1709
	int ret;
1710

1711
	/* We don't use vmf->pgoff since that has the fake offset */
C
Chris Wilson 已提交
1712
	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1713 1714
		PAGE_SHIFT;

C
Chris Wilson 已提交
1715 1716
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1717
	/* Try to flush the object off the GPU first without holding the lock.
1718
	 * Upon acquiring the lock, we will perform our sanity checks and then
1719 1720 1721
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1722
	ret = __unsafe_wait_rendering(obj, NULL, !write);
1723
	if (ret)
1724 1725 1726 1727 1728 1729 1730
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1731

1732 1733
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1734
		ret = -EFAULT;
1735
		goto err_unlock;
1736 1737
	}

1738 1739 1740 1741 1742
	/* Now pin it into the GTT as needed */
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
	if (IS_ERR(vma)) {
		struct i915_ggtt_view view;
1743 1744
		unsigned int chunk_size;

1745
		/* Use a partial view if it is bigger than available space */
1746 1747 1748
		chunk_size = MIN_CHUNK_PAGES;
		if (i915_gem_object_is_tiled(obj))
			chunk_size = max(chunk_size, tile_row_pages(obj));
1749

1750 1751 1752 1753
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
1754
			min_t(unsigned int, chunk_size,
C
Chris Wilson 已提交
1755
			      (area->vm_end - area->vm_start) / PAGE_SIZE -
1756 1757
			      view.params.partial.offset);

1758 1759
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1760 1761
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1762
		goto err_unlock;
C
Chris Wilson 已提交
1763
	}
1764

1765 1766
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1767
		goto err_unpin;
1768

1769
	ret = i915_vma_get_fence(vma);
1770
	if (ret)
1771
		goto err_unpin;
1772

1773
	/* Finally, remap it using the new GTT offset */
1774
	pfn = ggtt->mappable_base + i915_ggtt_offset(vma);
1775
	pfn >>= PAGE_SHIFT;
1776

1777
	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
1778
		if (!obj->fault_mappable) {
C
Chris Wilson 已提交
1779 1780 1781 1782 1783
			unsigned long size =
				min_t(unsigned long,
				      area->vm_end - area->vm_start,
				      obj->base.size) >> PAGE_SHIFT;
			unsigned long base = area->vm_start;
1784 1785
			int i;

C
Chris Wilson 已提交
1786 1787 1788
			for (i = 0; i < size; i++) {
				ret = vm_insert_pfn(area,
						    base + i * PAGE_SIZE,
1789 1790 1791 1792 1793
						    pfn + i);
				if (ret)
					break;
			}
		} else
C
Chris Wilson 已提交
1794
			ret = vm_insert_pfn(area,
1795 1796
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	} else {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		const struct i915_ggtt_view *view = &vma->ggtt_view;
		unsigned long base = area->vm_start +
			(view->params.partial.offset << PAGE_SHIFT);
		unsigned int i;

		for (i = 0; i < view->params.partial.size; i++) {
			ret = vm_insert_pfn(area,
					    base + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}
1815
	}
1816 1817

	obj->fault_mappable = true;
1818
err_unpin:
C
Chris Wilson 已提交
1819
	__i915_vma_unpin(vma);
1820
err_unlock:
1821
	mutex_unlock(&dev->struct_mutex);
1822 1823 1824
err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
1825
	switch (ret) {
1826
	case -EIO:
1827 1828 1829 1830 1831 1832 1833
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1834 1835 1836
			ret = VM_FAULT_SIGBUS;
			break;
		}
1837
	case -EAGAIN:
D
Daniel Vetter 已提交
1838 1839 1840 1841
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1842
		 */
1843 1844
	case 0:
	case -ERESTARTSYS:
1845
	case -EINTR:
1846 1847 1848 1849 1850
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1851 1852
		ret = VM_FAULT_NOPAGE;
		break;
1853
	case -ENOMEM:
1854 1855
		ret = VM_FAULT_OOM;
		break;
1856
	case -ENOSPC:
1857
	case -EFAULT:
1858 1859
		ret = VM_FAULT_SIGBUS;
		break;
1860
	default:
1861
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1862 1863
		ret = VM_FAULT_SIGBUS;
		break;
1864
	}
1865
	return ret;
1866 1867
}

1868 1869 1870 1871
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1872
 * Preserve the reservation of the mmapping with the DRM core code, but
1873 1874 1875 1876 1877 1878 1879 1880 1881
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1882
void
1883
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1884
{
1885 1886 1887 1888 1889 1890
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1891 1892
	if (!obj->fault_mappable)
		return;
1893

1894 1895
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1906
	obj->fault_mappable = false;
1907 1908
}

1909 1910 1911 1912 1913 1914 1915 1916 1917
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1918 1919
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1920
 * @dev_priv: i915 device
1921 1922 1923 1924 1925 1926
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
1927 1928
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
1929
{
1930
	u64 ggtt_size;
1931

1932 1933
	GEM_BUG_ON(size == 0);

1934
	if (INTEL_GEN(dev_priv) >= 4 ||
1935 1936
	    tiling_mode == I915_TILING_NONE)
		return size;
1937 1938

	/* Previous chips need a power-of-two fence region when tiling */
1939
	if (IS_GEN3(dev_priv))
1940
		ggtt_size = 1024*1024;
1941
	else
1942
		ggtt_size = 512*1024;
1943

1944 1945
	while (ggtt_size < size)
		ggtt_size <<= 1;
1946

1947
	return ggtt_size;
1948 1949
}

1950
/**
1951
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
1952
 * @dev_priv: i915 device
1953 1954
 * @size: object size
 * @tiling_mode: tiling mode
1955
 * @fenced: is fenced alignment required or not
1956
 *
1957
 * Return the required global GTT alignment for an object, taking into account
1958
 * potential fence register mapping.
1959
 */
1960
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1961
				int tiling_mode, bool fenced)
1962
{
1963 1964
	GEM_BUG_ON(size == 0);

1965 1966 1967 1968
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1969
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
1970
	    tiling_mode == I915_TILING_NONE)
1971 1972
		return 4096;

1973 1974 1975 1976
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1977
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
1978 1979
}

1980 1981
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1982
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1983
	int err;
1984

1985 1986 1987
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
1988

1989 1990 1991
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
1992
	 */
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
	err = i915_gem_wait_for_idle(dev_priv, true);
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
2003

2004
	return err;
2005 2006 2007 2008 2009 2010 2011
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2012
int
2013 2014
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2015
		  uint32_t handle,
2016
		  uint64_t *offset)
2017
{
2018
	struct drm_i915_gem_object *obj;
2019 2020
	int ret;

2021
	obj = i915_gem_object_lookup(file, handle);
2022 2023
	if (!obj)
		return -ENOENT;
2024

2025
	ret = i915_gem_object_create_mmap_offset(obj);
2026 2027
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2028

2029
	i915_gem_object_put_unlocked(obj);
2030
	return ret;
2031 2032
}

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2054
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2055 2056
}

D
Daniel Vetter 已提交
2057 2058 2059
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2060
{
2061
	i915_gem_object_free_mmap_offset(obj);
2062

2063 2064
	if (obj->base.filp == NULL)
		return;
2065

D
Daniel Vetter 已提交
2066 2067 2068 2069 2070
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2071
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2072 2073
	obj->madv = __I915_MADV_PURGED;
}
2074

2075 2076 2077
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2078
{
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2091
	mapping = obj->base.filp->f_mapping,
2092
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2093 2094
}

2095
static void
2096
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2097
{
2098 2099
	struct sgt_iter sgt_iter;
	struct page *page;
2100
	int ret;
2101

2102
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2103

C
Chris Wilson 已提交
2104
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2105
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2106 2107 2108
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2109
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2110 2111 2112
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2113 2114
	i915_gem_gtt_finish_object(obj);

2115
	if (i915_gem_object_needs_bit17_swizzle(obj))
2116 2117
		i915_gem_object_save_bit_17_swizzle(obj);

2118 2119
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2120

2121
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2122
		if (obj->dirty)
2123
			set_page_dirty(page);
2124

2125
		if (obj->madv == I915_MADV_WILLNEED)
2126
			mark_page_accessed(page);
2127

2128
		put_page(page);
2129
	}
2130
	obj->dirty = 0;
2131

2132 2133
	sg_free_table(obj->pages);
	kfree(obj->pages);
2134
}
C
Chris Wilson 已提交
2135

2136
int
2137 2138 2139 2140
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2141
	if (obj->pages == NULL)
2142 2143
		return 0;

2144 2145 2146
	if (obj->pages_pin_count)
		return -EBUSY;

2147
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2148

2149 2150 2151
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2152
	list_del(&obj->global_list);
2153

2154
	if (obj->mapping) {
2155 2156 2157 2158 2159
		void *ptr;

		ptr = ptr_mask_bits(obj->mapping);
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2160
		else
2161 2162
			kunmap(kmap_to_page(ptr));

2163 2164 2165
		obj->mapping = NULL;
	}

2166
	ops->put_pages(obj);
2167
	obj->pages = NULL;
2168

2169
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2170 2171 2172 2173

	return 0;
}

2174
static int
C
Chris Wilson 已提交
2175
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2176
{
2177
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2178 2179
	int page_count, i;
	struct address_space *mapping;
2180 2181
	struct sg_table *st;
	struct scatterlist *sg;
2182
	struct sgt_iter sgt_iter;
2183
	struct page *page;
2184
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2185
	int ret;
C
Chris Wilson 已提交
2186
	gfp_t gfp;
2187

C
Chris Wilson 已提交
2188 2189 2190 2191 2192 2193 2194
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2195 2196 2197 2198
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2199
	page_count = obj->base.size / PAGE_SIZE;
2200 2201
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2202
		return -ENOMEM;
2203
	}
2204

2205 2206 2207 2208 2209
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2210
	mapping = obj->base.filp->f_mapping;
2211
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2212
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2213 2214 2215
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2216 2217
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2218 2219 2220 2221 2222
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2223 2224 2225 2226 2227 2228 2229 2230
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2231
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2232 2233
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2234
				goto err_pages;
I
Imre Deak 已提交
2235
			}
C
Chris Wilson 已提交
2236
		}
2237 2238 2239 2240 2241 2242 2243 2244
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2245 2246 2247 2248 2249 2250 2251 2252 2253
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2254 2255 2256

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2257
	}
2258 2259 2260 2261
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2262 2263
	obj->pages = st;

I
Imre Deak 已提交
2264 2265 2266 2267
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2268
	if (i915_gem_object_needs_bit17_swizzle(obj))
2269 2270
		i915_gem_object_do_bit_17_swizzle(obj);

2271
	if (i915_gem_object_is_tiled(obj) &&
2272 2273 2274
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2275 2276 2277
	return 0;

err_pages:
2278
	sg_mark_end(sg);
2279 2280
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2281 2282
	sg_free_table(st);
	kfree(st);
2283 2284 2285 2286 2287 2288 2289 2290 2291

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2292 2293 2294 2295
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2296 2297
}

2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2308
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2309 2310 2311
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2312
	if (obj->pages)
2313 2314
		return 0;

2315
	if (obj->madv != I915_MADV_WILLNEED) {
2316
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2317
		return -EFAULT;
2318 2319
	}

2320 2321
	BUG_ON(obj->pages_pin_count);

2322 2323 2324 2325
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2326
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2327 2328 2329 2330

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2331
	return 0;
2332 2333
}

2334
/* The 'mapping' part of i915_gem_object_pin_map() below */
2335 2336
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2337 2338 2339
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2340 2341
	struct sgt_iter sgt_iter;
	struct page *page;
2342 2343
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2344
	unsigned long i = 0;
2345
	pgprot_t pgprot;
2346 2347 2348
	void *addr;

	/* A single page can always be kmapped */
2349
	if (n_pages == 1 && type == I915_MAP_WB)
2350 2351
		return kmap(sg_page(sgt->sgl));

2352 2353 2354 2355 2356 2357
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2358

2359 2360
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2361 2362 2363 2364

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2365 2366 2367 2368 2369 2370 2371 2372 2373
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2374

2375 2376
	if (pages != stack_pages)
		drm_free_large(pages);
2377 2378 2379 2380 2381

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2382 2383
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2384
{
2385 2386 2387
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2388 2389 2390
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
2391
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2392 2393 2394 2395 2396 2397

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);
2398
	pinned = obj->pages_pin_count > 1;
2399

2400 2401 2402 2403 2404
	ptr = ptr_unpack_bits(obj->mapping, has_type);
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
			goto err;
2405
		}
2406 2407 2408 2409 2410 2411 2412

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

		ptr = obj->mapping = NULL;
2413 2414
	}

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
			goto err;
		}

		obj->mapping = ptr_pack_bits(ptr, type);
	}

	return ptr;

err:
	i915_gem_object_unpin_pages(obj);
	return ERR_PTR(ret);
2430 2431
}

2432
static void
2433 2434
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2435
{
2436 2437
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2438

2439
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2440 2441
}

2442
static void
2443 2444
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2445
{
2446 2447 2448
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2449

2450
	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2451

2452 2453
	i915_gem_object_clear_active(obj, idx);
	if (i915_gem_object_is_active(obj))
2454
		return;
2455

2456 2457 2458 2459
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2460 2461 2462
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2463

2464
	i915_gem_object_put(obj);
2465 2466
}

2467
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2468
{
2469
	unsigned long elapsed;
2470

2471
	if (ctx->hang_stats.banned)
2472 2473
		return true;

2474
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2475 2476
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2477 2478
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2479 2480 2481 2482 2483
	}

	return false;
}

2484
static void i915_set_reset_status(struct i915_gem_context *ctx,
2485
				  const bool guilty)
2486
{
2487
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2488 2489

	if (guilty) {
2490
		hs->banned = i915_context_is_banned(ctx);
2491 2492 2493 2494
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2495 2496 2497
	}
}

2498
struct drm_i915_gem_request *
2499
i915_gem_find_active_request(struct intel_engine_cs *engine)
2500
{
2501 2502
	struct drm_i915_gem_request *request;

2503 2504 2505 2506 2507 2508 2509 2510
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2511
	list_for_each_entry(request, &engine->request_list, link) {
2512
		if (i915_gem_request_completed(request))
2513
			continue;
2514

2515
		return request;
2516
	}
2517 2518 2519 2520

	return NULL;
}

2521
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2522 2523 2524 2525
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2526
	request = i915_gem_find_active_request(engine);
2527 2528 2529
	if (request == NULL)
		return;

2530
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2531

2532
	i915_set_reset_status(request->ctx, ring_hung);
2533
	list_for_each_entry_continue(request, &engine->request_list, link)
2534
		i915_set_reset_status(request->ctx, false);
2535
}
2536

2537
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2538
{
2539
	struct drm_i915_gem_request *request;
2540
	struct intel_ring *ring;
2541

2542 2543 2544 2545
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2546
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2547

2548 2549 2550 2551 2552 2553
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2554
	if (i915.enable_execlists) {
2555 2556
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2557

2558
		intel_execlists_cancel_requests(engine);
2559 2560
	}

2561 2562 2563 2564 2565 2566 2567
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2568 2569
	request = i915_gem_active_raw(&engine->last_request,
				      &engine->i915->drm.struct_mutex);
2570
	if (request)
2571
		i915_gem_request_retire_upto(request);
2572
	GEM_BUG_ON(intel_engine_is_active(engine));
2573 2574 2575 2576 2577 2578 2579 2580

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2581 2582 2583
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2584
	}
2585

2586
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2587 2588
}

2589
void i915_gem_reset(struct drm_device *dev)
2590
{
2591
	struct drm_i915_private *dev_priv = to_i915(dev);
2592
	struct intel_engine_cs *engine;
2593

2594 2595 2596 2597 2598
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2599
	for_each_engine(engine, dev_priv)
2600
		i915_gem_reset_engine_status(engine);
2601

2602
	for_each_engine(engine, dev_priv)
2603
		i915_gem_reset_engine_cleanup(engine);
2604
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2605

2606 2607
	i915_gem_context_reset(dev);

2608
	i915_gem_restore_fences(dev);
2609 2610
}

2611
static void
2612 2613
i915_gem_retire_work_handler(struct work_struct *work)
{
2614
	struct drm_i915_private *dev_priv =
2615
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2616
	struct drm_device *dev = &dev_priv->drm;
2617

2618
	/* Come back later if the device is busy... */
2619
	if (mutex_trylock(&dev->struct_mutex)) {
2620
		i915_gem_retire_requests(dev_priv);
2621
		mutex_unlock(&dev->struct_mutex);
2622
	}
2623 2624 2625 2626 2627

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2628 2629
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2630 2631
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2632
				   round_jiffies_up_relative(HZ));
2633
	}
2634
}
2635

2636 2637 2638 2639
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2640
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2641
	struct drm_device *dev = &dev_priv->drm;
2642
	struct intel_engine_cs *engine;
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2664

2665
	for_each_engine(engine, dev_priv)
2666
		i915_gem_batch_pool_fini(&engine->batch_pool);
2667

2668 2669 2670
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2671

2672 2673 2674 2675 2676
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2677

2678 2679 2680 2681
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2682
	}
2683 2684
}

2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2698 2699
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2700 2701 2702
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
2726
	struct intel_rps_client *rps = to_rps_client(file);
2727
	struct drm_i915_gem_object *obj;
2728 2729
	unsigned long active;
	int idx, ret = 0;
2730

2731 2732 2733
	if (args->flags != 0)
		return -EINVAL;

2734
	obj = i915_gem_object_lookup(file, args->bo_handle);
2735
	if (!obj)
2736 2737
		return -ENOENT;

2738 2739 2740 2741 2742 2743 2744
	active = __I915_BO_ACTIVE(obj);
	for_each_active(active, idx) {
		s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
		ret = i915_gem_active_wait_unlocked(&obj->last_read[idx], true,
						    timeout, rps);
		if (ret)
			break;
2745 2746
	}

2747
	i915_gem_object_put_unlocked(obj);
2748
	return ret;
2749 2750
}

2751
static int
2752
__i915_gem_object_sync(struct drm_i915_gem_request *to,
2753
		       struct drm_i915_gem_request *from)
2754 2755 2756
{
	int ret;

2757
	if (to->engine == from->engine)
2758 2759
		return 0;

2760
	if (!i915.semaphores) {
2761 2762 2763 2764
		ret = i915_wait_request(from,
					from->i915->mm.interruptible,
					NULL,
					NO_WAITBOOST);
2765 2766 2767
		if (ret)
			return ret;
	} else {
2768
		int idx = intel_engine_sync_index(from->engine, to->engine);
2769
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2770 2771
			return 0;

2772
		trace_i915_gem_ring_sync_to(to, from);
2773
		ret = to->engine->semaphore.sync_to(to, from);
2774 2775 2776
		if (ret)
			return ret;

2777
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2778 2779 2780 2781 2782
	}

	return 0;
}

2783 2784 2785 2786
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2787
 * @to: request we are wishing to use
2788 2789
 *
 * This code is meant to abstract object synchronization with the GPU.
2790 2791 2792
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2793 2794 2795 2796 2797 2798 2799
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2800 2801 2802
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2803 2804
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2805
		     struct drm_i915_gem_request *to)
2806
{
C
Chris Wilson 已提交
2807 2808 2809
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;
2810

C
Chris Wilson 已提交
2811
	lockdep_assert_held(&obj->base.dev->struct_mutex);
2812

2813
	active_mask = i915_gem_object_get_active(obj);
C
Chris Wilson 已提交
2814 2815
	if (!active_mask)
		return 0;
2816

C
Chris Wilson 已提交
2817 2818
	if (obj->base.pending_write_domain) {
		active = obj->last_read;
2819
	} else {
C
Chris Wilson 已提交
2820 2821
		active_mask = 1;
		active = &obj->last_write;
2822
	}
C
Chris Wilson 已提交
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832

	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
		int ret;

		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

2833
		ret = __i915_gem_object_sync(to, request);
2834 2835 2836
		if (ret)
			return ret;
	}
2837

2838
	return 0;
2839 2840
}

2841 2842 2843 2844 2845 2846 2847
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2848 2849 2850
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2862 2863
static void __i915_vma_iounmap(struct i915_vma *vma)
{
2864
	GEM_BUG_ON(i915_vma_is_pinned(vma));
2865 2866 2867 2868 2869 2870 2871 2872

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2873
int i915_vma_unbind(struct i915_vma *vma)
2874
{
2875
	struct drm_i915_gem_object *obj = vma->obj;
2876
	unsigned long active;
2877
	int ret;
2878

2879 2880 2881 2882
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2883
	if (active) {
2884 2885
		int idx;

2886 2887 2888 2889 2890
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
2891
		__i915_vma_pin(vma);
2892

2893 2894 2895 2896
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2897
				break;
2898 2899
		}

2900
		__i915_vma_unpin(vma);
2901 2902 2903
		if (ret)
			return ret;

2904 2905 2906
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

2907
	if (i915_vma_is_pinned(vma))
2908 2909
		return -EBUSY;

2910 2911
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2912

2913 2914
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2915

2916
	if (i915_vma_is_map_and_fenceable(vma)) {
2917
		i915_gem_object_finish_gtt(obj);
2918

2919
		/* release the fence reg _after_ flushing */
2920
		ret = i915_vma_put_fence(vma);
2921 2922
		if (ret)
			return ret;
2923 2924

		__i915_vma_iounmap(vma);
2925
		vma->flags &= ~I915_VMA_CAN_FENCE;
2926
	}
2927

2928 2929 2930 2931
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
2932
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2933

2934 2935 2936
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

2937 2938 2939 2940
	if (vma->pages != obj->pages) {
		GEM_BUG_ON(!vma->pages);
		sg_free_table(vma->pages);
		kfree(vma->pages);
2941
	}
2942
	vma->pages = NULL;
2943

B
Ben Widawsky 已提交
2944
	/* Since the unbound list is global, only move to that list if
2945
	 * no more VMAs exist. */
2946 2947 2948
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
2949

2950 2951 2952 2953 2954 2955
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2956
destroy:
2957
	if (unlikely(i915_vma_is_closed(vma)))
2958 2959
		i915_vma_destroy(vma);

2960
	return 0;
2961 2962
}

2963 2964
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
			   bool interruptible)
2965
{
2966
	struct intel_engine_cs *engine;
2967
	int ret;
2968

2969
	for_each_engine(engine, dev_priv) {
2970 2971 2972
		if (engine->last_context == NULL)
			continue;

2973
		ret = intel_engine_idle(engine, interruptible);
2974 2975 2976
		if (ret)
			return ret;
	}
2977

2978
	return 0;
2979 2980
}

2981
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2982 2983
				     unsigned long cache_level)
{
2984
	struct drm_mm_node *gtt_space = &vma->node;
2985 2986
	struct drm_mm_node *other;

2987 2988 2989 2990 2991 2992
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
2993
	 */
2994
	if (vma->vm->mm.color_adjust == NULL)
2995 2996
		return true;

2997
	if (!drm_mm_node_allocated(gtt_space))
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3014
/**
3015 3016
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
3017
 * @size: requested size in bytes (can be larger than the VMA)
3018
 * @alignment: required alignment
3019
 * @flags: mask of PIN_* flags to use
3020 3021 3022 3023 3024 3025 3026
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
3027
 */
3028 3029
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3030
{
3031 3032
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
3033 3034
	u64 start, end;
	u64 min_alignment;
3035
	int ret;
3036

3037
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3038
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3039 3040 3041

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
3042 3043
		size = i915_gem_get_ggtt_size(dev_priv, size,
					      i915_gem_object_get_tiling(obj));
3044 3045

	min_alignment =
3046 3047
		i915_gem_get_ggtt_alignment(dev_priv, size,
					    i915_gem_object_get_tiling(obj),
3048 3049 3050 3051 3052 3053
					    flags & PIN_MAPPABLE);
	if (alignment == 0)
		alignment = min_alignment;
	if (alignment & (min_alignment - 1)) {
		DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
			  alignment, min_alignment);
3054
		return -EINVAL;
3055
	}
3056

3057
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3058 3059

	end = vma->vm->total;
3060
	if (flags & PIN_MAPPABLE)
3061
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3062
	if (flags & PIN_ZONE_4G)
3063
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3064

3065 3066 3067
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3068
	 */
3069
	if (size > end) {
3070
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3071
			  size, obj->base.size,
3072
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3073
			  end);
3074
		return -E2BIG;
3075 3076
	}

3077
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3078
	if (ret)
3079
		return ret;
C
Chris Wilson 已提交
3080

3081 3082
	i915_gem_object_pin_pages(obj);

3083
	if (flags & PIN_OFFSET_FIXED) {
3084
		u64 offset = flags & PIN_OFFSET_MASK;
3085
		if (offset & (alignment - 1) || offset > end - size) {
3086
			ret = -EINVAL;
3087
			goto err_unpin;
3088
		}
3089

3090 3091 3092
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3093
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3094 3095 3096
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3097 3098 3099
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3100
		}
3101
	} else {
3102 3103
		u32 search_flag, alloc_flag;

3104 3105 3106 3107 3108 3109 3110
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3111

3112 3113 3114 3115 3116 3117 3118 3119 3120
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3121
search_free:
3122 3123
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3124 3125 3126 3127 3128 3129
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3130
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3131 3132 3133 3134 3135
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3136

3137
			goto err_unpin;
3138
		}
3139
	}
3140
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3141

3142
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3143
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3144
	obj->bind_count++;
3145

3146
	return 0;
B
Ben Widawsky 已提交
3147

3148
err_unpin:
B
Ben Widawsky 已提交
3149
	i915_gem_object_unpin_pages(obj);
3150
	return ret;
3151 3152
}

3153
bool
3154 3155
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3156 3157 3158 3159 3160
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3161
	if (obj->pages == NULL)
3162
		return false;
3163

3164 3165 3166 3167
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3168
	if (obj->stolen || obj->phys_handle)
3169
		return false;
3170

3171 3172 3173 3174 3175 3176 3177 3178
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3179 3180
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3181
		return false;
3182
	}
3183

C
Chris Wilson 已提交
3184
	trace_i915_gem_object_clflush(obj);
3185
	drm_clflush_sg(obj->pages);
3186
	obj->cache_dirty = false;
3187 3188

	return true;
3189 3190 3191 3192
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3193
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3194
{
3195
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3196

3197
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3198 3199
		return;

3200
	/* No actual flushing is required for the GTT write domain.  Writes
3201
	 * to it "immediately" go to main memory as far as we know, so there's
3202
	 * no chipset flush.  It also doesn't land in render cache.
3203 3204 3205 3206
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3207 3208 3209 3210 3211 3212 3213
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3214
	 */
3215
	wmb();
3216 3217
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS].mmio_base));
3218

3219
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3220

3221
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3222
	trace_i915_gem_object_change_domain(obj,
3223
					    obj->base.read_domains,
3224
					    I915_GEM_DOMAIN_GTT);
3225 3226 3227 3228
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3229
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3230
{
3231
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3232 3233
		return;

3234
	if (i915_gem_clflush_object(obj, obj->pin_display))
3235
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3236

3237
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3238

3239
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3240
	trace_i915_gem_object_change_domain(obj,
3241
					    obj->base.read_domains,
3242
					    I915_GEM_DOMAIN_CPU);
3243 3244
}

3245 3246
/**
 * Moves a single object to the GTT read, and possibly write domain.
3247 3248
 * @obj: object to act on
 * @write: ask for write access or read only
3249 3250 3251 3252
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3253
int
3254
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3255
{
C
Chris Wilson 已提交
3256
	uint32_t old_write_domain, old_read_domains;
3257
	struct i915_vma *vma;
3258
	int ret;
3259

3260
	ret = i915_gem_object_wait_rendering(obj, !write);
3261 3262 3263
	if (ret)
		return ret;

3264 3265 3266
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3279
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3280

3281 3282 3283 3284 3285 3286 3287
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3288 3289
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3290

3291 3292 3293
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3294 3295
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3296
	if (write) {
3297 3298 3299
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3300 3301
	}

C
Chris Wilson 已提交
3302 3303 3304 3305
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3306
	/* And bump the LRU for this access */
C
Chris Wilson 已提交
3307
	vma = i915_gem_object_to_ggtt(obj, NULL);
3308 3309 3310 3311
	if (vma &&
	    drm_mm_node_allocated(&vma->node) &&
	    !i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3312

3313 3314 3315
	return 0;
}

3316 3317
/**
 * Changes the cache-level of an object across all VMA.
3318 3319
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3331 3332 3333
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3334
	struct i915_vma *vma;
3335
	int ret = 0;
3336 3337

	if (obj->cache_level == cache_level)
3338
		goto out;
3339

3340 3341 3342 3343 3344
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3345 3346
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3347 3348 3349
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3350
		if (i915_vma_is_pinned(vma)) {
3351 3352 3353 3354
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3367 3368
	}

3369 3370 3371 3372 3373 3374 3375
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3376
	if (obj->bind_count) {
3377 3378 3379 3380
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3381
		ret = i915_gem_object_wait_rendering(obj, false);
3382 3383 3384
		if (ret)
			return ret;

3385
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3402 3403 3404 3405 3406
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3407 3408 3409 3410 3411 3412 3413 3414
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3415 3416
		}

3417
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3418 3419 3420 3421 3422 3423 3424
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3425 3426
	}

3427
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3428 3429 3430
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3431
out:
3432 3433 3434 3435
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3436
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3437
		if (i915_gem_clflush_object(obj, true))
3438
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3439 3440 3441 3442 3443
	}

	return 0;
}

B
Ben Widawsky 已提交
3444 3445
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3446
{
B
Ben Widawsky 已提交
3447
	struct drm_i915_gem_caching *args = data;
3448 3449
	struct drm_i915_gem_object *obj;

3450 3451
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3452
		return -ENOENT;
3453

3454 3455 3456 3457 3458 3459
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3460 3461 3462 3463
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3464 3465 3466 3467
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3468

3469
	i915_gem_object_put_unlocked(obj);
3470
	return 0;
3471 3472
}

B
Ben Widawsky 已提交
3473 3474
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3475
{
3476
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3477
	struct drm_i915_gem_caching *args = data;
3478 3479 3480 3481
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3482 3483
	switch (args->caching) {
	case I915_CACHING_NONE:
3484 3485
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3486
	case I915_CACHING_CACHED:
3487 3488 3489 3490 3491 3492
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3493
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3494 3495
			return -ENODEV;

3496 3497
		level = I915_CACHE_LLC;
		break;
3498 3499 3500
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3501 3502 3503 3504
	default:
		return -EINVAL;
	}

3505 3506
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3507 3508
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3509
		goto rpm_put;
B
Ben Widawsky 已提交
3510

3511 3512
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3513 3514 3515 3516 3517 3518
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3519
	i915_gem_object_put(obj);
3520 3521
unlock:
	mutex_unlock(&dev->struct_mutex);
3522 3523 3524
rpm_put:
	intel_runtime_pm_put(dev_priv);

3525 3526 3527
	return ret;
}

3528
/*
3529 3530 3531
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3532
 */
C
Chris Wilson 已提交
3533
struct i915_vma *
3534 3535
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3536
				     const struct i915_ggtt_view *view)
3537
{
C
Chris Wilson 已提交
3538
	struct i915_vma *vma;
3539
	u32 old_read_domains, old_write_domain;
3540 3541
	int ret;

3542 3543 3544
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3545
	obj->pin_display++;
3546

3547 3548 3549 3550 3551 3552 3553 3554 3555
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3556 3557
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3558 3559
	if (ret) {
		vma = ERR_PTR(ret);
3560
		goto err_unpin_display;
C
Chris Wilson 已提交
3561
	}
3562

3563 3564 3565 3566
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
C
Chris Wilson 已提交
3567
	vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3568 3569
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
C
Chris Wilson 已提交
3570
	if (IS_ERR(vma))
3571
		goto err_unpin_display;
3572

C
Chris Wilson 已提交
3573 3574
	WARN_ON(obj->pin_display > i915_vma_pin_count(vma));

3575
	i915_gem_object_flush_cpu_write_domain(obj);
3576

3577
	old_write_domain = obj->base.write_domain;
3578
	old_read_domains = obj->base.read_domains;
3579 3580 3581 3582

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3583
	obj->base.write_domain = 0;
3584
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3585 3586 3587

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3588
					    old_write_domain);
3589

C
Chris Wilson 已提交
3590
	return vma;
3591 3592

err_unpin_display:
3593
	obj->pin_display--;
C
Chris Wilson 已提交
3594
	return vma;
3595 3596 3597
}

void
C
Chris Wilson 已提交
3598
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3599
{
C
Chris Wilson 已提交
3600
	if (WARN_ON(vma->obj->pin_display == 0))
3601 3602
		return;

C
Chris Wilson 已提交
3603
	vma->obj->pin_display--;
3604

C
Chris Wilson 已提交
3605 3606
	i915_vma_unpin(vma);
	WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma));
3607 3608
}

3609 3610
/**
 * Moves a single object to the CPU read, and possibly write domain.
3611 3612
 * @obj: object to act on
 * @write: requesting write or read-only access
3613 3614 3615 3616
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3617
int
3618
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3619
{
C
Chris Wilson 已提交
3620
	uint32_t old_write_domain, old_read_domains;
3621 3622
	int ret;

3623
	ret = i915_gem_object_wait_rendering(obj, !write);
3624 3625 3626
	if (ret)
		return ret;

3627 3628 3629
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3630
	i915_gem_object_flush_gtt_write_domain(obj);
3631

3632 3633
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3634

3635
	/* Flush the CPU cache if it's still invalid. */
3636
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3637
		i915_gem_clflush_object(obj, false);
3638

3639
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3640 3641 3642 3643 3644
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3645
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3646 3647 3648 3649 3650

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3651 3652
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3653
	}
3654

C
Chris Wilson 已提交
3655 3656 3657 3658
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3659 3660 3661
	return 0;
}

3662 3663 3664
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3665 3666 3667 3668
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3669 3670 3671
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3672
static int
3673
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3674
{
3675
	struct drm_i915_private *dev_priv = to_i915(dev);
3676
	struct drm_i915_file_private *file_priv = file->driver_priv;
3677
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3678
	struct drm_i915_gem_request *request, *target = NULL;
3679
	int ret;
3680

3681 3682 3683 3684
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3685 3686 3687
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3688

3689
	spin_lock(&file_priv->mm.lock);
3690
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3691 3692
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3693

3694 3695 3696 3697 3698 3699 3700
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3701
		target = request;
3702
	}
3703
	if (target)
3704
		i915_gem_request_get(target);
3705
	spin_unlock(&file_priv->mm.lock);
3706

3707
	if (target == NULL)
3708
		return 0;
3709

3710
	ret = i915_wait_request(target, true, NULL, NULL);
3711
	i915_gem_request_put(target);
3712

3713 3714 3715
	return ret;
}

3716
static bool
3717
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3718
{
3719 3720 3721
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3722 3723 3724 3725
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3726 3727
		return true;

3728
	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3729 3730 3731 3732 3733 3734
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3735 3736 3737 3738
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3739 3740 3741
	return false;
}

3742 3743 3744
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3745
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3746 3747 3748
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3749
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3750
					    vma->size,
3751
					    i915_gem_object_get_tiling(obj));
3752
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3753
						      vma->size,
3754
						      i915_gem_object_get_tiling(obj),
3755
						      true);
3756 3757 3758 3759 3760

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3761
		    dev_priv->ggtt.mappable_end);
3762

3763 3764 3765 3766
	if (mappable && fenceable)
		vma->flags |= I915_VMA_CAN_FENCE;
	else
		vma->flags &= ~I915_VMA_CAN_FENCE;
3767 3768
}

3769 3770
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3771
{
3772
	unsigned int bound = vma->flags;
3773 3774
	int ret;

3775
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3776
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3777

3778 3779 3780 3781
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3782

3783
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3784 3785 3786
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3787
	}
3788

3789
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3790
	if (ret)
3791
		goto err;
3792

3793
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3794
		__i915_vma_set_map_and_fenceable(vma);
3795

3796
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3797 3798
	return 0;

3799 3800 3801
err:
	__i915_vma_unpin(vma);
	return ret;
3802 3803
}

C
Chris Wilson 已提交
3804
struct i915_vma *
3805 3806
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3807
			 u64 size,
3808 3809
			 u64 alignment,
			 u64 flags)
3810
{
C
Chris Wilson 已提交
3811
	struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base;
3812 3813
	struct i915_vma *vma;
	int ret;
3814

C
Chris Wilson 已提交
3815
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3816
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3817
		return vma;
3818 3819 3820 3821

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3822
			return ERR_PTR(-ENOSPC);
3823 3824 3825

		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3826 3827 3828
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3829
		     !!(flags & PIN_MAPPABLE),
3830
		     i915_vma_is_map_and_fenceable(vma));
3831 3832
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3833
			return ERR_PTR(ret);
3834 3835
	}

C
Chris Wilson 已提交
3836 3837 3838
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3839

C
Chris Wilson 已提交
3840
	return vma;
3841 3842
}

3843
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3858 3859 3860 3861 3862 3863 3864 3865 3866
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3867 3868
}

3869
static __always_inline unsigned int
3870 3871 3872
__busy_set_if_active(const struct i915_gem_active *active,
		     unsigned int (*flag)(unsigned int id))
{
3873
	struct drm_i915_gem_request *request;
3874

3875 3876 3877
	request = rcu_dereference(active->request);
	if (!request || i915_gem_request_completed(request))
		return 0;
3878

3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
	/* This is racy. See __i915_gem_active_get_rcu() for an in detail
	 * discussion of how to handle the race correctly, but for reporting
	 * the busy state we err on the side of potentially reporting the
	 * wrong engine as being busy (but we guarantee that the result
	 * is at least self-consistent).
	 *
	 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
	 * whilst we are inspecting it, even under the RCU read lock as we are.
	 * This means that there is a small window for the engine and/or the
	 * seqno to have been overwritten. The seqno will always be in the
	 * future compared to the intended, and so we know that if that
	 * seqno is idle (on whatever engine) our request is idle and the
	 * return 0 above is correct.
	 *
	 * The issue is that if the engine is switched, it is just as likely
	 * to report that it is busy (but since the switch happened, we know
	 * the request should be idle). So there is a small chance that a busy
	 * result is actually the wrong engine.
	 *
	 * So why don't we care?
	 *
	 * For starters, the busy ioctl is a heuristic that is by definition
	 * racy. Even with perfect serialisation in the driver, the hardware
	 * state is constantly advancing - the state we report to the user
	 * is stale.
	 *
	 * The critical information for the busy-ioctl is whether the object
	 * is idle as userspace relies on that to detect whether its next
	 * access will stall, or if it has missed submitting commands to
	 * the hardware allowing the GPU to stall. We never generate a
	 * false-positive for idleness, thus busy-ioctl is reliable at the
	 * most fundamental level, and we maintain the guarantee that a
	 * busy object left to itself will eventually become idle (and stay
	 * idle!).
	 *
	 * We allow ourselves the leeway of potentially misreporting the busy
	 * state because that is an optimisation heuristic that is constantly
	 * in flux. Being quickly able to detect the busy/idle state is much
	 * more important than accurate logging of exactly which engines were
	 * busy.
	 *
	 * For accuracy in reporting the engine, we could use
	 *
	 *	result = 0;
	 *	request = __i915_gem_active_get_rcu(active);
	 *	if (request) {
	 *		if (!i915_gem_request_completed(request))
	 *			result = flag(request->engine->exec_id);
	 *		i915_gem_request_put(request);
	 *	}
	 *
	 * but that still remains susceptible to both hardware and userspace
	 * races. So we accept making the result of that race slightly worse,
	 * given the rarity of the race and its low impact on the result.
	 */
	return flag(READ_ONCE(request->engine->exec_id));
3935 3936
}

3937
static __always_inline unsigned int
3938 3939 3940 3941 3942
busy_check_reader(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_read_flag);
}

3943
static __always_inline unsigned int
3944 3945 3946 3947 3948
busy_check_writer(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_write_id);
}

3949 3950
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3951
		    struct drm_file *file)
3952 3953
{
	struct drm_i915_gem_busy *args = data;
3954
	struct drm_i915_gem_object *obj;
3955
	unsigned long active;
3956

3957
	obj = i915_gem_object_lookup(file, args->handle);
3958 3959
	if (!obj)
		return -ENOENT;
3960

3961
	args->busy = 0;
3962 3963 3964
	active = __I915_BO_ACTIVE(obj);
	if (active) {
		int idx;
3965

3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
		/* Yes, the lookups are intentionally racy.
		 *
		 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
		 * to regard the value as stale and as our ABI guarantees
		 * forward progress, we confirm the status of each active
		 * request with the hardware.
		 *
		 * Even though we guard the pointer lookup by RCU, that only
		 * guarantees that the pointer and its contents remain
		 * dereferencable and does *not* mean that the request we
		 * have is the same as the one being tracked by the object.
		 *
		 * Consider that we lookup the request just as it is being
		 * retired and freed. We take a local copy of the pointer,
		 * but before we add its engine into the busy set, the other
		 * thread reallocates it and assigns it to a task on another
3982 3983 3984 3985 3986 3987
		 * engine with a fresh and incomplete seqno. Guarding against
		 * that requires careful serialisation and reference counting,
		 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
		 * instead we expect that if the result is busy, which engines
		 * are busy is not completely reliable - we only guarantee
		 * that the object was busy.
3988 3989 3990 3991 3992 3993 3994
		 */
		rcu_read_lock();

		for_each_active(active, idx)
			args->busy |= busy_check_reader(&obj->last_read[idx]);

		/* For ABI sanity, we only care that the write engine is in
3995 3996 3997 3998 3999
		 * the set of read engines. This should be ensured by the
		 * ordering of setting last_read/last_write in
		 * i915_vma_move_to_active(), and then in reverse in retire.
		 * However, for good measure, we always report the last_write
		 * request as a busy read as well as being a busy write.
4000 4001 4002 4003 4004 4005 4006 4007 4008
		 *
		 * We don't care that the set of active read/write engines
		 * may change during construction of the result, as it is
		 * equally liable to change before userspace can inspect
		 * the result.
		 */
		args->busy |= busy_check_writer(&obj->last_write);

		rcu_read_unlock();
4009
	}
4010

4011 4012
	i915_gem_object_put_unlocked(obj);
	return 0;
4013 4014 4015 4016 4017 4018
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4019
	return i915_gem_ring_throttle(dev, file_priv);
4020 4021
}

4022 4023 4024 4025
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4026
	struct drm_i915_private *dev_priv = to_i915(dev);
4027
	struct drm_i915_gem_madvise *args = data;
4028
	struct drm_i915_gem_object *obj;
4029
	int ret;
4030 4031 4032 4033 4034 4035 4036 4037 4038

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4039 4040 4041 4042
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4043 4044
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
4045 4046
		ret = -ENOENT;
		goto unlock;
4047 4048
	}

4049
	if (obj->pages &&
4050
	    i915_gem_object_is_tiled(obj) &&
4051 4052 4053 4054 4055 4056 4057
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4058 4059
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4060

C
Chris Wilson 已提交
4061
	/* if the object is no longer attached, discard its backing storage */
4062
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4063 4064
		i915_gem_object_truncate(obj);

4065
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4066

4067
	i915_gem_object_put(obj);
4068
unlock:
4069
	mutex_unlock(&dev->struct_mutex);
4070
	return ret;
4071 4072
}

4073 4074
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4075
{
4076 4077
	int i;

4078
	INIT_LIST_HEAD(&obj->global_list);
4079
	for (i = 0; i < I915_NUM_ENGINES; i++)
4080 4081 4082 4083
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
4084
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4085
	INIT_LIST_HEAD(&obj->vma_list);
4086
	INIT_LIST_HEAD(&obj->batch_pool_link);
4087

4088 4089
	obj->ops = ops;

4090 4091
	obj->madv = I915_MADV_WILLNEED;

4092
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4093 4094
}

4095
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4096
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4097 4098 4099 4100
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4101
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4102
						  size_t size)
4103
{
4104
	struct drm_i915_gem_object *obj;
4105
	struct address_space *mapping;
D
Daniel Vetter 已提交
4106
	gfp_t mask;
4107
	int ret;
4108

4109
	obj = i915_gem_object_alloc(dev);
4110
	if (obj == NULL)
4111
		return ERR_PTR(-ENOMEM);
4112

4113 4114 4115
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4116

4117 4118 4119 4120 4121 4122 4123
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4124
	mapping = obj->base.filp->f_mapping;
4125
	mapping_set_gfp_mask(mapping, mask);
4126

4127
	i915_gem_object_init(obj, &i915_gem_object_ops);
4128

4129 4130
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4131

4132 4133
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4149 4150
	trace_i915_gem_object_create(obj);

4151
	return obj;
4152 4153 4154 4155 4156

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4157 4158
}

4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4183
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4184
{
4185
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4186
	struct drm_device *dev = obj->base.dev;
4187
	struct drm_i915_private *dev_priv = to_i915(dev);
4188
	struct i915_vma *vma, *next;
4189

4190 4191
	intel_runtime_pm_get(dev_priv);

4192 4193
	trace_i915_gem_object_destroy(obj);

4194 4195 4196 4197 4198 4199 4200
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4201
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4202
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4203
		GEM_BUG_ON(i915_vma_is_active(vma));
4204
		vma->flags &= ~I915_VMA_PIN_MASK;
4205
		i915_vma_close(vma);
4206
	}
4207
	GEM_BUG_ON(obj->bind_count);
4208

B
Ben Widawsky 已提交
4209 4210 4211 4212 4213
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4214
	WARN_ON(atomic_read(&obj->frontbuffer_bits));
4215

4216 4217
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4218
	    i915_gem_object_is_tiled(obj))
4219 4220
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4221 4222
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4223
	if (discard_backing_storage(obj))
4224
		obj->madv = I915_MADV_DONTNEED;
4225
	i915_gem_object_put_pages(obj);
4226

4227 4228
	BUG_ON(obj->pages);

4229 4230
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4231

4232 4233 4234
	if (obj->ops->release)
		obj->ops->release(obj);

4235 4236
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4237

4238
	kfree(obj->bit_17);
4239
	i915_gem_object_free(obj);
4240 4241

	intel_runtime_pm_put(dev_priv);
4242 4243
}

4244
int i915_gem_suspend(struct drm_device *dev)
4245
{
4246
	struct drm_i915_private *dev_priv = to_i915(dev);
4247
	int ret;
4248

4249 4250
	intel_suspend_gt_powersave(dev_priv);

4251
	mutex_lock(&dev->struct_mutex);
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4265
	ret = i915_gem_wait_for_idle(dev_priv, true);
4266
	if (ret)
4267
		goto err;
4268

4269
	i915_gem_retire_requests(dev_priv);
4270

4271
	i915_gem_context_lost(dev_priv);
4272 4273
	mutex_unlock(&dev->struct_mutex);

4274
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4275 4276
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4277

4278 4279 4280
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4281
	WARN_ON(dev_priv->gt.awake);
4282

4283
	return 0;
4284 4285 4286 4287

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4288 4289
}

4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4307 4308
void i915_gem_init_swizzling(struct drm_device *dev)
{
4309
	struct drm_i915_private *dev_priv = to_i915(dev);
4310

4311
	if (INTEL_INFO(dev)->gen < 5 ||
4312 4313 4314 4315 4316 4317
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4318 4319 4320
	if (IS_GEN5(dev))
		return;

4321 4322
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4323
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4324
	else if (IS_GEN7(dev))
4325
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4326 4327
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4328 4329
	else
		BUG();
4330
}
D
Daniel Vetter 已提交
4331

4332 4333
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4334
	struct drm_i915_private *dev_priv = to_i915(dev);
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4359 4360 4361
int
i915_gem_init_hw(struct drm_device *dev)
{
4362
	struct drm_i915_private *dev_priv = to_i915(dev);
4363
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4364
	int ret;
4365

4366 4367 4368
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4369
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4370
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4371

4372 4373 4374
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4375

4376
	if (HAS_PCH_NOP(dev)) {
4377 4378 4379 4380 4381 4382 4383 4384 4385
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4386 4387
	}

4388 4389
	i915_gem_init_swizzling(dev);

4390 4391 4392 4393 4394 4395 4396 4397
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4398
	BUG_ON(!dev_priv->kernel_context);
4399

4400 4401 4402 4403 4404 4405 4406
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4407
	for_each_engine(engine, dev_priv) {
4408
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4409
		if (ret)
4410
			goto out;
D
Daniel Vetter 已提交
4411
	}
4412

4413 4414
	intel_mocs_init_l3cc_table(dev);

4415
	/* We can't enable contexts until all firmware is loaded */
4416 4417 4418
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4419

4420 4421
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4422
	return ret;
4423 4424
}

4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4446 4447
int i915_gem_init(struct drm_device *dev)
{
4448
	struct drm_i915_private *dev_priv = to_i915(dev);
4449 4450 4451
	int ret;

	mutex_lock(&dev->struct_mutex);
4452

4453
	if (!i915.enable_execlists) {
4454
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4455
	} else {
4456
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4457 4458
	}

4459 4460 4461 4462 4463 4464 4465 4466
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4467
	i915_gem_init_userptr(dev_priv);
4468 4469 4470 4471

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4472

4473
	ret = i915_gem_context_init(dev);
4474 4475
	if (ret)
		goto out_unlock;
4476

4477
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4478
	if (ret)
4479
		goto out_unlock;
4480

4481
	ret = i915_gem_init_hw(dev);
4482
	if (ret == -EIO) {
4483
		/* Allow engine initialisation to fail by marking the GPU as
4484 4485 4486 4487
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4488
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4489
		ret = 0;
4490
	}
4491 4492

out_unlock:
4493
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4494
	mutex_unlock(&dev->struct_mutex);
4495

4496
	return ret;
4497 4498
}

4499
void
4500
i915_gem_cleanup_engines(struct drm_device *dev)
4501
{
4502
	struct drm_i915_private *dev_priv = to_i915(dev);
4503
	struct intel_engine_cs *engine;
4504

4505
	for_each_engine(engine, dev_priv)
4506
		dev_priv->gt.cleanup_engine(engine);
4507 4508
}

4509
static void
4510
init_engine_lists(struct intel_engine_cs *engine)
4511
{
4512
	INIT_LIST_HEAD(&engine->request_list);
4513 4514
}

4515 4516 4517
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4518
	struct drm_device *dev = &dev_priv->drm;
4519
	int i;
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4530
	if (intel_vgpu_active(dev_priv))
4531 4532 4533 4534
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4535 4536 4537 4538 4539 4540 4541
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4542 4543 4544 4545 4546
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4547
void
4548
i915_gem_load_init(struct drm_device *dev)
4549
{
4550
	struct drm_i915_private *dev_priv = to_i915(dev);
4551 4552
	int i;

4553
	dev_priv->objects =
4554 4555 4556 4557
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4558 4559 4560 4561 4562
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4563 4564 4565
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
4566 4567 4568
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_DESTROY_BY_RCU,
4569
				  NULL);
4570

4571
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4572 4573
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4574
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4575 4576
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4577
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4578
			  i915_gem_retire_work_handler);
4579
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4580
			  i915_gem_idle_work_handler);
4581
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4582
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4583

4584 4585
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4586
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4587

4588 4589
	dev_priv->mm.interruptible = true;

4590
	spin_lock_init(&dev_priv->fb_tracking.lock);
4591
}
4592

4593 4594 4595 4596 4597 4598 4599
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4600 4601 4602

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4603 4604
}

4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4633
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4634
{
4635
	struct drm_i915_file_private *file_priv = file->driver_priv;
4636
	struct drm_i915_gem_request *request;
4637 4638 4639 4640 4641

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4642
	spin_lock(&file_priv->mm.lock);
4643
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4644
		request->file_priv = NULL;
4645
	spin_unlock(&file_priv->mm.lock);
4646

4647
	if (!list_empty(&file_priv->rps.link)) {
4648
		spin_lock(&to_i915(dev)->rps.client_lock);
4649
		list_del(&file_priv->rps.link);
4650
		spin_unlock(&to_i915(dev)->rps.client_lock);
4651
	}
4652 4653 4654 4655 4656
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4657
	int ret;
4658 4659 4660 4661 4662 4663 4664 4665

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4666
	file_priv->dev_priv = to_i915(dev);
4667
	file_priv->file = file;
4668
	INIT_LIST_HEAD(&file_priv->rps.link);
4669 4670 4671 4672

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4673
	file_priv->bsd_engine = -1;
4674

4675 4676 4677
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4678

4679
	return ret;
4680 4681
}

4682 4683
/**
 * i915_gem_track_fb - update frontbuffer tracking
4684 4685 4686
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4687 4688 4689 4690
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4691 4692 4693 4694
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4695 4696 4697 4698 4699 4700 4701 4702 4703
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4704
	if (old) {
4705 4706
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4707 4708 4709
	}

	if (new) {
4710 4711
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4712 4713 4714
	}
}

4715 4716 4717 4718 4719 4720 4721
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4722
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4723 4724 4725 4726 4727 4728 4729
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4740
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4741
	if (IS_ERR(obj))
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4755
	obj->dirty = 1;		/* Backing store is now out of date */
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4767
	i915_gem_object_put(obj);
4768 4769
	return ERR_PTR(ret);
}