i915_gem.c 129.9 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_frontbuffer.h"
36
#include "intel_mocs.h"
37
#include <linux/dma-fence-array.h>
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
46
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
47
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
48

49 50 51
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
52
	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
53 54
}

55 56
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
57 58 59
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

60 61 62 63 64 65
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

66
static int
67
insert_mappable_node(struct i915_ggtt *ggtt,
68 69 70
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
71 72 73
	return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
						   size, 0, -1,
						   0, ggtt->mappable_end,
74 75 76 77 78 79 80 81 82 83
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

84 85
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86
				  u64 size)
87
{
88
	spin_lock(&dev_priv->mm.object_stat_lock);
89 90
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
91
	spin_unlock(&dev_priv->mm.object_stat_lock);
92 93 94
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95
				     u64 size)
96
{
97
	spin_lock(&dev_priv->mm.object_stat_lock);
98 99
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
100
	spin_unlock(&dev_priv->mm.object_stat_lock);
101 102
}

103
static int
104
i915_gem_wait_for_error(struct i915_gpu_error *error)
105 106 107
{
	int ret;

108 109
	might_sleep();

110
	if (!i915_reset_in_progress(error))
111 112
		return 0;

113 114 115 116 117
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
118
	ret = wait_event_interruptible_timeout(error->reset_queue,
119
					       !i915_reset_in_progress(error),
120
					       I915_RESET_TIMEOUT);
121 122 123 124
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
125
		return ret;
126 127
	} else {
		return 0;
128
	}
129 130
}

131
int i915_mutex_lock_interruptible(struct drm_device *dev)
132
{
133
	struct drm_i915_private *dev_priv = to_i915(dev);
134 135
	int ret;

136
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137 138 139 140 141 142 143 144 145
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
146

147 148
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
149
			    struct drm_file *file)
150
{
151
	struct drm_i915_private *dev_priv = to_i915(dev);
152
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
153
	struct drm_i915_gem_get_aperture *args = data;
154
	struct i915_vma *vma;
155
	size_t pinned;
156

157
	pinned = 0;
158
	mutex_lock(&dev->struct_mutex);
159
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
163
		if (i915_vma_is_pinned(vma))
164
			pinned += vma->node.size;
165
	mutex_unlock(&dev->struct_mutex);
166

167
	args->aper_size = ggtt->base.total;
168
	args->aper_available_size = args->aper_size - pinned;
169

170 171 172
	return 0;
}

173
static struct sg_table *
174
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
175
{
176
	struct address_space *mapping = obj->base.filp->f_mapping;
177 178 179 180
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
181

182
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
183
		return ERR_PTR(-EINVAL);
184 185 186 187 188 189 190

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
191
			return ERR_CAST(page);
192 193 194 195 196 197

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

198
		put_page(page);
199 200 201
		vaddr += PAGE_SIZE;
	}

202
	i915_gem_chipset_flush(to_i915(obj->base.dev));
203 204 205

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
206
		return ERR_PTR(-ENOMEM);
207 208 209

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
210
		return ERR_PTR(-ENOMEM);
211 212 213 214 215
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
216

217 218 219
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

220
	return st;
221 222 223
}

static void
224 225
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
				struct sg_table *pages)
226
{
C
Chris Wilson 已提交
227
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
228

C
Chris Wilson 已提交
229 230
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
231

232
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
233
		drm_clflush_sg(pages);
234 235 236 237 238 239 240 241 242

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
243
	__i915_gem_object_release_shmem(obj, pages);
244

C
Chris Wilson 已提交
245
	if (obj->mm.dirty) {
246
		struct address_space *mapping = obj->base.filp->f_mapping;
247
		char *vaddr = obj->phys_handle->vaddr;
248 249 250
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
251 252 253 254 255 256 257 258 259 260 261 262 263
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
264
			if (obj->mm.madv == I915_MADV_WILLNEED)
265
				mark_page_accessed(page);
266
			put_page(page);
267 268
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
269
		obj->mm.dirty = false;
270 271
	}

272 273
	sg_free_table(pages);
	kfree(pages);
274 275 276 277 278 279
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
C
Chris Wilson 已提交
280
	i915_gem_object_unpin_pages(obj);
281 282 283 284 285 286 287 288
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

289
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
290 291 292
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
293 294 295
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
296

297 298 299 300
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
301
	 */
302 303 304 305 306 307
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
308 309 310 311 312
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

313 314 315 316 317 318 319 320 321 322 323 324 325
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

326 327 328 329 330
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
331
{
332
	struct drm_i915_gem_request *rq;
333

334
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
335

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
368 369
	}

370 371 372 373 374 375
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

376
	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
406 407
		int ret;

408 409
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
410 411 412
		if (ret)
			return ret;

413 414 415 416 417 418
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
			if (timeout <= 0)
				break;
419

420 421 422 423 424 425 426 427
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
428 429
	}

430 431 432 433 434 435
	if (excl && timeout > 0)
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
436 437
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

502 503 504 505 506 507
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
508
 */
509 510 511 512 513
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
514
{
515 516 517 518 519 520 521
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
522

523 524 525
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
526
	return timeout < 0 ? timeout : 0;
527 528 529 530 531 532 533 534 535
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

536 537 538 539 540
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
541
	int ret;
542 543 544 545 546 547 548 549

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

C
Chris Wilson 已提交
550
	if (obj->mm.madv != I915_MADV_WILLNEED)
551 552 553 554 555
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
556 557 558 559
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

560
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
561 562
	if (obj->mm.pages)
		return -EBUSY;
563

564 565 566 567 568 569
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
570 571
	obj->ops = &i915_gem_phys_ops;

C
Chris Wilson 已提交
572
	return i915_gem_object_pin_pages(obj);
573 574 575 576 577
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
578
		     struct drm_file *file)
579 580 581
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
582
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
583
	int ret;
584 585 586 587

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
588 589 590 591 592 593
	lockdep_assert_held(&obj->base.dev->struct_mutex);
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
594
				   to_rps_client(file));
595 596
	if (ret)
		return ret;
597

598
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
599 600 601 602 603 604 605 606 607 608
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
609 610 611 612
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
613 614
	}

615
	drm_clflush_virt_range(vaddr, args->size);
616
	i915_gem_chipset_flush(to_i915(dev));
617 618

out:
619
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
620
	return ret;
621 622
}

623 624
void *i915_gem_object_alloc(struct drm_device *dev)
{
625
	struct drm_i915_private *dev_priv = to_i915(dev);
626
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
627 628 629 630
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
631
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
632
	kmem_cache_free(dev_priv->objects, obj);
633 634
}

635 636 637 638 639
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
640
{
641
	struct drm_i915_gem_object *obj;
642 643
	int ret;
	u32 handle;
644

645
	size = roundup(size, PAGE_SIZE);
646 647
	if (size == 0)
		return -EINVAL;
648 649

	/* Allocate the new object */
650
	obj = i915_gem_object_create(dev, size);
651 652
	if (IS_ERR(obj))
		return PTR_ERR(obj);
653

654
	ret = drm_gem_handle_create(file, &obj->base, &handle);
655
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
656
	i915_gem_object_put(obj);
657 658
	if (ret)
		return ret;
659

660
	*handle_p = handle;
661 662 663
	return 0;
}

664 665 666 667 668 669
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
670
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
671 672
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
673
			       args->size, &args->handle);
674 675 676 677
}

/**
 * Creates a new mm object and returns a handle to it.
678 679 680
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
681 682 683 684 685 686
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
687

688 689
	i915_gem_flush_free_objects(to_i915(dev));

690
	return i915_gem_create(file, dev,
691
			       args->size, &args->handle);
692 693
}

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

720
static inline int
721 722
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

746 747 748 749 750 751
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
752
				    unsigned int *needs_clflush)
753 754 755
{
	int ret;

756
	lockdep_assert_held(&obj->base.dev->struct_mutex);
757

758
	*needs_clflush = 0;
759 760
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
761

762 763 764 765 766
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
767 768 769
	if (ret)
		return ret;

C
Chris Wilson 已提交
770
	ret = i915_gem_object_pin_pages(obj);
771 772 773
	if (ret)
		return ret;

774 775
	i915_gem_object_flush_gtt_write_domain(obj);

776 777 778 779 780 781
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
782 783
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
784 785 786

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
787 788 789
		if (ret)
			goto err_unpin;

790
		*needs_clflush = 0;
791 792
	}

793
	/* return with the pages pinned */
794
	return 0;
795 796 797 798

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
799 800 801 802 803 804 805
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

806 807
	lockdep_assert_held(&obj->base.dev->struct_mutex);

808 809 810 811
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

812 813 814 815 816 817
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
818 819 820
	if (ret)
		return ret;

C
Chris Wilson 已提交
821
	ret = i915_gem_object_pin_pages(obj);
822 823 824
	if (ret)
		return ret;

825 826
	i915_gem_object_flush_gtt_write_domain(obj);

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
844 845 846
		if (ret)
			goto err_unpin;

847 848 849 850 851 852 853
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
854
	obj->mm.dirty = true;
855
	/* return with the pages pinned */
856
	return 0;
857 858 859 860

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
861 862
}

863 864 865 866
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
867
	if (unlikely(swizzled)) {
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

885 886 887
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
888
shmem_pread_slow(struct page *page, int offset, int length,
889 890 891 892 893 894 895 896
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
897
		shmem_clflush_swizzled_range(vaddr + offset, length,
898
					     page_do_bit17_swizzling);
899 900

	if (page_do_bit17_swizzling)
901
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
902
	else
903
		ret = __copy_to_user(user_data, vaddr + offset, length);
904 905
	kunmap(page);

906
	return ret ? - EFAULT : 0;
907 908
}

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
985 986
{
	void *vaddr;
987
	unsigned long unwritten;
988 989

	/* We can use the cpu mem copy function because this is X86. */
990 991 992 993 994 995 996 997 998
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
999 1000 1001 1002
	return unwritten;
}

static int
1003 1004
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1005
{
1006 1007
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1008
	struct drm_mm_node node;
1009 1010 1011
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1012 1013
	int ret;

1014 1015 1016 1017 1018 1019 1020
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1021 1022 1023
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1024
		ret = i915_vma_put_fence(vma);
1025 1026 1027 1028 1029
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1030
	if (IS_ERR(vma)) {
1031
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1032
		if (ret)
1033 1034
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1035 1036 1037 1038 1039 1040
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1041
	mutex_unlock(&i915->drm.struct_mutex);
1042

1043 1044 1045
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1062
					       node.start, I915_CACHE_NONE, 0);
1063 1064 1065 1066
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1067 1068 1069

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1070 1071 1072 1073 1074 1075 1076 1077 1078
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1079
	mutex_lock(&i915->drm.struct_mutex);
1080 1081 1082 1083
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1084
				       node.start, node.size);
1085 1086
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1087
		i915_vma_unpin(vma);
1088
	}
1089 1090 1091
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1092

1093 1094 1095
	return ret;
}

1096 1097
/**
 * Reads data from the object referenced by handle.
1098 1099 1100
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1101 1102 1103 1104 1105
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1106
		     struct drm_file *file)
1107 1108
{
	struct drm_i915_gem_pread *args = data;
1109
	struct drm_i915_gem_object *obj;
1110
	int ret;
1111

1112 1113 1114 1115
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1116
		       u64_to_user_ptr(args->data_ptr),
1117 1118 1119
		       args->size))
		return -EFAULT;

1120
	obj = i915_gem_object_lookup(file, args->handle);
1121 1122
	if (!obj)
		return -ENOENT;
1123

1124
	/* Bounds check source.  */
1125 1126
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1127
		ret = -EINVAL;
1128
		goto out;
C
Chris Wilson 已提交
1129 1130
	}

C
Chris Wilson 已提交
1131 1132
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1133 1134 1135 1136
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1137
	if (ret)
1138
		goto out;
1139

1140
	ret = i915_gem_object_pin_pages(obj);
1141
	if (ret)
1142
		goto out;
1143

1144
	ret = i915_gem_shmem_pread(obj, args);
1145
	if (ret == -EFAULT || ret == -ENODEV)
1146
		ret = i915_gem_gtt_pread(obj, args);
1147

1148 1149
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1150
	i915_gem_object_put(obj);
1151
	return ret;
1152 1153
}

1154 1155
/* This is the fast write path which cannot handle
 * page faults in the source data
1156
 */
1157

1158 1159 1160 1161
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1162
{
1163
	void *vaddr;
1164
	unsigned long unwritten;
1165

1166
	/* We can use the cpu mem copy function because this is X86. */
1167 1168
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1169
						      user_data, length);
1170 1171 1172 1173 1174 1175 1176
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1177 1178 1179 1180

	return unwritten;
}

1181 1182 1183
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1184
 * @obj: i915 GEM object
1185
 * @args: pwrite arguments structure
1186
 */
1187
static int
1188 1189
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1190
{
1191
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1192 1193
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1194 1195 1196
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1197
	int ret;
1198

1199 1200 1201
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1202

1203
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1204
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1205
				       PIN_MAPPABLE | PIN_NONBLOCK);
1206 1207 1208
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1209
		ret = i915_vma_put_fence(vma);
1210 1211 1212 1213 1214
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1215
	if (IS_ERR(vma)) {
1216
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1217
		if (ret)
1218 1219
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1220
	}
D
Daniel Vetter 已提交
1221 1222 1223 1224 1225

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1226 1227
	mutex_unlock(&i915->drm.struct_mutex);

1228
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1229

1230 1231 1232 1233
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1234 1235
		/* Operation in this page
		 *
1236 1237 1238
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1239
		 */
1240
		u32 page_base = node.start;
1241 1242
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1253
		/* If we get a fault while copying data, then (presumably) our
1254 1255
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1256 1257
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1258
		 */
1259 1260 1261 1262
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1263
		}
1264

1265 1266 1267
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1268
	}
1269
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1270 1271

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1272
out_unpin:
1273 1274 1275
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1276
				       node.start, node.size);
1277 1278
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1279
		i915_vma_unpin(vma);
1280
	}
1281
out_unlock:
1282
	intel_runtime_pm_put(i915);
1283
	mutex_unlock(&i915->drm.struct_mutex);
1284
	return ret;
1285 1286
}

1287
static int
1288
shmem_pwrite_slow(struct page *page, int offset, int length,
1289 1290 1291 1292
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1293
{
1294 1295
	char *vaddr;
	int ret;
1296

1297
	vaddr = kmap(page);
1298
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1299
		shmem_clflush_swizzled_range(vaddr + offset, length,
1300
					     page_do_bit17_swizzling);
1301
	if (page_do_bit17_swizzling)
1302 1303
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1304
	else
1305
		ret = __copy_from_user(vaddr + offset, user_data, length);
1306
	if (needs_clflush_after)
1307
		shmem_clflush_swizzled_range(vaddr + offset, length,
1308
					     page_do_bit17_swizzling);
1309
	kunmap(page);
1310

1311
	return ret ? -EFAULT : 0;
1312 1313
}

1314 1315 1316 1317 1318
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1319
static int
1320 1321 1322 1323
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1324
{
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1357
	unsigned int needs_clflush;
1358 1359
	unsigned int offset, idx;
	int ret;
1360

1361
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1362 1363 1364
	if (ret)
		return ret;

1365 1366 1367 1368
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1369

1370 1371 1372
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1373

1374 1375 1376 1377 1378 1379 1380
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1381

1382 1383 1384 1385 1386 1387
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1388

1389 1390 1391
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1392

1393 1394 1395 1396
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1397
		if (ret)
1398
			break;
1399

1400 1401 1402
		remain -= length;
		user_data += length;
		offset = 0;
1403
	}
1404

1405
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1406
	i915_gem_obj_finish_shmem_access(obj);
1407
	return ret;
1408 1409 1410 1411
}

/**
 * Writes data to the object referenced by handle.
1412 1413 1414
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1415 1416 1417 1418 1419
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1420
		      struct drm_file *file)
1421 1422
{
	struct drm_i915_gem_pwrite *args = data;
1423
	struct drm_i915_gem_object *obj;
1424 1425 1426 1427 1428 1429
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1430
		       u64_to_user_ptr(args->data_ptr),
1431 1432 1433
		       args->size))
		return -EFAULT;

1434
	obj = i915_gem_object_lookup(file, args->handle);
1435 1436
	if (!obj)
		return -ENOENT;
1437

1438
	/* Bounds check destination. */
1439 1440
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1441
		ret = -EINVAL;
1442
		goto err;
C
Chris Wilson 已提交
1443 1444
	}

C
Chris Wilson 已提交
1445 1446
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1447 1448 1449 1450 1451
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1452 1453 1454
	if (ret)
		goto err;

1455
	ret = i915_gem_object_pin_pages(obj);
1456
	if (ret)
1457
		goto err;
1458

D
Daniel Vetter 已提交
1459
	ret = -EFAULT;
1460 1461 1462 1463 1464 1465
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1466
	if (!i915_gem_object_has_struct_page(obj) ||
1467
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1468 1469
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1470 1471
		 * textures). Fallback to the shmem path in that case.
		 */
1472
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1473

1474
	if (ret == -EFAULT || ret == -ENOSPC) {
1475 1476
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1477
		else
1478
			ret = i915_gem_shmem_pwrite(obj, args);
1479
	}
1480

1481
	i915_gem_object_unpin_pages(obj);
1482
err:
C
Chris Wilson 已提交
1483
	i915_gem_object_put(obj);
1484
	return ret;
1485 1486
}

1487
static inline enum fb_op_origin
1488 1489
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1490 1491
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1492 1493
}

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
			continue;

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1515
	list_move_tail(&obj->global_link, list);
1516 1517
}

1518
/**
1519 1520
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1521 1522 1523
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1524 1525 1526
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1527
			  struct drm_file *file)
1528 1529
{
	struct drm_i915_gem_set_domain *args = data;
1530
	struct drm_i915_gem_object *obj;
1531 1532
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1533
	int err;
1534

1535
	/* Only handle setting domains to types used by the CPU. */
1536
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1537 1538 1539 1540 1541 1542 1543 1544
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1545
	obj = i915_gem_object_lookup(file, args->handle);
1546 1547
	if (!obj)
		return -ENOENT;
1548

1549 1550 1551 1552
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1553
	err = i915_gem_object_wait(obj,
1554 1555 1556 1557
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1558
	if (err)
C
Chris Wilson 已提交
1559
		goto out;
1560

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1571
		goto out;
1572 1573 1574

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1575
		goto out_unpin;
1576

1577
	if (read_domains & I915_GEM_DOMAIN_GTT)
1578
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1579
	else
1580
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1581

1582 1583
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1584

1585
	mutex_unlock(&dev->struct_mutex);
1586

1587 1588 1589
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1590
out_unpin:
1591
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1592 1593
out:
	i915_gem_object_put(obj);
1594
	return err;
1595 1596 1597 1598
}

/**
 * Called when user space has done writes to this buffer
1599 1600 1601
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1602 1603 1604
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1605
			 struct drm_file *file)
1606 1607
{
	struct drm_i915_gem_sw_finish *args = data;
1608
	struct drm_i915_gem_object *obj;
1609
	int err = 0;
1610

1611
	obj = i915_gem_object_lookup(file, args->handle);
1612 1613
	if (!obj)
		return -ENOENT;
1614 1615

	/* Pinned buffers may be scanout, so flush the cache */
1616 1617 1618 1619 1620 1621 1622
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1623

C
Chris Wilson 已提交
1624
	i915_gem_object_put(obj);
1625
	return err;
1626 1627 1628
}

/**
1629 1630 1631 1632 1633
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1634 1635 1636
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1647 1648 1649
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1650
		    struct drm_file *file)
1651 1652
{
	struct drm_i915_gem_mmap *args = data;
1653
	struct drm_i915_gem_object *obj;
1654 1655
	unsigned long addr;

1656 1657 1658
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1659
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1660 1661
		return -ENODEV;

1662 1663
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1664
		return -ENOENT;
1665

1666 1667 1668
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1669
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1670
		i915_gem_object_put(obj);
1671 1672 1673
		return -EINVAL;
	}

1674
	addr = vm_mmap(obj->base.filp, 0, args->size,
1675 1676
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1677 1678 1679 1680
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1681
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1682
			i915_gem_object_put(obj);
1683 1684
			return -EINTR;
		}
1685 1686 1687 1688 1689 1690 1691
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1692 1693

		/* This may race, but that's ok, it only gets set */
1694
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1695
	}
C
Chris Wilson 已提交
1696
	i915_gem_object_put(obj);
1697 1698 1699 1700 1701 1702 1703 1704
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
	u64 size;

	size = i915_gem_object_get_stride(obj);
	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;

	return size >> PAGE_SHIFT;
}

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1765 1766
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1767
 * @area: CPU VMA in question
1768
 * @vmf: fault info
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1780 1781 1782
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1783
 */
C
Chris Wilson 已提交
1784
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1785
{
1786
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1787
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1788
	struct drm_device *dev = obj->base.dev;
1789 1790
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1791
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1792
	struct i915_vma *vma;
1793
	pgoff_t page_offset;
1794
	unsigned int flags;
1795
	int ret;
1796

1797
	/* We don't use vmf->pgoff since that has the fake offset */
C
Chris Wilson 已提交
1798
	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1799 1800
		PAGE_SHIFT;

C
Chris Wilson 已提交
1801 1802
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1803
	/* Try to flush the object off the GPU first without holding the lock.
1804
	 * Upon acquiring the lock, we will perform our sanity checks and then
1805 1806 1807
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1808 1809 1810 1811
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1812
	if (ret)
1813 1814
		goto err;

1815 1816 1817 1818
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1819 1820 1821 1822 1823
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1824

1825
	/* Access to snoopable pages through the GTT is incoherent. */
1826
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1827
		ret = -EFAULT;
1828
		goto err_unlock;
1829 1830
	}

1831 1832 1833 1834 1835 1836 1837 1838
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1839
	/* Now pin it into the GTT as needed */
1840
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1841 1842
	if (IS_ERR(vma)) {
		struct i915_ggtt_view view;
1843 1844
		unsigned int chunk_size;

1845
		/* Use a partial view if it is bigger than available space */
1846 1847
		chunk_size = MIN_CHUNK_PAGES;
		if (i915_gem_object_is_tiled(obj))
1848
			chunk_size = roundup(chunk_size, tile_row_pages(obj));
1849

1850 1851 1852 1853
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
1854
			min_t(unsigned int, chunk_size,
1855
			      vma_pages(area) - view.params.partial.offset);
1856

1857 1858 1859 1860 1861 1862
		/* If the partial covers the entire object, just create a
		 * normal VMA.
		 */
		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
			view.type = I915_GGTT_VIEW_NORMAL;

1863 1864 1865 1866 1867
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1868 1869
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1870 1871
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1872
		goto err_unlock;
C
Chris Wilson 已提交
1873
	}
1874

1875 1876
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1877
		goto err_unpin;
1878

1879
	ret = i915_vma_get_fence(vma);
1880
	if (ret)
1881
		goto err_unpin;
1882

1883
	/* Mark as being mmapped into userspace for later revocation */
1884
	assert_rpm_wakelock_held(dev_priv);
1885 1886 1887
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1888
	/* Finally, remap it using the new GTT offset */
1889 1890 1891 1892 1893
	ret = remap_io_mapping(area,
			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1894

1895
err_unpin:
C
Chris Wilson 已提交
1896
	__i915_vma_unpin(vma);
1897
err_unlock:
1898
	mutex_unlock(&dev->struct_mutex);
1899 1900
err_rpm:
	intel_runtime_pm_put(dev_priv);
1901
	i915_gem_object_unpin_pages(obj);
1902
err:
1903
	switch (ret) {
1904
	case -EIO:
1905 1906 1907 1908 1909 1910 1911
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1912 1913 1914
			ret = VM_FAULT_SIGBUS;
			break;
		}
1915
	case -EAGAIN:
D
Daniel Vetter 已提交
1916 1917 1918 1919
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1920
		 */
1921 1922
	case 0:
	case -ERESTARTSYS:
1923
	case -EINTR:
1924 1925 1926 1927 1928
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1929 1930
		ret = VM_FAULT_NOPAGE;
		break;
1931
	case -ENOMEM:
1932 1933
		ret = VM_FAULT_OOM;
		break;
1934
	case -ENOSPC:
1935
	case -EFAULT:
1936 1937
		ret = VM_FAULT_SIGBUS;
		break;
1938
	default:
1939
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1940 1941
		ret = VM_FAULT_SIGBUS;
		break;
1942
	}
1943
	return ret;
1944 1945
}

1946 1947 1948 1949
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1950
 * Preserve the reservation of the mmapping with the DRM core code, but
1951 1952 1953 1954 1955 1956 1957 1958 1959
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1960
void
1961
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1962
{
1963 1964
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1965 1966 1967
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1968 1969 1970 1971
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1972
	 */
1973
	lockdep_assert_held(&i915->drm.struct_mutex);
1974
	intel_runtime_pm_get(i915);
1975

1976
	if (list_empty(&obj->userfault_link))
1977
		goto out;
1978

1979
	list_del_init(&obj->userfault_link);
1980 1981
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1982 1983 1984 1985 1986 1987 1988 1989 1990

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
1991 1992 1993

out:
	intel_runtime_pm_put(i915);
1994 1995
}

1996
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1997
{
1998
	struct drm_i915_gem_object *obj, *on;
1999
	int i;
2000

2001 2002 2003 2004 2005 2006
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2007

2008 2009 2010
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2011 2012 2013
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

		if (WARN_ON(reg->pin_count))
			continue;

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2031 2032
}

2033 2034
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
2035
 * @dev_priv: i915 device
2036 2037 2038 2039 2040 2041
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
2042 2043
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
2044
{
2045
	u64 ggtt_size;
2046

2047 2048
	GEM_BUG_ON(size == 0);

2049
	if (INTEL_GEN(dev_priv) >= 4 ||
2050 2051
	    tiling_mode == I915_TILING_NONE)
		return size;
2052 2053

	/* Previous chips need a power-of-two fence region when tiling */
2054
	if (IS_GEN3(dev_priv))
2055
		ggtt_size = 1024*1024;
2056
	else
2057
		ggtt_size = 512*1024;
2058

2059 2060
	while (ggtt_size < size)
		ggtt_size <<= 1;
2061

2062
	return ggtt_size;
2063 2064
}

2065
/**
2066
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
2067
 * @dev_priv: i915 device
2068 2069
 * @size: object size
 * @tiling_mode: tiling mode
2070
 * @fenced: is fenced alignment required or not
2071
 *
2072
 * Return the required global GTT alignment for an object, taking into account
2073
 * potential fence register mapping.
2074
 */
2075
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2076
				int tiling_mode, bool fenced)
2077
{
2078 2079
	GEM_BUG_ON(size == 0);

2080 2081 2082 2083
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2084
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2085
	    tiling_mode == I915_TILING_NONE)
2086 2087
		return 4096;

2088 2089 2090 2091
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2092
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2093 2094
}

2095 2096
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2097
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2098
	int err;
2099

2100 2101 2102
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
2103

2104 2105 2106
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
2107
	 */
2108
	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2109 2110 2111 2112 2113 2114 2115 2116 2117
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
2118

2119
	return err;
2120 2121 2122 2123 2124 2125 2126
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2127
int
2128 2129
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2130
		  uint32_t handle,
2131
		  uint64_t *offset)
2132
{
2133
	struct drm_i915_gem_object *obj;
2134 2135
	int ret;

2136
	obj = i915_gem_object_lookup(file, handle);
2137 2138
	if (!obj)
		return -ENOENT;
2139

2140
	ret = i915_gem_object_create_mmap_offset(obj);
2141 2142
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2143

C
Chris Wilson 已提交
2144
	i915_gem_object_put(obj);
2145
	return ret;
2146 2147
}

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2169
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2170 2171
}

D
Daniel Vetter 已提交
2172 2173 2174
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2175
{
2176
	i915_gem_object_free_mmap_offset(obj);
2177

2178 2179
	if (obj->base.filp == NULL)
		return;
2180

D
Daniel Vetter 已提交
2181 2182 2183 2184 2185
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2186
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2187
	obj->mm.madv = __I915_MADV_PURGED;
D
Daniel Vetter 已提交
2188
}
2189

2190
/* Try to discard unwanted pages */
2191
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2192
{
2193 2194
	struct address_space *mapping;

2195 2196 2197
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2198
	switch (obj->mm.madv) {
2199 2200 2201 2202 2203 2204 2205 2206 2207
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2208
	mapping = obj->base.filp->f_mapping,
2209
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2210 2211
}

2212
static void
2213 2214
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2215
{
2216 2217
	struct sgt_iter sgt_iter;
	struct page *page;
2218

2219
	__i915_gem_object_release_shmem(obj, pages);
2220

2221
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2222

2223
	if (i915_gem_object_needs_bit17_swizzle(obj))
2224
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2225

2226
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2227
		if (obj->mm.dirty)
2228
			set_page_dirty(page);
2229

C
Chris Wilson 已提交
2230
		if (obj->mm.madv == I915_MADV_WILLNEED)
2231
			mark_page_accessed(page);
2232

2233
		put_page(page);
2234
	}
C
Chris Wilson 已提交
2235
	obj->mm.dirty = false;
2236

2237 2238
	sg_free_table(pages);
	kfree(pages);
2239
}
C
Chris Wilson 已提交
2240

2241 2242 2243 2244 2245
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2246 2247
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2248 2249
}

2250 2251
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2252
{
2253
	struct sg_table *pages;
2254

C
Chris Wilson 已提交
2255
	if (i915_gem_object_has_pinned_pages(obj))
2256
		return;
2257

2258
	GEM_BUG_ON(obj->bind_count);
2259 2260 2261 2262
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2263
	mutex_lock_nested(&obj->mm.lock, subclass);
2264 2265
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2266

2267 2268 2269
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2270 2271
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2272

C
Chris Wilson 已提交
2273
	if (obj->mm.mapping) {
2274 2275
		void *ptr;

C
Chris Wilson 已提交
2276
		ptr = ptr_mask_bits(obj->mm.mapping);
2277 2278
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2279
		else
2280 2281
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2282
		obj->mm.mapping = NULL;
2283 2284
	}

2285 2286
	__i915_gem_object_reset_page_iter(obj);

2287
	obj->ops->put_pages(obj, pages);
2288 2289
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2290 2291
}

2292
static unsigned int swiotlb_max_size(void)
2293 2294 2295 2296 2297 2298 2299 2300
{
#if IS_ENABLED(CONFIG_SWIOTLB)
	return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
#else
	return 0;
#endif
}

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
static void i915_sg_trim(struct sg_table *orig_st)
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
		return;

	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL))
		return;

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}

	sg_free_table(orig_st);

	*orig_st = new_st;
}

2325
static struct sg_table *
C
Chris Wilson 已提交
2326
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2327
{
2328
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2329 2330
	int page_count, i;
	struct address_space *mapping;
2331 2332
	struct sg_table *st;
	struct scatterlist *sg;
2333
	struct sgt_iter sgt_iter;
2334
	struct page *page;
2335
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2336
	unsigned int max_segment;
I
Imre Deak 已提交
2337
	int ret;
C
Chris Wilson 已提交
2338
	gfp_t gfp;
2339

C
Chris Wilson 已提交
2340 2341 2342 2343
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2344 2345
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2346

2347 2348
	max_segment = swiotlb_max_size();
	if (!max_segment)
2349
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2350

2351 2352
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2353
		return ERR_PTR(-ENOMEM);
2354

2355
	page_count = obj->base.size / PAGE_SIZE;
2356 2357
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2358
		return ERR_PTR(-ENOMEM);
2359
	}
2360

2361 2362 2363 2364 2365
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2366
	mapping = obj->base.filp->f_mapping;
2367
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2368
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2369 2370 2371
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2372 2373
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2374 2375 2376 2377 2378
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2379 2380 2381 2382 2383 2384 2385
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2386
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2387 2388
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
2389
				goto err_sg;
I
Imre Deak 已提交
2390
			}
C
Chris Wilson 已提交
2391
		}
2392 2393 2394
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2395 2396 2397 2398 2399 2400 2401 2402
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2403 2404 2405

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2406
	}
2407
	if (sg) /* loop terminated early; short sg table */
2408
		sg_mark_end(sg);
2409

2410 2411 2412
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2413
	ret = i915_gem_gtt_prepare_pages(obj, st);
I
Imre Deak 已提交
2414 2415 2416
	if (ret)
		goto err_pages;

2417
	if (i915_gem_object_needs_bit17_swizzle(obj))
2418
		i915_gem_object_do_bit_17_swizzle(obj, st);
2419

2420
	return st;
2421

2422
err_sg:
2423
	sg_mark_end(sg);
2424
err_pages:
2425 2426
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2427 2428
	sg_free_table(st);
	kfree(st);
2429 2430 2431 2432 2433 2434 2435 2436 2437

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2438 2439 2440
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2441 2442 2443 2444 2445 2446
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2447
	lockdep_assert_held(&obj->mm.lock);
2448 2449 2450 2451 2452

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2453 2454 2455 2456 2457 2458 2459

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2460 2461 2462 2463 2464 2465
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2466 2467
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2479 2480
}

2481
/* Ensure that the associated pages are gathered from the backing storage
2482
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2483
 * multiple times before they are released by a single call to
2484
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2485 2486 2487
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2488
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2489
{
2490
	int err;
2491

2492 2493 2494
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2495

2496 2497 2498 2499
	if (unlikely(!obj->mm.pages)) {
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2500

2501 2502 2503
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2504

2505 2506
unlock:
	mutex_unlock(&obj->mm.lock);
2507
	return err;
2508 2509
}

2510
/* The 'mapping' part of i915_gem_object_pin_map() below */
2511 2512
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2513 2514
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2515
	struct sg_table *sgt = obj->mm.pages;
2516 2517
	struct sgt_iter sgt_iter;
	struct page *page;
2518 2519
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2520
	unsigned long i = 0;
2521
	pgprot_t pgprot;
2522 2523 2524
	void *addr;

	/* A single page can always be kmapped */
2525
	if (n_pages == 1 && type == I915_MAP_WB)
2526 2527
		return kmap(sg_page(sgt->sgl));

2528 2529 2530 2531 2532 2533
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2534

2535 2536
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2537 2538 2539 2540

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2541 2542 2543 2544 2545 2546 2547 2548 2549
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2550

2551 2552
	if (pages != stack_pages)
		drm_free_large(pages);
2553 2554 2555 2556 2557

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2558 2559
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2560
{
2561 2562 2563
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2564 2565
	int ret;

2566
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2567

2568
	ret = mutex_lock_interruptible(&obj->mm.lock);
2569 2570 2571
	if (ret)
		return ERR_PTR(ret);

2572 2573
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2574 2575 2576 2577
		if (unlikely(!obj->mm.pages)) {
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2578

2579 2580 2581
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2582 2583 2584
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2585

C
Chris Wilson 已提交
2586
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2587 2588 2589
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2590
			goto err_unpin;
2591
		}
2592 2593 2594 2595 2596 2597

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2598
		ptr = obj->mm.mapping = NULL;
2599 2600
	}

2601 2602 2603 2604
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2605
			goto err_unpin;
2606 2607
		}

C
Chris Wilson 已提交
2608
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2609 2610
	}

2611 2612
out_unlock:
	mutex_unlock(&obj->mm.lock);
2613 2614
	return ptr;

2615 2616 2617 2618 2619
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2620 2621
}

2622
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2623
{
2624
	unsigned long elapsed;
2625

2626
	if (ctx->hang_stats.banned)
2627 2628
		return true;

2629
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2630 2631
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2632 2633
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2634 2635 2636 2637 2638
	}

	return false;
}

2639
static void i915_set_reset_status(struct i915_gem_context *ctx,
2640
				  const bool guilty)
2641
{
2642
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2643 2644

	if (guilty) {
2645
		hs->banned = i915_context_is_banned(ctx);
2646 2647 2648 2649
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2650 2651 2652
	}
}

2653
struct drm_i915_gem_request *
2654
i915_gem_find_active_request(struct intel_engine_cs *engine)
2655
{
2656 2657
	struct drm_i915_gem_request *request;

2658 2659 2660 2661 2662 2663 2664 2665
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2666
	list_for_each_entry(request, &engine->timeline->requests, link) {
C
Chris Wilson 已提交
2667
		if (__i915_gem_request_completed(request))
2668
			continue;
2669

2670
		return request;
2671
	}
2672 2673 2674 2675

	return NULL;
}

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
static void reset_request(struct drm_i915_gem_request *request)
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
}

static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2694 2695
{
	struct drm_i915_gem_request *request;
2696
	struct i915_gem_context *incomplete_ctx;
C
Chris Wilson 已提交
2697
	struct intel_timeline *timeline;
2698 2699
	bool ring_hung;

2700 2701 2702
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2703
	request = i915_gem_find_active_request(engine);
2704
	if (!request)
2705 2706
		return;

2707
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2708 2709 2710
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
		ring_hung = false;

2711
	i915_set_reset_status(request->ctx, ring_hung);
2712 2713 2714 2715
	if (!ring_hung)
		return;

	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2716
			 engine->name, request->global_seqno);
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);

	/* Users of the default context do not rely on logical state
	 * preserved between batches. They have to emit full state on
	 * every batch and so it is safe to execute queued requests following
	 * the hang.
	 *
	 * Other contexts preserve state, now corrupt. We want to skip all
	 * queued requests that reference the corrupt context.
	 */
	incomplete_ctx = request->ctx;
	if (i915_gem_context_is_default(incomplete_ctx))
		return;

2733
	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2734 2735
		if (request->ctx == incomplete_ctx)
			reset_request(request);
C
Chris Wilson 已提交
2736 2737 2738 2739

	timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
	list_for_each_entry(request, &timeline->requests, link)
		reset_request(request);
2740
}
2741

2742
void i915_gem_reset(struct drm_i915_private *dev_priv)
2743
{
2744
	struct intel_engine_cs *engine;
2745
	enum intel_engine_id id;
2746

2747 2748
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2749 2750
	i915_gem_retire_requests(dev_priv);

2751
	for_each_engine(engine, dev_priv, id)
2752 2753
		i915_gem_reset_engine(engine);

2754
	i915_gem_restore_fences(dev_priv);
2755 2756 2757 2758 2759 2760 2761

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2762 2763 2764 2765 2766 2767 2768 2769 2770
}

static void nop_submit_request(struct drm_i915_gem_request *request)
{
}

static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
{
	engine->submit_request = nop_submit_request;
2771

2772 2773 2774 2775
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2776
	intel_engine_init_global_seqno(engine,
2777
				       intel_engine_last_submit(engine));
2778

2779 2780 2781 2782 2783 2784
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2785
	if (i915.enable_execlists) {
2786 2787 2788 2789
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline->lock, flags);

2790 2791 2792
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2793 2794
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
2795 2796

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2797
	}
2798 2799
}

2800
void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2801
{
2802
	struct intel_engine_cs *engine;
2803
	enum intel_engine_id id;
2804

2805 2806
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2807

2808
	i915_gem_context_lost(dev_priv);
2809
	for_each_engine(engine, dev_priv, id)
2810
		i915_gem_cleanup_engine(engine);
2811
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2812

2813
	i915_gem_retire_requests(dev_priv);
2814 2815
}

2816
static void
2817 2818
i915_gem_retire_work_handler(struct work_struct *work)
{
2819
	struct drm_i915_private *dev_priv =
2820
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2821
	struct drm_device *dev = &dev_priv->drm;
2822

2823
	/* Come back later if the device is busy... */
2824
	if (mutex_trylock(&dev->struct_mutex)) {
2825
		i915_gem_retire_requests(dev_priv);
2826
		mutex_unlock(&dev->struct_mutex);
2827
	}
2828 2829 2830 2831 2832

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2833 2834
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2835 2836
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2837
				   round_jiffies_up_relative(HZ));
2838
	}
2839
}
2840

2841 2842 2843 2844
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2845
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2846
	struct drm_device *dev = &dev_priv->drm;
2847
	struct intel_engine_cs *engine;
2848
	enum intel_engine_id id;
2849 2850 2851 2852 2853
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

2854 2855 2856 2857 2858 2859 2860
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
		 intel_execlists_idle(dev_priv), 10);

2861
	if (READ_ONCE(dev_priv->gt.active_requests))
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2875 2876 2877 2878 2879 2880 2881
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

2882
	if (dev_priv->gt.active_requests)
2883
		goto out_unlock;
2884

2885 2886 2887
	if (wait_for(intel_execlists_idle(dev_priv), 10))
		DRM_ERROR("Timeout waiting for engines to idle\n");

2888
	for_each_engine(engine, dev_priv, id)
2889
		i915_gem_batch_pool_fini(&engine->batch_pool);
2890

2891 2892 2893
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2894

2895 2896 2897 2898 2899
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2900

2901 2902 2903 2904
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2905
	}
2906 2907
}

2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
2918 2919 2920 2921 2922 2923

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
2924 2925 2926
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

2938 2939
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2940 2941 2942
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2967 2968
	ktime_t start;
	long ret;
2969

2970 2971 2972
	if (args->flags != 0)
		return -EINVAL;

2973
	obj = i915_gem_object_lookup(file, args->bo_handle);
2974
	if (!obj)
2975 2976
		return -ENOENT;

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
2988 2989
	}

C
Chris Wilson 已提交
2990
	i915_gem_object_put(obj);
2991
	return ret;
2992 2993
}

2994
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
2995
{
2996
	int ret, i;
2997

2998 2999 3000 3001 3002
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3003

3004 3005 3006 3007 3008 3009 3010
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3023 3024 3025
		if (ret)
			return ret;
	}
3026

3027
	return 0;
3028 3029
}

3030 3031
void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			     bool force)
3032 3033 3034 3035 3036
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
C
Chris Wilson 已提交
3037
	if (!obj->mm.pages)
3038
		return;
3039

3040 3041 3042 3043
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3044
	if (obj->stolen || obj->phys_handle)
3045
		return;
3046

3047 3048 3049 3050 3051 3052 3053 3054
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3055 3056
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3057
		return;
3058
	}
3059

C
Chris Wilson 已提交
3060
	trace_i915_gem_object_clflush(obj);
C
Chris Wilson 已提交
3061
	drm_clflush_sg(obj->mm.pages);
3062
	obj->cache_dirty = false;
3063 3064 3065 3066
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3067
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3068
{
3069
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3070

3071
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3072 3073
		return;

3074
	/* No actual flushing is required for the GTT write domain.  Writes
3075
	 * to it "immediately" go to main memory as far as we know, so there's
3076
	 * no chipset flush.  It also doesn't land in render cache.
3077 3078 3079 3080
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3081 3082 3083 3084 3085 3086 3087
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3088
	 */
3089
	wmb();
3090
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3091
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3092

3093
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3094

3095
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3096
	trace_i915_gem_object_change_domain(obj,
3097
					    obj->base.read_domains,
3098
					    I915_GEM_DOMAIN_GTT);
3099 3100 3101 3102
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3103
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3104
{
3105
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3106 3107
		return;

3108
	i915_gem_clflush_object(obj, obj->pin_display);
3109
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3110

3111
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3112
	trace_i915_gem_object_change_domain(obj,
3113
					    obj->base.read_domains,
3114
					    I915_GEM_DOMAIN_CPU);
3115 3116
}

3117 3118
/**
 * Moves a single object to the GTT read, and possibly write domain.
3119 3120
 * @obj: object to act on
 * @write: ask for write access or read only
3121 3122 3123 3124
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3125
int
3126
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3127
{
C
Chris Wilson 已提交
3128
	uint32_t old_write_domain, old_read_domains;
3129
	int ret;
3130

3131
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3132

3133 3134 3135 3136 3137 3138
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3139 3140 3141
	if (ret)
		return ret;

3142 3143 3144
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3145 3146 3147 3148 3149 3150 3151 3152
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3153
	ret = i915_gem_object_pin_pages(obj);
3154 3155 3156
	if (ret)
		return ret;

3157
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3158

3159 3160 3161 3162 3163 3164 3165
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3166 3167
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3168

3169 3170 3171
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3172
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3173
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3174
	if (write) {
3175 3176
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3177
		obj->mm.dirty = true;
3178 3179
	}

C
Chris Wilson 已提交
3180 3181 3182 3183
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

C
Chris Wilson 已提交
3184
	i915_gem_object_unpin_pages(obj);
3185 3186 3187
	return 0;
}

3188 3189
/**
 * Changes the cache-level of an object across all VMA.
3190 3191
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3203 3204 3205
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3206
	struct i915_vma *vma;
3207
	int ret = 0;
3208

3209 3210
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3211
	if (obj->cache_level == cache_level)
3212
		goto out;
3213

3214 3215 3216 3217 3218
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3219 3220
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3221 3222 3223
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3224
		if (i915_vma_is_pinned(vma)) {
3225 3226 3227 3228
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3241 3242
	}

3243 3244 3245 3246 3247 3248 3249
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3250
	if (obj->bind_count) {
3251 3252 3253 3254
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3255 3256 3257 3258 3259 3260
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3261 3262 3263
		if (ret)
			return ret;

3264 3265
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3282 3283 3284 3285 3286
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3287 3288 3289 3290 3291 3292 3293 3294
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3295 3296
		}

3297
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3298 3299 3300 3301 3302 3303 3304
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3305 3306
	}

3307
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3308 3309 3310
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3311
out:
3312 3313 3314 3315
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3316 3317
	if (obj->cache_dirty && cpu_write_needs_clflush(obj))
		i915_gem_clflush_object(obj, true);
3318 3319 3320 3321

	return 0;
}

B
Ben Widawsky 已提交
3322 3323
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3324
{
B
Ben Widawsky 已提交
3325
	struct drm_i915_gem_caching *args = data;
3326
	struct drm_i915_gem_object *obj;
3327
	int err = 0;
3328

3329 3330 3331 3332 3333 3334
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3335

3336 3337 3338 3339 3340 3341
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3342 3343 3344 3345
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3346 3347 3348 3349
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3350 3351 3352
out:
	rcu_read_unlock();
	return err;
3353 3354
}

B
Ben Widawsky 已提交
3355 3356
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3357
{
3358
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3359
	struct drm_i915_gem_caching *args = data;
3360 3361 3362 3363
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3364 3365
	switch (args->caching) {
	case I915_CACHING_NONE:
3366 3367
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3368
	case I915_CACHING_CACHED:
3369 3370 3371 3372 3373 3374
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3375
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3376 3377
			return -ENODEV;

3378 3379
		level = I915_CACHE_LLC;
		break;
3380
	case I915_CACHING_DISPLAY:
3381
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3382
		break;
3383 3384 3385 3386
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3387 3388
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3389
		return ret;
B
Ben Widawsky 已提交
3390

3391 3392
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3393 3394 3395 3396 3397
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);
3398
	i915_gem_object_put(obj);
3399 3400 3401 3402 3403
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3404
/*
3405 3406 3407
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3408
 */
C
Chris Wilson 已提交
3409
struct i915_vma *
3410 3411
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3412
				     const struct i915_ggtt_view *view)
3413
{
C
Chris Wilson 已提交
3414
	struct i915_vma *vma;
3415
	u32 old_read_domains, old_write_domain;
3416 3417
	int ret;

3418 3419
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3420 3421 3422
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3423
	obj->pin_display++;
3424

3425 3426 3427 3428 3429 3430 3431 3432 3433
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3434
	ret = i915_gem_object_set_cache_level(obj,
3435 3436
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3437 3438
	if (ret) {
		vma = ERR_PTR(ret);
3439
		goto err_unpin_display;
C
Chris Wilson 已提交
3440
	}
3441

3442 3443
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3444 3445 3446 3447
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3448
	 */
3449 3450 3451 3452
	vma = ERR_PTR(-ENOSPC);
	if (view->type == I915_GGTT_VIEW_NORMAL)
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3469
	if (IS_ERR(vma))
3470
		goto err_unpin_display;
3471

3472 3473
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3474
	i915_gem_object_flush_cpu_write_domain(obj);
3475

3476
	old_write_domain = obj->base.write_domain;
3477
	old_read_domains = obj->base.read_domains;
3478 3479 3480 3481

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3482
	obj->base.write_domain = 0;
3483
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3484 3485 3486

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3487
					    old_write_domain);
3488

C
Chris Wilson 已提交
3489
	return vma;
3490 3491

err_unpin_display:
3492
	obj->pin_display--;
C
Chris Wilson 已提交
3493
	return vma;
3494 3495 3496
}

void
C
Chris Wilson 已提交
3497
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3498
{
3499 3500
	lockdep_assert_held(&vma->vm->dev->struct_mutex);

C
Chris Wilson 已提交
3501
	if (WARN_ON(vma->obj->pin_display == 0))
3502 3503
		return;

3504 3505
	if (--vma->obj->pin_display == 0)
		vma->display_alignment = 0;
3506

3507 3508 3509 3510
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
	if (!i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);

C
Chris Wilson 已提交
3511
	i915_vma_unpin(vma);
3512 3513
}

3514 3515
/**
 * Moves a single object to the CPU read, and possibly write domain.
3516 3517
 * @obj: object to act on
 * @write: requesting write or read-only access
3518 3519 3520 3521
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3522
int
3523
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3524
{
C
Chris Wilson 已提交
3525
	uint32_t old_write_domain, old_read_domains;
3526 3527
	int ret;

3528
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3529

3530 3531 3532 3533 3534 3535
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3536 3537 3538
	if (ret)
		return ret;

3539 3540 3541
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3542
	i915_gem_object_flush_gtt_write_domain(obj);
3543

3544 3545
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3546

3547
	/* Flush the CPU cache if it's still invalid. */
3548
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3549
		i915_gem_clflush_object(obj, false);
3550

3551
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3552 3553 3554 3555 3556
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3557
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3558 3559 3560 3561 3562

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3563 3564
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3565
	}
3566

C
Chris Wilson 已提交
3567 3568 3569 3570
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3571 3572 3573
	return 0;
}

3574 3575 3576
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3577 3578 3579 3580
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3581 3582 3583
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3584
static int
3585
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3586
{
3587
	struct drm_i915_private *dev_priv = to_i915(dev);
3588
	struct drm_i915_file_private *file_priv = file->driver_priv;
3589
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3590
	struct drm_i915_gem_request *request, *target = NULL;
3591
	long ret;
3592

3593 3594 3595
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3596

3597
	spin_lock(&file_priv->mm.lock);
3598
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3599 3600
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3601

3602 3603 3604 3605 3606 3607 3608
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3609
		target = request;
3610
	}
3611
	if (target)
3612
		i915_gem_request_get(target);
3613
	spin_unlock(&file_priv->mm.lock);
3614

3615
	if (target == NULL)
3616
		return 0;
3617

3618 3619 3620
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3621
	i915_gem_request_put(target);
3622

3623
	return ret < 0 ? ret : 0;
3624 3625
}

C
Chris Wilson 已提交
3626
struct i915_vma *
3627 3628
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3629
			 u64 size,
3630 3631
			 u64 alignment,
			 u64 flags)
3632
{
3633 3634
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3635 3636
	struct i915_vma *vma;
	int ret;
3637

3638 3639
	lockdep_assert_held(&obj->base.dev->struct_mutex);

C
Chris Wilson 已提交
3640
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3641
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3642
		return vma;
3643 3644 3645 3646

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3647
			return ERR_PTR(-ENOSPC);
3648

3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
		if (flags & PIN_MAPPABLE) {
			u32 fence_size;

			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
							    i915_gem_object_get_tiling(obj));
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
			if (fence_size > dev_priv->ggtt.mappable_end)
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
			    fence_size > dev_priv->ggtt.mappable_end / 2)
				return ERR_PTR(-ENOSPC);
		}

3684 3685
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3686 3687 3688
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3689
		     !!(flags & PIN_MAPPABLE),
3690
		     i915_vma_is_map_and_fenceable(vma));
3691 3692
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3693
			return ERR_PTR(ret);
3694 3695
	}

C
Chris Wilson 已提交
3696 3697 3698
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3699

C
Chris Wilson 已提交
3700
	return vma;
3701 3702
}

3703
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3718 3719 3720 3721 3722 3723 3724 3725 3726
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3727 3728
}

3729
static __always_inline unsigned int
3730
__busy_set_if_active(const struct dma_fence *fence,
3731 3732
		     unsigned int (*flag)(unsigned int id))
{
3733
	struct drm_i915_gem_request *rq;
3734

3735 3736 3737 3738
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3739
	 *
3740
	 * Note we only report on the status of native fences.
3741
	 */
3742 3743 3744 3745 3746 3747 3748 3749 3750
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
3751 3752
}

3753
static __always_inline unsigned int
3754
busy_check_reader(const struct dma_fence *fence)
3755
{
3756
	return __busy_set_if_active(fence, __busy_read_flag);
3757 3758
}

3759
static __always_inline unsigned int
3760
busy_check_writer(const struct dma_fence *fence)
3761
{
3762 3763 3764 3765
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3766 3767
}

3768 3769
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3770
		    struct drm_file *file)
3771 3772
{
	struct drm_i915_gem_busy *args = data;
3773
	struct drm_i915_gem_object *obj;
3774 3775
	struct reservation_object_list *list;
	unsigned int seq;
3776
	int err;
3777

3778
	err = -ENOENT;
3779 3780
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3781
	if (!obj)
3782
		goto out;
3783

3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3802

3803 3804
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3805

3806 3807 3808 3809
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3810

3811 3812 3813 3814 3815 3816
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3817
	}
3818

3819 3820 3821 3822
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3823 3824 3825
out:
	rcu_read_unlock();
	return err;
3826 3827 3828 3829 3830 3831
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3832
	return i915_gem_ring_throttle(dev, file_priv);
3833 3834
}

3835 3836 3837 3838
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3839
	struct drm_i915_private *dev_priv = to_i915(dev);
3840
	struct drm_i915_gem_madvise *args = data;
3841
	struct drm_i915_gem_object *obj;
3842
	int err;
3843 3844 3845 3846 3847 3848 3849 3850 3851

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3852
	obj = i915_gem_object_lookup(file_priv, args->handle);
3853 3854 3855 3856 3857 3858
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
3859

C
Chris Wilson 已提交
3860
	if (obj->mm.pages &&
3861
	    i915_gem_object_is_tiled(obj) &&
3862
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3863 3864
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
3865
			__i915_gem_object_unpin_pages(obj);
3866 3867 3868
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
3869
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
3870
			__i915_gem_object_pin_pages(obj);
3871 3872
			obj->mm.quirked = true;
		}
3873 3874
	}

C
Chris Wilson 已提交
3875 3876
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
3877

C
Chris Wilson 已提交
3878
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
3879
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3880 3881
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
3882
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3883
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
3884

3885
out:
3886
	i915_gem_object_put(obj);
3887
	return err;
3888 3889
}

3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

	intel_fb_obj_flush(obj, true, ORIGIN_CS);
}

3900 3901
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3902
{
3903 3904
	mutex_init(&obj->mm.lock);

3905
	INIT_LIST_HEAD(&obj->global_link);
3906
	INIT_LIST_HEAD(&obj->userfault_link);
3907
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3908
	INIT_LIST_HEAD(&obj->vma_list);
3909
	INIT_LIST_HEAD(&obj->batch_pool_link);
3910

3911 3912
	obj->ops = ops;

3913 3914 3915
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

3916
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3917
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
3918 3919 3920 3921

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
3922

3923
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3924 3925
}

3926
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3927 3928
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
3929 3930 3931 3932
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3933 3934 3935 3936 3937 3938
/* Note we don't consider signbits :| */
#define overflows_type(x, T) \
	(sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))

struct drm_i915_gem_object *
i915_gem_object_create(struct drm_device *dev, u64 size)
3939
{
3940
	struct drm_i915_private *dev_priv = to_i915(dev);
3941
	struct drm_i915_gem_object *obj;
3942
	struct address_space *mapping;
D
Daniel Vetter 已提交
3943
	gfp_t mask;
3944
	int ret;
3945

3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

3957
	obj = i915_gem_object_alloc(dev);
3958
	if (obj == NULL)
3959
		return ERR_PTR(-ENOMEM);
3960

3961 3962 3963
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
3964

3965
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3966
	if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
3967 3968 3969 3970 3971
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

3972
	mapping = obj->base.filp->f_mapping;
3973
	mapping_set_gfp_mask(mapping, mask);
3974

3975
	i915_gem_object_init(obj, &i915_gem_object_ops);
3976

3977 3978
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3979

3980
	if (HAS_LLC(dev_priv)) {
3981
		/* On some devices, we can have the GPU use the LLC (the CPU
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3997 3998
	trace_i915_gem_object_create(obj);

3999
	return obj;
4000 4001 4002 4003

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4004 4005
}

4006 4007 4008 4009 4010 4011 4012 4013
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4014
	if (obj->mm.madv != I915_MADV_WILLNEED)
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4030 4031
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4032
{
4033
	struct drm_i915_gem_object *obj, *on;
4034

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4050 4051
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4052

4053
		list_del(&obj->global_link);
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4064

4065 4066
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4067
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4068 4069 4070 4071 4072
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4073
		reservation_object_fini(&obj->__builtin_resv);
4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4096

4097 4098 4099 4100 4101 4102 4103
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4104

4105 4106 4107
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4108

4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4123

4124 4125 4126
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4127

4128 4129 4130
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4131
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4132
		obj->mm.madv = I915_MADV_DONTNEED;
4133

4134 4135 4136 4137 4138 4139
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4140 4141
}

4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4153 4154 4155 4156 4157 4158 4159 4160 4161
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
		GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
}

4162
int i915_gem_suspend(struct drm_device *dev)
4163
{
4164
	struct drm_i915_private *dev_priv = to_i915(dev);
4165
	int ret;
4166

4167 4168
	intel_suspend_gt_powersave(dev_priv);

4169
	mutex_lock(&dev->struct_mutex);
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4183 4184 4185
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4186
	if (ret)
4187
		goto err;
4188

4189
	i915_gem_retire_requests(dev_priv);
4190
	GEM_BUG_ON(dev_priv->gt.active_requests);
4191

4192
	assert_kernel_context_is_current(dev_priv);
4193
	i915_gem_context_lost(dev_priv);
4194 4195
	mutex_unlock(&dev->struct_mutex);

4196
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4197 4198
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4199
	flush_work(&dev_priv->mm.free_work);
4200

4201 4202 4203
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4204
	WARN_ON(dev_priv->gt.awake);
4205
	WARN_ON(!intel_execlists_idle(dev_priv));
4206

4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4226
	if (HAS_HW_CONTEXTS(dev_priv)) {
4227 4228 4229 4230
		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}

4231
	return 0;
4232 4233 4234 4235

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4236 4237
}

4238 4239 4240 4241
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

4242 4243
	WARN_ON(dev_priv->gt.awake);

4244
	mutex_lock(&dev->struct_mutex);
4245
	i915_gem_restore_gtt_mappings(dev_priv);
4246 4247 4248 4249 4250

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4251
	dev_priv->gt.resume(dev_priv);
4252 4253 4254 4255

	mutex_unlock(&dev->struct_mutex);
}

4256
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4257
{
4258
	if (INTEL_GEN(dev_priv) < 5 ||
4259 4260 4261 4262 4263 4264
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4265
	if (IS_GEN5(dev_priv))
4266 4267
		return;

4268
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4269
	if (IS_GEN6(dev_priv))
4270
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4271
	else if (IS_GEN7(dev_priv))
4272
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4273
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4274
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4275 4276
	else
		BUG();
4277
}
D
Daniel Vetter 已提交
4278

4279
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4280 4281 4282 4283 4284 4285 4286
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4287
static void init_unused_rings(struct drm_i915_private *dev_priv)
4288
{
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4301 4302 4303
	}
}

4304 4305 4306
int
i915_gem_init_hw(struct drm_device *dev)
{
4307
	struct drm_i915_private *dev_priv = to_i915(dev);
4308
	struct intel_engine_cs *engine;
4309
	enum intel_engine_id id;
C
Chris Wilson 已提交
4310
	int ret;
4311

4312 4313
	dev_priv->gt.last_init_time = ktime_get();

4314 4315 4316
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4317
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4318
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4319

4320
	if (IS_HASWELL(dev_priv))
4321
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4322
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4323

4324
	if (HAS_PCH_NOP(dev_priv)) {
4325
		if (IS_IVYBRIDGE(dev_priv)) {
4326 4327 4328
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4329
		} else if (INTEL_GEN(dev_priv) >= 7) {
4330 4331 4332 4333
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4334 4335
	}

4336
	i915_gem_init_swizzling(dev_priv);
4337

4338 4339 4340 4341 4342 4343
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4344
	init_unused_rings(dev_priv);
4345

4346
	BUG_ON(!dev_priv->kernel_context);
4347

4348
	ret = i915_ppgtt_init_hw(dev_priv);
4349 4350 4351 4352 4353 4354
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4355
	for_each_engine(engine, dev_priv, id) {
4356
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4357
		if (ret)
4358
			goto out;
D
Daniel Vetter 已提交
4359
	}
4360

4361 4362
	intel_mocs_init_l3cc_table(dev);

4363
	/* We can't enable contexts until all firmware is loaded */
4364 4365 4366
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4367

4368 4369
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4370
	return ret;
4371 4372
}

4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4394 4395
int i915_gem_init(struct drm_device *dev)
{
4396
	struct drm_i915_private *dev_priv = to_i915(dev);
4397 4398 4399
	int ret;

	mutex_lock(&dev->struct_mutex);
4400

4401
	if (!i915.enable_execlists) {
4402
		dev_priv->gt.resume = intel_legacy_submission_resume;
4403
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4404
	} else {
4405
		dev_priv->gt.resume = intel_lr_context_resume;
4406
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4407 4408
	}

4409 4410 4411 4412 4413 4414 4415 4416
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4417
	i915_gem_init_userptr(dev_priv);
4418 4419 4420 4421

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4422

4423
	ret = i915_gem_context_init(dev);
4424 4425
	if (ret)
		goto out_unlock;
4426

4427
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4428
	if (ret)
4429
		goto out_unlock;
4430

4431
	ret = i915_gem_init_hw(dev);
4432
	if (ret == -EIO) {
4433
		/* Allow engine initialisation to fail by marking the GPU as
4434 4435 4436 4437
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4438
		i915_gem_set_wedged(dev_priv);
4439
		ret = 0;
4440
	}
4441 4442

out_unlock:
4443
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4444
	mutex_unlock(&dev->struct_mutex);
4445

4446
	return ret;
4447 4448
}

4449
void
4450
i915_gem_cleanup_engines(struct drm_device *dev)
4451
{
4452
	struct drm_i915_private *dev_priv = to_i915(dev);
4453
	struct intel_engine_cs *engine;
4454
	enum intel_engine_id id;
4455

4456
	for_each_engine(engine, dev_priv, id)
4457
		dev_priv->gt.cleanup_engine(engine);
4458 4459
}

4460 4461 4462
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4463
	int i;
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4474
	if (intel_vgpu_active(dev_priv))
4475 4476 4477 4478
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4479 4480 4481 4482 4483 4484 4485
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4486
	i915_gem_restore_fences(dev_priv);
4487

4488
	i915_gem_detect_bit_6_swizzle(dev_priv);
4489 4490
}

4491
int
4492
i915_gem_load_init(struct drm_device *dev)
4493
{
4494
	struct drm_i915_private *dev_priv = to_i915(dev);
4495
	int err = -ENOMEM;
4496

4497 4498
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4499 4500
		goto err_out;

4501 4502
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4503 4504
		goto err_objects;

4505 4506 4507 4508 4509
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4510 4511
		goto err_vmas;

4512 4513 4514 4515 4516 4517
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4518 4519
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4520
	err = i915_gem_timeline_init__global(dev_priv);
4521 4522
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4523
		goto err_dependencies;
4524

4525
	INIT_LIST_HEAD(&dev_priv->context_list);
4526 4527
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4528 4529
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4530
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4531
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4532
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4533
			  i915_gem_retire_work_handler);
4534
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4535
			  i915_gem_idle_work_handler);
4536
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4537
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4538

4539 4540
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4541
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4542

4543 4544
	dev_priv->mm.interruptible = true;

4545 4546
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4547
	spin_lock_init(&dev_priv->fb_tracking.lock);
4548 4549 4550

	return 0;

4551 4552
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4553 4554 4555 4556 4557 4558 4559 4560
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4561
}
4562

4563 4564 4565 4566
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

4567 4568
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));

4569 4570 4571 4572 4573
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4574
	kmem_cache_destroy(dev_priv->dependencies);
4575 4576 4577
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4578 4579 4580

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4581 4582
}

4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	intel_runtime_pm_get(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_runtime_pm_put(dev_priv);

	return 0;
}

4596 4597 4598
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4599 4600 4601 4602 4603
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4614 4615 4616
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4617 4618
	 */

4619 4620
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4621

4622
	for (p = phases; *p; p++) {
4623
		list_for_each_entry(obj, *p, global_link) {
4624 4625 4626
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4627
	}
4628
	mutex_unlock(&dev_priv->drm.struct_mutex);
4629 4630 4631 4632

	return 0;
}

4633
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4634
{
4635
	struct drm_i915_file_private *file_priv = file->driver_priv;
4636
	struct drm_i915_gem_request *request;
4637 4638 4639 4640 4641

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4642
	spin_lock(&file_priv->mm.lock);
4643
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4644
		request->file_priv = NULL;
4645
	spin_unlock(&file_priv->mm.lock);
4646

4647
	if (!list_empty(&file_priv->rps.link)) {
4648
		spin_lock(&to_i915(dev)->rps.client_lock);
4649
		list_del(&file_priv->rps.link);
4650
		spin_unlock(&to_i915(dev)->rps.client_lock);
4651
	}
4652 4653 4654 4655 4656
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4657
	int ret;
4658

4659
	DRM_DEBUG("\n");
4660 4661 4662 4663 4664 4665

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4666
	file_priv->dev_priv = to_i915(dev);
4667
	file_priv->file = file;
4668
	INIT_LIST_HEAD(&file_priv->rps.link);
4669 4670 4671 4672

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4673
	file_priv->bsd_engine = -1;
4674

4675 4676 4677
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4678

4679
	return ret;
4680 4681
}

4682 4683
/**
 * i915_gem_track_fb - update frontbuffer tracking
4684 4685 4686
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4687 4688 4689 4690
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4691 4692 4693 4694
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4695 4696 4697 4698 4699 4700 4701 4702 4703
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4704
	if (old) {
4705 4706
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4707 4708 4709
	}

	if (new) {
4710 4711
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4712 4713 4714
	}
}

4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4725
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4726
	if (IS_ERR(obj))
4727 4728 4729 4730 4731 4732
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4733
	ret = i915_gem_object_pin_pages(obj);
4734 4735 4736
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4737
	sg = obj->mm.pages;
4738
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
4739
	obj->mm.dirty = true; /* Backing store is now out of date */
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4751
	i915_gem_object_put(obj);
4752 4753
	return ERR_PTR(ret);
}
4754 4755 4756 4757 4758 4759

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
4760
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4761 4762 4763 4764 4765
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
4766
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
4891
	if (!obj->mm.dirty)
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}