i915_gem.c 143.7 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/dma-fence-array.h>
39
#include <linux/kthread.h>
40
#include <linux/reservation.h>
41
#include <linux/shmem_fs.h>
42
#include <linux/slab.h>
43
#include <linux/stop_machine.h>
44
#include <linux/swap.h>
J
Jesse Barnes 已提交
45
#include <linux/pci.h>
46
#include <linux/dma-buf.h>
47

48
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49

50 51
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
52
	if (obj->cache_dirty)
53 54
		return false;

55
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
56 57 58 59 60
		return true;

	return obj->pin_display;
}

61
static int
62
insert_mappable_node(struct i915_ggtt *ggtt,
63 64 65
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
66 67 68 69
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
70 71 72 73 74 75 76 77
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

78 79
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80
				  u64 size)
81
{
82
	spin_lock(&dev_priv->mm.object_stat_lock);
83 84
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
85
	spin_unlock(&dev_priv->mm.object_stat_lock);
86 87 88
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89
				     u64 size)
90
{
91
	spin_lock(&dev_priv->mm.object_stat_lock);
92 93
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
94
	spin_unlock(&dev_priv->mm.object_stat_lock);
95 96
}

97
static int
98
i915_gem_wait_for_error(struct i915_gpu_error *error)
99 100 101
{
	int ret;

102 103
	might_sleep();

104 105 106 107 108
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
109
	ret = wait_event_interruptible_timeout(error->reset_queue,
110
					       !i915_reset_backoff(error),
111
					       I915_RESET_TIMEOUT);
112 113 114 115
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
116
		return ret;
117 118
	} else {
		return 0;
119
	}
120 121
}

122
int i915_mutex_lock_interruptible(struct drm_device *dev)
123
{
124
	struct drm_i915_private *dev_priv = to_i915(dev);
125 126
	int ret;

127
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128 129 130 131 132 133 134 135 136
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
137

138 139
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140
			    struct drm_file *file)
141
{
142
	struct drm_i915_private *dev_priv = to_i915(dev);
143
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
144
	struct drm_i915_gem_get_aperture *args = data;
145
	struct i915_vma *vma;
146
	u64 pinned;
147

148
	pinned = ggtt->base.reserved;
149
	mutex_lock(&dev->struct_mutex);
150
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151
		if (i915_vma_is_pinned(vma))
152
			pinned += vma->node.size;
153
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154
		if (i915_vma_is_pinned(vma))
155
			pinned += vma->node.size;
156
	mutex_unlock(&dev->struct_mutex);
157

158
	args->aper_size = ggtt->base.total;
159
	args->aper_available_size = args->aper_size - pinned;
160

161 162 163
	return 0;
}

164
static struct sg_table *
165
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166
{
167
	struct address_space *mapping = obj->base.filp->f_mapping;
168
	drm_dma_handle_t *phys;
169 170
	struct sg_table *st;
	struct scatterlist *sg;
171
	char *vaddr;
172
	int i;
173

174
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175
		return ERR_PTR(-EINVAL);
176

177 178 179 180 181 182 183 184 185 186 187
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
188 189 190 191 192
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
193 194 195 196
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
197 198 199 200 201 202

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

203
		put_page(page);
204 205 206
		vaddr += PAGE_SIZE;
	}

207
	i915_gem_chipset_flush(to_i915(obj->base.dev));
208 209

	st = kmalloc(sizeof(*st), GFP_KERNEL);
210 211 212 213
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
214 215 216

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
217 218
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
219 220 221 222 223
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
224

225
	sg_dma_address(sg) = phys->busaddr;
226 227
	sg_dma_len(sg) = obj->base.size;

228 229 230 231 232
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
233
	return st;
234 235
}

236 237 238 239 240 241 242 243
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

244
static void
245
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246 247
				struct sg_table *pages,
				bool needs_clflush)
248
{
C
Chris Wilson 已提交
249
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250

C
Chris Wilson 已提交
251 252
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
253

254 255
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
257
		drm_clflush_sg(pages);
258

259
	__start_cpu_write(obj);
260 261 262 263 264 265
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
266
	__i915_gem_object_release_shmem(obj, pages, false);
267

C
Chris Wilson 已提交
268
	if (obj->mm.dirty) {
269
		struct address_space *mapping = obj->base.filp->f_mapping;
270
		char *vaddr = obj->phys_handle->vaddr;
271 272 273
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274 275 276 277 278 279 280 281 282 283 284 285 286
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
287
			if (obj->mm.madv == I915_MADV_WILLNEED)
288
				mark_page_accessed(page);
289
			put_page(page);
290 291
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
292
		obj->mm.dirty = false;
293 294
	}

295 296
	sg_free_table(pages);
	kfree(pages);
297 298

	drm_pci_free(obj->base.dev, obj->phys_handle);
299 300 301 302 303
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
304
	i915_gem_object_unpin_pages(obj);
305 306 307 308 309 310 311 312
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

313 314
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

315
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 317 318
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
319 320 321
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
322

323 324 325 326
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
327
	 */
328 329 330 331 332 333
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
334 335 336 337 338
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

339 340 341 342 343 344 345 346 347 348 349 350 351
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

352 353 354 355 356
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
357
{
358
	struct drm_i915_gem_request *rq;
359

360
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
391
			gen6_rps_boost(rq, rps);
392 393
		else
			rps = NULL;
394 395
	}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
411
	unsigned int seq = __read_seqcount_begin(&resv->seq);
412
	struct dma_fence *excl;
413
	bool prune_fences = false;
414 415 416 417

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
418 419
		int ret;

420 421
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
422 423 424
		if (ret)
			return ret;

425 426 427 428
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
429
			if (timeout < 0)
430
				break;
431

432 433 434 435 436 437
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
438 439

		prune_fences = count && timeout >= 0;
440 441
	} else {
		excl = reservation_object_get_excl_rcu(resv);
442 443
	}

444
	if (excl && timeout >= 0) {
445
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
446 447
		prune_fences = timeout >= 0;
	}
448 449 450

	dma_fence_put(excl);

451 452 453 454
	/* Oportunistically prune the fences iff we know they have *all* been
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
455
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
456 457 458 459 460
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
461 462
	}

463
	return timeout;
464 465
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

530 531 532 533 534 535
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
536
 */
537 538 539 540 541
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
542
{
543 544 545 546 547 548 549
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
550

551 552 553
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
554
	return timeout < 0 ? timeout : 0;
555 556 557 558 559 560 561 562 563
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

564 565 566
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
567
		     struct drm_file *file)
568 569
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
570
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
571 572 573 574

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
575
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
576 577
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
578

579
	drm_clflush_virt_range(vaddr, args->size);
580
	i915_gem_chipset_flush(to_i915(obj->base.dev));
581

582
	intel_fb_obj_flush(obj, ORIGIN_CPU);
583
	return 0;
584 585
}

586
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
587
{
588
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
589 590 591 592
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
593
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
594
	kmem_cache_free(dev_priv->objects, obj);
595 596
}

597 598
static int
i915_gem_create(struct drm_file *file,
599
		struct drm_i915_private *dev_priv,
600 601
		uint64_t size,
		uint32_t *handle_p)
602
{
603
	struct drm_i915_gem_object *obj;
604 605
	int ret;
	u32 handle;
606

607
	size = roundup(size, PAGE_SIZE);
608 609
	if (size == 0)
		return -EINVAL;
610 611

	/* Allocate the new object */
612
	obj = i915_gem_object_create(dev_priv, size);
613 614
	if (IS_ERR(obj))
		return PTR_ERR(obj);
615

616
	ret = drm_gem_handle_create(file, &obj->base, &handle);
617
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
618
	i915_gem_object_put(obj);
619 620
	if (ret)
		return ret;
621

622
	*handle_p = handle;
623 624 625
	return 0;
}

626 627 628 629 630 631
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
632
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
633
	args->size = args->pitch * args->height;
634
	return i915_gem_create(file, to_i915(dev),
635
			       args->size, &args->handle);
636 637
}

638 639 640 641 642 643
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

644 645
/**
 * Creates a new mm object and returns a handle to it.
646 647 648
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
649 650 651 652 653
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
654
	struct drm_i915_private *dev_priv = to_i915(dev);
655
	struct drm_i915_gem_create *args = data;
656

657
	i915_gem_flush_free_objects(dev_priv);
658

659
	return i915_gem_create(file, dev_priv,
660
			       args->size, &args->handle);
661 662
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);

	if (!(obj->base.write_domain & flush_domains))
		return;

	/* No actual flushing is required for the GTT write domain.  Writes
	 * to it "immediately" go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
	 */
	wmb();

	switch (obj->base.write_domain) {
	case I915_GEM_DOMAIN_GTT:
		if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
698 699 700 701 702
			intel_runtime_pm_get(dev_priv);
			spin_lock_irq(&dev_priv->uncore.lock);
			POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
			spin_unlock_irq(&dev_priv->uncore.lock);
			intel_runtime_pm_put(dev_priv);
703 704 705 706 707 708 709 710 711
		}

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
712 713 714 715 716

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
717 718 719 720 721
	}

	obj->base.write_domain = 0;
}

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

748
static inline int
749 750
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

774 775 776 777 778 779
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
780
				    unsigned int *needs_clflush)
781 782 783
{
	int ret;

784
	lockdep_assert_held(&obj->base.dev->struct_mutex);
785

786
	*needs_clflush = 0;
787 788
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
789

790 791 792 793 794
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
795 796 797
	if (ret)
		return ret;

C
Chris Wilson 已提交
798
	ret = i915_gem_object_pin_pages(obj);
799 800 801
	if (ret)
		return ret;

802 803
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
804 805 806 807 808 809 810
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

811
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
812

813 814 815 816 817
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
818 819
	if (!obj->cache_dirty &&
	    !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
820
		*needs_clflush = CLFLUSH_BEFORE;
821

822
out:
823
	/* return with the pages pinned */
824
	return 0;
825 826 827 828

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
829 830 831 832 833 834 835
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

836 837
	lockdep_assert_held(&obj->base.dev->struct_mutex);

838 839 840 841
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

842 843 844 845 846 847
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
848 849 850
	if (ret)
		return ret;

C
Chris Wilson 已提交
851
	ret = i915_gem_object_pin_pages(obj);
852 853 854
	if (ret)
		return ret;

855 856
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
857 858 859 860 861 862 863
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

864
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
865

866 867 868 869 870
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
871
	if (!obj->cache_dirty) {
872
		*needs_clflush |= CLFLUSH_AFTER;
873

874 875 876 877 878 879 880
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
		if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
			*needs_clflush |= CLFLUSH_BEFORE;
	}
881

882
out:
883
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
884
	obj->mm.dirty = true;
885
	/* return with the pages pinned */
886
	return 0;
887 888 889 890

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
891 892
}

893 894 895 896
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
897
	if (unlikely(swizzled)) {
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

915 916 917
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
918
shmem_pread_slow(struct page *page, int offset, int length,
919 920 921 922 923 924 925 926
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
927
		shmem_clflush_swizzled_range(vaddr + offset, length,
928
					     page_do_bit17_swizzling);
929 930

	if (page_do_bit17_swizzling)
931
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
932
	else
933
		ret = __copy_to_user(user_data, vaddr + offset, length);
934 935
	kunmap(page);

936
	return ret ? - EFAULT : 0;
937 938
}

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1015
{
1016
	void __iomem *vaddr;
1017
	unsigned long unwritten;
1018 1019

	/* We can use the cpu mem copy function because this is X86. */
1020 1021 1022 1023
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1024 1025
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1026 1027 1028 1029
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1030 1031
		io_mapping_unmap(vaddr);
	}
1032 1033 1034 1035
	return unwritten;
}

static int
1036 1037
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1038
{
1039 1040
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1041
	struct drm_mm_node node;
1042 1043 1044
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1045 1046
	int ret;

1047 1048 1049 1050 1051 1052 1053
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1054 1055 1056
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1057
		ret = i915_vma_put_fence(vma);
1058 1059 1060 1061 1062
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1063
	if (IS_ERR(vma)) {
1064
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1065
		if (ret)
1066 1067
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1068 1069 1070 1071 1072 1073
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1074
	mutex_unlock(&i915->drm.struct_mutex);
1075

1076 1077 1078
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1095
					       node.start, I915_CACHE_NONE, 0);
1096 1097 1098 1099
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1100 1101 1102

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1103 1104 1105 1106 1107 1108 1109 1110 1111
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1112
	mutex_lock(&i915->drm.struct_mutex);
1113 1114 1115 1116
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1117
				       node.start, node.size);
1118 1119
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1120
		i915_vma_unpin(vma);
1121
	}
1122 1123 1124
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1125

1126 1127 1128
	return ret;
}

1129 1130
/**
 * Reads data from the object referenced by handle.
1131 1132 1133
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1134 1135 1136 1137 1138
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1139
		     struct drm_file *file)
1140 1141
{
	struct drm_i915_gem_pread *args = data;
1142
	struct drm_i915_gem_object *obj;
1143
	int ret;
1144

1145 1146 1147 1148
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1149
		       u64_to_user_ptr(args->data_ptr),
1150 1151 1152
		       args->size))
		return -EFAULT;

1153
	obj = i915_gem_object_lookup(file, args->handle);
1154 1155
	if (!obj)
		return -ENOENT;
1156

1157
	/* Bounds check source.  */
1158
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1159
		ret = -EINVAL;
1160
		goto out;
C
Chris Wilson 已提交
1161 1162
	}

C
Chris Wilson 已提交
1163 1164
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1165 1166 1167 1168
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1169
	if (ret)
1170
		goto out;
1171

1172
	ret = i915_gem_object_pin_pages(obj);
1173
	if (ret)
1174
		goto out;
1175

1176
	ret = i915_gem_shmem_pread(obj, args);
1177
	if (ret == -EFAULT || ret == -ENODEV)
1178
		ret = i915_gem_gtt_pread(obj, args);
1179

1180 1181
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1182
	i915_gem_object_put(obj);
1183
	return ret;
1184 1185
}

1186 1187
/* This is the fast write path which cannot handle
 * page faults in the source data
1188
 */
1189

1190 1191 1192 1193
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1194
{
1195
	void __iomem *vaddr;
1196
	unsigned long unwritten;
1197

1198
	/* We can use the cpu mem copy function because this is X86. */
1199 1200
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1201
						      user_data, length);
1202 1203
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1204 1205 1206
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1207 1208
		io_mapping_unmap(vaddr);
	}
1209 1210 1211 1212

	return unwritten;
}

1213 1214 1215
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1216
 * @obj: i915 GEM object
1217
 * @args: pwrite arguments structure
1218
 */
1219
static int
1220 1221
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1222
{
1223
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1224 1225
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1226 1227 1228
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1229
	int ret;
1230

1231 1232 1233
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1234

1235
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1236
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1237
				       PIN_MAPPABLE | PIN_NONBLOCK);
1238 1239 1240
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1241
		ret = i915_vma_put_fence(vma);
1242 1243 1244 1245 1246
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1247
	if (IS_ERR(vma)) {
1248
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1249
		if (ret)
1250 1251
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1252
	}
D
Daniel Vetter 已提交
1253 1254 1255 1256 1257

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1258 1259
	mutex_unlock(&i915->drm.struct_mutex);

1260
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1261

1262 1263 1264 1265
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1266 1267
		/* Operation in this page
		 *
1268 1269 1270
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1271
		 */
1272
		u32 page_base = node.start;
1273 1274
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1285
		/* If we get a fault while copying data, then (presumably) our
1286 1287
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1288 1289
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1290
		 */
1291 1292 1293 1294
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1295
		}
1296

1297 1298 1299
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1300
	}
1301
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1302 1303

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1304
out_unpin:
1305 1306 1307
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1308
				       node.start, node.size);
1309 1310
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1311
		i915_vma_unpin(vma);
1312
	}
1313
out_unlock:
1314
	intel_runtime_pm_put(i915);
1315
	mutex_unlock(&i915->drm.struct_mutex);
1316
	return ret;
1317 1318
}

1319
static int
1320
shmem_pwrite_slow(struct page *page, int offset, int length,
1321 1322 1323 1324
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1325
{
1326 1327
	char *vaddr;
	int ret;
1328

1329
	vaddr = kmap(page);
1330
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1331
		shmem_clflush_swizzled_range(vaddr + offset, length,
1332
					     page_do_bit17_swizzling);
1333
	if (page_do_bit17_swizzling)
1334 1335
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1336
	else
1337
		ret = __copy_from_user(vaddr + offset, user_data, length);
1338
	if (needs_clflush_after)
1339
		shmem_clflush_swizzled_range(vaddr + offset, length,
1340
					     page_do_bit17_swizzling);
1341
	kunmap(page);
1342

1343
	return ret ? -EFAULT : 0;
1344 1345
}

1346 1347 1348 1349 1350
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1351
static int
1352 1353 1354 1355
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1356
{
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1389
	unsigned int needs_clflush;
1390 1391
	unsigned int offset, idx;
	int ret;
1392

1393
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1394 1395 1396
	if (ret)
		return ret;

1397 1398 1399 1400
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1401

1402 1403 1404
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1405

1406 1407 1408 1409 1410 1411 1412
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1413

1414 1415 1416 1417 1418 1419
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1420

1421 1422 1423
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1424

1425 1426 1427 1428
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1429
		if (ret)
1430
			break;
1431

1432 1433 1434
		remain -= length;
		user_data += length;
		offset = 0;
1435
	}
1436

1437
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1438
	i915_gem_obj_finish_shmem_access(obj);
1439
	return ret;
1440 1441 1442 1443
}

/**
 * Writes data to the object referenced by handle.
1444 1445 1446
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1447 1448 1449 1450 1451
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1452
		      struct drm_file *file)
1453 1454
{
	struct drm_i915_gem_pwrite *args = data;
1455
	struct drm_i915_gem_object *obj;
1456 1457 1458 1459 1460 1461
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1462
		       u64_to_user_ptr(args->data_ptr),
1463 1464 1465
		       args->size))
		return -EFAULT;

1466
	obj = i915_gem_object_lookup(file, args->handle);
1467 1468
	if (!obj)
		return -ENOENT;
1469

1470
	/* Bounds check destination. */
1471
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1472
		ret = -EINVAL;
1473
		goto err;
C
Chris Wilson 已提交
1474 1475
	}

C
Chris Wilson 已提交
1476 1477
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1478 1479 1480 1481 1482 1483
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1484 1485 1486 1487 1488
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1489 1490 1491
	if (ret)
		goto err;

1492
	ret = i915_gem_object_pin_pages(obj);
1493
	if (ret)
1494
		goto err;
1495

D
Daniel Vetter 已提交
1496
	ret = -EFAULT;
1497 1498 1499 1500 1501 1502
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1503
	if (!i915_gem_object_has_struct_page(obj) ||
1504
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1505 1506
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1507 1508
		 * textures). Fallback to the shmem path in that case.
		 */
1509
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1510

1511
	if (ret == -EFAULT || ret == -ENOSPC) {
1512 1513
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1514
		else
1515
			ret = i915_gem_shmem_pwrite(obj, args);
1516
	}
1517

1518
	i915_gem_object_unpin_pages(obj);
1519
err:
C
Chris Wilson 已提交
1520
	i915_gem_object_put(obj);
1521
	return ret;
1522 1523
}

1524 1525 1526 1527 1528 1529 1530 1531
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1532
			break;
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1545
	list_move_tail(&obj->global_link, list);
1546 1547
}

1548
/**
1549 1550
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1551 1552 1553
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1554 1555 1556
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1557
			  struct drm_file *file)
1558 1559
{
	struct drm_i915_gem_set_domain *args = data;
1560
	struct drm_i915_gem_object *obj;
1561 1562
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1563
	int err;
1564

1565
	/* Only handle setting domains to types used by the CPU. */
1566
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1567 1568 1569 1570 1571 1572 1573 1574
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1575
	obj = i915_gem_object_lookup(file, args->handle);
1576 1577
	if (!obj)
		return -ENOENT;
1578

1579 1580 1581 1582
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1583
	err = i915_gem_object_wait(obj,
1584 1585 1586 1587
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1588
	if (err)
C
Chris Wilson 已提交
1589
		goto out;
1590

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1601
		goto out;
1602 1603 1604

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1605
		goto out_unpin;
1606

1607 1608 1609 1610
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1611
	else
1612
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1613

1614 1615
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1616

1617
	mutex_unlock(&dev->struct_mutex);
1618

1619
	if (write_domain != 0)
1620 1621
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1622

C
Chris Wilson 已提交
1623
out_unpin:
1624
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1625 1626
out:
	i915_gem_object_put(obj);
1627
	return err;
1628 1629 1630 1631
}

/**
 * Called when user space has done writes to this buffer
1632 1633 1634
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1635 1636 1637
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1638
			 struct drm_file *file)
1639 1640
{
	struct drm_i915_gem_sw_finish *args = data;
1641
	struct drm_i915_gem_object *obj;
1642

1643
	obj = i915_gem_object_lookup(file, args->handle);
1644 1645
	if (!obj)
		return -ENOENT;
1646 1647

	/* Pinned buffers may be scanout, so flush the cache */
1648
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1649
	i915_gem_object_put(obj);
1650 1651

	return 0;
1652 1653 1654
}

/**
1655 1656 1657 1658 1659
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1660 1661 1662
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1673 1674 1675
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1676
		    struct drm_file *file)
1677 1678
{
	struct drm_i915_gem_mmap *args = data;
1679
	struct drm_i915_gem_object *obj;
1680 1681
	unsigned long addr;

1682 1683 1684
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1685
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1686 1687
		return -ENODEV;

1688 1689
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1690
		return -ENOENT;
1691

1692 1693 1694
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1695
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1696
		i915_gem_object_put(obj);
1697 1698 1699
		return -EINVAL;
	}

1700
	addr = vm_mmap(obj->base.filp, 0, args->size,
1701 1702
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1703 1704 1705 1706
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1707
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1708
			i915_gem_object_put(obj);
1709 1710
			return -EINTR;
		}
1711 1712 1713 1714 1715 1716 1717
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1718 1719

		/* This may race, but that's ok, it only gets set */
1720
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1721
	}
C
Chris Wilson 已提交
1722
	i915_gem_object_put(obj);
1723 1724 1725 1726 1727 1728 1729 1730
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1731 1732
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1733
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1734 1735
}

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1756 1757 1758
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1786
	return 2;
1787 1788
}

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1800 1801
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1802
		min_t(unsigned int, chunk,
1803
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1804 1805 1806 1807 1808 1809 1810 1811

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1812 1813
/**
 * i915_gem_fault - fault a page into the GTT
1814
 * @vmf: fault info
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1826 1827 1828
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1829
 */
1830
int i915_gem_fault(struct vm_fault *vmf)
1831
{
1832
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1833
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1834
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1835
	struct drm_device *dev = obj->base.dev;
1836 1837
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1838
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1839
	struct i915_vma *vma;
1840
	pgoff_t page_offset;
1841
	unsigned int flags;
1842
	int ret;
1843

1844
	/* We don't use vmf->pgoff since that has the fake offset */
1845
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1846

C
Chris Wilson 已提交
1847 1848
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1849
	/* Try to flush the object off the GPU first without holding the lock.
1850
	 * Upon acquiring the lock, we will perform our sanity checks and then
1851 1852 1853
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1854 1855 1856 1857
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1858
	if (ret)
1859 1860
		goto err;

1861 1862 1863 1864
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1865 1866 1867 1868 1869
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1870

1871
	/* Access to snoopable pages through the GTT is incoherent. */
1872
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1873
		ret = -EFAULT;
1874
		goto err_unlock;
1875 1876
	}

1877 1878 1879 1880 1881 1882 1883 1884
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1885
	/* Now pin it into the GTT as needed */
1886
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1887 1888
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1889
		struct i915_ggtt_view view =
1890
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1891

1892 1893 1894 1895 1896
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1897 1898
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1899 1900
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1901
		goto err_unlock;
C
Chris Wilson 已提交
1902
	}
1903

1904 1905
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1906
		goto err_unpin;
1907

1908
	ret = i915_vma_get_fence(vma);
1909
	if (ret)
1910
		goto err_unpin;
1911

1912
	/* Mark as being mmapped into userspace for later revocation */
1913
	assert_rpm_wakelock_held(dev_priv);
1914 1915 1916
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1917
	/* Finally, remap it using the new GTT offset */
1918
	ret = remap_io_mapping(area,
1919
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1920 1921 1922
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1923

1924
err_unpin:
C
Chris Wilson 已提交
1925
	__i915_vma_unpin(vma);
1926
err_unlock:
1927
	mutex_unlock(&dev->struct_mutex);
1928 1929
err_rpm:
	intel_runtime_pm_put(dev_priv);
1930
	i915_gem_object_unpin_pages(obj);
1931
err:
1932
	switch (ret) {
1933
	case -EIO:
1934 1935 1936 1937 1938 1939 1940
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1941 1942 1943
			ret = VM_FAULT_SIGBUS;
			break;
		}
1944
	case -EAGAIN:
D
Daniel Vetter 已提交
1945 1946 1947 1948
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1949
		 */
1950 1951
	case 0:
	case -ERESTARTSYS:
1952
	case -EINTR:
1953 1954 1955 1956 1957
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1958 1959
		ret = VM_FAULT_NOPAGE;
		break;
1960
	case -ENOMEM:
1961 1962
		ret = VM_FAULT_OOM;
		break;
1963
	case -ENOSPC:
1964
	case -EFAULT:
1965 1966
		ret = VM_FAULT_SIGBUS;
		break;
1967
	default:
1968
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1969 1970
		ret = VM_FAULT_SIGBUS;
		break;
1971
	}
1972
	return ret;
1973 1974
}

1975 1976 1977 1978
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1979
 * Preserve the reservation of the mmapping with the DRM core code, but
1980 1981 1982 1983 1984 1985 1986 1987 1988
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1989
void
1990
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1991
{
1992 1993
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1994 1995 1996
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1997 1998 1999 2000
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2001
	 */
2002
	lockdep_assert_held(&i915->drm.struct_mutex);
2003
	intel_runtime_pm_get(i915);
2004

2005
	if (list_empty(&obj->userfault_link))
2006
		goto out;
2007

2008
	list_del_init(&obj->userfault_link);
2009 2010
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2011 2012 2013 2014 2015 2016 2017 2018 2019

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2020 2021 2022

out:
	intel_runtime_pm_put(i915);
2023 2024
}

2025
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2026
{
2027
	struct drm_i915_gem_object *obj, *on;
2028
	int i;
2029

2030 2031 2032 2033 2034 2035
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2036

2037 2038 2039
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2040 2041 2042
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2043 2044 2045 2046 2047 2048 2049 2050

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2061 2062 2063 2064 2065 2066 2067

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2068 2069
}

2070 2071
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2072
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2073
	int err;
2074

2075
	err = drm_gem_create_mmap_offset(&obj->base);
2076
	if (likely(!err))
2077
		return 0;
2078

2079 2080 2081 2082 2083
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2084

2085
		i915_gem_drain_freed_objects(dev_priv);
2086
		err = drm_gem_create_mmap_offset(&obj->base);
2087 2088 2089 2090
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2091

2092
	return err;
2093 2094 2095 2096 2097 2098 2099
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2100
int
2101 2102
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2103
		  uint32_t handle,
2104
		  uint64_t *offset)
2105
{
2106
	struct drm_i915_gem_object *obj;
2107 2108
	int ret;

2109
	obj = i915_gem_object_lookup(file, handle);
2110 2111
	if (!obj)
		return -ENOENT;
2112

2113
	ret = i915_gem_object_create_mmap_offset(obj);
2114 2115
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2116

C
Chris Wilson 已提交
2117
	i915_gem_object_put(obj);
2118
	return ret;
2119 2120
}

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2142
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2143 2144
}

D
Daniel Vetter 已提交
2145 2146 2147
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2148
{
2149
	i915_gem_object_free_mmap_offset(obj);
2150

2151 2152
	if (obj->base.filp == NULL)
		return;
2153

D
Daniel Vetter 已提交
2154 2155 2156 2157 2158
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2159
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2160
	obj->mm.madv = __I915_MADV_PURGED;
2161
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2162
}
2163

2164
/* Try to discard unwanted pages */
2165
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2166
{
2167 2168
	struct address_space *mapping;

2169 2170 2171
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2172
	switch (obj->mm.madv) {
2173 2174 2175 2176 2177 2178 2179 2180 2181
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2182
	mapping = obj->base.filp->f_mapping,
2183
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2184 2185
}

2186
static void
2187 2188
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2189
{
2190 2191
	struct sgt_iter sgt_iter;
	struct page *page;
2192

2193
	__i915_gem_object_release_shmem(obj, pages, true);
2194

2195
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2196

2197
	if (i915_gem_object_needs_bit17_swizzle(obj))
2198
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2199

2200
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2201
		if (obj->mm.dirty)
2202
			set_page_dirty(page);
2203

C
Chris Wilson 已提交
2204
		if (obj->mm.madv == I915_MADV_WILLNEED)
2205
			mark_page_accessed(page);
2206

2207
		put_page(page);
2208
	}
C
Chris Wilson 已提交
2209
	obj->mm.dirty = false;
2210

2211 2212
	sg_free_table(pages);
	kfree(pages);
2213
}
C
Chris Wilson 已提交
2214

2215 2216 2217
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2218
	void __rcu **slot;
2219

C
Chris Wilson 已提交
2220 2221
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2222 2223
}

2224 2225
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2226
{
2227
	struct sg_table *pages;
2228

C
Chris Wilson 已提交
2229
	if (i915_gem_object_has_pinned_pages(obj))
2230
		return;
2231

2232
	GEM_BUG_ON(obj->bind_count);
2233 2234 2235 2236
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2237
	mutex_lock_nested(&obj->mm.lock, subclass);
2238 2239
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2240

2241 2242 2243
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2244 2245
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2246

C
Chris Wilson 已提交
2247
	if (obj->mm.mapping) {
2248 2249
		void *ptr;

2250
		ptr = page_mask_bits(obj->mm.mapping);
2251 2252
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2253
		else
2254 2255
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2256
		obj->mm.mapping = NULL;
2257 2258
	}

2259 2260
	__i915_gem_object_reset_page_iter(obj);

2261 2262 2263
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2264 2265
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2266 2267
}

2268
static bool i915_sg_trim(struct sg_table *orig_st)
2269 2270 2271 2272 2273 2274
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2275
		return false;
2276

2277
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2278
		return false;
2279 2280 2281 2282 2283 2284 2285

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2286
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2287 2288 2289 2290

	sg_free_table(orig_st);

	*orig_st = new_st;
2291
	return true;
2292 2293
}

2294
static struct sg_table *
C
Chris Wilson 已提交
2295
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2296
{
2297
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2298 2299
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2300
	struct address_space *mapping;
2301 2302
	struct sg_table *st;
	struct scatterlist *sg;
2303
	struct sgt_iter sgt_iter;
2304
	struct page *page;
2305
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2306
	unsigned int max_segment;
2307
	gfp_t noreclaim;
I
Imre Deak 已提交
2308
	int ret;
2309

C
Chris Wilson 已提交
2310 2311 2312 2313
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2314 2315
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2316

2317
	max_segment = swiotlb_max_segment();
2318
	if (!max_segment)
2319
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2320

2321 2322
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2323
		return ERR_PTR(-ENOMEM);
2324

2325
rebuild_st:
2326 2327
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2328
		return ERR_PTR(-ENOMEM);
2329
	}
2330

2331 2332 2333 2334 2335
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2336
	mapping = obj->base.filp->f_mapping;
2337
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2338 2339
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2340 2341 2342
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
2343 2344 2345 2346 2347 2348 2349
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2350
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

			i915_gem_shrink(dev_priv, 2 * page_count, *s++);
			cond_resched();
2361

C
Chris Wilson 已提交
2362 2363 2364
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2365 2366 2367 2368
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2369
			 */
2370 2371 2372
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2385
				 * this we want __GFP_RETRY_MAYFAIL.
2386
				 */
M
Michal Hocko 已提交
2387
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2388
			}
2389 2390
		} while (1);

2391 2392 2393
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2394 2395 2396 2397 2398 2399 2400 2401
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2402 2403 2404

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2405
	}
2406
	if (sg) /* loop terminated early; short sg table */
2407
		sg_mark_end(sg);
2408

2409 2410 2411
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2412
	ret = i915_gem_gtt_prepare_pages(obj, st);
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2432

2433
	if (i915_gem_object_needs_bit17_swizzle(obj))
2434
		i915_gem_object_do_bit_17_swizzle(obj, st);
2435

2436
	return st;
2437

2438
err_sg:
2439
	sg_mark_end(sg);
2440
err_pages:
2441 2442
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2443 2444
	sg_free_table(st);
	kfree(st);
2445 2446 2447 2448 2449 2450 2451 2452 2453

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2454 2455 2456
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2457 2458 2459 2460 2461 2462
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2463
	lockdep_assert_held(&obj->mm.lock);
2464 2465 2466 2467 2468

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2469 2470 2471 2472 2473 2474 2475

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2493 2494
}

2495
/* Ensure that the associated pages are gathered from the backing storage
2496
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2497
 * multiple times before they are released by a single call to
2498
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2499 2500 2501
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2502
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2503
{
2504
	int err;
2505

2506 2507 2508
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2509

2510
	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2511 2512
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2513 2514 2515
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2516

2517 2518 2519
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2520

2521 2522
unlock:
	mutex_unlock(&obj->mm.lock);
2523
	return err;
2524 2525
}

2526
/* The 'mapping' part of i915_gem_object_pin_map() below */
2527 2528
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2529 2530
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2531
	struct sg_table *sgt = obj->mm.pages;
2532 2533
	struct sgt_iter sgt_iter;
	struct page *page;
2534 2535
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2536
	unsigned long i = 0;
2537
	pgprot_t pgprot;
2538 2539 2540
	void *addr;

	/* A single page can always be kmapped */
2541
	if (n_pages == 1 && type == I915_MAP_WB)
2542 2543
		return kmap(sg_page(sgt->sgl));

2544 2545
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
M
Michal Hocko 已提交
2546
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2547 2548 2549
		if (!pages)
			return NULL;
	}
2550

2551 2552
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2553 2554 2555 2556

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2557
	switch (type) {
2558 2559 2560
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2561 2562 2563 2564 2565 2566 2567 2568
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2569

2570
	if (pages != stack_pages)
M
Michal Hocko 已提交
2571
		kvfree(pages);
2572 2573 2574 2575 2576

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2577 2578
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2579
{
2580 2581 2582
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2583 2584
	int ret;

2585
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2586

2587
	ret = mutex_lock_interruptible(&obj->mm.lock);
2588 2589 2590
	if (ret)
		return ERR_PTR(ret);

2591 2592 2593
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2594
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2595
		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2596 2597
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2598 2599 2600
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2601

2602 2603 2604
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2605 2606 2607
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2608

2609
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2610 2611 2612
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2613
			goto err_unpin;
2614
		}
2615 2616 2617 2618 2619 2620

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2621
		ptr = obj->mm.mapping = NULL;
2622 2623
	}

2624 2625 2626 2627
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2628
			goto err_unpin;
2629 2630
		}

2631
		obj->mm.mapping = page_pack_bits(ptr, type);
2632 2633
	}

2634 2635
out_unlock:
	mutex_unlock(&obj->mm.lock);
2636 2637
	return ptr;

2638 2639 2640 2641 2642
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2643 2644
}

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
	if (READ_ONCE(obj->mm.pages))
		return -ENODEV;

	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2714 2715
static bool ban_context(const struct i915_gem_context *ctx,
			unsigned int score)
2716
{
2717
	return (i915_gem_context_is_bannable(ctx) &&
2718
		score >= CONTEXT_SCORE_BAN_THRESHOLD);
2719 2720
}

2721
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2722
{
2723 2724
	unsigned int score;
	bool banned;
2725

2726
	atomic_inc(&ctx->guilty_count);
2727

2728 2729 2730 2731 2732
	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
	banned = ban_context(ctx, score);
	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
			 ctx->name, score, yesno(banned));
	if (!banned)
2733 2734
		return;

2735 2736 2737 2738 2739 2740
	i915_gem_context_set_banned(ctx);
	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
		atomic_inc(&ctx->file_priv->context_bans);
		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
	}
2741 2742 2743 2744
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2745
	atomic_inc(&ctx->active_count);
2746 2747
}

2748
struct drm_i915_gem_request *
2749
i915_gem_find_active_request(struct intel_engine_cs *engine)
2750
{
2751 2752
	struct drm_i915_gem_request *request, *active = NULL;
	unsigned long flags;
2753

2754 2755 2756 2757 2758 2759 2760 2761
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2762
	spin_lock_irqsave(&engine->timeline->lock, flags);
2763
	list_for_each_entry(request, &engine->timeline->requests, link) {
2764 2765
		if (__i915_gem_request_completed(request,
						 request->global_seqno))
2766
			continue;
2767

2768
		GEM_BUG_ON(request->engine != engine);
2769 2770
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2771 2772 2773

		active = request;
		break;
2774
	}
2775
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2776

2777
	return active;
2778 2779
}

2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
struct drm_i915_gem_request *
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_request *request = NULL;

	/* Prevent the signaler thread from updating the request
	 * state (by calling dma_fence_signal) as we are processing
	 * the reset. The write from the GPU of the seqno is
	 * asynchronous and the signaler thread may see a different
	 * value to us and declare the request complete, even though
	 * the reset routine have picked that request as the active
	 * (incomplete) request. This conflict is not handled
	 * gracefully!
	 */
	kthread_park(engine->breadcrumbs.signaler);

	/* Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its engine->irq_tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the engine->irq_tasklet until the reset is over
	 * prevents the race.
	 */
	tasklet_kill(&engine->irq_tasklet);
	tasklet_disable(&engine->irq_tasklet);

	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2828 2829 2830
	request = i915_gem_find_active_request(engine);
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
2831 2832 2833 2834

	return request;
}

2835
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2836 2837
{
	struct intel_engine_cs *engine;
2838
	struct drm_i915_gem_request *request;
2839
	enum intel_engine_id id;
2840
	int err = 0;
2841

2842
	for_each_engine(engine, dev_priv, id) {
2843 2844 2845 2846
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
2847
		}
2848 2849

		engine->hangcheck.active_request = request;
2850 2851
	}

2852
	i915_gem_revoke_fences(dev_priv);
2853 2854

	return err;
2855 2856
}

2857
static void skip_request(struct drm_i915_gem_request *request)
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2872 2873

	dma_fence_set_error(&request->fence, -EIO);
2874 2875
}

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2899 2900 2901 2902
/* Returns the request if it was guilty of the hang */
static struct drm_i915_gem_request *
i915_gem_reset_request(struct intel_engine_cs *engine,
		       struct drm_i915_gem_request *request)
2903
{
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2925
	if (engine_stalled(engine)) {
2926 2927
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
2928 2929 2930 2931

		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
2932
	} else {
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
			i915_gem_context_mark_innocent(request->ctx);
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
			spin_lock_irq(&engine->timeline->lock);
			request = list_prev_entry(request, link);
			if (&request->link == &engine->timeline->requests)
				request = NULL;
			spin_unlock_irq(&engine->timeline->lock);
		}
2950 2951
	}

2952
	return request;
2953 2954
}

2955 2956
void i915_gem_reset_engine(struct intel_engine_cs *engine,
			   struct drm_i915_gem_request *request)
2957
{
2958 2959
	engine->irq_posted = 0;

2960 2961 2962 2963
	if (request)
		request = i915_gem_reset_request(engine, request);

	if (request) {
2964 2965 2966
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
	}
2967 2968 2969

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2970
}
2971

2972
void i915_gem_reset(struct drm_i915_private *dev_priv)
2973
{
2974
	struct intel_engine_cs *engine;
2975
	enum intel_engine_id id;
2976

2977 2978
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2979 2980
	i915_gem_retire_requests(dev_priv);

2981 2982 2983
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

2984
		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2985 2986 2987 2988
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
	}
2989

2990
	i915_gem_restore_fences(dev_priv);
2991 2992 2993 2994 2995 2996 2997

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2998 2999
}

3000 3001 3002 3003 3004 3005
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
	tasklet_enable(&engine->irq_tasklet);
	kthread_unpark(engine->breadcrumbs.signaler);
}

3006 3007
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3008 3009 3010
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3011
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3012

3013
	for_each_engine(engine, dev_priv, id) {
3014
		engine->hangcheck.active_request = NULL;
3015
		i915_gem_reset_finish_engine(engine);
3016
	}
3017 3018
}

3019 3020
static void nop_submit_request(struct drm_i915_gem_request *request)
{
3021
	GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3022
	dma_fence_set_error(&request->fence, -EIO);
3023 3024
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3025 3026
}

3027
static void engine_set_wedged(struct intel_engine_cs *engine)
3028
{
3029 3030 3031
	struct drm_i915_gem_request *request;
	unsigned long flags;

3032 3033 3034 3035 3036 3037
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
3038
	engine->submit_request = nop_submit_request;
3039

3040 3041 3042
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
3043 3044
		if (!i915_gem_request_completed(request))
			dma_fence_set_error(&request->fence, -EIO);
3045 3046
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

3047 3048 3049 3050 3051 3052
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

3053
	if (i915.enable_execlists) {
3054
		struct execlist_port *port = engine->execlist_port;
3055
		unsigned long flags;
3056
		unsigned int n;
3057 3058 3059

		spin_lock_irqsave(&engine->timeline->lock, flags);

3060 3061
		for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
			i915_gem_request_put(port_request(&port[n]));
3062
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3063 3064
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
3065 3066

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3067 3068 3069 3070 3071 3072 3073

		/* The port is checked prior to scheduling a tasklet, but
		 * just in case we have suspended the tasklet to do the
		 * wedging make sure that when it wakes, it decides there
		 * is no work to do by clearing the irq_posted bit.
		 */
		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
3074
	}
3075 3076 3077 3078 3079 3080 3081

	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
	intel_engine_init_global_seqno(engine,
				       intel_engine_last_submit(engine));
3082 3083
}

3084
static int __i915_gem_set_wedged_BKL(void *data)
3085
{
3086
	struct drm_i915_private *i915 = data;
3087
	struct intel_engine_cs *engine;
3088
	enum intel_engine_id id;
3089

3090
	for_each_engine(engine, i915, id)
3091
		engine_set_wedged(engine);
3092

3093 3094 3095
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	wake_up_all(&i915->gpu_error.reset_queue);

3096 3097 3098 3099 3100 3101
	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3102 3103
}

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

	/* Before unwedging, make sure that all pending operations
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
			struct drm_i915_gem_request *rq;

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

			/* We can't use our normal waiter as we want to
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}

	/* Undo nop_submit_request. We prevent all new i915 requests from
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3156
	i915_gem_contexts_lost(i915);
3157 3158 3159 3160 3161 3162 3163

	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3164
static void
3165 3166
i915_gem_retire_work_handler(struct work_struct *work)
{
3167
	struct drm_i915_private *dev_priv =
3168
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3169
	struct drm_device *dev = &dev_priv->drm;
3170

3171
	/* Come back later if the device is busy... */
3172
	if (mutex_trylock(&dev->struct_mutex)) {
3173
		i915_gem_retire_requests(dev_priv);
3174
		mutex_unlock(&dev->struct_mutex);
3175
	}
3176 3177 3178 3179 3180

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3181 3182
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
3183 3184
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3185
				   round_jiffies_up_relative(HZ));
3186
	}
3187
}
3188

3189 3190 3191 3192
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3193
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3194
	struct drm_device *dev = &dev_priv->drm;
3195 3196 3197 3198 3199
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3200 3201 3202 3203
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
3204
	wait_for(intel_engines_are_idle(dev_priv), 10);
3205
	if (READ_ONCE(dev_priv->gt.active_requests))
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3219 3220 3221 3222 3223 3224 3225
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

3226
	if (dev_priv->gt.active_requests)
3227
		goto out_unlock;
3228

3229
	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3230 3231
		DRM_ERROR("Timeout waiting for engines to idle\n");

3232
	intel_engines_mark_idle(dev_priv);
3233
	i915_gem_timelines_mark_idle(dev_priv);
3234

3235 3236 3237
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3238

3239 3240 3241 3242 3243
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3244

3245 3246 3247 3248
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3249
	}
3250 3251
}

3252 3253
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3254
	struct drm_i915_private *i915 = to_i915(gem->dev);
3255 3256
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3257
	struct i915_lut_handle *lut, *ln;
3258

3259 3260 3261 3262 3263 3264
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3265
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3266 3267 3268 3269
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3270 3271 3272 3273 3274 3275 3276
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3277
			i915_vma_close(vma);
3278

3279 3280
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3281

3282 3283
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3284
	}
3285 3286

	mutex_unlock(&i915->drm.struct_mutex);
3287 3288
}

3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3300 3301
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3302 3303 3304
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3305 3306 3307 3308 3309 3310 3311
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3312
 *  -EAGAIN: incomplete, restart syscall
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3329 3330
	ktime_t start;
	long ret;
3331

3332 3333 3334
	if (args->flags != 0)
		return -EINVAL;

3335
	obj = i915_gem_object_lookup(file, args->bo_handle);
3336
	if (!obj)
3337 3338
		return -ENOENT;

3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3360 3361 3362 3363

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3364 3365
	}

C
Chris Wilson 已提交
3366
	i915_gem_object_put(obj);
3367
	return ret;
3368 3369
}

3370
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3371
{
3372
	int ret, i;
3373

3374 3375 3376 3377 3378
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3379

3380 3381 3382
	return 0;
}

3383 3384
static int wait_for_engines(struct drm_i915_private *i915)
{
3385 3386 3387 3388
	if (wait_for(intel_engines_are_idle(i915), 50)) {
		DRM_ERROR("Failed to idle engines, declaring wedged!\n");
		i915_gem_set_wedged(i915);
		return -EIO;
3389 3390 3391 3392 3393
	}

	return 0;
}

3394 3395 3396 3397
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3398 3399 3400 3401
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
3412 3413 3414

		i915_gem_retire_requests(i915);
		GEM_BUG_ON(i915->gt.active_requests);
3415 3416

		ret = wait_for_engines(i915);
3417 3418
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3419
	}
3420

3421
	return ret;
3422 3423
}

3424 3425
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3426 3427 3428 3429 3430 3431 3432
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
	obj->base.write_domain = 0;
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
	if (!READ_ONCE(obj->pin_display))
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
	if (write) {
		obj->base.read_domains = I915_GEM_DOMAIN_WC;
		obj->base.write_domain = I915_GEM_DOMAIN_WC;
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3509 3510
/**
 * Moves a single object to the GTT read, and possibly write domain.
3511 3512
 * @obj: object to act on
 * @write: ask for write access or read only
3513 3514 3515 3516
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3517
int
3518
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3519
{
3520
	int ret;
3521

3522
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3523

3524 3525 3526 3527 3528 3529
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3530 3531 3532
	if (ret)
		return ret;

3533 3534 3535
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3536 3537 3538 3539 3540 3541 3542 3543
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3544
	ret = i915_gem_object_pin_pages(obj);
3545 3546 3547
	if (ret)
		return ret;

3548
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3549

3550 3551 3552 3553 3554 3555 3556
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3557 3558 3559
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3560
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3561
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3562
	if (write) {
3563 3564
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3565
		obj->mm.dirty = true;
3566 3567
	}

C
Chris Wilson 已提交
3568
	i915_gem_object_unpin_pages(obj);
3569 3570 3571
	return 0;
}

3572 3573
/**
 * Changes the cache-level of an object across all VMA.
3574 3575
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3587 3588 3589
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3590
	struct i915_vma *vma;
3591
	int ret;
3592

3593 3594
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3595
	if (obj->cache_level == cache_level)
3596
		return 0;
3597

3598 3599 3600 3601 3602
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3603 3604
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3605 3606 3607
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3608
		if (i915_vma_is_pinned(vma)) {
3609 3610 3611 3612
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3625 3626
	}

3627 3628 3629 3630 3631 3632 3633
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3634
	if (obj->bind_count) {
3635 3636 3637 3638
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3639 3640 3641 3642 3643 3644
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3645 3646 3647
		if (ret)
			return ret;

3648 3649
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3666 3667 3668 3669 3670
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3671 3672 3673 3674 3675 3676 3677 3678
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3679 3680
		}

3681
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3682 3683 3684 3685 3686 3687 3688
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3689 3690
	}

3691
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3692
		vma->node.color = cache_level;
3693
	i915_gem_object_set_cache_coherency(obj, cache_level);
3694
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3695

3696 3697 3698
	return 0;
}

B
Ben Widawsky 已提交
3699 3700
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3701
{
B
Ben Widawsky 已提交
3702
	struct drm_i915_gem_caching *args = data;
3703
	struct drm_i915_gem_object *obj;
3704
	int err = 0;
3705

3706 3707 3708 3709 3710 3711
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3712

3713 3714 3715 3716 3717 3718
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3719 3720 3721 3722
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3723 3724 3725 3726
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3727 3728 3729
out:
	rcu_read_unlock();
	return err;
3730 3731
}

B
Ben Widawsky 已提交
3732 3733
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3734
{
3735
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3736
	struct drm_i915_gem_caching *args = data;
3737 3738
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3739
	int ret = 0;
3740

B
Ben Widawsky 已提交
3741 3742
	switch (args->caching) {
	case I915_CACHING_NONE:
3743 3744
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3745
	case I915_CACHING_CACHED:
3746 3747 3748 3749 3750 3751
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3752
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3753 3754
			return -ENODEV;

3755 3756
		level = I915_CACHE_LLC;
		break;
3757
	case I915_CACHING_DISPLAY:
3758
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3759
		break;
3760 3761 3762 3763
	default:
		return -EINVAL;
	}

3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3775
	if (ret)
3776
		goto out;
B
Ben Widawsky 已提交
3777

3778 3779 3780
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3781 3782 3783

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3784 3785 3786

out:
	i915_gem_object_put(obj);
3787 3788 3789
	return ret;
}

3790
/*
3791 3792 3793
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3794
 */
C
Chris Wilson 已提交
3795
struct i915_vma *
3796 3797
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3798
				     const struct i915_ggtt_view *view)
3799
{
C
Chris Wilson 已提交
3800
	struct i915_vma *vma;
3801 3802
	int ret;

3803 3804
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3805 3806 3807
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3808
	obj->pin_display++;
3809

3810 3811 3812 3813 3814 3815 3816 3817 3818
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3819
	ret = i915_gem_object_set_cache_level(obj,
3820 3821
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3822 3823
	if (ret) {
		vma = ERR_PTR(ret);
3824
		goto err_unpin_display;
C
Chris Wilson 已提交
3825
	}
3826

3827 3828
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3829 3830 3831 3832
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3833
	 */
3834
	vma = ERR_PTR(-ENOSPC);
3835
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3836 3837
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3854
	if (IS_ERR(vma))
3855
		goto err_unpin_display;
3856

3857 3858
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3859
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3860
	__i915_gem_object_flush_for_display(obj);
3861
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3862

3863 3864 3865
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3866
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3867

C
Chris Wilson 已提交
3868
	return vma;
3869 3870

err_unpin_display:
3871
	obj->pin_display--;
C
Chris Wilson 已提交
3872
	return vma;
3873 3874 3875
}

void
C
Chris Wilson 已提交
3876
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3877
{
3878
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3879

C
Chris Wilson 已提交
3880
	if (WARN_ON(vma->obj->pin_display == 0))
3881 3882
		return;

3883
	if (--vma->obj->pin_display == 0)
3884
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3885

3886
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3887
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3888

C
Chris Wilson 已提交
3889
	i915_vma_unpin(vma);
3890 3891
}

3892 3893
/**
 * Moves a single object to the CPU read, and possibly write domain.
3894 3895
 * @obj: object to act on
 * @write: requesting write or read-only access
3896 3897 3898 3899
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3900
int
3901
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3902 3903 3904
{
	int ret;

3905
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3906

3907 3908 3909 3910 3911 3912
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3913 3914 3915
	if (ret)
		return ret;

3916
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3917

3918
	/* Flush the CPU cache if it's still invalid. */
3919
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3920
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3921
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3922 3923 3924 3925 3926
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3927
	GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3928 3929 3930 3931

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
3932 3933
	if (write)
		__start_cpu_write(obj);
3934 3935 3936 3937

	return 0;
}

3938 3939 3940
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3941 3942 3943 3944
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3945 3946 3947
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3948
static int
3949
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3950
{
3951
	struct drm_i915_private *dev_priv = to_i915(dev);
3952
	struct drm_i915_file_private *file_priv = file->driver_priv;
3953
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3954
	struct drm_i915_gem_request *request, *target = NULL;
3955
	long ret;
3956

3957 3958 3959
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3960

3961
	spin_lock(&file_priv->mm.lock);
3962
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3963 3964
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3965

3966 3967 3968 3969
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3970

3971
		target = request;
3972
	}
3973
	if (target)
3974
		i915_gem_request_get(target);
3975
	spin_unlock(&file_priv->mm.lock);
3976

3977
	if (target == NULL)
3978
		return 0;
3979

3980 3981 3982
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3983
	i915_gem_request_put(target);
3984

3985
	return ret < 0 ? ret : 0;
3986 3987
}

C
Chris Wilson 已提交
3988
struct i915_vma *
3989 3990
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3991
			 u64 size,
3992 3993
			 u64 alignment,
			 u64 flags)
3994
{
3995 3996
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3997 3998
	struct i915_vma *vma;
	int ret;
3999

4000 4001
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4002
	vma = i915_vma_instance(obj, vm, view);
4003
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4004
		return vma;
4005 4006 4007 4008

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
4009
			return ERR_PTR(-ENOSPC);
4010

4011 4012 4013 4014 4015 4016 4017 4018
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
4019
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
4038
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4039 4040 4041
				return ERR_PTR(-ENOSPC);
		}

4042 4043
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4044 4045 4046
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4047
		     !!(flags & PIN_MAPPABLE),
4048
		     i915_vma_is_map_and_fenceable(vma));
4049 4050
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4051
			return ERR_PTR(ret);
4052 4053
	}

C
Chris Wilson 已提交
4054 4055 4056
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4057

C
Chris Wilson 已提交
4058
	return vma;
4059 4060
}

4061
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4076 4077 4078 4079 4080 4081 4082 4083 4084
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4085 4086
}

4087
static __always_inline unsigned int
4088
__busy_set_if_active(const struct dma_fence *fence,
4089 4090
		     unsigned int (*flag)(unsigned int id))
{
4091
	struct drm_i915_gem_request *rq;
4092

4093 4094 4095 4096
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4097
	 *
4098
	 * Note we only report on the status of native fences.
4099
	 */
4100 4101 4102 4103 4104 4105 4106 4107
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

4108
	return flag(rq->engine->uabi_id);
4109 4110
}

4111
static __always_inline unsigned int
4112
busy_check_reader(const struct dma_fence *fence)
4113
{
4114
	return __busy_set_if_active(fence, __busy_read_flag);
4115 4116
}

4117
static __always_inline unsigned int
4118
busy_check_writer(const struct dma_fence *fence)
4119
{
4120 4121 4122 4123
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4124 4125
}

4126 4127
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4128
		    struct drm_file *file)
4129 4130
{
	struct drm_i915_gem_busy *args = data;
4131
	struct drm_i915_gem_object *obj;
4132 4133
	struct reservation_object_list *list;
	unsigned int seq;
4134
	int err;
4135

4136
	err = -ENOENT;
4137 4138
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4139
	if (!obj)
4140
		goto out;
4141

4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4160

4161 4162
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4163

4164 4165 4166 4167
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4168

4169 4170 4171 4172 4173 4174
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4175
	}
4176

4177 4178 4179 4180
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4181 4182 4183
out:
	rcu_read_unlock();
	return err;
4184 4185 4186 4187 4188 4189
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4190
	return i915_gem_ring_throttle(dev, file_priv);
4191 4192
}

4193 4194 4195 4196
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4197
	struct drm_i915_private *dev_priv = to_i915(dev);
4198
	struct drm_i915_gem_madvise *args = data;
4199
	struct drm_i915_gem_object *obj;
4200
	int err;
4201 4202 4203 4204 4205 4206 4207 4208 4209

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4210
	obj = i915_gem_object_lookup(file_priv, args->handle);
4211 4212 4213 4214 4215 4216
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4217

C
Chris Wilson 已提交
4218
	if (obj->mm.pages &&
4219
	    i915_gem_object_is_tiled(obj) &&
4220
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4221 4222
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4223
			__i915_gem_object_unpin_pages(obj);
4224 4225 4226
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4227
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4228
			__i915_gem_object_pin_pages(obj);
4229 4230
			obj->mm.quirked = true;
		}
4231 4232
	}

C
Chris Wilson 已提交
4233 4234
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4235

C
Chris Wilson 已提交
4236
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4237
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4238 4239
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4240
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4241
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4242

4243
out:
4244
	i915_gem_object_put(obj);
4245
	return err;
4246 4247
}

4248 4249 4250 4251 4252 4253 4254
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4255
	intel_fb_obj_flush(obj, ORIGIN_CS);
4256 4257
}

4258 4259
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4260
{
4261 4262
	mutex_init(&obj->mm.lock);

4263
	INIT_LIST_HEAD(&obj->global_link);
4264
	INIT_LIST_HEAD(&obj->userfault_link);
B
Ben Widawsky 已提交
4265
	INIT_LIST_HEAD(&obj->vma_list);
4266
	INIT_LIST_HEAD(&obj->lut_list);
4267
	INIT_LIST_HEAD(&obj->batch_pool_link);
4268

4269 4270
	obj->ops = ops;

4271 4272 4273
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4274
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4275
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4276 4277 4278 4279

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4280

4281
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4282 4283
}

4284
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4285 4286
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4287

4288 4289
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4290 4291

	.pwrite = i915_gem_object_pwrite_gtt,
4292 4293
};

4294
struct drm_i915_gem_object *
4295
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4296
{
4297
	struct drm_i915_gem_object *obj;
4298
	struct address_space *mapping;
4299
	unsigned int cache_level;
D
Daniel Vetter 已提交
4300
	gfp_t mask;
4301
	int ret;
4302

4303 4304 4305 4306 4307
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4308
	if (size >> PAGE_SHIFT > INT_MAX)
4309 4310 4311 4312 4313
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4314
	obj = i915_gem_object_alloc(dev_priv);
4315
	if (obj == NULL)
4316
		return ERR_PTR(-ENOMEM);
4317

4318
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4319 4320
	if (ret)
		goto fail;
4321

4322
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4323
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4324 4325 4326 4327 4328
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4329
	mapping = obj->base.filp->f_mapping;
4330
	mapping_set_gfp_mask(mapping, mask);
4331
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4332

4333
	i915_gem_object_init(obj, &i915_gem_object_ops);
4334

4335 4336
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4337

4338
	if (HAS_LLC(dev_priv))
4339
		/* On some devices, we can have the GPU use the LLC (the CPU
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4351 4352 4353
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4354

4355
	i915_gem_object_set_cache_coherency(obj, cache_level);
4356

4357 4358
	trace_i915_gem_object_create(obj);

4359
	return obj;
4360 4361 4362 4363

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4364 4365
}

4366 4367 4368 4369 4370 4371 4372 4373
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4374
	if (obj->mm.madv != I915_MADV_WILLNEED)
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4390 4391
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4392
{
4393
	struct drm_i915_gem_object *obj, *on;
4394

4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4409 4410
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4411

4412
		list_del(&obj->global_link);
4413 4414 4415 4416
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

4417 4418
	cond_resched();

4419 4420 4421
	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4422
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4423 4424 4425

		if (obj->ops->release)
			obj->ops->release(obj);
4426

4427 4428
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4429
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4430 4431 4432 4433 4434
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4435
		reservation_object_fini(&obj->__builtin_resv);
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4458

4459 4460 4461 4462 4463 4464 4465
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4466

4467
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4468
		__i915_gem_free_objects(i915, freed);
4469 4470 4471
		if (need_resched())
			break;
	}
4472
}
4473

4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4488

4489 4490 4491
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4492

4493 4494 4495
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4496
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4497
		obj->mm.madv = I915_MADV_DONTNEED;
4498

4499 4500 4501 4502 4503 4504
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4505 4506
}

4507 4508 4509 4510
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4511 4512
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4513 4514 4515 4516 4517
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4518 4519 4520 4521 4522 4523
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4524 4525
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4526 4527
}

4528 4529
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4530 4531 4532 4533 4534 4535
	if (i915_terminally_wedged(&i915->gpu_error)) {
		mutex_lock(&i915->drm.struct_mutex);
		i915_gem_unset_wedged(i915);
		mutex_unlock(&i915->drm.struct_mutex);
	}

4536 4537 4538 4539 4540 4541
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4542
	 * of the reset, so this could be applied to even earlier gen.
4543
	 */
4544
	if (INTEL_GEN(i915) >= 5) {
4545 4546 4547 4548 4549
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4550
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4551
{
4552
	struct drm_device *dev = &dev_priv->drm;
4553
	int ret;
4554

4555
	intel_runtime_pm_get(dev_priv);
4556 4557
	intel_suspend_gt_powersave(dev_priv);

4558
	mutex_lock(&dev->struct_mutex);
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
4570
		goto err_unlock;
4571

4572 4573 4574
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4575
	if (ret && ret != -EIO)
4576
		goto err_unlock;
4577

4578
	assert_kernel_context_is_current(dev_priv);
4579
	i915_gem_contexts_lost(dev_priv);
4580 4581
	mutex_unlock(&dev->struct_mutex);

4582 4583
	intel_guc_suspend(dev_priv);

4584
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4585
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4586 4587 4588 4589 4590 4591 4592

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

4593 4594 4595
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4596
	WARN_ON(dev_priv->gt.awake);
4597 4598
	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4599

4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4619
	i915_gem_sanitize(dev_priv);
4620 4621 4622

	intel_runtime_pm_put(dev_priv);
	return 0;
4623

4624
err_unlock:
4625
	mutex_unlock(&dev->struct_mutex);
4626
	intel_runtime_pm_put(dev_priv);
4627
	return ret;
4628 4629
}

4630
void i915_gem_resume(struct drm_i915_private *dev_priv)
4631
{
4632
	struct drm_device *dev = &dev_priv->drm;
4633

4634 4635
	WARN_ON(dev_priv->gt.awake);

4636
	mutex_lock(&dev->struct_mutex);
4637
	i915_gem_restore_gtt_mappings(dev_priv);
4638 4639 4640 4641 4642

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4643
	dev_priv->gt.resume(dev_priv);
4644 4645 4646 4647

	mutex_unlock(&dev->struct_mutex);
}

4648
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4649
{
4650
	if (INTEL_GEN(dev_priv) < 5 ||
4651 4652 4653 4654 4655 4656
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4657
	if (IS_GEN5(dev_priv))
4658 4659
		return;

4660
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4661
	if (IS_GEN6(dev_priv))
4662
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4663
	else if (IS_GEN7(dev_priv))
4664
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4665
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4666
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4667 4668
	else
		BUG();
4669
}
D
Daniel Vetter 已提交
4670

4671
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4672 4673 4674 4675 4676 4677 4678
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4679
static void init_unused_rings(struct drm_i915_private *dev_priv)
4680
{
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4693 4694 4695
	}
}

4696
static int __i915_gem_restart_engines(void *data)
4697
{
4698
	struct drm_i915_private *i915 = data;
4699
	struct intel_engine_cs *engine;
4700
	enum intel_engine_id id;
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4714
	int ret;
4715

4716 4717
	dev_priv->gt.last_init_time = ktime_get();

4718 4719 4720
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4721
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4722
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4723

4724
	if (IS_HASWELL(dev_priv))
4725
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4726
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4727

4728
	if (HAS_PCH_NOP(dev_priv)) {
4729
		if (IS_IVYBRIDGE(dev_priv)) {
4730 4731 4732
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4733
		} else if (INTEL_GEN(dev_priv) >= 7) {
4734 4735 4736 4737
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4738 4739
	}

4740
	i915_gem_init_swizzling(dev_priv);
4741

4742 4743 4744 4745 4746 4747
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4748
	init_unused_rings(dev_priv);
4749

4750
	BUG_ON(!dev_priv->kernel_context);
4751

4752
	ret = i915_ppgtt_init_hw(dev_priv);
4753 4754 4755 4756 4757 4758
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4759 4760 4761
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4762

4763
	intel_mocs_init_l3cc_table(dev_priv);
4764

4765 4766 4767 4768
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
	if (ret)
		goto out;
4769

4770 4771
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4772
	return ret;
4773 4774
}

4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

	/* Enable semaphores on SNB when IO remapping is off */
4788
	if (IS_GEN6(dev_priv) && intel_vtd_active())
4789 4790 4791 4792 4793
		return false;

	return true;
}

4794
int i915_gem_init(struct drm_i915_private *dev_priv)
4795 4796 4797
{
	int ret;

4798
	mutex_lock(&dev_priv->drm.struct_mutex);
4799

4800
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4801

4802
	if (!i915.enable_execlists) {
4803
		dev_priv->gt.resume = intel_legacy_submission_resume;
4804
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4805
	} else {
4806
		dev_priv->gt.resume = intel_lr_context_resume;
4807
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4808 4809
	}

4810 4811 4812 4813 4814 4815 4816 4817
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4818 4819 4820
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		goto out_unlock;
4821 4822 4823 4824

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4825

4826
	ret = i915_gem_contexts_init(dev_priv);
4827 4828
	if (ret)
		goto out_unlock;
4829

4830
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4831
	if (ret)
4832
		goto out_unlock;
4833

4834
	ret = i915_gem_init_hw(dev_priv);
4835
	if (ret == -EIO) {
4836
		/* Allow engine initialisation to fail by marking the GPU as
4837 4838 4839 4840
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4841
		i915_gem_set_wedged(dev_priv);
4842
		ret = 0;
4843
	}
4844 4845

out_unlock:
4846
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4847
	mutex_unlock(&dev_priv->drm.struct_mutex);
4848

4849
	return ret;
4850 4851
}

4852 4853 4854 4855 4856
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4857
void
4858
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4859
{
4860
	struct intel_engine_cs *engine;
4861
	enum intel_engine_id id;
4862

4863
	for_each_engine(engine, dev_priv, id)
4864
		dev_priv->gt.cleanup_engine(engine);
4865 4866
}

4867 4868 4869
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4870
	int i;
4871 4872 4873 4874

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4875 4876 4877
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4878 4879 4880 4881
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4882
	if (intel_vgpu_active(dev_priv))
4883 4884 4885 4886
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4887 4888 4889 4890 4891 4892 4893
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4894
	i915_gem_restore_fences(dev_priv);
4895

4896
	i915_gem_detect_bit_6_swizzle(dev_priv);
4897 4898
}

4899
int
4900
i915_gem_load_init(struct drm_i915_private *dev_priv)
4901
{
4902
	int err = -ENOMEM;
4903

4904 4905
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4906 4907
		goto err_out;

4908 4909
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4910 4911
		goto err_objects;

4912 4913 4914 4915
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

4916 4917 4918
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
4919
					SLAB_TYPESAFE_BY_RCU);
4920
	if (!dev_priv->requests)
4921
		goto err_luts;
4922

4923 4924 4925 4926 4927 4928
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4929 4930 4931 4932
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

4933 4934
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4935
	err = i915_gem_timeline_init__global(dev_priv);
4936 4937
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4938
		goto err_priorities;
4939

4940 4941
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4942 4943
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4944
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4945
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4946
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4947
			  i915_gem_retire_work_handler);
4948
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4949
			  i915_gem_idle_work_handler);
4950
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4951
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4952

4953 4954
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4955
	spin_lock_init(&dev_priv->fb_tracking.lock);
4956 4957 4958

	return 0;

4959 4960
err_priorities:
	kmem_cache_destroy(dev_priv->priorities);
4961 4962
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4963 4964
err_requests:
	kmem_cache_destroy(dev_priv->requests);
4965 4966
err_luts:
	kmem_cache_destroy(dev_priv->luts);
4967 4968 4969 4970 4971 4972
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4973
}
4974

4975
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4976
{
4977
	i915_gem_drain_freed_objects(dev_priv);
4978
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4979
	WARN_ON(dev_priv->mm.object_count);
4980

4981 4982 4983 4984 4985
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4986
	kmem_cache_destroy(dev_priv->priorities);
4987
	kmem_cache_destroy(dev_priv->dependencies);
4988
	kmem_cache_destroy(dev_priv->requests);
4989
	kmem_cache_destroy(dev_priv->luts);
4990 4991
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4992 4993 4994

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4995 4996
}

4997 4998
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
4999 5000 5001
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5002 5003 5004 5005 5006
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5007 5008 5009
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
5010 5011 5012 5013 5014
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5025 5026
	 *
	 * To try and reduce the hibernation image, we manually shrink
5027
	 * the objects as well, see i915_gem_freeze()
5028 5029
	 */

5030
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
5031
	i915_gem_drain_freed_objects(dev_priv);
5032

5033
	mutex_lock(&dev_priv->drm.struct_mutex);
5034
	for (p = phases; *p; p++) {
5035 5036
		list_for_each_entry(obj, *p, global_link)
			__start_cpu_write(obj);
5037
	}
5038
	mutex_unlock(&dev_priv->drm.struct_mutex);
5039 5040 5041 5042

	return 0;
}

5043
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5044
{
5045
	struct drm_i915_file_private *file_priv = file->driver_priv;
5046
	struct drm_i915_gem_request *request;
5047 5048 5049 5050 5051

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5052
	spin_lock(&file_priv->mm.lock);
5053
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5054
		request->file_priv = NULL;
5055
	spin_unlock(&file_priv->mm.lock);
5056 5057
}

5058
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5059 5060
{
	struct drm_i915_file_private *file_priv;
5061
	int ret;
5062

5063
	DRM_DEBUG("\n");
5064 5065 5066 5067 5068 5069

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5070
	file_priv->dev_priv = i915;
5071
	file_priv->file = file;
5072 5073 5074 5075

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5076
	file_priv->bsd_engine = -1;
5077

5078
	ret = i915_gem_context_open(i915, file);
5079 5080
	if (ret)
		kfree(file_priv);
5081

5082
	return ret;
5083 5084
}

5085 5086
/**
 * i915_gem_track_fb - update frontbuffer tracking
5087 5088 5089
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5090 5091 5092 5093
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5094 5095 5096 5097
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5098 5099 5100 5101 5102 5103 5104 5105 5106
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5107
	if (old) {
5108 5109
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5110 5111 5112
	}

	if (new) {
5113 5114
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5115 5116 5117
	}
}

5118 5119
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5120
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5121 5122 5123
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5124 5125 5126
	struct file *file;
	size_t offset;
	int err;
5127

5128
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5129
	if (IS_ERR(obj))
5130 5131
		return obj;

5132
	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5133

5134 5135 5136 5137 5138 5139
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5140

5141 5142 5143 5144 5145
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5146

5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5161 5162 5163 5164

	return obj;

fail:
5165
	i915_gem_object_put(obj);
5166
	return ERR_PTR(err);
5167
}
5168 5169 5170 5171 5172 5173

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5174
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5175 5176 5177 5178 5179
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5180
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5305
	if (!obj->mm.dirty)
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5321

5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

	pages = obj->mm.pages;
	obj->ops = &i915_gem_phys_ops;

5360
	err = ____i915_gem_object_get_pages(obj);
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	obj->mm.pages = pages;
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5380 5381
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5382
#include "selftests/mock_gem_device.c"
5383
#include "selftests/huge_gem_object.c"
5384
#include "selftests/i915_gem_object.c"
5385
#include "selftests/i915_gem_coherency.c"
5386
#endif