i915_gem.c 127.8 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_mocs.h"
37
#include <linux/reservation.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
J
Jesse Barnes 已提交
41
#include <linux/pci.h>
42
#include <linux/dma-buf.h>
43

44
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
45
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
46
static void
47 48 49
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
50

51 52 53 54 55 56
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

57 58
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
59 60 61
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

62 63 64 65 66 67
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

86 87 88 89
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
90
	spin_lock(&dev_priv->mm.object_stat_lock);
91 92
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
93
	spin_unlock(&dev_priv->mm.object_stat_lock);
94 95 96 97 98
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
99
	spin_lock(&dev_priv->mm.object_stat_lock);
100 101
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
102
	spin_unlock(&dev_priv->mm.object_stat_lock);
103 104
}

105
static int
106
i915_gem_wait_for_error(struct i915_gpu_error *error)
107 108 109
{
	int ret;

110
	if (!i915_reset_in_progress(error))
111 112
		return 0;

113 114 115 116 117
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
118
	ret = wait_event_interruptible_timeout(error->reset_queue,
119
					       !i915_reset_in_progress(error),
120
					       10*HZ);
121 122 123 124
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
125
		return ret;
126 127
	} else {
		return 0;
128
	}
129 130
}

131
int i915_mutex_lock_interruptible(struct drm_device *dev)
132
{
133
	struct drm_i915_private *dev_priv = to_i915(dev);
134 135
	int ret;

136
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137 138 139 140 141 142 143
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

144
	WARN_ON(i915_verify_lists(dev));
145 146
	return 0;
}
147

148 149
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
150
			    struct drm_file *file)
151
{
152
	struct drm_i915_private *dev_priv = to_i915(dev);
153
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
154
	struct drm_i915_gem_get_aperture *args = data;
155
	struct i915_vma *vma;
156
	size_t pinned;
157

158
	pinned = 0;
159
	mutex_lock(&dev->struct_mutex);
160
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
161 162
		if (vma->pin_count)
			pinned += vma->node.size;
163
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
164 165
		if (vma->pin_count)
			pinned += vma->node.size;
166
	mutex_unlock(&dev->struct_mutex);
167

168
	args->aper_size = ggtt->base.total;
169
	args->aper_available_size = args->aper_size - pinned;
170

171 172 173
	return 0;
}

174 175
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
176
{
177 178 179 180 181
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
182

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

199
		put_page(page);
200 201 202
		vaddr += PAGE_SIZE;
	}

203
	i915_gem_chipset_flush(to_i915(obj->base.dev));
204 205 206 207 208 209 210 211 212 213 214 215 216

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
217

218 219 220 221 222 223 224 225 226 227 228 229 230
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
231

232
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
233
	if (WARN_ON(ret)) {
234 235 236 237 238 239 240 241 242 243
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
244
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
245
		char *vaddr = obj->phys_handle->vaddr;
246 247 248
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
249 250 251 252 253 254 255 256 257 258 259 260 261 262
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
263
				mark_page_accessed(page);
264
			put_page(page);
265 266
			vaddr += PAGE_SIZE;
		}
267
		obj->dirty = 0;
268 269
	}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
293
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
294 295 296 297 298 299 300
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
301 302 303 304 305 306 307
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
308
	int ret;
309 310 311 312 313 314 315 316 317 318 319 320 321 322

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

323 324 325 326
	ret = drop_pages(obj);
	if (ret)
		return ret;

327 328 329 330 331 332
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
333 334 335
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
336 337 338 339 340 341 342 343 344
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
345
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
346
	int ret = 0;
347 348 349 350 351 352 353

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
354

355
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
356 357 358 359 360 361 362 363 364 365
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
366 367 368 369
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
370 371
	}

372
	drm_clflush_virt_range(vaddr, args->size);
373
	i915_gem_chipset_flush(to_i915(dev));
374 375

out:
376
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
377
	return ret;
378 379
}

380 381
void *i915_gem_object_alloc(struct drm_device *dev)
{
382
	struct drm_i915_private *dev_priv = to_i915(dev);
383
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
384 385 386 387
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
388
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
389
	kmem_cache_free(dev_priv->objects, obj);
390 391
}

392 393 394 395 396
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
397
{
398
	struct drm_i915_gem_object *obj;
399 400
	int ret;
	u32 handle;
401

402
	size = roundup(size, PAGE_SIZE);
403 404
	if (size == 0)
		return -EINVAL;
405 406

	/* Allocate the new object */
407
	obj = i915_gem_object_create(dev, size);
408 409
	if (IS_ERR(obj))
		return PTR_ERR(obj);
410

411
	ret = drm_gem_handle_create(file, &obj->base, &handle);
412
	/* drop reference from allocate - handle holds it now */
413 414 415
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
416

417
	*handle_p = handle;
418 419 420
	return 0;
}

421 422 423 424 425 426
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
427
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
428 429
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
430
			       args->size, &args->handle);
431 432 433 434
}

/**
 * Creates a new mm object and returns a handle to it.
435 436 437
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
438 439 440 441 442 443
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
444

445
	return i915_gem_create(file, dev,
446
			       args->size, &args->handle);
447 448
}

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

475
static inline int
476 477
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

501 502 503 504 505 506 507 508 509 510 511 512
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

513
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
514 515
		return -EINVAL;

516 517 518 519
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

538 539 540
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
541
static int
542 543 544 545 546 547 548
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

549
	if (unlikely(page_do_bit17_swizzling))
550 551 552 553 554 555 556 557 558 559 560
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

561
	return ret ? -EFAULT : 0;
562 563
}

564 565 566 567
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
568
	if (unlikely(swizzled)) {
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

586 587 588 589 590 591 592 593 594 595 596 597
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
598 599 600
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
601 602 603 604 605 606 607 608 609 610 611

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

612
	return ret ? - EFAULT : 0;
613 614
}

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
642
	struct drm_i915_private *dev_priv = to_i915(dev);
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

751
static int
752 753 754 755
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
756
{
757
	char __user *user_data;
758
	ssize_t remain;
759
	loff_t offset;
760
	int shmem_page_offset, page_length, ret = 0;
761
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
762
	int prefaulted = 0;
763
	int needs_clflush = 0;
764
	struct sg_page_iter sg_iter;
765

766
	if (!i915_gem_object_has_struct_page(obj))
767 768
		return -ENODEV;

769
	user_data = u64_to_user_ptr(args->data_ptr);
770 771
	remain = args->size;

772
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
773

774
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
775 776 777
	if (ret)
		return ret;

778
	offset = args->offset;
779

780 781
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
782
		struct page *page = sg_page_iter_page(&sg_iter);
783 784 785 786

		if (remain <= 0)
			break;

787 788 789 790 791
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
792
		shmem_page_offset = offset_in_page(offset);
793 794 795 796
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

797 798 799
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

800 801 802 803 804
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
805 806 807

		mutex_unlock(&dev->struct_mutex);

808
		if (likely(!i915.prefault_disable) && !prefaulted) {
809
			ret = fault_in_multipages_writeable(user_data, remain);
810 811 812 813 814 815 816
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
817

818 819 820
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
821

822
		mutex_lock(&dev->struct_mutex);
823 824

		if (ret)
825 826
			goto out;

827
next_page:
828
		remain -= page_length;
829
		user_data += page_length;
830 831 832
		offset += page_length;
	}

833
out:
834 835
	i915_gem_object_unpin_pages(obj);

836 837 838
	return ret;
}

839 840
/**
 * Reads data from the object referenced by handle.
841 842 843
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
844 845 846 847 848
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
849
		     struct drm_file *file)
850 851
{
	struct drm_i915_gem_pread *args = data;
852
	struct drm_i915_gem_object *obj;
853
	int ret = 0;
854

855 856 857 858
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
859
		       u64_to_user_ptr(args->data_ptr),
860 861 862
		       args->size))
		return -EFAULT;

863
	ret = i915_mutex_lock_interruptible(dev);
864
	if (ret)
865
		return ret;
866

867
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
868
	if (&obj->base == NULL) {
869 870
		ret = -ENOENT;
		goto unlock;
871
	}
872

873
	/* Bounds check source.  */
874 875
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
876
		ret = -EINVAL;
877
		goto out;
C
Chris Wilson 已提交
878 879
	}

C
Chris Wilson 已提交
880 881
	trace_i915_gem_object_pread(obj, args->offset, args->size);

882
	ret = i915_gem_shmem_pread(dev, obj, args, file);
883

884 885 886 887 888
	/* pread for non shmem backed objects */
	if (ret == -EFAULT || ret == -ENODEV)
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);

889
out:
890
	drm_gem_object_unreference(&obj->base);
891
unlock:
892
	mutex_unlock(&dev->struct_mutex);
893
	return ret;
894 895
}

896 897
/* This is the fast write path which cannot handle
 * page faults in the source data
898
 */
899 900 901 902 903 904

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
905
{
906 907
	void __iomem *vaddr_atomic;
	void *vaddr;
908
	unsigned long unwritten;
909

P
Peter Zijlstra 已提交
910
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
911 912 913
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
914
						      user_data, length);
P
Peter Zijlstra 已提交
915
	io_mapping_unmap_atomic(vaddr_atomic);
916
	return unwritten;
917 918
}

919 920 921
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
922
 * @i915: i915 device private data
923 924 925
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
926
 */
927
static int
928
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
929
			 struct drm_i915_gem_object *obj,
930
			 struct drm_i915_gem_pwrite *args,
931
			 struct drm_file *file)
932
{
933
	struct i915_ggtt *ggtt = &i915->ggtt;
934
	struct drm_device *dev = obj->base.dev;
935 936
	struct drm_mm_node node;
	uint64_t remain, offset;
937
	char __user *user_data;
938
	int ret;
939 940 941 942
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
943

944
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
960 961 962
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
963
	}
D
Daniel Vetter 已提交
964 965 966 967 968

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

969
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
970
	obj->dirty = true;
971

972 973 974 975
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
976 977
		/* Operation in this page
		 *
978 979 980
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
981
		 */
982 983 984 985 986 987 988 989 990 991 992 993 994
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
995
		/* If we get a fault while copying data, then (presumably) our
996 997
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
998 999
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1000
		 */
1001
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1002
				    page_offset, user_data, page_length)) {
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1015
		}
1016

1017 1018 1019
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1020 1021
	}

1022
out_flush:
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1036
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1037
out_unpin:
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1048
out:
1049
	return ret;
1050 1051
}

1052 1053 1054 1055
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1056
static int
1057 1058 1059 1060 1061
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1062
{
1063
	char *vaddr;
1064
	int ret;
1065

1066
	if (unlikely(page_do_bit17_swizzling))
1067
		return -EINVAL;
1068

1069 1070 1071 1072
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1073 1074
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1075 1076 1077 1078
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1079

1080
	return ret ? -EFAULT : 0;
1081 1082
}

1083 1084
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1085
static int
1086 1087 1088 1089 1090
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1091
{
1092 1093
	char *vaddr;
	int ret;
1094

1095
	vaddr = kmap(page);
1096
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1097 1098 1099
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1100 1101
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1102 1103
						user_data,
						page_length);
1104 1105 1106 1107 1108
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1109 1110 1111
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1112
	kunmap(page);
1113

1114
	return ret ? -EFAULT : 0;
1115 1116 1117
}

static int
1118 1119 1120 1121
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1122 1123
{
	ssize_t remain;
1124 1125
	loff_t offset;
	char __user *user_data;
1126
	int shmem_page_offset, page_length, ret = 0;
1127
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1128
	int hit_slowpath = 0;
1129 1130
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1131
	struct sg_page_iter sg_iter;
1132

1133
	user_data = u64_to_user_ptr(args->data_ptr);
1134 1135
	remain = args->size;

1136
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1137

1138 1139 1140 1141
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

1142 1143 1144 1145 1146
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1147
		needs_clflush_after = cpu_write_needs_clflush(obj);
1148
	}
1149 1150 1151 1152 1153
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1154

1155 1156 1157 1158
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1159
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1160

1161 1162
	i915_gem_object_pin_pages(obj);

1163
	offset = args->offset;
1164
	obj->dirty = 1;
1165

1166 1167
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1168
		struct page *page = sg_page_iter_page(&sg_iter);
1169
		int partial_cacheline_write;
1170

1171 1172 1173
		if (remain <= 0)
			break;

1174 1175 1176 1177 1178
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1179
		shmem_page_offset = offset_in_page(offset);
1180 1181 1182 1183 1184

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1185 1186 1187 1188 1189 1190 1191
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1192 1193 1194
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1195 1196 1197 1198 1199 1200
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1201 1202 1203

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1204 1205 1206 1207
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1208

1209
		mutex_lock(&dev->struct_mutex);
1210 1211

		if (ret)
1212 1213
			goto out;

1214
next_page:
1215
		remain -= page_length;
1216
		user_data += page_length;
1217
		offset += page_length;
1218 1219
	}

1220
out:
1221 1222
	i915_gem_object_unpin_pages(obj);

1223
	if (hit_slowpath) {
1224 1225 1226 1227 1228 1229 1230
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1231
			if (i915_gem_clflush_object(obj, obj->pin_display))
1232
				needs_clflush_after = true;
1233
		}
1234
	}
1235

1236
	if (needs_clflush_after)
1237
		i915_gem_chipset_flush(to_i915(dev));
1238 1239
	else
		obj->cache_dirty = true;
1240

1241
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1242
	return ret;
1243 1244 1245 1246
}

/**
 * Writes data to the object referenced by handle.
1247 1248 1249
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1250 1251 1252 1253 1254
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1255
		      struct drm_file *file)
1256
{
1257
	struct drm_i915_private *dev_priv = to_i915(dev);
1258
	struct drm_i915_gem_pwrite *args = data;
1259
	struct drm_i915_gem_object *obj;
1260 1261 1262 1263 1264 1265
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1266
		       u64_to_user_ptr(args->data_ptr),
1267 1268 1269
		       args->size))
		return -EFAULT;

1270
	if (likely(!i915.prefault_disable)) {
1271
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1272 1273 1274 1275
						   args->size);
		if (ret)
			return -EFAULT;
	}
1276

1277 1278
	intel_runtime_pm_get(dev_priv);

1279
	ret = i915_mutex_lock_interruptible(dev);
1280
	if (ret)
1281
		goto put_rpm;
1282

1283
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1284
	if (&obj->base == NULL) {
1285 1286
		ret = -ENOENT;
		goto unlock;
1287
	}
1288

1289
	/* Bounds check destination. */
1290 1291
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1292
		ret = -EINVAL;
1293
		goto out;
C
Chris Wilson 已提交
1294 1295
	}

C
Chris Wilson 已提交
1296 1297
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1298
	ret = -EFAULT;
1299 1300 1301 1302 1303 1304
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1305 1306
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1307
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1308 1309 1310
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1311
	}
1312

1313
	if (ret == -EFAULT || ret == -ENOSPC) {
1314 1315
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1316
		else if (i915_gem_object_has_struct_page(obj))
1317
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1318 1319
		else
			ret = -ENODEV;
1320
	}
1321

1322
out:
1323
	drm_gem_object_unreference(&obj->base);
1324
unlock:
1325
	mutex_unlock(&dev->struct_mutex);
1326 1327 1328
put_rpm:
	intel_runtime_pm_put(dev_priv);

1329 1330 1331
	return ret;
}

1332 1333 1334
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1335 1336
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1337
 */
1338
int
1339 1340 1341
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1342
	struct reservation_object *resv;
1343
	int ret, i;
1344

1345 1346 1347 1348 1349
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1350

1351
			i = obj->last_write_req->engine->id;
1352 1353 1354 1355 1356 1357
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1358
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1359 1360 1361 1362 1363 1364 1365 1366 1367
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1368
		GEM_BUG_ON(obj->active);
1369 1370
	}

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

1381 1382 1383 1384 1385 1386 1387
	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1388
	int ring = req->engine->id;
1389 1390 1391 1392 1393 1394

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

1395
	if (!i915_reset_in_progress(&req->i915->gpu_error))
1396
		i915_gem_request_retire_upto(req);
1397 1398
}

1399 1400 1401 1402 1403
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1404
					    struct intel_rps_client *rps,
1405 1406 1407
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
1408
	struct drm_i915_private *dev_priv = to_i915(dev);
1409
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1410
	int ret, i, n = 0;
1411 1412 1413 1414

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1415
	if (!obj->active)
1416 1417
		return 0;

1418 1419 1420 1421 1422 1423 1424
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

1425
		requests[n++] = i915_gem_request_get(req);
1426
	} else {
1427
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1428 1429 1430 1431 1432 1433
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

1434
			requests[n++] = i915_gem_request_get(req);
1435 1436 1437
		}
	}

1438
	mutex_unlock(&dev->struct_mutex);
1439
	ret = 0;
1440
	for (i = 0; ret == 0 && i < n; i++)
1441
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1442 1443
	mutex_lock(&dev->struct_mutex);

1444 1445 1446
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
1447
		i915_gem_request_put(requests[i]);
1448 1449 1450
	}

	return ret;
1451 1452
}

1453 1454 1455 1456 1457 1458
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1459 1460 1461 1462 1463 1464 1465
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1466
/**
1467 1468
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1469 1470 1471
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1472 1473 1474
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1475
			  struct drm_file *file)
1476 1477
{
	struct drm_i915_gem_set_domain *args = data;
1478
	struct drm_i915_gem_object *obj;
1479 1480
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1481 1482
	int ret;

1483
	/* Only handle setting domains to types used by the CPU. */
1484
	if (write_domain & I915_GEM_GPU_DOMAINS)
1485 1486
		return -EINVAL;

1487
	if (read_domains & I915_GEM_GPU_DOMAINS)
1488 1489 1490 1491 1492 1493 1494 1495
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1496
	ret = i915_mutex_lock_interruptible(dev);
1497
	if (ret)
1498
		return ret;
1499

1500
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1501
	if (&obj->base == NULL) {
1502 1503
		ret = -ENOENT;
		goto unlock;
1504
	}
1505

1506 1507 1508 1509
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1510
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1511
							  to_rps_client(file),
1512
							  !write_domain);
1513 1514 1515
	if (ret)
		goto unref;

1516
	if (read_domains & I915_GEM_DOMAIN_GTT)
1517
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1518
	else
1519
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1520

1521
	if (write_domain != 0)
1522
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1523

1524
unref:
1525
	drm_gem_object_unreference(&obj->base);
1526
unlock:
1527 1528 1529 1530 1531 1532
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1533 1534 1535
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1536 1537 1538
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1539
			 struct drm_file *file)
1540 1541
{
	struct drm_i915_gem_sw_finish *args = data;
1542
	struct drm_i915_gem_object *obj;
1543 1544
	int ret = 0;

1545
	ret = i915_mutex_lock_interruptible(dev);
1546
	if (ret)
1547
		return ret;
1548

1549
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1550
	if (&obj->base == NULL) {
1551 1552
		ret = -ENOENT;
		goto unlock;
1553 1554 1555
	}

	/* Pinned buffers may be scanout, so flush the cache */
1556
	if (obj->pin_display)
1557
		i915_gem_object_flush_cpu_write_domain(obj);
1558

1559
	drm_gem_object_unreference(&obj->base);
1560
unlock:
1561 1562 1563 1564 1565
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1566 1567 1568 1569 1570
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1571 1572 1573
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1584 1585 1586
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1587
		    struct drm_file *file)
1588 1589 1590 1591 1592
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1593 1594 1595
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1596
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1597 1598
		return -ENODEV;

1599
	obj = drm_gem_object_lookup(file, args->handle);
1600
	if (obj == NULL)
1601
		return -ENOENT;
1602

1603 1604 1605 1606 1607 1608 1609 1610
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1611
	addr = vm_mmap(obj->filp, 0, args->size,
1612 1613
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1614 1615 1616 1617
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1618 1619 1620 1621
		if (down_write_killable(&mm->mmap_sem)) {
			drm_gem_object_unreference_unlocked(obj);
			return -EINTR;
		}
1622 1623 1624 1625 1626 1627 1628
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1629 1630 1631

		/* This may race, but that's ok, it only gets set */
		WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1632
	}
1633
	drm_gem_object_unreference_unlocked(obj);
1634 1635 1636 1637 1638 1639 1640 1641
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1642 1643
/**
 * i915_gem_fault - fault a page into the GTT
1644 1645
 * @vma: VMA in question
 * @vmf: fault info
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1660 1661
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1662 1663
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1664
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1665 1666 1667
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1668
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1669

1670 1671
	intel_runtime_pm_get(dev_priv);

1672 1673 1674 1675
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1676 1677 1678
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1679

C
Chris Wilson 已提交
1680 1681
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1682 1683 1684 1685 1686 1687 1688 1689 1690
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1691 1692
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1693
		ret = -EFAULT;
1694 1695 1696
		goto unlock;
	}

1697
	/* Use a partial view if the object is bigger than the aperture. */
1698
	if (obj->base.size >= ggtt->mappable_end &&
1699
	    obj->tiling_mode == I915_TILING_NONE) {
1700
		static const unsigned int chunk_size = 256; // 1 MiB
1701

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1714 1715
	if (ret)
		goto unlock;
1716

1717 1718 1719
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1720

1721
	ret = i915_gem_object_get_fence(obj);
1722
	if (ret)
1723
		goto unpin;
1724

1725
	/* Finally, remap it using the new GTT offset */
1726
	pfn = ggtt->mappable_base +
1727
		i915_gem_obj_ggtt_offset_view(obj, &view);
1728
	pfn >>= PAGE_SHIFT;
1729

1730 1731 1732 1733 1734 1735 1736 1737 1738
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1739

1740 1741
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1742 1743 1744 1745 1746
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1768
unpin:
1769
	i915_gem_object_ggtt_unpin_view(obj, &view);
1770
unlock:
1771
	mutex_unlock(&dev->struct_mutex);
1772
out:
1773
	switch (ret) {
1774
	case -EIO:
1775 1776 1777 1778 1779 1780 1781
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1782 1783 1784
			ret = VM_FAULT_SIGBUS;
			break;
		}
1785
	case -EAGAIN:
D
Daniel Vetter 已提交
1786 1787 1788 1789
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1790
		 */
1791 1792
	case 0:
	case -ERESTARTSYS:
1793
	case -EINTR:
1794 1795 1796 1797 1798
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1799 1800
		ret = VM_FAULT_NOPAGE;
		break;
1801
	case -ENOMEM:
1802 1803
		ret = VM_FAULT_OOM;
		break;
1804
	case -ENOSPC:
1805
	case -EFAULT:
1806 1807
		ret = VM_FAULT_SIGBUS;
		break;
1808
	default:
1809
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1810 1811
		ret = VM_FAULT_SIGBUS;
		break;
1812
	}
1813 1814 1815

	intel_runtime_pm_put(dev_priv);
	return ret;
1816 1817
}

1818 1819 1820 1821
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1822
 * Preserve the reservation of the mmapping with the DRM core code, but
1823 1824 1825 1826 1827 1828 1829 1830 1831
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1832
void
1833
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1834
{
1835 1836 1837 1838 1839 1840
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1841 1842
	if (!obj->fault_mappable)
		return;
1843

1844 1845
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1856
	obj->fault_mappable = false;
1857 1858
}

1859 1860 1861 1862 1863 1864 1865 1866 1867
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1868
uint32_t
1869
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1870
{
1871
	uint32_t gtt_size;
1872 1873

	if (INTEL_INFO(dev)->gen >= 4 ||
1874 1875
	    tiling_mode == I915_TILING_NONE)
		return size;
1876 1877

	/* Previous chips need a power-of-two fence region when tiling */
1878
	if (IS_GEN3(dev))
1879
		gtt_size = 1024*1024;
1880
	else
1881
		gtt_size = 512*1024;
1882

1883 1884
	while (gtt_size < size)
		gtt_size <<= 1;
1885

1886
	return gtt_size;
1887 1888
}

1889 1890
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1891 1892 1893 1894
 * @dev: drm device
 * @size: object size
 * @tiling_mode: tiling mode
 * @fenced: is fenced alignemned required or not
1895 1896
 *
 * Return the required GTT alignment for an object, taking into account
1897
 * potential fence register mapping.
1898
 */
1899 1900 1901
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1902 1903 1904 1905 1906
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1907
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1908
	    tiling_mode == I915_TILING_NONE)
1909 1910
		return 4096;

1911 1912 1913 1914
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1915
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1916 1917
}

1918 1919
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1920
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1921 1922
	int ret;

1923 1924
	dev_priv->mm.shrinker_no_lock_stealing = true;

1925 1926
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1927
		goto out;
1928 1929 1930 1931 1932 1933 1934 1935

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1936 1937 1938 1939 1940
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1941 1942
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1943
		goto out;
1944 1945

	i915_gem_shrink_all(dev_priv);
1946 1947 1948 1949 1950
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1951 1952 1953 1954 1955 1956 1957
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1958
int
1959 1960
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1961
		  uint32_t handle,
1962
		  uint64_t *offset)
1963
{
1964
	struct drm_i915_gem_object *obj;
1965 1966
	int ret;

1967
	ret = i915_mutex_lock_interruptible(dev);
1968
	if (ret)
1969
		return ret;
1970

1971
	obj = to_intel_bo(drm_gem_object_lookup(file, handle));
1972
	if (&obj->base == NULL) {
1973 1974 1975
		ret = -ENOENT;
		goto unlock;
	}
1976

1977
	if (obj->madv != I915_MADV_WILLNEED) {
1978
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1979
		ret = -EFAULT;
1980
		goto out;
1981 1982
	}

1983 1984 1985
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1986

1987
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1988

1989
out:
1990
	drm_gem_object_unreference(&obj->base);
1991
unlock:
1992
	mutex_unlock(&dev->struct_mutex);
1993
	return ret;
1994 1995
}

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2017
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2018 2019
}

D
Daniel Vetter 已提交
2020 2021 2022
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2023
{
2024
	i915_gem_object_free_mmap_offset(obj);
2025

2026 2027
	if (obj->base.filp == NULL)
		return;
2028

D
Daniel Vetter 已提交
2029 2030 2031 2032 2033
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2034
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2035 2036
	obj->madv = __I915_MADV_PURGED;
}
2037

2038 2039 2040
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2041
{
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2056 2057
}

2058
static void
2059
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2060
{
2061 2062
	struct sgt_iter sgt_iter;
	struct page *page;
2063
	int ret;
2064

2065
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2066

C
Chris Wilson 已提交
2067
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2068
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2069 2070 2071
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2072
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2073 2074 2075
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2076 2077
	i915_gem_gtt_finish_object(obj);

2078
	if (i915_gem_object_needs_bit17_swizzle(obj))
2079 2080
		i915_gem_object_save_bit_17_swizzle(obj);

2081 2082
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2083

2084
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2085
		if (obj->dirty)
2086
			set_page_dirty(page);
2087

2088
		if (obj->madv == I915_MADV_WILLNEED)
2089
			mark_page_accessed(page);
2090

2091
		put_page(page);
2092
	}
2093
	obj->dirty = 0;
2094

2095 2096
	sg_free_table(obj->pages);
	kfree(obj->pages);
2097
}
C
Chris Wilson 已提交
2098

2099
int
2100 2101 2102 2103
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2104
	if (obj->pages == NULL)
2105 2106
		return 0;

2107 2108 2109
	if (obj->pages_pin_count)
		return -EBUSY;

2110
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2111

2112 2113 2114
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2115
	list_del(&obj->global_list);
2116

2117
	if (obj->mapping) {
2118 2119 2120 2121
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2122 2123 2124
		obj->mapping = NULL;
	}

2125
	ops->put_pages(obj);
2126
	obj->pages = NULL;
2127

2128
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2129 2130 2131 2132

	return 0;
}

2133
static int
C
Chris Wilson 已提交
2134
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2135
{
2136
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2137 2138
	int page_count, i;
	struct address_space *mapping;
2139 2140
	struct sg_table *st;
	struct scatterlist *sg;
2141
	struct sgt_iter sgt_iter;
2142
	struct page *page;
2143
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2144
	int ret;
C
Chris Wilson 已提交
2145
	gfp_t gfp;
2146

C
Chris Wilson 已提交
2147 2148 2149 2150 2151 2152 2153
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2154 2155 2156 2157
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2158
	page_count = obj->base.size / PAGE_SIZE;
2159 2160
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2161
		return -ENOMEM;
2162
	}
2163

2164 2165 2166 2167 2168
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2169
	mapping = file_inode(obj->base.filp)->i_mapping;
2170
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2171
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2172 2173 2174
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2175 2176
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2177 2178 2179 2180 2181
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2182 2183 2184 2185 2186 2187 2188 2189
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2190
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2191 2192
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2193
				goto err_pages;
I
Imre Deak 已提交
2194
			}
C
Chris Wilson 已提交
2195
		}
2196 2197 2198 2199 2200 2201 2202 2203
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2204 2205 2206 2207 2208 2209 2210 2211 2212
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2213 2214 2215

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2216
	}
2217 2218 2219 2220
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2221 2222
	obj->pages = st;

I
Imre Deak 已提交
2223 2224 2225 2226
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2227
	if (i915_gem_object_needs_bit17_swizzle(obj))
2228 2229
		i915_gem_object_do_bit_17_swizzle(obj);

2230 2231 2232 2233
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2234 2235 2236
	return 0;

err_pages:
2237
	sg_mark_end(sg);
2238 2239
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2240 2241
	sg_free_table(st);
	kfree(st);
2242 2243 2244 2245 2246 2247 2248 2249 2250

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2251 2252 2253 2254
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2255 2256
}

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2267
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2268 2269 2270
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2271
	if (obj->pages)
2272 2273
		return 0;

2274
	if (obj->madv != I915_MADV_WILLNEED) {
2275
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2276
		return -EFAULT;
2277 2278
	}

2279 2280
	BUG_ON(obj->pages_pin_count);

2281 2282 2283 2284
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2285
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2286 2287 2288 2289

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2290
	return 0;
2291 2292
}

2293 2294 2295 2296 2297
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2298 2299
	struct sgt_iter sgt_iter;
	struct page *page;
2300 2301
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2302 2303 2304 2305 2306 2307 2308
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2309 2310 2311 2312 2313 2314
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2315

2316 2317
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2318 2319 2320 2321 2322 2323

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2324 2325
	if (pages != stack_pages)
		drm_free_large(pages);
2326 2327 2328 2329 2330

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2343 2344 2345
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2346 2347 2348 2349 2350 2351 2352 2353
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2354
void i915_vma_move_to_active(struct i915_vma *vma,
2355
			     struct drm_i915_gem_request *req)
2356
{
2357
	struct drm_i915_gem_object *obj = vma->obj;
2358
	struct intel_engine_cs *engine;
2359

2360
	engine = i915_gem_request_get_engine(req);
2361 2362

	/* Add a reference if we're newly entering the active list. */
2363
	if (obj->active == 0)
2364
		drm_gem_object_reference(&obj->base);
2365
	obj->active |= intel_engine_flag(engine);
2366

2367
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2368
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2369

2370
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2371 2372
}

2373 2374
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2375
{
2376 2377
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2378 2379

	i915_gem_request_assign(&obj->last_write_req, NULL);
2380
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2381 2382
}

2383
static void
2384
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2385
{
2386
	struct i915_vma *vma;
2387

2388 2389
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2390

2391
	list_del_init(&obj->engine_list[ring]);
2392 2393
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2394
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2395 2396 2397 2398 2399
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2400

2401 2402 2403 2404 2405 2406 2407
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2408 2409 2410
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2411
	}
2412

2413
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2414
	drm_gem_object_unreference(&obj->base);
2415 2416
}

2417
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2418
{
2419
	unsigned long elapsed;
2420

2421
	if (ctx->hang_stats.banned)
2422 2423
		return true;

2424
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2425 2426
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2427 2428
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2429 2430 2431 2432 2433
	}

	return false;
}

2434
static void i915_set_reset_status(struct i915_gem_context *ctx,
2435
				  const bool guilty)
2436
{
2437
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2438 2439

	if (guilty) {
2440
		hs->banned = i915_context_is_banned(ctx);
2441 2442 2443 2444
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2445 2446 2447
	}
}

2448
struct drm_i915_gem_request *
2449
i915_gem_find_active_request(struct intel_engine_cs *engine)
2450
{
2451 2452
	struct drm_i915_gem_request *request;

2453 2454 2455 2456 2457 2458 2459 2460
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2461
	list_for_each_entry(request, &engine->request_list, list) {
2462
		if (i915_gem_request_completed(request))
2463
			continue;
2464

2465
		return request;
2466
	}
2467 2468 2469 2470

	return NULL;
}

2471
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2472 2473 2474 2475
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2476
	request = i915_gem_find_active_request(engine);
2477 2478 2479
	if (request == NULL)
		return;

2480
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2481

2482
	i915_set_reset_status(request->ctx, ring_hung);
2483
	list_for_each_entry_continue(request, &engine->request_list, list)
2484
		i915_set_reset_status(request->ctx, false);
2485
}
2486

2487
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2488
{
2489 2490
	struct intel_ringbuffer *buffer;

2491
	while (!list_empty(&engine->active_list)) {
2492
		struct drm_i915_gem_object *obj;
2493

2494
		obj = list_first_entry(&engine->active_list,
2495
				       struct drm_i915_gem_object,
2496
				       engine_list[engine->id]);
2497

2498
		i915_gem_object_retire__read(obj, engine->id);
2499
	}
2500

2501 2502 2503 2504 2505 2506
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
	intel_ring_init_seqno(engine, engine->last_submitted_seqno);

2507 2508 2509 2510 2511 2512
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2513
	if (i915.enable_execlists) {
2514 2515
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2516

2517
		intel_execlists_cancel_requests(engine);
2518 2519
	}

2520 2521 2522 2523 2524 2525 2526
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2527
	if (!list_empty(&engine->request_list)) {
2528 2529
		struct drm_i915_gem_request *request;

2530 2531 2532
		request = list_last_entry(&engine->request_list,
					  struct drm_i915_gem_request,
					  list);
2533

2534
		i915_gem_request_retire_upto(request);
2535
	}
2536 2537 2538 2539 2540 2541 2542 2543

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2544
	list_for_each_entry(buffer, &engine->buffers, link) {
2545 2546 2547
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2548

2549
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2550 2551
}

2552
void i915_gem_reset(struct drm_device *dev)
2553
{
2554
	struct drm_i915_private *dev_priv = to_i915(dev);
2555
	struct intel_engine_cs *engine;
2556

2557 2558 2559 2560 2561
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2562
	for_each_engine(engine, dev_priv)
2563
		i915_gem_reset_engine_status(engine);
2564

2565
	for_each_engine(engine, dev_priv)
2566
		i915_gem_reset_engine_cleanup(engine);
2567
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2568

2569 2570
	i915_gem_context_reset(dev);

2571
	i915_gem_restore_fences(dev);
2572 2573

	WARN_ON(i915_verify_lists(dev));
2574 2575 2576 2577
}

/**
 * This function clears the request list as sequence numbers are passed.
2578
 * @engine: engine to retire requests on
2579
 */
2580
void
2581
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2582
{
2583
	WARN_ON(i915_verify_lists(engine->dev));
2584

2585 2586 2587 2588
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2589
	 */
2590
	while (!list_empty(&engine->request_list)) {
2591 2592
		struct drm_i915_gem_request *request;

2593
		request = list_first_entry(&engine->request_list,
2594 2595 2596
					   struct drm_i915_gem_request,
					   list);

2597
		if (!i915_gem_request_completed(request))
2598 2599
			break;

2600
		i915_gem_request_retire_upto(request);
2601
	}
2602

2603 2604 2605 2606
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
2607
	while (!list_empty(&engine->active_list)) {
2608 2609
		struct drm_i915_gem_object *obj;

2610 2611
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
2612
				       engine_list[engine->id]);
2613

2614
		if (!list_empty(&obj->last_read_req[engine->id]->list))
2615 2616
			break;

2617
		i915_gem_object_retire__read(obj, engine->id);
2618 2619
	}

2620
	WARN_ON(i915_verify_lists(engine->dev));
2621 2622
}

2623
void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
2624
{
2625
	struct intel_engine_cs *engine;
2626

2627
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2628 2629 2630 2631 2632

	if (dev_priv->gt.active_engines == 0)
		return;

	GEM_BUG_ON(!dev_priv->gt.awake);
2633

2634
	for_each_engine(engine, dev_priv) {
2635
		i915_gem_retire_requests_ring(engine);
2636 2637
		if (list_empty(&engine->request_list))
			dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
2638 2639
	}

2640
	if (dev_priv->gt.active_engines == 0)
2641 2642 2643
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.idle_work,
				   msecs_to_jiffies(100));
2644 2645
}

2646
static void
2647 2648
i915_gem_retire_work_handler(struct work_struct *work)
{
2649
	struct drm_i915_private *dev_priv =
2650
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2651
	struct drm_device *dev = &dev_priv->drm;
2652

2653
	/* Come back later if the device is busy... */
2654
	if (mutex_trylock(&dev->struct_mutex)) {
2655
		i915_gem_retire_requests(dev_priv);
2656
		mutex_unlock(&dev->struct_mutex);
2657
	}
2658 2659 2660 2661 2662

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2663 2664
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2665 2666
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2667
				   round_jiffies_up_relative(HZ));
2668
	}
2669
}
2670

2671 2672 2673 2674
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2675
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2676
	struct drm_device *dev = &dev_priv->drm;
2677
	struct intel_engine_cs *engine;
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
	unsigned int stuck_engines;
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2700

2701
	for_each_engine(engine, dev_priv)
2702
		i915_gem_batch_pool_fini(&engine->batch_pool);
2703

2704 2705 2706
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2707

2708 2709 2710 2711 2712
	stuck_engines = intel_kick_waiters(dev_priv);
	if (unlikely(stuck_engines)) {
		DRM_DEBUG_DRIVER("kicked stuck waiters...missed irq\n");
		dev_priv->gpu_error.missed_irq_rings |= stuck_engines;
	}
2713

2714 2715 2716 2717 2718
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2719

2720 2721 2722 2723
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2724
	}
2725 2726
}

2727 2728 2729 2730
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
2731
 * @obj: object to flush
2732 2733 2734 2735
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2736
	int i;
2737 2738 2739

	if (!obj->active)
		return 0;
2740

2741
	for (i = 0; i < I915_NUM_ENGINES; i++) {
2742
		struct drm_i915_gem_request *req;
2743

2744 2745 2746 2747
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

2748
		if (i915_gem_request_completed(req))
2749
			i915_gem_object_retire__read(obj, i);
2750 2751 2752 2753 2754
	}

	return 0;
}

2755 2756
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2757 2758 2759
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2784
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
2785 2786
	int i, n = 0;
	int ret;
2787

2788 2789 2790
	if (args->flags != 0)
		return -EINVAL;

2791 2792 2793 2794
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

2795
	obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
2796 2797 2798 2799 2800
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2801 2802
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2803 2804 2805
	if (ret)
		goto out;

2806
	if (!obj->active)
2807
		goto out;
2808 2809

	/* Do this after OLR check to make sure we make forward progress polling
2810
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
2811
	 */
2812
	if (args->timeout_ns == 0) {
2813 2814 2815 2816 2817
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2818

2819
	for (i = 0; i < I915_NUM_ENGINES; i++) {
2820 2821 2822
		if (obj->last_read_req[i] == NULL)
			continue;

2823
		req[n++] = i915_gem_request_get(obj->last_read_req[i]);
2824 2825
	}

2826 2827
	mutex_unlock(&dev->struct_mutex);

2828 2829
	for (i = 0; i < n; i++) {
		if (ret == 0)
2830
			ret = __i915_wait_request(req[i], true,
2831
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2832
						  to_rps_client(file));
2833
		i915_gem_request_put(req[i]);
2834
	}
2835
	return ret;
2836 2837 2838 2839 2840 2841 2842

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2843 2844 2845
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
2846 2847
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
2848 2849 2850 2851
{
	struct intel_engine_cs *from;
	int ret;

2852
	from = i915_gem_request_get_engine(from_req);
2853 2854 2855
	if (to == from)
		return 0;

2856
	if (i915_gem_request_completed(from_req))
2857 2858
		return 0;

2859
	if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
2860
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
2861
		ret = __i915_wait_request(from_req,
2862 2863
					  i915->mm.interruptible,
					  NULL,
2864
					  NO_WAITBOOST);
2865 2866 2867
		if (ret)
			return ret;

2868
		i915_gem_object_retire_request(obj, from_req);
2869 2870
	} else {
		int idx = intel_ring_sync_index(from, to);
2871 2872 2873
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
2874 2875 2876 2877

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

2878
		if (*to_req == NULL) {
2879 2880 2881 2882 2883 2884 2885
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
2886 2887
		}

2888 2889
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

2904 2905 2906 2907 2908
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
2909 2910 2911
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
2912 2913 2914
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
2915
 * rather than a particular GPU ring. Conceptually we serialise writes
2916
 * between engines inside the GPU. We only allow one engine to write
2917 2918 2919 2920 2921 2922 2923 2924 2925
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2926
 *
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
2937 2938
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2939 2940
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2941 2942
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
2943
{
2944
	const bool readonly = obj->base.pending_write_domain == 0;
2945
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
2946
	int ret, i, n;
2947

2948
	if (!obj->active)
2949 2950
		return 0;

2951 2952
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
2953

2954 2955 2956 2957 2958
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
2959
		for (i = 0; i < I915_NUM_ENGINES; i++)
2960 2961 2962 2963
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
2964
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
2965 2966 2967
		if (ret)
			return ret;
	}
2968

2969
	return 0;
2970 2971
}

2972 2973 2974 2975 2976 2977 2978
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2979 2980 2981
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

3004
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3005
{
3006
	struct drm_i915_gem_object *obj = vma->obj;
3007
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3008
	int ret;
3009

3010
	if (list_empty(&vma->obj_link))
3011 3012
		return 0;

3013 3014 3015 3016
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3017

B
Ben Widawsky 已提交
3018
	if (vma->pin_count)
3019
		return -EBUSY;
3020

3021 3022
	BUG_ON(obj->pages == NULL);

3023 3024 3025 3026 3027
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3028

3029
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3030
		i915_gem_object_finish_gtt(obj);
3031

3032 3033 3034 3035
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
3036 3037

		__i915_vma_iounmap(vma);
3038
	}
3039

3040
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3041

3042
	vma->vm->unbind_vma(vma);
3043
	vma->bound = 0;
3044

3045
	list_del_init(&vma->vm_link);
3046
	if (vma->is_ggtt) {
3047 3048 3049 3050 3051 3052
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3053
		vma->ggtt_view.pages = NULL;
3054
	}
3055

B
Ben Widawsky 已提交
3056 3057 3058 3059
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3060
	 * no more VMAs exist. */
I
Imre Deak 已提交
3061
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3062
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3063

3064 3065 3066 3067 3068 3069
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3070
	return 0;
3071 3072
}

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3083
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3084
{
3085
	struct intel_engine_cs *engine;
3086
	int ret;
3087

3088
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3089

3090
	for_each_engine(engine, dev_priv) {
3091 3092 3093
		if (engine->last_context == NULL)
			continue;

3094
		ret = intel_engine_idle(engine);
3095 3096 3097
		if (ret)
			return ret;
	}
3098

3099
	WARN_ON(i915_verify_lists(dev));
3100
	return 0;
3101 3102
}

3103
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3104 3105
				     unsigned long cache_level)
{
3106
	struct drm_mm_node *gtt_space = &vma->node;
3107 3108
	struct drm_mm_node *other;

3109 3110 3111 3112 3113 3114
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3115
	 */
3116
	if (vma->vm->mm.color_adjust == NULL)
3117 3118
		return true;

3119
	if (!drm_mm_node_allocated(gtt_space))
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3136
/**
3137 3138
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3139 3140 3141 3142 3143
 * @obj: object to bind
 * @vm: address space to bind into
 * @ggtt_view: global gtt view if applicable
 * @alignment: requested alignment
 * @flags: mask of PIN_* flags to use
3144
 */
3145
static struct i915_vma *
3146 3147
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3148
			   const struct i915_ggtt_view *ggtt_view,
3149
			   unsigned alignment,
3150
			   uint64_t flags)
3151
{
3152
	struct drm_device *dev = obj->base.dev;
3153 3154
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3155
	u32 fence_alignment, unfenced_alignment;
3156 3157
	u32 search_flag, alloc_flag;
	u64 start, end;
3158
	u64 size, fence_size;
B
Ben Widawsky 已提交
3159
	struct i915_vma *vma;
3160
	int ret;
3161

3162 3163 3164 3165 3166
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3167

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3197

3198 3199 3200
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3201
		end = min_t(u64, end, ggtt->mappable_end);
3202
	if (flags & PIN_ZONE_4G)
3203
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3204

3205
	if (alignment == 0)
3206
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3207
						unfenced_alignment;
3208
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3209 3210 3211
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3212
		return ERR_PTR(-EINVAL);
3213 3214
	}

3215 3216 3217
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3218
	 */
3219
	if (size > end) {
3220
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3221 3222
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3223
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3224
			  end);
3225
		return ERR_PTR(-E2BIG);
3226 3227
	}

3228
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3229
	if (ret)
3230
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3231

3232 3233
	i915_gem_object_pin_pages(obj);

3234 3235 3236
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3237
	if (IS_ERR(vma))
3238
		goto err_unpin;
B
Ben Widawsky 已提交
3239

3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3258
	} else {
3259 3260 3261 3262 3263 3264 3265
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3266

3267
search_free:
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3281

3282 3283
			goto err_free_vma;
		}
3284
	}
3285
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3286
		ret = -EINVAL;
3287
		goto err_remove_node;
3288 3289
	}

3290
	trace_i915_vma_bind(vma, flags);
3291
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3292
	if (ret)
I
Imre Deak 已提交
3293
		goto err_remove_node;
3294

3295
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3296
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3297

3298
	return vma;
B
Ben Widawsky 已提交
3299

3300
err_remove_node:
3301
	drm_mm_remove_node(&vma->node);
3302
err_free_vma:
B
Ben Widawsky 已提交
3303
	i915_gem_vma_destroy(vma);
3304
	vma = ERR_PTR(ret);
3305
err_unpin:
B
Ben Widawsky 已提交
3306
	i915_gem_object_unpin_pages(obj);
3307
	return vma;
3308 3309
}

3310
bool
3311 3312
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3313 3314 3315 3316 3317
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3318
	if (obj->pages == NULL)
3319
		return false;
3320

3321 3322 3323 3324
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3325
	if (obj->stolen || obj->phys_handle)
3326
		return false;
3327

3328 3329 3330 3331 3332 3333 3334 3335
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3336 3337
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3338
		return false;
3339
	}
3340

C
Chris Wilson 已提交
3341
	trace_i915_gem_object_clflush(obj);
3342
	drm_clflush_sg(obj->pages);
3343
	obj->cache_dirty = false;
3344 3345

	return true;
3346 3347 3348 3349
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3350
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3351
{
C
Chris Wilson 已提交
3352 3353
	uint32_t old_write_domain;

3354
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3355 3356
		return;

3357
	/* No actual flushing is required for the GTT write domain.  Writes
3358 3359
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3360 3361 3362 3363
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3364
	 */
3365 3366
	wmb();

3367 3368
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3369

3370
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3371

C
Chris Wilson 已提交
3372
	trace_i915_gem_object_change_domain(obj,
3373
					    obj->base.read_domains,
C
Chris Wilson 已提交
3374
					    old_write_domain);
3375 3376 3377 3378
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3379
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3380
{
C
Chris Wilson 已提交
3381
	uint32_t old_write_domain;
3382

3383
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3384 3385
		return;

3386
	if (i915_gem_clflush_object(obj, obj->pin_display))
3387
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3388

3389 3390
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3391

3392
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3393

C
Chris Wilson 已提交
3394
	trace_i915_gem_object_change_domain(obj,
3395
					    obj->base.read_domains,
C
Chris Wilson 已提交
3396
					    old_write_domain);
3397 3398
}

3399 3400
/**
 * Moves a single object to the GTT read, and possibly write domain.
3401 3402
 * @obj: object to act on
 * @write: ask for write access or read only
3403 3404 3405 3406
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3407
int
3408
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3409
{
3410 3411 3412
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3413
	uint32_t old_write_domain, old_read_domains;
3414
	struct i915_vma *vma;
3415
	int ret;
3416

3417
	ret = i915_gem_object_wait_rendering(obj, !write);
3418 3419 3420
	if (ret)
		return ret;

3421 3422 3423
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3436
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3437

3438 3439 3440 3441 3442 3443 3444
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3445 3446
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3447

3448 3449 3450
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3451 3452
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3453
	if (write) {
3454 3455 3456
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3457 3458
	}

C
Chris Wilson 已提交
3459 3460 3461 3462
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3463
	/* And bump the LRU for this access */
3464 3465
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3466
		list_move_tail(&vma->vm_link,
3467
			       &ggtt->base.inactive_list);
3468

3469 3470 3471
	return 0;
}

3472 3473
/**
 * Changes the cache-level of an object across all VMA.
3474 3475
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3487 3488 3489
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3490
	struct drm_device *dev = obj->base.dev;
3491
	struct i915_vma *vma, *next;
3492
	bool bound = false;
3493
	int ret = 0;
3494 3495

	if (obj->cache_level == cache_level)
3496
		goto out;
3497

3498 3499 3500 3501 3502
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3503
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3504 3505 3506 3507 3508 3509 3510 3511
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3512
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3513
			ret = i915_vma_unbind(vma);
3514 3515
			if (ret)
				return ret;
3516 3517
		} else
			bound = true;
3518 3519
	}

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3532
		ret = i915_gem_object_wait_rendering(obj, false);
3533 3534 3535
		if (ret)
			return ret;

3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3553 3554 3555
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3556 3557 3558 3559 3560 3561 3562 3563
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3564 3565
		}

3566
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3567 3568 3569 3570 3571 3572 3573
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3574 3575
	}

3576
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3577 3578 3579
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3580
out:
3581 3582 3583 3584
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3585
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3586
		if (i915_gem_clflush_object(obj, true))
3587
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3588 3589 3590 3591 3592
	}

	return 0;
}

B
Ben Widawsky 已提交
3593 3594
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3595
{
B
Ben Widawsky 已提交
3596
	struct drm_i915_gem_caching *args = data;
3597 3598
	struct drm_i915_gem_object *obj;

3599
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
3600 3601
	if (&obj->base == NULL)
		return -ENOENT;
3602

3603 3604 3605 3606 3607 3608
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3609 3610 3611 3612
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3613 3614 3615 3616
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3617

3618 3619
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3620 3621
}

B
Ben Widawsky 已提交
3622 3623
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3624
{
3625
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3626
	struct drm_i915_gem_caching *args = data;
3627 3628 3629 3630
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3631 3632
	switch (args->caching) {
	case I915_CACHING_NONE:
3633 3634
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3635
	case I915_CACHING_CACHED:
3636 3637 3638 3639 3640 3641
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3642
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3643 3644
			return -ENODEV;

3645 3646
		level = I915_CACHE_LLC;
		break;
3647 3648 3649
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3650 3651 3652 3653
	default:
		return -EINVAL;
	}

3654 3655
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3656 3657
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3658
		goto rpm_put;
B
Ben Widawsky 已提交
3659

3660
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
3671 3672 3673
rpm_put:
	intel_runtime_pm_put(dev_priv);

3674 3675 3676
	return ret;
}

3677
/*
3678 3679 3680
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3681 3682
 */
int
3683 3684
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3685
				     const struct i915_ggtt_view *view)
3686
{
3687
	u32 old_read_domains, old_write_domain;
3688 3689
	int ret;

3690 3691 3692
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3693
	obj->pin_display++;
3694

3695 3696 3697 3698 3699 3700 3701 3702 3703
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3704 3705
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3706
	if (ret)
3707
		goto err_unpin_display;
3708

3709 3710 3711 3712
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3713 3714 3715
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3716
	if (ret)
3717
		goto err_unpin_display;
3718

3719
	i915_gem_object_flush_cpu_write_domain(obj);
3720

3721
	old_write_domain = obj->base.write_domain;
3722
	old_read_domains = obj->base.read_domains;
3723 3724 3725 3726

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3727
	obj->base.write_domain = 0;
3728
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3729 3730 3731

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3732
					    old_write_domain);
3733 3734

	return 0;
3735 3736

err_unpin_display:
3737
	obj->pin_display--;
3738 3739 3740 3741
	return ret;
}

void
3742 3743
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3744
{
3745 3746 3747
	if (WARN_ON(obj->pin_display == 0))
		return;

3748 3749
	i915_gem_object_ggtt_unpin_view(obj, view);

3750
	obj->pin_display--;
3751 3752
}

3753 3754
/**
 * Moves a single object to the CPU read, and possibly write domain.
3755 3756
 * @obj: object to act on
 * @write: requesting write or read-only access
3757 3758 3759 3760
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3761
int
3762
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3763
{
C
Chris Wilson 已提交
3764
	uint32_t old_write_domain, old_read_domains;
3765 3766
	int ret;

3767
	ret = i915_gem_object_wait_rendering(obj, !write);
3768 3769 3770
	if (ret)
		return ret;

3771 3772 3773
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3774
	i915_gem_object_flush_gtt_write_domain(obj);
3775

3776 3777
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3778

3779
	/* Flush the CPU cache if it's still invalid. */
3780
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3781
		i915_gem_clflush_object(obj, false);
3782

3783
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3784 3785 3786 3787 3788
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3789
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3790 3791 3792 3793 3794

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3795 3796
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3797
	}
3798

C
Chris Wilson 已提交
3799 3800 3801 3802
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3803 3804 3805
	return 0;
}

3806 3807 3808
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3809 3810 3811 3812
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3813 3814 3815
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3816
static int
3817
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3818
{
3819
	struct drm_i915_private *dev_priv = to_i915(dev);
3820
	struct drm_i915_file_private *file_priv = file->driver_priv;
3821
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3822
	struct drm_i915_gem_request *request, *target = NULL;
3823
	int ret;
3824

3825 3826 3827 3828
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3829 3830 3831
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3832

3833
	spin_lock(&file_priv->mm.lock);
3834
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3835 3836
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3837

3838 3839 3840 3841 3842 3843 3844
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3845
		target = request;
3846
	}
3847
	if (target)
3848
		i915_gem_request_get(target);
3849
	spin_unlock(&file_priv->mm.lock);
3850

3851
	if (target == NULL)
3852
		return 0;
3853

3854
	ret = __i915_wait_request(target, true, NULL, NULL);
3855
	i915_gem_request_put(target);
3856

3857 3858 3859
	return ret;
}

3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3876 3877 3878 3879
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3880 3881 3882
	return false;
}

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3901
		    to_i915(obj->base.dev)->ggtt.mappable_end);
3902 3903 3904 3905

	obj->map_and_fenceable = mappable && fenceable;
}

3906 3907 3908 3909 3910 3911
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
3912
{
3913
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3914
	struct i915_vma *vma;
3915
	unsigned bound;
3916 3917
	int ret;

3918 3919 3920
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

3921
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3922
		return -EINVAL;
3923

3924 3925 3926
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

3927 3928 3929 3930 3931 3932
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

3933
	if (vma) {
B
Ben Widawsky 已提交
3934 3935 3936
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

3937
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
3938
			WARN(vma->pin_count,
3939
			     "bo is already pinned in %s with incorrect alignment:"
3940
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
3941
			     " obj->map_and_fenceable=%d\n",
3942
			     ggtt_view ? "ggtt" : "ppgtt",
3943 3944
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
3945
			     alignment,
3946
			     !!(flags & PIN_MAPPABLE),
3947
			     obj->map_and_fenceable);
3948
			ret = i915_vma_unbind(vma);
3949 3950
			if (ret)
				return ret;
3951 3952

			vma = NULL;
3953 3954 3955
		}
	}

3956
	bound = vma ? vma->bound : 0;
3957
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3958 3959
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
3960 3961
		if (IS_ERR(vma))
			return PTR_ERR(vma);
3962 3963
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
3964 3965 3966
		if (ret)
			return ret;
	}
3967

3968 3969
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
3970
		__i915_vma_set_map_and_fenceable(vma);
3971 3972
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
3973

3974
	vma->pin_count++;
3975 3976 3977
	return 0;
}

3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
3995 3996 3997 3998
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

3999
	BUG_ON(!view);
4000

4001
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4002
				      alignment, flags | PIN_GLOBAL);
4003 4004
}

4005
void
4006 4007
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4008
{
4009
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4010

4011
	WARN_ON(vma->pin_count == 0);
4012
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4013

4014
	--vma->pin_count;
4015 4016 4017 4018
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4019
		    struct drm_file *file)
4020 4021
{
	struct drm_i915_gem_busy *args = data;
4022
	struct drm_i915_gem_object *obj;
4023 4024
	int ret;

4025
	ret = i915_mutex_lock_interruptible(dev);
4026
	if (ret)
4027
		return ret;
4028

4029
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4030
	if (&obj->base == NULL) {
4031 4032
		ret = -ENOENT;
		goto unlock;
4033
	}
4034

4035 4036 4037 4038
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4039
	 */
4040
	ret = i915_gem_object_flush_active(obj);
4041 4042
	if (ret)
		goto unref;
4043

4044 4045 4046 4047
	args->busy = 0;
	if (obj->active) {
		int i;

4048
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4049 4050 4051 4052
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4053
				args->busy |= 1 << (16 + req->engine->exec_id);
4054 4055
		}
		if (obj->last_write_req)
4056
			args->busy |= obj->last_write_req->engine->exec_id;
4057
	}
4058

4059
unref:
4060
	drm_gem_object_unreference(&obj->base);
4061
unlock:
4062
	mutex_unlock(&dev->struct_mutex);
4063
	return ret;
4064 4065 4066 4067 4068 4069
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4070
	return i915_gem_ring_throttle(dev, file_priv);
4071 4072
}

4073 4074 4075 4076
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4077
	struct drm_i915_private *dev_priv = to_i915(dev);
4078
	struct drm_i915_gem_madvise *args = data;
4079
	struct drm_i915_gem_object *obj;
4080
	int ret;
4081 4082 4083 4084 4085 4086 4087 4088 4089

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4090 4091 4092 4093
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4094
	obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4095
	if (&obj->base == NULL) {
4096 4097
		ret = -ENOENT;
		goto unlock;
4098 4099
	}

B
Ben Widawsky 已提交
4100
	if (i915_gem_obj_is_pinned(obj)) {
4101 4102
		ret = -EINVAL;
		goto out;
4103 4104
	}

4105 4106 4107 4108 4109 4110 4111 4112 4113
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4114 4115
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4116

C
Chris Wilson 已提交
4117
	/* if the object is no longer attached, discard its backing storage */
4118
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4119 4120
		i915_gem_object_truncate(obj);

4121
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4122

4123
out:
4124
	drm_gem_object_unreference(&obj->base);
4125
unlock:
4126
	mutex_unlock(&dev->struct_mutex);
4127
	return ret;
4128 4129
}

4130 4131
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4132
{
4133 4134
	int i;

4135
	INIT_LIST_HEAD(&obj->global_list);
4136
	for (i = 0; i < I915_NUM_ENGINES; i++)
4137
		INIT_LIST_HEAD(&obj->engine_list[i]);
4138
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4139
	INIT_LIST_HEAD(&obj->vma_list);
4140
	INIT_LIST_HEAD(&obj->batch_pool_link);
4141

4142 4143
	obj->ops = ops;

4144 4145 4146
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

4147
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4148 4149
}

4150
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4151
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4152 4153 4154 4155
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4156
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4157
						  size_t size)
4158
{
4159
	struct drm_i915_gem_object *obj;
4160
	struct address_space *mapping;
D
Daniel Vetter 已提交
4161
	gfp_t mask;
4162
	int ret;
4163

4164
	obj = i915_gem_object_alloc(dev);
4165
	if (obj == NULL)
4166
		return ERR_PTR(-ENOMEM);
4167

4168 4169 4170
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4171

4172 4173 4174 4175 4176 4177 4178
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4179
	mapping = file_inode(obj->base.filp)->i_mapping;
4180
	mapping_set_gfp_mask(mapping, mask);
4181

4182
	i915_gem_object_init(obj, &i915_gem_object_ops);
4183

4184 4185
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4186

4187 4188
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4204 4205
	trace_i915_gem_object_create(obj);

4206
	return obj;
4207 4208 4209 4210 4211

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4212 4213
}

4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4238
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4239
{
4240
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4241
	struct drm_device *dev = obj->base.dev;
4242
	struct drm_i915_private *dev_priv = to_i915(dev);
4243
	struct i915_vma *vma, *next;
4244

4245 4246
	intel_runtime_pm_get(dev_priv);

4247 4248
	trace_i915_gem_object_destroy(obj);

4249
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4250 4251 4252
		int ret;

		vma->pin_count = 0;
4253
		ret = __i915_vma_unbind_no_wait(vma);
4254 4255
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4256

4257 4258
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4259

4260
			WARN_ON(i915_vma_unbind(vma));
4261

4262 4263
			dev_priv->mm.interruptible = was_interruptible;
		}
4264 4265
	}

B
Ben Widawsky 已提交
4266 4267 4268 4269 4270
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4271 4272
	WARN_ON(obj->frontbuffer_bits);

4273 4274 4275 4276 4277
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4278 4279
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4280
	if (discard_backing_storage(obj))
4281
		obj->madv = I915_MADV_DONTNEED;
4282
	i915_gem_object_put_pages(obj);
4283

4284 4285
	BUG_ON(obj->pages);

4286 4287
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4288

4289 4290 4291
	if (obj->ops->release)
		obj->ops->release(obj);

4292 4293
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4294

4295
	kfree(obj->bit_17);
4296
	i915_gem_object_free(obj);
4297 4298

	intel_runtime_pm_put(dev_priv);
4299 4300
}

4301 4302
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4303 4304
{
	struct i915_vma *vma;
4305
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4306 4307
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4308
			return vma;
4309 4310 4311 4312 4313 4314 4315 4316
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4317

4318
	GEM_BUG_ON(!view);
4319

4320
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4321
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4322
			return vma;
4323 4324 4325
	return NULL;
}

B
Ben Widawsky 已提交
4326 4327 4328
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4329 4330 4331 4332 4333

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4334 4335
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4336

4337
	list_del(&vma->obj_link);
4338

4339
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4340 4341
}

4342
static void
4343
i915_gem_stop_engines(struct drm_device *dev)
4344
{
4345
	struct drm_i915_private *dev_priv = to_i915(dev);
4346
	struct intel_engine_cs *engine;
4347

4348
	for_each_engine(engine, dev_priv)
4349
		dev_priv->gt.stop_engine(engine);
4350 4351
}

4352
int
4353
i915_gem_suspend(struct drm_device *dev)
4354
{
4355
	struct drm_i915_private *dev_priv = to_i915(dev);
4356
	int ret = 0;
4357

4358 4359
	intel_suspend_gt_powersave(dev_priv);

4360
	mutex_lock(&dev->struct_mutex);
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4374
	ret = i915_gem_wait_for_idle(dev_priv);
4375
	if (ret)
4376
		goto err;
4377

4378
	i915_gem_retire_requests(dev_priv);
4379

4380 4381 4382 4383 4384
	/* Note that rather than stopping the engines, all we have to do
	 * is assert that every RING_HEAD == RING_TAIL (all execution complete)
	 * and similar for all logical context images (to ensure they are
	 * all ready for hibernation).
	 */
4385
	i915_gem_stop_engines(dev);
4386
	i915_gem_context_lost(dev_priv);
4387 4388
	mutex_unlock(&dev->struct_mutex);

4389
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4390 4391
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4392

4393 4394 4395
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4396
	WARN_ON(dev_priv->gt.awake);
4397

4398
	return 0;
4399 4400 4401 4402

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4403 4404
}

4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4422 4423
void i915_gem_init_swizzling(struct drm_device *dev)
{
4424
	struct drm_i915_private *dev_priv = to_i915(dev);
4425

4426
	if (INTEL_INFO(dev)->gen < 5 ||
4427 4428 4429 4430 4431 4432
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4433 4434 4435
	if (IS_GEN5(dev))
		return;

4436 4437
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4438
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4439
	else if (IS_GEN7(dev))
4440
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4441 4442
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4443 4444
	else
		BUG();
4445
}
D
Daniel Vetter 已提交
4446

4447 4448
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4449
	struct drm_i915_private *dev_priv = to_i915(dev);
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4474 4475 4476
int
i915_gem_init_hw(struct drm_device *dev)
{
4477
	struct drm_i915_private *dev_priv = to_i915(dev);
4478
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4479
	int ret;
4480

4481 4482 4483
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4484
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4485
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4486

4487 4488 4489
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4490

4491
	if (HAS_PCH_NOP(dev)) {
4492 4493 4494 4495 4496 4497 4498 4499 4500
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4501 4502
	}

4503 4504
	i915_gem_init_swizzling(dev);

4505 4506 4507 4508 4509 4510 4511 4512
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4513
	BUG_ON(!dev_priv->kernel_context);
4514

4515 4516 4517 4518 4519 4520 4521
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4522
	for_each_engine(engine, dev_priv) {
4523
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4524
		if (ret)
4525
			goto out;
D
Daniel Vetter 已提交
4526
	}
4527

4528 4529
	intel_mocs_init_l3cc_table(dev);

4530
	/* We can't enable contexts until all firmware is loaded */
4531 4532 4533
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4534

4535 4536
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4537
	return ret;
4538 4539
}

4540 4541
int i915_gem_init(struct drm_device *dev)
{
4542
	struct drm_i915_private *dev_priv = to_i915(dev);
4543 4544 4545
	int ret;

	mutex_lock(&dev->struct_mutex);
4546

4547
	if (!i915.enable_execlists) {
4548
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4549 4550
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
4551
	} else {
4552
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4553 4554
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4555 4556
	}

4557 4558 4559 4560 4561 4562 4563 4564
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4565
	i915_gem_init_userptr(dev_priv);
4566
	i915_gem_init_ggtt(dev);
4567

4568
	ret = i915_gem_context_init(dev);
4569 4570
	if (ret)
		goto out_unlock;
4571

4572
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4573
	if (ret)
4574
		goto out_unlock;
4575

4576
	ret = i915_gem_init_hw(dev);
4577 4578 4579 4580 4581 4582
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4583
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4584
		ret = 0;
4585
	}
4586 4587

out_unlock:
4588
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4589
	mutex_unlock(&dev->struct_mutex);
4590

4591
	return ret;
4592 4593
}

4594
void
4595
i915_gem_cleanup_engines(struct drm_device *dev)
4596
{
4597
	struct drm_i915_private *dev_priv = to_i915(dev);
4598
	struct intel_engine_cs *engine;
4599

4600
	for_each_engine(engine, dev_priv)
4601
		dev_priv->gt.cleanup_engine(engine);
4602 4603
}

4604
static void
4605
init_engine_lists(struct intel_engine_cs *engine)
4606
{
4607 4608
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
4609 4610
}

4611 4612 4613
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4614
	struct drm_device *dev = &dev_priv->drm;
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4625
	if (intel_vgpu_active(dev_priv))
4626 4627 4628 4629 4630 4631 4632 4633 4634
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4635
void
4636
i915_gem_load_init(struct drm_device *dev)
4637
{
4638
	struct drm_i915_private *dev_priv = to_i915(dev);
4639 4640
	int i;

4641
	dev_priv->objects =
4642 4643 4644 4645
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4646 4647 4648 4649 4650
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4651 4652 4653 4654 4655
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4656

B
Ben Widawsky 已提交
4657
	INIT_LIST_HEAD(&dev_priv->vm_list);
4658
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4659 4660
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4661
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4662 4663
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4664
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4665
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4666
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4667
			  i915_gem_retire_work_handler);
4668
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4669
			  i915_gem_idle_work_handler);
4670
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4671
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4672

4673 4674
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4675
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4676

4677
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4678

4679 4680
	dev_priv->mm.interruptible = true;

4681
	mutex_init(&dev_priv->fb_tracking.lock);
4682
}
4683

4684 4685 4686 4687 4688 4689 4690 4691 4692
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4721
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4722
{
4723
	struct drm_i915_file_private *file_priv = file->driver_priv;
4724 4725 4726 4727 4728

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4729
	spin_lock(&file_priv->mm.lock);
4730 4731 4732 4733 4734 4735 4736 4737 4738
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4739
	spin_unlock(&file_priv->mm.lock);
4740

4741
	if (!list_empty(&file_priv->rps.link)) {
4742
		spin_lock(&to_i915(dev)->rps.client_lock);
4743
		list_del(&file_priv->rps.link);
4744
		spin_unlock(&to_i915(dev)->rps.client_lock);
4745
	}
4746 4747 4748 4749 4750
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4751
	int ret;
4752 4753 4754 4755 4756 4757 4758 4759

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4760
	file_priv->dev_priv = to_i915(dev);
4761
	file_priv->file = file;
4762
	INIT_LIST_HEAD(&file_priv->rps.link);
4763 4764 4765 4766

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4767 4768
	file_priv->bsd_ring = -1;

4769 4770 4771
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4772

4773
	return ret;
4774 4775
}

4776 4777
/**
 * i915_gem_track_fb - update frontbuffer tracking
4778 4779 4780
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4781 4782 4783 4784
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

4802
/* All the new VM stuff */
4803 4804
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
4805
{
4806
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
4807 4808
	struct i915_vma *vma;

4809
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4810

4811
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4812
		if (vma->is_ggtt &&
4813 4814 4815
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4816 4817
			return vma->node.start;
	}
4818

4819 4820
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4821 4822 4823
	return -1;
}

4824 4825
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
4826 4827 4828
{
	struct i915_vma *vma;

4829
	list_for_each_entry(vma, &o->vma_list, obj_link)
4830
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4831 4832
			return vma->node.start;

4833
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
4834 4835 4836 4837 4838 4839 4840 4841
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

4842
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4843
		if (vma->is_ggtt &&
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
4854
				  const struct i915_ggtt_view *view)
4855 4856 4857
{
	struct i915_vma *vma;

4858
	list_for_each_entry(vma, &o->vma_list, obj_link)
4859
		if (vma->is_ggtt &&
4860
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
4861
		    drm_mm_node_allocated(&vma->node))
4862 4863 4864 4865 4866 4867 4868
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
4869
	struct i915_vma *vma;
4870

4871
	list_for_each_entry(vma, &o->vma_list, obj_link)
4872
		if (drm_mm_node_allocated(&vma->node))
4873 4874 4875 4876 4877
			return true;

	return false;
}

4878
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
4879 4880 4881
{
	struct i915_vma *vma;

4882
	GEM_BUG_ON(list_empty(&o->vma_list));
4883

4884
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4885
		if (vma->is_ggtt &&
4886
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
4887
			return vma->node.size;
4888
	}
4889

4890 4891 4892
	return 0;
}

4893
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
4894 4895
{
	struct i915_vma *vma;
4896
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4897 4898
		if (vma->pin_count > 0)
			return true;
4899

4900
	return false;
4901
}
4902

4903 4904 4905 4906 4907 4908 4909
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4910
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4911 4912 4913 4914 4915 4916 4917
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4928
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4929
	if (IS_ERR(obj))
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4943
	obj->dirty = 1;		/* Backing store is now out of date */
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}