i915_gem.c 164.1 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include "intel_workarounds.h"
M
Matthew Auld 已提交
39
#include "i915_gemfs.h"
40
#include <linux/dma-fence-array.h>
41
#include <linux/kthread.h>
42
#include <linux/reservation.h>
43
#include <linux/shmem_fs.h>
44
#include <linux/slab.h>
45
#include <linux/stop_machine.h>
46
#include <linux/swap.h>
J
Jesse Barnes 已提交
47
#include <linux/pci.h>
48
#include <linux/dma-buf.h>
49

50
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51

52 53
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
54
	if (obj->cache_dirty)
55 56
		return false;

57
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 59
		return true;

60
	return obj->pin_global; /* currently in use by HW, keep flushed */
61 62
}

63
static int
64
insert_mappable_node(struct i915_ggtt *ggtt,
65 66 67
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
68
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69 70 71
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
72 73 74 75 76 77 78 79
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82
				  u64 size)
83
{
84
	spin_lock(&dev_priv->mm.object_stat_lock);
85 86
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
87
	spin_unlock(&dev_priv->mm.object_stat_lock);
88 89 90
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91
				     u64 size)
92
{
93
	spin_lock(&dev_priv->mm.object_stat_lock);
94 95
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
96
	spin_unlock(&dev_priv->mm.object_stat_lock);
97 98
}

99
static int
100
i915_gem_wait_for_error(struct i915_gpu_error *error)
101 102 103
{
	int ret;

104 105
	might_sleep();

106 107 108 109 110
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
111
	ret = wait_event_interruptible_timeout(error->reset_queue,
112
					       !i915_reset_backoff(error),
113
					       I915_RESET_TIMEOUT);
114 115 116 117
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
118
		return ret;
119 120
	} else {
		return 0;
121
	}
122 123
}

124
int i915_mutex_lock_interruptible(struct drm_device *dev)
125
{
126
	struct drm_i915_private *dev_priv = to_i915(dev);
127 128
	int ret;

129
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 131 132 133 134 135 136 137 138
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
139

140 141
static u32 __i915_gem_park(struct drm_i915_private *i915)
{
142 143
	GEM_TRACE("\n");

144 145
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
146
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

	if (!i915->gt.awake)
		return I915_EPOCH_INVALID;

	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
167
	i915_timelines_park(i915);
168 169

	i915_pmu_gt_parked(i915);
170
	i915_vma_parked(i915);
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

	i915->gt.awake = false;

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);

	intel_runtime_pm_put(i915);

	return i915->gt.epoch;
}

void i915_gem_park(struct drm_i915_private *i915)
{
186 187
	GEM_TRACE("\n");

188 189 190 191 192 193 194 195 196 197 198 199
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
200 201
	GEM_TRACE("\n");

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);

	if (i915->gt.awake)
		return;

	intel_runtime_pm_get_noresume(i915);

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);

	i915->gt.awake = true;
	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
		i915->gt.epoch = 1;

	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

242 243
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
244
			    struct drm_file *file)
245
{
246
	struct drm_i915_private *dev_priv = to_i915(dev);
247
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
248
	struct drm_i915_gem_get_aperture *args = data;
249
	struct i915_vma *vma;
250
	u64 pinned;
251

252
	pinned = ggtt->vm.reserved;
253
	mutex_lock(&dev->struct_mutex);
254
	list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
255
		if (i915_vma_is_pinned(vma))
256
			pinned += vma->node.size;
257
	list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
258
		if (i915_vma_is_pinned(vma))
259
			pinned += vma->node.size;
260
	mutex_unlock(&dev->struct_mutex);
261

262
	args->aper_size = ggtt->vm.total;
263
	args->aper_available_size = args->aper_size - pinned;
264

265 266 267
	return 0;
}

268
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269
{
270
	struct address_space *mapping = obj->base.filp->f_mapping;
271
	drm_dma_handle_t *phys;
272 273
	struct sg_table *st;
	struct scatterlist *sg;
274
	char *vaddr;
275
	int i;
276
	int err;
277

278
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279
		return -EINVAL;
280

281 282 283 284 285
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
286
			     roundup_pow_of_two(obj->base.size),
287 288
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
289
		return -ENOMEM;
290 291

	vaddr = phys->vaddr;
292 293 294 295 296
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
297
		if (IS_ERR(page)) {
298
			err = PTR_ERR(page);
299 300
			goto err_phys;
		}
301 302 303 304 305 306

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

307
		put_page(page);
308 309 310
		vaddr += PAGE_SIZE;
	}

311
	i915_gem_chipset_flush(to_i915(obj->base.dev));
312 313

	st = kmalloc(sizeof(*st), GFP_KERNEL);
314
	if (!st) {
315
		err = -ENOMEM;
316 317
		goto err_phys;
	}
318 319 320

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
321
		err = -ENOMEM;
322
		goto err_phys;
323 324 325 326 327
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
328

329
	sg_dma_address(sg) = phys->busaddr;
330 331
	sg_dma_len(sg) = obj->base.size;

332
	obj->phys_handle = phys;
333

334
	__i915_gem_object_set_pages(obj, st, sg->length);
335 336

	return 0;
337 338 339

err_phys:
	drm_pci_free(obj->base.dev, phys);
340 341

	return err;
342 343
}

344 345
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
346 347
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
348 349 350 351
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

352
static void
353
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354 355
				struct sg_table *pages,
				bool needs_clflush)
356
{
C
Chris Wilson 已提交
357
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358

C
Chris Wilson 已提交
359 360
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
361

362
	if (needs_clflush &&
363
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365
		drm_clflush_sg(pages);
366

367
	__start_cpu_write(obj);
368 369 370 371 372 373
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
374
	__i915_gem_object_release_shmem(obj, pages, false);
375

C
Chris Wilson 已提交
376
	if (obj->mm.dirty) {
377
		struct address_space *mapping = obj->base.filp->f_mapping;
378
		char *vaddr = obj->phys_handle->vaddr;
379 380 381
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382 383 384 385 386 387 388 389 390 391 392 393 394
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
395
			if (obj->mm.madv == I915_MADV_WILLNEED)
396
				mark_page_accessed(page);
397
			put_page(page);
398 399
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
400
		obj->mm.dirty = false;
401 402
	}

403 404
	sg_free_table(pages);
	kfree(pages);
405 406

	drm_pci_free(obj->base.dev, obj->phys_handle);
407 408 409 410 411
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
412
	i915_gem_object_unpin_pages(obj);
413 414 415 416 417 418 419 420
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

421 422
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

423
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 425 426
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
427 428 429
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
430

431 432 433 434
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
435
	 */
436
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
437 438 439
	if (ret)
		return ret;

440 441 442 443 444 445 446 447 448 449 450 451 452
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

453 454 455 456
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
457
			   struct intel_rps_client *rps_client)
458
{
459
	struct i915_request *rq;
460

461
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
462

463 464 465 466 467 468 469 470 471
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
472
	if (i915_request_completed(rq))
473 474
		goto out;

475 476
	/*
	 * This client is about to stall waiting for the GPU. In many cases
477 478 479 480 481 482 483 484 485 486 487 488 489 490
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
491
	if (rps_client && !i915_request_started(rq)) {
492
		if (INTEL_GEN(rq->i915) >= 6)
493
			gen6_rps_boost(rq, rps_client);
494 495
	}

496
	timeout = i915_request_wait(rq, flags, timeout);
497 498

out:
499 500
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
501 502 503 504 505 506 507 508

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
509
				 struct intel_rps_client *rps_client)
510
{
511
	unsigned int seq = __read_seqcount_begin(&resv->seq);
512
	struct dma_fence *excl;
513
	bool prune_fences = false;
514 515 516 517

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
518 519
		int ret;

520 521
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
522 523 524
		if (ret)
			return ret;

525 526 527
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
528
							     rps_client);
529
			if (timeout < 0)
530
				break;
531

532 533 534 535 536 537
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
538

539 540 541 542 543 544 545 546 547
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
548
		prune_fences = count && timeout >= 0;
549 550
	} else {
		excl = reservation_object_get_excl_rcu(resv);
551 552
	}

553
	if (excl && timeout >= 0)
554 555
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
556 557 558

	dma_fence_put(excl);

559 560
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
561 562 563
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
564
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
565 566 567 568 569
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
570 571
	}

572
	return timeout;
573 574
}

575 576
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
577
{
578
	struct i915_request *rq;
579 580
	struct intel_engine_cs *engine;

581
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
582 583 584 585 586
		return;

	rq = to_request(fence);
	engine = rq->engine;

587 588
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
589
	if (engine->schedule)
590
		engine->schedule(rq, attr);
591
	rcu_read_unlock();
592
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
593 594
}

595 596
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
597 598 599 600 601 602 603
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
604
			__fence_set_priority(array->fences[i], attr);
605
	} else {
606
		__fence_set_priority(fence, attr);
607 608 609 610 611 612
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
613
			      const struct i915_sched_attr *attr)
614 615 616 617 618 619 620 621 622 623 624 625 626 627
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
628
			fence_set_priority(shared[i], attr);
629 630 631 632 633 634 635 636 637
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
638
		fence_set_priority(excl, attr);
639 640 641 642 643
		dma_fence_put(excl);
	}
	return 0;
}

644 645 646 647 648
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
649
 * @rps_client: client (user process) to charge for any waitboosting
650
 */
651 652 653 654
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
655
		     struct intel_rps_client *rps_client)
656
{
657 658 659 660 661 662 663
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
664

665 666
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
667
						   rps_client);
668
	return timeout < 0 ? timeout : 0;
669 670 671 672 673 674
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

675
	return &fpriv->rps_client;
676 677
}

678 679 680
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
681
		     struct drm_file *file)
682 683
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
684
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
685 686 687 688

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
689
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
690 691
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
692

693
	drm_clflush_virt_range(vaddr, args->size);
694
	i915_gem_chipset_flush(to_i915(obj->base.dev));
695

696
	intel_fb_obj_flush(obj, ORIGIN_CPU);
697
	return 0;
698 699
}

700
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
701
{
702
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
703 704 705 706
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
707
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
708
	kmem_cache_free(dev_priv->objects, obj);
709 710
}

711 712
static int
i915_gem_create(struct drm_file *file,
713
		struct drm_i915_private *dev_priv,
714 715
		uint64_t size,
		uint32_t *handle_p)
716
{
717
	struct drm_i915_gem_object *obj;
718 719
	int ret;
	u32 handle;
720

721
	size = roundup(size, PAGE_SIZE);
722 723
	if (size == 0)
		return -EINVAL;
724 725

	/* Allocate the new object */
726
	obj = i915_gem_object_create(dev_priv, size);
727 728
	if (IS_ERR(obj))
		return PTR_ERR(obj);
729

730
	ret = drm_gem_handle_create(file, &obj->base, &handle);
731
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
732
	i915_gem_object_put(obj);
733 734
	if (ret)
		return ret;
735

736
	*handle_p = handle;
737 738 739
	return 0;
}

740 741 742 743 744 745
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
746
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
747
	args->size = args->pitch * args->height;
748
	return i915_gem_create(file, to_i915(dev),
749
			       args->size, &args->handle);
750 751
}

752 753 754 755 756 757
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

758 759
/**
 * Creates a new mm object and returns a handle to it.
760 761 762
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
763 764 765 766 767
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
768
	struct drm_i915_private *dev_priv = to_i915(dev);
769
	struct drm_i915_gem_create *args = data;
770

771
	i915_gem_flush_free_objects(dev_priv);
772

773
	return i915_gem_create(file, dev_priv,
774
			       args->size, &args->handle);
775 776
}

777 778 779 780 781 782 783
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

784
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
785
{
786 787 788 789 790
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
791 792 793 794 795 796 797 798 799 800
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
801 802
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
803
	 */
804

805
	i915_gem_chipset_flush(dev_priv);
806

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	intel_runtime_pm_get(dev_priv);
	spin_lock_irq(&dev_priv->uncore.lock);

	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));

	spin_unlock_irq(&dev_priv->uncore.lock);
	intel_runtime_pm_put(dev_priv);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

822
	if (!(obj->write_domain & flush_domains))
823 824
		return;

825
	switch (obj->write_domain) {
826
	case I915_GEM_DOMAIN_GTT:
827
		i915_gem_flush_ggtt_writes(dev_priv);
828 829 830

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
831

832
		for_each_ggtt_vma(vma, obj) {
833 834 835 836 837
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
838 839
		break;

840 841 842 843
	case I915_GEM_DOMAIN_WC:
		wmb();
		break;

844 845 846
	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
847 848 849 850 851

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
852 853
	}

854
	obj->write_domain = 0;
855 856
}

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

883
static inline int
884 885
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

909 910 911 912 913 914
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
915
				    unsigned int *needs_clflush)
916 917 918
{
	int ret;

919
	lockdep_assert_held(&obj->base.dev->struct_mutex);
920

921
	*needs_clflush = 0;
922 923
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
924

925 926 927 928 929
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
930 931 932
	if (ret)
		return ret;

C
Chris Wilson 已提交
933
	ret = i915_gem_object_pin_pages(obj);
934 935 936
	if (ret)
		return ret;

937 938
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
939 940 941 942 943 944 945
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

946
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
947

948 949 950 951 952
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
953
	if (!obj->cache_dirty &&
954
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
955
		*needs_clflush = CLFLUSH_BEFORE;
956

957
out:
958
	/* return with the pages pinned */
959
	return 0;
960 961 962 963

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
964 965 966 967 968 969 970
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

971 972
	lockdep_assert_held(&obj->base.dev->struct_mutex);

973 974 975 976
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

977 978 979 980 981 982
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
983 984 985
	if (ret)
		return ret;

C
Chris Wilson 已提交
986
	ret = i915_gem_object_pin_pages(obj);
987 988 989
	if (ret)
		return ret;

990 991
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
992 993 994 995 996 997 998
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

999
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1000

1001 1002 1003 1004 1005
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
1006
	if (!obj->cache_dirty) {
1007
		*needs_clflush |= CLFLUSH_AFTER;
1008

1009 1010 1011 1012
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
1013
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1014 1015
			*needs_clflush |= CLFLUSH_BEFORE;
	}
1016

1017
out:
1018
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
1019
	obj->mm.dirty = true;
1020
	/* return with the pages pinned */
1021
	return 0;
1022 1023 1024 1025

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
1026 1027
}

1028 1029 1030 1031
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
1032
	if (unlikely(swizzled)) {
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

1050 1051 1052
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
1053
shmem_pread_slow(struct page *page, int offset, int length,
1054 1055 1056 1057 1058 1059 1060 1061
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
1062
		shmem_clflush_swizzled_range(vaddr + offset, length,
1063
					     page_do_bit17_swizzling);
1064 1065

	if (page_do_bit17_swizzling)
1066
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1067
	else
1068
		ret = __copy_to_user(user_data, vaddr + offset, length);
1069 1070
	kunmap(page);

1071
	return ret ? - EFAULT : 0;
1072 1073
}

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1125
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1146
{
1147
	void __iomem *vaddr;
1148
	unsigned long unwritten;
1149 1150

	/* We can use the cpu mem copy function because this is X86. */
1151 1152 1153 1154
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1155 1156
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1157 1158 1159 1160
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1161 1162
		io_mapping_unmap(vaddr);
	}
1163 1164 1165 1166
	return unwritten;
}

static int
1167 1168
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1169
{
1170 1171
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1172
	struct drm_mm_node node;
1173 1174 1175
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1176 1177
	int ret;

1178 1179 1180 1181 1182 1183
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1184 1185 1186
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1187 1188 1189
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1190
		ret = i915_vma_put_fence(vma);
1191 1192 1193 1194 1195
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1196
	if (IS_ERR(vma)) {
1197
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1198
		if (ret)
1199 1200
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1201 1202 1203 1204 1205 1206
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1207
	mutex_unlock(&i915->drm.struct_mutex);
1208

1209 1210 1211
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
1226 1227 1228
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1229 1230 1231 1232
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1233

1234
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1235
				  user_data, page_length)) {
1236 1237 1238 1239 1240 1241 1242 1243 1244
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1245
	mutex_lock(&i915->drm.struct_mutex);
1246 1247 1248
out_unpin:
	if (node.allocated) {
		wmb();
1249
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1250 1251
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1252
		i915_vma_unpin(vma);
1253
	}
1254 1255 1256
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1257

1258 1259 1260
	return ret;
}

1261 1262
/**
 * Reads data from the object referenced by handle.
1263 1264 1265
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1266 1267 1268 1269 1270
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1271
		     struct drm_file *file)
1272 1273
{
	struct drm_i915_gem_pread *args = data;
1274
	struct drm_i915_gem_object *obj;
1275
	int ret;
1276

1277 1278 1279 1280
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1281
		       u64_to_user_ptr(args->data_ptr),
1282 1283 1284
		       args->size))
		return -EFAULT;

1285
	obj = i915_gem_object_lookup(file, args->handle);
1286 1287
	if (!obj)
		return -ENOENT;
1288

1289
	/* Bounds check source.  */
1290
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1291
		ret = -EINVAL;
1292
		goto out;
C
Chris Wilson 已提交
1293 1294
	}

C
Chris Wilson 已提交
1295 1296
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1297 1298 1299 1300
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1301
	if (ret)
1302
		goto out;
1303

1304
	ret = i915_gem_object_pin_pages(obj);
1305
	if (ret)
1306
		goto out;
1307

1308
	ret = i915_gem_shmem_pread(obj, args);
1309
	if (ret == -EFAULT || ret == -ENODEV)
1310
		ret = i915_gem_gtt_pread(obj, args);
1311

1312 1313
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1314
	i915_gem_object_put(obj);
1315
	return ret;
1316 1317
}

1318 1319
/* This is the fast write path which cannot handle
 * page faults in the source data
1320
 */
1321

1322 1323 1324 1325
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1326
{
1327
	void __iomem *vaddr;
1328
	unsigned long unwritten;
1329

1330
	/* We can use the cpu mem copy function because this is X86. */
1331 1332
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1333
						      user_data, length);
1334 1335
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1336 1337 1338
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1339 1340
		io_mapping_unmap(vaddr);
	}
1341 1342 1343 1344

	return unwritten;
}

1345 1346 1347
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1348
 * @obj: i915 GEM object
1349
 * @args: pwrite arguments structure
1350
 */
1351
static int
1352 1353
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1354
{
1355
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1356 1357
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1358 1359 1360
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1361
	int ret;
1362

1363 1364 1365
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
		if (!intel_runtime_pm_get_if_in_use(i915)) {
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
		intel_runtime_pm_get(i915);
	}

C
Chris Wilson 已提交
1384
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1385 1386 1387
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1388 1389 1390
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1391
		ret = i915_vma_put_fence(vma);
1392 1393 1394 1395 1396
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1397
	if (IS_ERR(vma)) {
1398
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1399
		if (ret)
1400
			goto out_rpm;
1401
		GEM_BUG_ON(!node.allocated);
1402
	}
D
Daniel Vetter 已提交
1403 1404 1405 1406 1407

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1408 1409
	mutex_unlock(&i915->drm.struct_mutex);

1410
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1411

1412 1413 1414 1415
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1416 1417
		/* Operation in this page
		 *
1418 1419 1420
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1421
		 */
1422
		u32 page_base = node.start;
1423 1424
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1425 1426 1427
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
1428 1429 1430
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1431 1432 1433 1434
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1435
		/* If we get a fault while copying data, then (presumably) our
1436 1437
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1438 1439
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1440
		 */
1441
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1442 1443 1444
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1445
		}
1446

1447 1448 1449
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1450
	}
1451
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1452 1453

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1454
out_unpin:
1455 1456
	if (node.allocated) {
		wmb();
1457
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1458 1459
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1460
		i915_vma_unpin(vma);
1461
	}
1462
out_rpm:
1463
	intel_runtime_pm_put(i915);
1464
out_unlock:
1465
	mutex_unlock(&i915->drm.struct_mutex);
1466
	return ret;
1467 1468
}

1469
static int
1470
shmem_pwrite_slow(struct page *page, int offset, int length,
1471 1472 1473 1474
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1475
{
1476 1477
	char *vaddr;
	int ret;
1478

1479
	vaddr = kmap(page);
1480
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1481
		shmem_clflush_swizzled_range(vaddr + offset, length,
1482
					     page_do_bit17_swizzling);
1483
	if (page_do_bit17_swizzling)
1484 1485
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1486
	else
1487
		ret = __copy_from_user(vaddr + offset, user_data, length);
1488
	if (needs_clflush_after)
1489
		shmem_clflush_swizzled_range(vaddr + offset, length,
1490
					     page_do_bit17_swizzling);
1491
	kunmap(page);
1492

1493
	return ret ? -EFAULT : 0;
1494 1495
}

1496 1497 1498 1499 1500
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1501
static int
1502 1503 1504 1505
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1506
{
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1539
	unsigned int needs_clflush;
1540 1541
	unsigned int offset, idx;
	int ret;
1542

1543
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1544 1545 1546
	if (ret)
		return ret;

1547 1548 1549 1550
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1551

1552 1553 1554
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1555

1556 1557 1558 1559 1560 1561 1562
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1563

1564 1565 1566 1567 1568
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1569
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1570

1571 1572 1573 1574
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1575
		if (ret)
1576
			break;
1577

1578 1579 1580
		remain -= length;
		user_data += length;
		offset = 0;
1581
	}
1582

1583
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1584
	i915_gem_obj_finish_shmem_access(obj);
1585
	return ret;
1586 1587 1588 1589
}

/**
 * Writes data to the object referenced by handle.
1590 1591 1592
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1593 1594 1595 1596 1597
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1598
		      struct drm_file *file)
1599 1600
{
	struct drm_i915_gem_pwrite *args = data;
1601
	struct drm_i915_gem_object *obj;
1602 1603 1604 1605 1606 1607
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1608
		       u64_to_user_ptr(args->data_ptr),
1609 1610 1611
		       args->size))
		return -EFAULT;

1612
	obj = i915_gem_object_lookup(file, args->handle);
1613 1614
	if (!obj)
		return -ENOENT;
1615

1616
	/* Bounds check destination. */
1617
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1618
		ret = -EINVAL;
1619
		goto err;
C
Chris Wilson 已提交
1620 1621
	}

1622 1623 1624 1625 1626 1627
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
1628 1629
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1630 1631 1632 1633 1634 1635
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1636 1637 1638 1639 1640
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1641 1642 1643
	if (ret)
		goto err;

1644
	ret = i915_gem_object_pin_pages(obj);
1645
	if (ret)
1646
		goto err;
1647

D
Daniel Vetter 已提交
1648
	ret = -EFAULT;
1649 1650 1651 1652 1653 1654
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1655
	if (!i915_gem_object_has_struct_page(obj) ||
1656
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1657 1658
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1659 1660
		 * textures). Fallback to the shmem path in that case.
		 */
1661
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1662

1663
	if (ret == -EFAULT || ret == -ENOSPC) {
1664 1665
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1666
		else
1667
			ret = i915_gem_shmem_pwrite(obj, args);
1668
	}
1669

1670
	i915_gem_object_unpin_pages(obj);
1671
err:
C
Chris Wilson 已提交
1672
	i915_gem_object_put(obj);
1673
	return ret;
1674 1675
}

1676 1677 1678 1679 1680 1681
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1682 1683
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1684
	for_each_ggtt_vma(vma, obj) {
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1695
	spin_lock(&i915->mm.obj_lock);
1696
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1697 1698
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1699 1700
}

1701
/**
1702 1703
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1704 1705 1706
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1707 1708 1709
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1710
			  struct drm_file *file)
1711 1712
{
	struct drm_i915_gem_set_domain *args = data;
1713
	struct drm_i915_gem_object *obj;
1714 1715
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1716
	int err;
1717

1718
	/* Only handle setting domains to types used by the CPU. */
1719
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1720 1721 1722 1723 1724 1725 1726 1727
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1728
	obj = i915_gem_object_lookup(file, args->handle);
1729 1730
	if (!obj)
		return -ENOENT;
1731

1732 1733 1734 1735
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1736
	err = i915_gem_object_wait(obj,
1737 1738 1739 1740
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1741
	if (err)
C
Chris Wilson 已提交
1742
		goto out;
1743

T
Tina Zhang 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1757 1758 1759 1760 1761 1762 1763 1764 1765
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1766
		goto out;
1767 1768 1769

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1770
		goto out_unpin;
1771

1772 1773 1774 1775
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1776
	else
1777
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1778

1779 1780
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1781

1782
	mutex_unlock(&dev->struct_mutex);
1783

1784
	if (write_domain != 0)
1785 1786
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1787

C
Chris Wilson 已提交
1788
out_unpin:
1789
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1790 1791
out:
	i915_gem_object_put(obj);
1792
	return err;
1793 1794 1795 1796
}

/**
 * Called when user space has done writes to this buffer
1797 1798 1799
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1800 1801 1802
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1803
			 struct drm_file *file)
1804 1805
{
	struct drm_i915_gem_sw_finish *args = data;
1806
	struct drm_i915_gem_object *obj;
1807

1808
	obj = i915_gem_object_lookup(file, args->handle);
1809 1810
	if (!obj)
		return -ENOENT;
1811

T
Tina Zhang 已提交
1812 1813 1814 1815 1816
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1817
	/* Pinned buffers may be scanout, so flush the cache */
1818
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1819
	i915_gem_object_put(obj);
1820 1821

	return 0;
1822 1823
}

1824 1825 1826 1827 1828 1829 1830
static inline bool
__vma_matches(struct vm_area_struct *vma, struct file *filp,
	      unsigned long addr, unsigned long size)
{
	if (vma->vm_file != filp)
		return false;

T
Tvrtko Ursulin 已提交
1831 1832
	return vma->vm_start == addr &&
	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
1833 1834
}

1835
/**
1836 1837 1838 1839 1840
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1841 1842 1843
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1854 1855 1856
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1857
		    struct drm_file *file)
1858 1859
{
	struct drm_i915_gem_mmap *args = data;
1860
	struct drm_i915_gem_object *obj;
1861 1862
	unsigned long addr;

1863 1864 1865
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1866
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1867 1868
		return -ENODEV;

1869 1870
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1871
		return -ENOENT;
1872

1873 1874 1875
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1876
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1877
		i915_gem_object_put(obj);
1878
		return -ENXIO;
1879 1880
	}

1881
	addr = vm_mmap(obj->base.filp, 0, args->size,
1882 1883
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1884 1885 1886 1887
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1888
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1889
			i915_gem_object_put(obj);
1890 1891
			return -EINTR;
		}
1892
		vma = find_vma(mm, addr);
1893
		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
1894 1895 1896 1897 1898
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1899 1900

		/* This may race, but that's ok, it only gets set */
1901
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1902
	}
C
Chris Wilson 已提交
1903
	i915_gem_object_put(obj);
1904 1905 1906 1907 1908 1909 1910 1911
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1912 1913
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1914
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1915 1916
}

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1937 1938 1939
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1967
	return 2;
1968 1969
}

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1981 1982
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1983
		min_t(unsigned int, chunk,
1984
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1985 1986 1987 1988 1989 1990 1991 1992

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1993 1994
/**
 * i915_gem_fault - fault a page into the GTT
1995
 * @vmf: fault info
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
2007 2008 2009
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2010
 */
2011
vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2012
{
2013
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2014
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
2015
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2016
	struct drm_device *dev = obj->base.dev;
2017 2018
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2019
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
2020
	struct i915_vma *vma;
2021
	pgoff_t page_offset;
2022
	int ret;
2023

2024 2025 2026 2027
	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write)
		return VM_FAULT_SIGBUS;

2028
	/* We don't use vmf->pgoff since that has the fake offset */
2029
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2030

C
Chris Wilson 已提交
2031 2032
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2033
	/* Try to flush the object off the GPU first without holding the lock.
2034
	 * Upon acquiring the lock, we will perform our sanity checks and then
2035 2036 2037
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
2038 2039 2040 2041
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
2042
	if (ret)
2043 2044
		goto err;

2045 2046 2047 2048
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

2049 2050 2051 2052 2053
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
2054

2055
	/* Access to snoopable pages through the GTT is incoherent. */
2056
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2057
		ret = -EFAULT;
2058
		goto err_unlock;
2059 2060
	}

2061

2062
	/* Now pin it into the GTT as needed */
2063 2064 2065 2066
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE |
				       PIN_NONBLOCK |
				       PIN_NONFAULT);
2067 2068
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
2069
		struct i915_ggtt_view view =
2070
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2071
		unsigned int flags;
2072

2073 2074 2075 2076 2077 2078
		flags = PIN_MAPPABLE;
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
2079 2080 2081 2082
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

2083 2084 2085 2086 2087 2088
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		if (IS_ERR(vma) && !view.type) {
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		}
2089
	}
C
Chris Wilson 已提交
2090 2091
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
2092
		goto err_unlock;
C
Chris Wilson 已提交
2093
	}
2094

2095 2096
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
2097
		goto err_unpin;
2098

2099
	ret = i915_vma_pin_fence(vma);
2100
	if (ret)
2101
		goto err_unpin;
2102

2103
	/* Finally, remap it using the new GTT offset */
2104
	ret = remap_io_mapping(area,
2105
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2106
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2107
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2108
			       &ggtt->iomap);
2109 2110
	if (ret)
		goto err_fence;
2111

2112 2113 2114 2115 2116 2117
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

2118 2119
	i915_vma_set_ggtt_write(vma);

2120
err_fence:
2121
	i915_vma_unpin_fence(vma);
2122
err_unpin:
C
Chris Wilson 已提交
2123
	__i915_vma_unpin(vma);
2124
err_unlock:
2125
	mutex_unlock(&dev->struct_mutex);
2126 2127
err_rpm:
	intel_runtime_pm_put(dev_priv);
2128
	i915_gem_object_unpin_pages(obj);
2129
err:
2130
	switch (ret) {
2131
	case -EIO:
2132 2133 2134 2135 2136 2137
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
2138 2139
		if (!i915_terminally_wedged(&dev_priv->gpu_error))
			return VM_FAULT_SIGBUS;
2140
		/* else: fall through */
2141
	case -EAGAIN:
D
Daniel Vetter 已提交
2142 2143 2144 2145
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2146
		 */
2147 2148
	case 0:
	case -ERESTARTSYS:
2149
	case -EINTR:
2150 2151 2152 2153 2154
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2155
		return VM_FAULT_NOPAGE;
2156
	case -ENOMEM:
2157
		return VM_FAULT_OOM;
2158
	case -ENOSPC:
2159
	case -EFAULT:
2160
		return VM_FAULT_SIGBUS;
2161
	default:
2162
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2163
		return VM_FAULT_SIGBUS;
2164 2165 2166
	}
}

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2178
	for_each_ggtt_vma(vma, obj)
2179 2180 2181
		i915_vma_unset_userfault(vma);
}

2182 2183 2184 2185
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2186
 * Preserve the reservation of the mmapping with the DRM core code, but
2187 2188 2189 2190 2191 2192 2193 2194 2195
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2196
void
2197
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2198
{
2199 2200
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2201 2202 2203
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2204 2205 2206 2207
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2208
	 */
2209
	lockdep_assert_held(&i915->drm.struct_mutex);
2210
	intel_runtime_pm_get(i915);
2211

2212
	if (!obj->userfault_count)
2213
		goto out;
2214

2215
	__i915_gem_object_release_mmap(obj);
2216 2217 2218 2219 2220 2221 2222 2223 2224

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2225 2226 2227

out:
	intel_runtime_pm_put(i915);
2228 2229
}

2230
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2231
{
2232
	struct drm_i915_gem_object *obj, *on;
2233
	int i;
2234

2235 2236 2237 2238 2239 2240
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2241

2242
	list_for_each_entry_safe(obj, on,
2243 2244
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2245 2246 2247 2248 2249 2250 2251 2252

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2263 2264 2265 2266

		if (!reg->vma)
			continue;

2267
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2268 2269
		reg->dirty = true;
	}
2270 2271
}

2272 2273
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2274
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2275
	int err;
2276

2277
	err = drm_gem_create_mmap_offset(&obj->base);
2278
	if (likely(!err))
2279
		return 0;
2280

2281 2282
	/* Attempt to reap some mmap space from dead objects */
	do {
2283 2284 2285
		err = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE,
					     MAX_SCHEDULE_TIMEOUT);
2286 2287
		if (err)
			break;
2288

2289
		i915_gem_drain_freed_objects(dev_priv);
2290
		err = drm_gem_create_mmap_offset(&obj->base);
2291 2292 2293 2294
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2295

2296
	return err;
2297 2298 2299 2300 2301 2302 2303
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2304
int
2305 2306
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2307
		  uint32_t handle,
2308
		  uint64_t *offset)
2309
{
2310
	struct drm_i915_gem_object *obj;
2311 2312
	int ret;

2313
	obj = i915_gem_object_lookup(file, handle);
2314 2315
	if (!obj)
		return -ENOENT;
2316

2317
	ret = i915_gem_object_create_mmap_offset(obj);
2318 2319
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2320

C
Chris Wilson 已提交
2321
	i915_gem_object_put(obj);
2322
	return ret;
2323 2324
}

2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2346
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2347 2348
}

D
Daniel Vetter 已提交
2349 2350 2351
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2352
{
2353
	i915_gem_object_free_mmap_offset(obj);
2354

2355 2356
	if (obj->base.filp == NULL)
		return;
2357

D
Daniel Vetter 已提交
2358 2359 2360 2361 2362
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2363
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2364
	obj->mm.madv = __I915_MADV_PURGED;
2365
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2366
}
2367

2368
/* Try to discard unwanted pages */
2369
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2370
{
2371 2372
	struct address_space *mapping;

2373
	lockdep_assert_held(&obj->mm.lock);
2374
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2375

C
Chris Wilson 已提交
2376
	switch (obj->mm.madv) {
2377 2378 2379 2380 2381 2382 2383 2384 2385
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2386
	mapping = obj->base.filp->f_mapping,
2387
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2388 2389
}

2390
static void
2391 2392
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2393
{
2394 2395
	struct sgt_iter sgt_iter;
	struct page *page;
2396

2397
	__i915_gem_object_release_shmem(obj, pages, true);
2398

2399
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2400

2401
	if (i915_gem_object_needs_bit17_swizzle(obj))
2402
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2403

2404
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2405
		if (obj->mm.dirty)
2406
			set_page_dirty(page);
2407

C
Chris Wilson 已提交
2408
		if (obj->mm.madv == I915_MADV_WILLNEED)
2409
			mark_page_accessed(page);
2410

2411
		put_page(page);
2412
	}
C
Chris Wilson 已提交
2413
	obj->mm.dirty = false;
2414

2415 2416
	sg_free_table(pages);
	kfree(pages);
2417
}
C
Chris Wilson 已提交
2418

2419 2420 2421
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2422
	void __rcu **slot;
2423

2424
	rcu_read_lock();
C
Chris Wilson 已提交
2425 2426
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2427
	rcu_read_unlock();
2428 2429
}

2430 2431
static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2432
{
2433
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2434
	struct sg_table *pages;
2435

2436
	pages = fetch_and_zero(&obj->mm.pages);
2437 2438
	if (!pages)
		return NULL;
2439

2440 2441 2442 2443
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2444
	if (obj->mm.mapping) {
2445 2446
		void *ptr;

2447
		ptr = page_mask_bits(obj->mm.mapping);
2448 2449
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2450
		else
2451 2452
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2453
		obj->mm.mapping = NULL;
2454 2455
	}

2456
	__i915_gem_object_reset_page_iter(obj);
2457 2458 2459 2460
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

	return pages;
}
2461

2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
{
	struct sg_table *pages;

	if (i915_gem_object_has_pinned_pages(obj))
		return;

	GEM_BUG_ON(obj->bind_count);
	if (!i915_gem_object_has_pages(obj))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
	mutex_lock_nested(&obj->mm.lock, subclass);
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;

	/*
	 * ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early.
	 */
	pages = __i915_gem_object_unset_pages(obj);
2485 2486 2487
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2488 2489
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2490 2491
}

2492
static bool i915_sg_trim(struct sg_table *orig_st)
2493 2494 2495 2496 2497 2498
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2499
		return false;
2500

2501
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2502
		return false;
2503 2504 2505 2506 2507 2508 2509

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2510
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2511 2512 2513 2514

	sg_free_table(orig_st);

	*orig_st = new_st;
2515
	return true;
2516 2517
}

2518
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2519
{
2520
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2521 2522
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2523
	struct address_space *mapping;
2524 2525
	struct sg_table *st;
	struct scatterlist *sg;
2526
	struct sgt_iter sgt_iter;
2527
	struct page *page;
2528
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2529
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2530
	unsigned int sg_page_sizes;
2531
	gfp_t noreclaim;
I
Imre Deak 已提交
2532
	int ret;
2533

C
Chris Wilson 已提交
2534 2535 2536 2537
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2538 2539
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2540

2541 2542
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2543
		return -ENOMEM;
2544

2545
rebuild_st:
2546 2547
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2548
		return -ENOMEM;
2549
	}
2550

2551 2552 2553 2554 2555
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2556
	mapping = obj->base.filp->f_mapping;
2557
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2558 2559
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2560 2561
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2562
	sg_page_sizes = 0;
2563
	for (i = 0; i < page_count; i++) {
2564 2565 2566 2567 2568 2569 2570
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2571
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2572 2573 2574 2575 2576 2577 2578 2579
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2580
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2581
			cond_resched();
2582

C
Chris Wilson 已提交
2583 2584 2585
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2586 2587 2588 2589
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2590
			 */
2591 2592 2593
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2606
				 * this we want __GFP_RETRY_MAYFAIL.
2607
				 */
M
Michal Hocko 已提交
2608
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2609
			}
2610 2611
		} while (1);

2612 2613 2614
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2615
			if (i) {
M
Matthew Auld 已提交
2616
				sg_page_sizes |= sg->length;
2617
				sg = sg_next(sg);
2618
			}
2619 2620 2621 2622 2623 2624
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2625 2626 2627

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2628
	}
2629
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2630
		sg_page_sizes |= sg->length;
2631
		sg_mark_end(sg);
2632
	}
2633

2634 2635 2636
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2637
	ret = i915_gem_gtt_prepare_pages(obj, st);
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2657

2658
	if (i915_gem_object_needs_bit17_swizzle(obj))
2659
		i915_gem_object_do_bit_17_swizzle(obj, st);
2660

M
Matthew Auld 已提交
2661
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2662 2663

	return 0;
2664

2665
err_sg:
2666
	sg_mark_end(sg);
2667
err_pages:
2668 2669
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2670 2671
	sg_free_table(st);
	kfree(st);
2672 2673 2674 2675 2676 2677 2678 2679 2680

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2681 2682 2683
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2684
	return ret;
2685 2686 2687
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2688
				 struct sg_table *pages,
M
Matthew Auld 已提交
2689
				 unsigned int sg_page_sizes)
2690
{
2691 2692 2693 2694
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2695
	lockdep_assert_held(&obj->mm.lock);
2696 2697 2698 2699 2700

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2701 2702

	if (i915_gem_object_is_tiled(obj) &&
2703
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2704 2705 2706 2707
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2708

M
Matthew Auld 已提交
2709 2710
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2711 2712

	/*
M
Matthew Auld 已提交
2713 2714 2715 2716 2717 2718
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2719 2720 2721 2722 2723 2724 2725
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2726 2727 2728 2729

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2730 2731 2732 2733
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2734
	int err;
2735 2736 2737 2738 2739 2740

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2741
	err = obj->ops->get_pages(obj);
2742
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2743

2744
	return err;
2745 2746
}

2747
/* Ensure that the associated pages are gathered from the backing storage
2748
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2749
 * multiple times before they are released by a single call to
2750
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2751 2752 2753
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2754
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2755
{
2756
	int err;
2757

2758 2759 2760
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2761

2762
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2763 2764
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2765 2766 2767
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2768

2769 2770 2771
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2772

2773 2774
unlock:
	mutex_unlock(&obj->mm.lock);
2775
	return err;
2776 2777
}

2778
/* The 'mapping' part of i915_gem_object_pin_map() below */
2779 2780
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2781 2782
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2783
	struct sg_table *sgt = obj->mm.pages;
2784 2785
	struct sgt_iter sgt_iter;
	struct page *page;
2786 2787
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2788
	unsigned long i = 0;
2789
	pgprot_t pgprot;
2790 2791 2792
	void *addr;

	/* A single page can always be kmapped */
2793
	if (n_pages == 1 && type == I915_MAP_WB)
2794 2795
		return kmap(sg_page(sgt->sgl));

2796 2797
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2798
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2799 2800 2801
		if (!pages)
			return NULL;
	}
2802

2803 2804
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2805 2806 2807 2808

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2809
	switch (type) {
2810 2811 2812
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2813 2814 2815 2816 2817 2818 2819 2820
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2821

2822
	if (pages != stack_pages)
M
Michal Hocko 已提交
2823
		kvfree(pages);
2824 2825 2826 2827 2828

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2829 2830
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2831
{
2832 2833 2834
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2835 2836
	int ret;

T
Tina Zhang 已提交
2837 2838
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2839

2840
	ret = mutex_lock_interruptible(&obj->mm.lock);
2841 2842 2843
	if (ret)
		return ERR_PTR(ret);

2844 2845 2846
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2847
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2848
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2849 2850
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2851 2852 2853
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2854

2855 2856 2857
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2858 2859
		pinned = false;
	}
2860
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2861

2862
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2863 2864 2865
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2866
			goto err_unpin;
2867
		}
2868 2869 2870 2871 2872 2873

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2874
		ptr = obj->mm.mapping = NULL;
2875 2876
	}

2877 2878 2879 2880
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2881
			goto err_unpin;
2882 2883
		}

2884
		obj->mm.mapping = page_pack_bits(ptr, type);
2885 2886
	}

2887 2888
out_unlock:
	mutex_unlock(&obj->mm.lock);
2889 2890
	return ptr;

2891 2892 2893 2894 2895
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2896 2897
}

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2915
	if (i915_gem_object_has_pages(obj))
2916 2917
		return -ENODEV;

2918 2919 2920
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
					const struct i915_gem_context *ctx)
{
	unsigned int score;
	unsigned long prev_hang;

	if (i915_gem_context_is_banned(ctx))
		score = I915_CLIENT_SCORE_CONTEXT_BAN;
	else
		score = 0;

	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
		score += I915_CLIENT_SCORE_HANG_FAST;

	if (score) {
		atomic_add(score, &file_priv->ban_score);

		DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
				 ctx->name, score,
				 atomic_read(&file_priv->ban_score));
	}
}

2994
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2995
{
2996 2997
	unsigned int score;
	bool banned, bannable;
2998

2999
	atomic_inc(&ctx->guilty_count);
3000

3001 3002 3003
	bannable = i915_gem_context_is_bannable(ctx);
	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
	banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
3004

3005 3006
	/* Cool contexts don't accumulate client ban score */
	if (!bannable)
3007 3008
		return;

3009 3010 3011 3012
	if (banned) {
		DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
				 ctx->name, atomic_read(&ctx->guilty_count),
				 score);
3013
		i915_gem_context_set_banned(ctx);
3014
	}
3015 3016 3017

	if (!IS_ERR_OR_NULL(ctx->file_priv))
		i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3018 3019 3020 3021
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
3022
	atomic_inc(&ctx->active_count);
3023 3024
}

3025
struct i915_request *
3026
i915_gem_find_active_request(struct intel_engine_cs *engine)
3027
{
3028
	struct i915_request *request, *active = NULL;
3029
	unsigned long flags;
3030

3031 3032 3033 3034 3035 3036
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
3037 3038
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
3039 3040
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
3041
	 */
3042 3043
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
3044
		if (__i915_request_completed(request, request->global_seqno))
3045
			continue;
3046

3047 3048
		active = request;
		break;
3049
	}
3050
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3051

3052
	return active;
3053 3054
}

3055 3056 3057 3058
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
3059
struct i915_request *
3060 3061
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
3062
	struct i915_request *request;
3063

3064 3065 3066 3067 3068 3069 3070 3071 3072
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

3073
	request = engine->reset.prepare(engine);
3074 3075
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
3076 3077 3078 3079

	return request;
}

3080
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3081 3082
{
	struct intel_engine_cs *engine;
3083
	struct i915_request *request;
3084
	enum intel_engine_id id;
3085
	int err = 0;
3086

3087
	for_each_engine(engine, dev_priv, id) {
3088 3089 3090 3091
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
3092
		}
3093 3094

		engine->hangcheck.active_request = request;
3095 3096
	}

3097
	i915_gem_revoke_fences(dev_priv);
3098
	intel_uc_sanitize(dev_priv);
3099 3100

	return err;
3101 3102
}

3103
static void engine_skip_context(struct i915_request *request)
3104 3105
{
	struct intel_engine_cs *engine = request->engine;
C
Chris Wilson 已提交
3106
	struct i915_gem_context *hung_ctx = request->gem_context;
3107
	struct i915_timeline *timeline = request->timeline;
3108 3109
	unsigned long flags;

3110
	GEM_BUG_ON(timeline == &engine->timeline);
3111

3112
	spin_lock_irqsave(&engine->timeline.lock, flags);
3113
	spin_lock(&timeline->lock);
3114

3115
	list_for_each_entry_continue(request, &engine->timeline.requests, link)
C
Chris Wilson 已提交
3116
		if (request->gem_context == hung_ctx)
3117
			i915_request_skip(request, -EIO);
3118 3119

	list_for_each_entry(request, &timeline->requests, link)
3120
		i915_request_skip(request, -EIO);
3121 3122

	spin_unlock(&timeline->lock);
3123
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3124 3125
}

3126
/* Returns the request if it was guilty of the hang */
3127
static struct i915_request *
3128
i915_gem_reset_request(struct intel_engine_cs *engine,
3129 3130
		       struct i915_request *request,
		       bool stalled)
3131
{
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

3153 3154 3155 3156 3157 3158 3159 3160 3161
	if (i915_request_completed(request)) {
		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
			  engine->name, request->global_seqno,
			  request->fence.context, request->fence.seqno,
			  intel_engine_get_seqno(engine));
		stalled = false;
	}

	if (stalled) {
C
Chris Wilson 已提交
3162
		i915_gem_context_mark_guilty(request->gem_context);
3163
		i915_request_skip(request, -EIO);
3164 3165

		/* If this context is now banned, skip all pending requests. */
C
Chris Wilson 已提交
3166
		if (i915_gem_context_is_banned(request->gem_context))
3167
			engine_skip_context(request);
3168
	} else {
3169 3170 3171 3172 3173 3174 3175
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
C
Chris Wilson 已提交
3176 3177
			unsigned long flags;

C
Chris Wilson 已提交
3178
			i915_gem_context_mark_innocent(request->gem_context);
3179 3180 3181
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
C
Chris Wilson 已提交
3182
			spin_lock_irqsave(&engine->timeline.lock, flags);
3183
			request = list_prev_entry(request, link);
3184
			if (&request->link == &engine->timeline.requests)
3185
				request = NULL;
C
Chris Wilson 已提交
3186
			spin_unlock_irqrestore(&engine->timeline.lock, flags);
3187
		}
3188 3189
	}

3190
	return request;
3191 3192
}

3193
void i915_gem_reset_engine(struct intel_engine_cs *engine,
3194 3195
			   struct i915_request *request,
			   bool stalled)
3196
{
3197 3198 3199 3200 3201 3202
	/*
	 * Make sure this write is visible before we re-enable the interrupt
	 * handlers on another CPU, as tasklet_enable() resolves to just
	 * a compiler barrier which is insufficient for our purpose here.
	 */
	smp_store_mb(engine->irq_posted, 0);
3203

3204
	if (request)
3205
		request = i915_gem_reset_request(engine, request, stalled);
3206

3207
	/* Setup the CS to resume from the breadcrumb of the hung request */
3208
	engine->reset.reset(engine, request);
3209
}
3210

3211 3212
void i915_gem_reset(struct drm_i915_private *dev_priv,
		    unsigned int stalled_mask)
3213
{
3214
	struct intel_engine_cs *engine;
3215
	enum intel_engine_id id;
3216

3217 3218
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3219
	i915_retire_requests(dev_priv);
3220

3221
	for_each_engine(engine, dev_priv, id) {
3222
		struct intel_context *ce;
3223

3224 3225
		i915_gem_reset_engine(engine,
				      engine->hangcheck.active_request,
3226
				      stalled_mask & ENGINE_MASK(id));
3227 3228 3229
		ce = fetch_and_zero(&engine->last_retired_context);
		if (ce)
			intel_context_unpin(ce);
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240

		/*
		 * Ostensibily, we always want a context loaded for powersaving,
		 * so if the engine is idle after the reset, send a request
		 * to load our scratch kernel_context.
		 *
		 * More mysteriously, if we leave the engine idle after a reset,
		 * the next userspace batch may hang, with what appears to be
		 * an incoherent read by the CS (presumably stale TLB). An
		 * empty request appears sufficient to paper over the glitch.
		 */
3241
		if (intel_engine_is_idle(engine)) {
3242
			struct i915_request *rq;
3243

3244 3245
			rq = i915_request_alloc(engine,
						dev_priv->kernel_context);
3246
			if (!IS_ERR(rq))
3247
				i915_request_add(rq);
3248
		}
3249
	}
3250

3251
	i915_gem_restore_fences(dev_priv);
3252 3253
}

3254 3255
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3256 3257
	engine->reset.finish(engine);

3258
	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3259 3260
}

3261 3262
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3263 3264 3265
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3266
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3267

3268
	for_each_engine(engine, dev_priv, id) {
3269
		engine->hangcheck.active_request = NULL;
3270
		i915_gem_reset_finish_engine(engine);
3271
	}
3272 3273
}

3274
static void nop_submit_request(struct i915_request *request)
3275
{
3276 3277 3278
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3279 3280
	dma_fence_set_error(&request->fence, -EIO);

3281
	i915_request_submit(request);
3282 3283
}

3284
static void nop_complete_submit_request(struct i915_request *request)
3285
{
3286 3287
	unsigned long flags;

3288 3289 3290
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3291
	dma_fence_set_error(&request->fence, -EIO);
3292

3293
	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3294
	__i915_request_submit(request);
3295
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3296
	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3297 3298
}

3299
void i915_gem_set_wedged(struct drm_i915_private *i915)
3300
{
3301 3302 3303
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3304 3305
	GEM_TRACE("start\n");

3306
	if (GEM_SHOW_DEBUG()) {
3307 3308 3309 3310 3311 3312
		struct drm_printer p = drm_debug_printer(__func__);

		for_each_engine(engine, i915, id)
			intel_engine_dump(engine, &p, "%s\n", engine->name);
	}

3313 3314 3315
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	smp_mb__after_atomic();

3316 3317 3318 3319 3320
	/*
	 * First, stop submission to hw, but do not yet complete requests by
	 * rolling the global seqno forward (since this would complete requests
	 * for which we haven't set the fence error to EIO yet).
	 */
3321 3322
	for_each_engine(engine, i915, id) {
		i915_gem_reset_prepare_engine(engine);
3323

3324
		engine->submit_request = nop_submit_request;
3325
		engine->schedule = NULL;
3326
	}
3327
	i915->caps.scheduler = 0;
3328

3329 3330 3331
	/* Even if the GPU reset fails, it should still stop the engines */
	intel_gpu_reset(i915, ALL_ENGINES);

3332 3333 3334 3335
	/*
	 * Make sure no one is running the old callback before we proceed with
	 * cancelling requests and resetting the completion tracking. Otherwise
	 * we might submit a request to the hardware which never completes.
3336
	 */
3337
	synchronize_rcu();
3338

3339 3340 3341
	for_each_engine(engine, i915, id) {
		/* Mark all executing requests as skipped */
		engine->cancel_requests(engine);
3342

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
		/*
		 * Only once we've force-cancelled all in-flight requests can we
		 * start to complete all requests.
		 */
		engine->submit_request = nop_complete_submit_request;
	}

	/*
	 * Make sure no request can slip through without getting completed by
	 * either this call here to intel_engine_init_global_seqno, or the one
	 * in nop_complete_submit_request.
3354
	 */
3355
	synchronize_rcu();
3356

3357 3358
	for_each_engine(engine, i915, id) {
		unsigned long flags;
3359

3360 3361
		/*
		 * Mark all pending requests as complete so that any concurrent
3362 3363 3364
		 * (lockless) lookup doesn't try and wait upon the request as we
		 * reset it.
		 */
3365
		spin_lock_irqsave(&engine->timeline.lock, flags);
3366 3367
		intel_engine_init_global_seqno(engine,
					       intel_engine_last_submit(engine));
3368
		spin_unlock_irqrestore(&engine->timeline.lock, flags);
3369 3370

		i915_gem_reset_finish_engine(engine);
3371
	}
3372

3373 3374
	GEM_TRACE("end\n");

3375
	wake_up_all(&i915->gpu_error.reset_queue);
3376 3377
}

3378 3379
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
3380
	struct i915_timeline *tl;
3381 3382 3383 3384 3385

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

3386 3387
	GEM_TRACE("start\n");

3388 3389
	/*
	 * Before unwedging, make sure that all pending operations
3390 3391 3392 3393 3394 3395 3396 3397 3398
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
3399
		struct i915_request *rq;
3400

3401 3402 3403 3404
		rq = i915_gem_active_peek(&tl->last_request,
					  &i915->drm.struct_mutex);
		if (!rq)
			continue;
3405

3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
		/*
		 * We can't use our normal waiter as we want to
		 * avoid recursively trying to handle the current
		 * reset. The basic dma_fence_default_wait() installs
		 * a callback for dma_fence_signal(), which is
		 * triggered by our nop handler (indirectly, the
		 * callback enables the signaler thread which is
		 * woken by the nop_submit_request() advancing the seqno
		 * and when the seqno passes the fence, the signaler
		 * then signals the fence waking us up).
		 */
		if (dma_fence_default_wait(&rq->fence, true,
					   MAX_SCHEDULE_TIMEOUT) < 0)
			return false;
3420
	}
3421 3422
	i915_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests);
3423

3424 3425
	/*
	 * Undo nop_submit_request. We prevent all new i915 requests from
3426 3427 3428 3429 3430 3431 3432 3433
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3434
	i915_gem_contexts_lost(i915);
3435

3436 3437
	GEM_TRACE("end\n");

3438 3439 3440 3441 3442 3443
	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3444
static void
3445 3446
i915_gem_retire_work_handler(struct work_struct *work)
{
3447
	struct drm_i915_private *dev_priv =
3448
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3449
	struct drm_device *dev = &dev_priv->drm;
3450

3451
	/* Come back later if the device is busy... */
3452
	if (mutex_trylock(&dev->struct_mutex)) {
3453
		i915_retire_requests(dev_priv);
3454
		mutex_unlock(&dev->struct_mutex);
3455
	}
3456

3457 3458
	/*
	 * Keep the retire handler running until we are finally idle.
3459 3460 3461
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3462
	if (READ_ONCE(dev_priv->gt.awake))
3463 3464
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3465
				   round_jiffies_up_relative(HZ));
3466
}
3467

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

3527 3528 3529 3530 3531 3532 3533
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (i915_terminally_wedged(&i915->gpu_error))
		return;

	GEM_BUG_ON(i915->gt.active_requests);
	for_each_engine(engine, i915, id) {
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
		GEM_BUG_ON(engine->last_retired_context !=
			   to_intel_context(i915->kernel_context, engine));
	}
}

3550 3551 3552 3553
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3554
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3555
	unsigned int epoch = I915_EPOCH_INVALID;
3556 3557 3558 3559 3560
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
	if (READ_ONCE(dev_priv->gt.active_requests))
		return;

	/*
	 * Flush out the last user context, leaving only the pinned
	 * kernel context resident. When we are idling on the kernel_context,
	 * no more new requests (with a context switch) are emitted and we
	 * can finally rest. A consequence is that the idle work handler is
	 * always called at least twice before idling (and if the system is
	 * idle that implies a round trip through the retire worker).
	 */
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_switch_to_kernel_context(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
		  READ_ONCE(dev_priv->gt.active_requests));

3579 3580
	/*
	 * Wait for last execlists context complete, but bail out in case a
3581 3582 3583 3584 3585
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
3586
	 */
3587 3588 3589 3590
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3591 3592 3593 3594

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3595
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3596 3597 3598 3599 3600 3601 3602
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3603 3604 3605 3606
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3607
	if (new_requests_since_last_retire(dev_priv))
3608
		goto out_unlock;
3609

3610
	epoch = __i915_gem_park(dev_priv);
3611

3612 3613
	assert_kernel_context_is_current(dev_priv);

3614 3615
	rearm_hangcheck = false;
out_unlock:
3616
	mutex_unlock(&dev_priv->drm.struct_mutex);
3617

3618 3619 3620 3621
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3622
	}
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3640 3641
}

3642 3643
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3644
	struct drm_i915_private *i915 = to_i915(gem->dev);
3645 3646
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3647
	struct i915_lut_handle *lut, *ln;
3648

3649 3650 3651 3652 3653 3654
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3655
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3656 3657 3658 3659
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3660 3661 3662 3663 3664 3665 3666
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3667
			i915_vma_close(vma);
3668

3669 3670
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3671

3672 3673
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3674
	}
3675 3676

	mutex_unlock(&i915->drm.struct_mutex);
3677 3678
}

3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3690 3691
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3692 3693 3694
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3695 3696 3697 3698 3699 3700 3701
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3702
 *  -EAGAIN: incomplete, restart syscall
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3719 3720
	ktime_t start;
	long ret;
3721

3722 3723 3724
	if (args->flags != 0)
		return -EINVAL;

3725
	obj = i915_gem_object_lookup(file, args->bo_handle);
3726
	if (!obj)
3727 3728
		return -ENOENT;

3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3750 3751 3752 3753

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3754 3755
	}

C
Chris Wilson 已提交
3756
	i915_gem_object_put(obj);
3757
	return ret;
3758 3759
}

3760 3761
static long wait_for_timeline(struct i915_timeline *tl,
			      unsigned int flags, long timeout)
3762
{
3763 3764 3765 3766
	struct i915_request *rq;

	rq = i915_gem_active_get_unlocked(&tl->last_request);
	if (!rq)
3767
		return timeout;
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780

	/*
	 * "Race-to-idle".
	 *
	 * Switching to the kernel context is often used a synchronous
	 * step prior to idling, e.g. in suspend for flushing all
	 * current operations to memory before sleeping. These we
	 * want to complete as quickly as possible to avoid prolonged
	 * stalls, so allow the gpu to boost to maximum clocks.
	 */
	if (flags & I915_WAIT_FOR_IDLE_BOOST)
		gen6_rps_boost(rq, NULL);

3781
	timeout = i915_request_wait(rq, flags, timeout);
3782 3783
	i915_request_put(rq);

3784
	return timeout;
3785 3786
}

3787 3788
static int wait_for_engines(struct drm_i915_private *i915)
{
3789
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3790 3791
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3792
		GEM_TRACE_DUMP();
3793 3794
		i915_gem_set_wedged(i915);
		return -EIO;
3795 3796 3797 3798 3799
	}

	return 0;
}

3800 3801
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
3802
{
3803 3804 3805
	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3806

3807 3808 3809 3810
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3811
	if (flags & I915_WAIT_LOCKED) {
3812 3813
		struct i915_timeline *tl;
		int err;
3814 3815 3816 3817

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
3818 3819 3820
			timeout = wait_for_timeline(tl, flags, timeout);
			if (timeout < 0)
				return timeout;
3821
		}
3822 3823 3824 3825 3826

		err = wait_for_engines(i915);
		if (err)
			return err;

3827
		i915_retire_requests(i915);
3828
		GEM_BUG_ON(i915->gt.active_requests);
3829
	} else {
3830 3831
		struct intel_engine_cs *engine;
		enum intel_engine_id id;
3832

3833
		for_each_engine(engine, i915, id) {
3834 3835 3836 3837 3838
			struct i915_timeline *tl = &engine->timeline;

			timeout = wait_for_timeline(tl, flags, timeout);
			if (timeout < 0)
				return timeout;
3839 3840
		}
	}
3841 3842

	return 0;
3843 3844
}

3845 3846
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3847 3848 3849 3850 3851 3852 3853
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3854
	obj->write_domain = 0;
3855 3856 3857 3858
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3859
	if (!READ_ONCE(obj->pin_global))
3860 3861 3862 3863 3864 3865 3866
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

3891
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3912
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3913 3914 3915 3916 3917
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3918 3919
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3920
	if (write) {
3921 3922
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3923 3924 3925 3926 3927 3928 3929
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3930 3931
/**
 * Moves a single object to the GTT read, and possibly write domain.
3932 3933
 * @obj: object to act on
 * @write: ask for write access or read only
3934 3935 3936 3937
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3938
int
3939
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3940
{
3941
	int ret;
3942

3943
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3944

3945 3946 3947 3948 3949 3950
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3951 3952 3953
	if (ret)
		return ret;

3954
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3955 3956
		return 0;

3957 3958 3959 3960 3961 3962 3963 3964
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3965
	ret = i915_gem_object_pin_pages(obj);
3966 3967 3968
	if (ret)
		return ret;

3969
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3970

3971 3972 3973 3974
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3975
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3976 3977
		mb();

3978 3979 3980
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3981 3982
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3983
	if (write) {
3984 3985
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3986
		obj->mm.dirty = true;
3987 3988
	}

C
Chris Wilson 已提交
3989
	i915_gem_object_unpin_pages(obj);
3990 3991 3992
	return 0;
}

3993 3994
/**
 * Changes the cache-level of an object across all VMA.
3995 3996
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
4008 4009 4010
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
4011
	struct i915_vma *vma;
4012
	int ret;
4013

4014 4015
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4016
	if (obj->cache_level == cache_level)
4017
		return 0;
4018

4019 4020 4021 4022 4023
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
4024 4025
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4026 4027 4028
		if (!drm_mm_node_allocated(&vma->node))
			continue;

4029
		if (i915_vma_is_pinned(vma)) {
4030 4031 4032 4033
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

4034 4035
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
4047 4048
	}

4049 4050 4051 4052 4053 4054 4055
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
4056
	if (obj->bind_count) {
4057 4058 4059 4060
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
4061 4062 4063 4064 4065 4066
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
4067 4068 4069
		if (ret)
			return ret;

4070 4071
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4088
			for_each_ggtt_vma(vma, obj) {
4089 4090 4091 4092
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
4093 4094 4095 4096 4097 4098 4099 4100
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4101 4102
		}

4103
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4104 4105 4106 4107 4108 4109 4110
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4111 4112
	}

4113
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4114
		vma->node.color = cache_level;
4115
	i915_gem_object_set_cache_coherency(obj, cache_level);
4116
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4117

4118 4119 4120
	return 0;
}

B
Ben Widawsky 已提交
4121 4122
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4123
{
B
Ben Widawsky 已提交
4124
	struct drm_i915_gem_caching *args = data;
4125
	struct drm_i915_gem_object *obj;
4126
	int err = 0;
4127

4128 4129 4130 4131 4132 4133
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
4134

4135 4136 4137 4138 4139 4140
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4141 4142 4143 4144
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4145 4146 4147 4148
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4149 4150 4151
out:
	rcu_read_unlock();
	return err;
4152 4153
}

B
Ben Widawsky 已提交
4154 4155
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4156
{
4157
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
4158
	struct drm_i915_gem_caching *args = data;
4159 4160
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
4161
	int ret = 0;
4162

B
Ben Widawsky 已提交
4163 4164
	switch (args->caching) {
	case I915_CACHING_NONE:
4165 4166
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4167
	case I915_CACHING_CACHED:
4168 4169 4170 4171 4172 4173
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4174
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4175 4176
			return -ENODEV;

4177 4178
		level = I915_CACHE_LLC;
		break;
4179
	case I915_CACHING_DISPLAY:
4180
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4181
		break;
4182 4183 4184 4185
	default:
		return -EINVAL;
	}

4186 4187 4188 4189
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
4190 4191 4192 4193 4194 4195 4196 4197 4198
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

4199 4200 4201 4202 4203 4204 4205
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
4206
	if (ret)
4207
		goto out;
B
Ben Widawsky 已提交
4208

4209 4210 4211
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
4212 4213 4214

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
4215 4216 4217

out:
	i915_gem_object_put(obj);
4218 4219 4220
	return ret;
}

4221
/*
4222 4223 4224 4225
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
4226
 */
C
Chris Wilson 已提交
4227
struct i915_vma *
4228 4229
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4230 4231
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
4232
{
C
Chris Wilson 已提交
4233
	struct i915_vma *vma;
4234 4235
	int ret;

4236 4237
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4238
	/* Mark the global pin early so that we account for the
4239 4240
	 * display coherency whilst setting up the cache domains.
	 */
4241
	obj->pin_global++;
4242

4243 4244 4245 4246 4247 4248 4249 4250 4251
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4252
	ret = i915_gem_object_set_cache_level(obj,
4253 4254
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
4255 4256
	if (ret) {
		vma = ERR_PTR(ret);
4257
		goto err_unpin_global;
C
Chris Wilson 已提交
4258
	}
4259

4260 4261
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
4262 4263 4264 4265
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
4266
	 */
4267
	vma = ERR_PTR(-ENOSPC);
4268 4269
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4270
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4271 4272 4273 4274
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
4275
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
4276
	if (IS_ERR(vma))
4277
		goto err_unpin_global;
4278

4279 4280
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

4281
	__i915_gem_object_flush_for_display(obj);
4282

4283 4284 4285
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4286
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4287

C
Chris Wilson 已提交
4288
	return vma;
4289

4290 4291
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
4292
	return vma;
4293 4294 4295
}

void
C
Chris Wilson 已提交
4296
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4297
{
4298
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4299

4300
	if (WARN_ON(vma->obj->pin_global == 0))
4301 4302
		return;

4303
	if (--vma->obj->pin_global == 0)
4304
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4305

4306
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4307
	i915_gem_object_bump_inactive_ggtt(vma->obj);
4308

C
Chris Wilson 已提交
4309
	i915_vma_unpin(vma);
4310 4311
}

4312 4313
/**
 * Moves a single object to the CPU read, and possibly write domain.
4314 4315
 * @obj: object to act on
 * @write: requesting write or read-only access
4316 4317 4318 4319
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4320
int
4321
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4322 4323 4324
{
	int ret;

4325
	lockdep_assert_held(&obj->base.dev->struct_mutex);
4326

4327 4328 4329 4330 4331 4332
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
4333 4334 4335
	if (ret)
		return ret;

4336
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4337

4338
	/* Flush the CPU cache if it's still invalid. */
4339
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4340
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4341
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4342 4343 4344 4345 4346
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4347
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4348 4349 4350 4351

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
4352 4353
	if (write)
		__start_cpu_write(obj);
4354 4355 4356 4357

	return 0;
}

4358 4359 4360
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4361 4362 4363 4364
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4365 4366 4367
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4368
static int
4369
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4370
{
4371
	struct drm_i915_private *dev_priv = to_i915(dev);
4372
	struct drm_i915_file_private *file_priv = file->driver_priv;
4373
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4374
	struct i915_request *request, *target = NULL;
4375
	long ret;
4376

4377 4378 4379
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4380

4381
	spin_lock(&file_priv->mm.lock);
4382
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4383 4384
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4385

4386 4387 4388 4389
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4390

4391
		target = request;
4392
	}
4393
	if (target)
4394
		i915_request_get(target);
4395
	spin_unlock(&file_priv->mm.lock);
4396

4397
	if (target == NULL)
4398
		return 0;
4399

4400
	ret = i915_request_wait(target,
4401 4402
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4403
	i915_request_put(target);
4404

4405
	return ret < 0 ? ret : 0;
4406 4407
}

C
Chris Wilson 已提交
4408
struct i915_vma *
4409 4410
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4411
			 u64 size,
4412 4413
			 u64 alignment,
			 u64 flags)
4414
{
4415
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4416
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
4417 4418
	struct i915_vma *vma;
	int ret;
4419

4420 4421
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4422 4423
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4454
	vma = i915_vma_instance(obj, vm, view);
4455
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4456
		return vma;
4457 4458

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4459 4460 4461
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4462

4463
			if (flags & PIN_MAPPABLE &&
4464
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4465 4466 4467
				return ERR_PTR(-ENOSPC);
		}

4468 4469
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4470 4471 4472
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4473
		     !!(flags & PIN_MAPPABLE),
4474
		     i915_vma_is_map_and_fenceable(vma));
4475 4476
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4477
			return ERR_PTR(ret);
4478 4479
	}

C
Chris Wilson 已提交
4480 4481 4482
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4483

C
Chris Wilson 已提交
4484
	return vma;
4485 4486
}

4487
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4502 4503 4504 4505 4506 4507 4508 4509 4510
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4511 4512
}

4513
static __always_inline unsigned int
4514
__busy_set_if_active(const struct dma_fence *fence,
4515 4516
		     unsigned int (*flag)(unsigned int id))
{
4517
	struct i915_request *rq;
4518

4519 4520 4521 4522
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4523
	 *
4524
	 * Note we only report on the status of native fences.
4525
	 */
4526 4527 4528 4529
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
4530 4531
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
4532 4533
		return 0;

4534
	return flag(rq->engine->uabi_id);
4535 4536
}

4537
static __always_inline unsigned int
4538
busy_check_reader(const struct dma_fence *fence)
4539
{
4540
	return __busy_set_if_active(fence, __busy_read_flag);
4541 4542
}

4543
static __always_inline unsigned int
4544
busy_check_writer(const struct dma_fence *fence)
4545
{
4546 4547 4548 4549
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4550 4551
}

4552 4553
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4554
		    struct drm_file *file)
4555 4556
{
	struct drm_i915_gem_busy *args = data;
4557
	struct drm_i915_gem_object *obj;
4558 4559
	struct reservation_object_list *list;
	unsigned int seq;
4560
	int err;
4561

4562
	err = -ENOENT;
4563 4564
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4565
	if (!obj)
4566
		goto out;
4567

4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4586

4587 4588
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4589

4590 4591 4592 4593
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4594

4595 4596 4597 4598 4599 4600
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4601
	}
4602

4603 4604 4605 4606
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4607 4608 4609
out:
	rcu_read_unlock();
	return err;
4610 4611 4612 4613 4614 4615
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4616
	return i915_gem_ring_throttle(dev, file_priv);
4617 4618
}

4619 4620 4621 4622
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4623
	struct drm_i915_private *dev_priv = to_i915(dev);
4624
	struct drm_i915_gem_madvise *args = data;
4625
	struct drm_i915_gem_object *obj;
4626
	int err;
4627 4628 4629 4630 4631 4632 4633 4634 4635

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4636
	obj = i915_gem_object_lookup(file_priv, args->handle);
4637 4638 4639 4640 4641 4642
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4643

4644
	if (i915_gem_object_has_pages(obj) &&
4645
	    i915_gem_object_is_tiled(obj) &&
4646
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4647 4648
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4649
			__i915_gem_object_unpin_pages(obj);
4650 4651 4652
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4653
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4654
			__i915_gem_object_pin_pages(obj);
4655 4656
			obj->mm.quirked = true;
		}
4657 4658
	}

C
Chris Wilson 已提交
4659 4660
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4661

C
Chris Wilson 已提交
4662
	/* if the object is no longer attached, discard its backing storage */
4663 4664
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4665 4666
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4667
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4668
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4669

4670
out:
4671
	i915_gem_object_put(obj);
4672
	return err;
4673 4674
}

4675
static void
4676
frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4677 4678 4679 4680
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4681
	intel_fb_obj_flush(obj, ORIGIN_CS);
4682 4683
}

4684 4685
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4686
{
4687 4688
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4689
	INIT_LIST_HEAD(&obj->vma_list);
4690
	INIT_LIST_HEAD(&obj->lut_list);
4691
	INIT_LIST_HEAD(&obj->batch_pool_link);
4692

4693 4694
	obj->ops = ops;

4695 4696 4697
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4698
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4699
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4700 4701 4702 4703

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4704

4705
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4706 4707
}

4708
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4709 4710
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4711

4712 4713
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4714 4715

	.pwrite = i915_gem_object_pwrite_gtt,
4716 4717
};

M
Matthew Auld 已提交
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4742
struct drm_i915_gem_object *
4743
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4744
{
4745
	struct drm_i915_gem_object *obj;
4746
	struct address_space *mapping;
4747
	unsigned int cache_level;
D
Daniel Vetter 已提交
4748
	gfp_t mask;
4749
	int ret;
4750

4751 4752 4753 4754 4755
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4756
	if (size >> PAGE_SHIFT > INT_MAX)
4757 4758 4759 4760 4761
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4762
	obj = i915_gem_object_alloc(dev_priv);
4763
	if (obj == NULL)
4764
		return ERR_PTR(-ENOMEM);
4765

M
Matthew Auld 已提交
4766
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4767 4768
	if (ret)
		goto fail;
4769

4770
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4771
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4772 4773 4774 4775 4776
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4777
	mapping = obj->base.filp->f_mapping;
4778
	mapping_set_gfp_mask(mapping, mask);
4779
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4780

4781
	i915_gem_object_init(obj, &i915_gem_object_ops);
4782

4783 4784
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4785

4786
	if (HAS_LLC(dev_priv))
4787
		/* On some devices, we can have the GPU use the LLC (the CPU
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4799 4800 4801
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4802

4803
	i915_gem_object_set_cache_coherency(obj, cache_level);
4804

4805 4806
	trace_i915_gem_object_create(obj);

4807
	return obj;
4808 4809 4810 4811

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4812 4813
}

4814 4815 4816 4817 4818 4819 4820 4821
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4822
	if (obj->mm.madv != I915_MADV_WILLNEED)
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4838 4839
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4840
{
4841
	struct drm_i915_gem_object *obj, *on;
4842

4843
	intel_runtime_pm_get(i915);
4844
	llist_for_each_entry_safe(obj, on, freed, freed) {
4845 4846 4847 4848
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4849 4850
		mutex_lock(&i915->drm.struct_mutex);

4851 4852 4853 4854 4855
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4856
			i915_vma_destroy(vma);
4857
		}
4858 4859
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4860

4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4873
		mutex_unlock(&i915->drm.struct_mutex);
4874 4875

		GEM_BUG_ON(obj->bind_count);
4876
		GEM_BUG_ON(obj->userfault_count);
4877
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4878
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4879 4880 4881

		if (obj->ops->release)
			obj->ops->release(obj);
4882

4883 4884
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4885
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4886
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4887 4888 4889 4890

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4891
		reservation_object_fini(&obj->__builtin_resv);
4892 4893 4894 4895 4896
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4897

4898 4899 4900
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4901 4902
		if (on)
			cond_resched();
4903
	}
4904
	intel_runtime_pm_put(i915);
4905 4906 4907 4908 4909 4910
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4921
		__i915_gem_free_objects(i915, freed);
4922
	}
4923 4924 4925 4926 4927 4928 4929
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4930

4931 4932
	/*
	 * All file-owned VMA should have been released by this point through
4933 4934 4935 4936 4937 4938
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4939

4940
	spin_lock(&i915->mm.free_lock);
4941
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4942 4943
		spin_unlock(&i915->mm.free_lock);

4944
		__i915_gem_free_objects(i915, freed);
4945
		if (need_resched())
4946 4947 4948
			return;

		spin_lock(&i915->mm.free_lock);
4949
	}
4950
	spin_unlock(&i915->mm.free_lock);
4951
}
4952

4953 4954 4955 4956 4957 4958
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

4959 4960 4961 4962 4963 4964 4965 4966 4967
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4968 4969
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4970
		queue_work(i915->wq, &i915->mm.free_work);
4971
}
4972

4973 4974 4975
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4976

4977 4978 4979
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4980
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4981
		obj->mm.madv = I915_MADV_DONTNEED;
4982

4983 4984
	/*
	 * Before we free the object, make sure any pure RCU-only
4985 4986 4987 4988
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4989
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4990
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4991 4992
}

4993 4994 4995 4996
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4997 4998
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4999 5000 5001 5002 5003
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

5004 5005
void i915_gem_sanitize(struct drm_i915_private *i915)
{
5006
	int err;
5007 5008 5009

	GEM_TRACE("\n");

5010
	mutex_lock(&i915->drm.struct_mutex);
5011 5012 5013 5014 5015 5016 5017 5018 5019 5020

	intel_runtime_pm_get(i915);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
5021
	if (i915_terminally_wedged(&i915->gpu_error))
5022 5023
		i915_gem_unset_wedged(i915);

5024 5025 5026 5027 5028 5029
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
5030
	 * of the reset, so this could be applied to even earlier gen.
5031
	 */
5032
	err = -ENODEV;
5033
	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5034 5035 5036
		err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
	if (!err)
		intel_engines_sanitize(i915);
5037 5038 5039 5040

	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	intel_runtime_pm_put(i915);

5041 5042
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
5043 5044
}

C
Chris Wilson 已提交
5045
int i915_gem_suspend(struct drm_i915_private *i915)
5046
{
5047
	int ret;
5048

5049 5050
	GEM_TRACE("\n");

C
Chris Wilson 已提交
5051 5052
	intel_runtime_pm_get(i915);
	intel_suspend_gt_powersave(i915);
5053

C
Chris Wilson 已提交
5054
	mutex_lock(&i915->drm.struct_mutex);
5055

C
Chris Wilson 已提交
5056 5057
	/*
	 * We have to flush all the executing contexts to main memory so
5058 5059
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
C
Chris Wilson 已提交
5060
	 * leaves the i915->kernel_context still active when
5061 5062 5063 5064
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
C
Chris Wilson 已提交
5065 5066
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(i915);
5067 5068
		if (ret)
			goto err_unlock;
5069

C
Chris Wilson 已提交
5070
		ret = i915_gem_wait_for_idle(i915,
5071
					     I915_WAIT_INTERRUPTIBLE |
5072
					     I915_WAIT_LOCKED |
5073 5074
					     I915_WAIT_FOR_IDLE_BOOST,
					     MAX_SCHEDULE_TIMEOUT);
5075 5076
		if (ret && ret != -EIO)
			goto err_unlock;
5077

C
Chris Wilson 已提交
5078
		assert_kernel_context_is_current(i915);
5079
	}
5080 5081
	i915_retire_requests(i915); /* ensure we flush after wedging */

C
Chris Wilson 已提交
5082
	mutex_unlock(&i915->drm.struct_mutex);
5083

C
Chris Wilson 已提交
5084
	intel_uc_suspend(i915);
5085

C
Chris Wilson 已提交
5086 5087
	cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
	cancel_delayed_work_sync(&i915->gt.retire_work);
5088

C
Chris Wilson 已提交
5089 5090
	/*
	 * As the idle_work is rearming if it detects a race, play safe and
5091 5092
	 * repeat the flush until it is definitely idle.
	 */
C
Chris Wilson 已提交
5093
	drain_delayed_work(&i915->gt.idle_work);
5094

C
Chris Wilson 已提交
5095 5096
	/*
	 * Assert that we successfully flushed all the work and
5097 5098
	 * reset the GPU back to its idle, low power state.
	 */
C
Chris Wilson 已提交
5099 5100 5101
	WARN_ON(i915->gt.awake);
	if (WARN_ON(!intel_engines_are_idle(i915)))
		i915_gem_set_wedged(i915); /* no hope, discard everything */
5102

C
Chris Wilson 已提交
5103
	intel_runtime_pm_put(i915);
5104 5105 5106
	return 0;

err_unlock:
C
Chris Wilson 已提交
5107 5108
	mutex_unlock(&i915->drm.struct_mutex);
	intel_runtime_pm_put(i915);
5109 5110 5111 5112 5113
	return ret;
}

void i915_gem_suspend_late(struct drm_i915_private *i915)
{
5114 5115 5116 5117 5118 5119 5120
	struct drm_i915_gem_object *obj;
	struct list_head *phases[] = {
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
		NULL
	}, **phase;

5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */

5141 5142 5143 5144 5145 5146 5147
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
	}
	mutex_unlock(&i915->drm.struct_mutex);

5148 5149
	intel_uc_sanitize(i915);
	i915_gem_sanitize(i915);
5150 5151
}

5152
void i915_gem_resume(struct drm_i915_private *i915)
5153
{
5154 5155
	GEM_TRACE("\n");

5156
	WARN_ON(i915->gt.awake);
5157

5158 5159
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5160

5161 5162
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
5163

5164 5165
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
5166 5167 5168
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
5169
	i915->gt.resume(i915);
5170

5171 5172 5173
	if (i915_gem_init_hw(i915))
		goto err_wedged;

5174
	intel_uc_resume(i915);
5175

5176 5177 5178 5179 5180 5181 5182 5183 5184 5185
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
5186 5187 5188 5189
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
5190
	goto out_unlock;
5191 5192
}

5193
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5194
{
5195
	if (INTEL_GEN(dev_priv) < 5 ||
5196 5197 5198 5199 5200 5201
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5202
	if (IS_GEN5(dev_priv))
5203 5204
		return;

5205
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5206
	if (IS_GEN6(dev_priv))
5207
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5208
	else if (IS_GEN7(dev_priv))
5209
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5210
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
5211
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5212 5213
	else
		BUG();
5214
}
D
Daniel Vetter 已提交
5215

5216
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5217 5218 5219 5220 5221 5222 5223
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

5224
static void init_unused_rings(struct drm_i915_private *dev_priv)
5225
{
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
5238 5239 5240
	}
}

5241
static int __i915_gem_restart_engines(void *data)
5242
{
5243
	struct drm_i915_private *i915 = data;
5244
	struct intel_engine_cs *engine;
5245
	enum intel_engine_id id;
5246 5247 5248 5249
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
5250 5251 5252
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
5253
			return err;
5254
		}
5255 5256 5257 5258 5259 5260 5261
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
5262
	int ret;
5263

5264 5265
	dev_priv->gt.last_init_time = ktime_get();

5266 5267 5268
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5269
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5270
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5271

5272
	if (IS_HASWELL(dev_priv))
5273
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5274
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5275

5276
	if (HAS_PCH_NOP(dev_priv)) {
5277
		if (IS_IVYBRIDGE(dev_priv)) {
5278 5279 5280
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
5281
		} else if (INTEL_GEN(dev_priv) >= 7) {
5282 5283 5284 5285
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5286 5287
	}

5288 5289
	intel_gt_workarounds_apply(dev_priv);

5290
	i915_gem_init_swizzling(dev_priv);
5291

5292 5293 5294 5295 5296 5297
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
5298
	init_unused_rings(dev_priv);
5299

5300
	BUG_ON(!dev_priv->kernel_context);
5301 5302 5303 5304
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
5305

5306
	ret = i915_ppgtt_init_hw(dev_priv);
5307
	if (ret) {
5308
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5309 5310 5311
		goto out;
	}

5312 5313 5314 5315 5316 5317
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

5318 5319
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
5320 5321
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5322
		goto out;
5323
	}
5324

5325
	intel_mocs_init_l3cc_table(dev_priv);
5326

5327 5328
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
5329 5330
	if (ret)
		goto cleanup_uc;
5331

5332
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5333 5334

	return 0;
5335 5336 5337

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
5338 5339 5340 5341
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);

	return ret;
5342 5343
}

5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
5365
		struct i915_request *rq;
5366

5367
		rq = i915_request_alloc(engine, ctx);
5368 5369 5370 5371 5372
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

5373
		err = 0;
5374 5375 5376
		if (engine->init_context)
			err = engine->init_context(rq);

5377
		i915_request_add(rq);
5378 5379 5380 5381 5382 5383 5384 5385
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

5386 5387 5388
	if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
		i915_gem_set_wedged(i915);
		err = -EIO; /* Caller will declare us wedged */
5389
		goto err_active;
5390
	}
5391 5392 5393 5394 5395 5396

	assert_kernel_context_is_current(i915);

	for_each_engine(engine, i915, id) {
		struct i915_vma *state;

5397
		state = to_intel_context(ctx, engine)->state;
5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

5453 5454 5455
	if (WARN_ON(i915_gem_wait_for_idle(i915,
					   I915_WAIT_LOCKED,
					   MAX_SCHEDULE_TIMEOUT)))
5456 5457 5458 5459 5460 5461
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

5462
int i915_gem_init(struct drm_i915_private *dev_priv)
5463 5464 5465
{
	int ret;

5466 5467
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5468 5469 5470
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5471
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5472

5473
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5474
		dev_priv->gt.resume = intel_lr_context_resume;
5475
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5476 5477 5478
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5479 5480
	}

5481 5482 5483 5484
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5485
	ret = intel_uc_init_misc(dev_priv);
5486 5487 5488
	if (ret)
		return ret;

5489
	ret = intel_wopcm_init(&dev_priv->wopcm);
5490
	if (ret)
5491
		goto err_uc_misc;
5492

5493 5494 5495 5496 5497 5498
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5499
	mutex_lock(&dev_priv->drm.struct_mutex);
5500 5501
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5502
	ret = i915_gem_init_ggtt(dev_priv);
5503 5504 5505 5506
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5507

5508
	ret = i915_gem_contexts_init(dev_priv);
5509 5510 5511 5512
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5513

5514
	ret = intel_engines_init(dev_priv);
5515 5516 5517 5518
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5519

5520 5521
	intel_init_gt_powersave(dev_priv);

5522
	ret = intel_uc_init(dev_priv);
5523
	if (ret)
5524
		goto err_pm;
5525

5526 5527 5528 5529
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5541
	ret = __intel_engines_record_defaults(dev_priv);
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
5567 5568 5569 5570 5571
	mutex_unlock(&dev_priv->drm.struct_mutex);

	WARN_ON(i915_gem_suspend(dev_priv));
	i915_gem_suspend_late(dev_priv);

5572 5573
	i915_gem_drain_workqueue(dev_priv);

5574
	mutex_lock(&dev_priv->drm.struct_mutex);
5575
	intel_uc_fini_hw(dev_priv);
5576 5577
err_uc_init:
	intel_uc_fini(dev_priv);
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5591
err_uc_misc:
5592
	intel_uc_fini_misc(dev_priv);
5593

5594 5595 5596
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5597
	if (ret == -EIO) {
5598 5599
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5600 5601 5602
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5603
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5604 5605
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
5606 5607
			i915_gem_set_wedged(dev_priv);
		}
5608
		ret = 0;
5609 5610
	}

5611
	i915_gem_drain_freed_objects(dev_priv);
5612
	return ret;
5613 5614
}

5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	i915_gem_suspend_late(dev_priv);

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
	i915_gem_cleanup_engines(dev_priv);
	i915_gem_contexts_fini(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

5637 5638 5639 5640 5641
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5642
void
5643
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5644
{
5645
	struct intel_engine_cs *engine;
5646
	enum intel_engine_id id;
5647

5648
	for_each_engine(engine, dev_priv, id)
5649
		dev_priv->gt.cleanup_engine(engine);
5650 5651
}

5652 5653 5654
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5655
	int i;
5656

5657
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5658 5659
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5660
	else if (INTEL_GEN(dev_priv) >= 4 ||
5661 5662
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5663 5664 5665 5666
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5667
	if (intel_vgpu_active(dev_priv))
5668 5669 5670 5671
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5672 5673 5674 5675 5676 5677 5678
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5679
	i915_gem_restore_fences(dev_priv);
5680

5681
	i915_gem_detect_bit_6_swizzle(dev_priv);
5682 5683
}

5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5700
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5701
{
5702
	int err = -ENOMEM;
5703

5704 5705
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5706 5707
		goto err_out;

5708 5709
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5710 5711
		goto err_objects;

5712 5713 5714 5715
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5716
	dev_priv->requests = KMEM_CACHE(i915_request,
5717 5718
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5719
					SLAB_TYPESAFE_BY_RCU);
5720
	if (!dev_priv->requests)
5721
		goto err_luts;
5722

5723 5724 5725 5726 5727 5728
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5729 5730 5731 5732
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5733
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5734
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5735
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5736

5737
	i915_gem_init__mm(dev_priv);
5738

5739
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5740
			  i915_gem_retire_work_handler);
5741
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5742
			  i915_gem_idle_work_handler);
5743
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5744
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5745

5746 5747
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5748
	spin_lock_init(&dev_priv->fb_tracking.lock);
5749

M
Matthew Auld 已提交
5750 5751 5752 5753
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5754 5755
	return 0;

5756 5757
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5758 5759
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5760 5761
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5762 5763 5764 5765 5766 5767
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5768
}
5769

5770
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5771
{
5772
	i915_gem_drain_freed_objects(dev_priv);
5773 5774
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5775
	WARN_ON(dev_priv->mm.object_count);
5776 5777
	WARN_ON(!list_empty(&dev_priv->gt.timelines));

5778
	kmem_cache_destroy(dev_priv->priorities);
5779
	kmem_cache_destroy(dev_priv->dependencies);
5780
	kmem_cache_destroy(dev_priv->requests);
5781
	kmem_cache_destroy(dev_priv->luts);
5782 5783
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5784 5785 5786

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5787 5788

	i915_gemfs_fini(dev_priv);
5789 5790
}

5791 5792
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5793 5794 5795
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5796 5797 5798 5799 5800
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5801
int i915_gem_freeze_late(struct drm_i915_private *i915)
5802 5803
{
	struct drm_i915_gem_object *obj;
5804
	struct list_head *phases[] = {
5805 5806
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
5807
		NULL
5808
	}, **phase;
5809

5810 5811
	/*
	 * Called just before we write the hibernation image.
5812 5813 5814 5815 5816 5817 5818 5819
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5820 5821
	 *
	 * To try and reduce the hibernation image, we manually shrink
5822
	 * the objects as well, see i915_gem_freeze()
5823 5824
	 */

5825 5826
	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
	i915_gem_drain_freed_objects(i915);
5827

5828 5829 5830 5831
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5832
	}
5833
	mutex_unlock(&i915->drm.struct_mutex);
5834 5835 5836 5837

	return 0;
}

5838
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5839
{
5840
	struct drm_i915_file_private *file_priv = file->driver_priv;
5841
	struct i915_request *request;
5842 5843 5844 5845 5846

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5847
	spin_lock(&file_priv->mm.lock);
5848
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5849
		request->file_priv = NULL;
5850
	spin_unlock(&file_priv->mm.lock);
5851 5852
}

5853
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5854 5855
{
	struct drm_i915_file_private *file_priv;
5856
	int ret;
5857

5858
	DRM_DEBUG("\n");
5859 5860 5861 5862 5863 5864

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5865
	file_priv->dev_priv = i915;
5866
	file_priv->file = file;
5867 5868 5869 5870

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5871
	file_priv->bsd_engine = -1;
5872
	file_priv->hang_timestamp = jiffies;
5873

5874
	ret = i915_gem_context_open(i915, file);
5875 5876
	if (ret)
		kfree(file_priv);
5877

5878
	return ret;
5879 5880
}

5881 5882
/**
 * i915_gem_track_fb - update frontbuffer tracking
5883 5884 5885
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5886 5887 5888 5889
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5890 5891 5892 5893
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5894 5895 5896 5897 5898 5899 5900 5901 5902
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5903
	if (old) {
5904 5905
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5906 5907 5908
	}

	if (new) {
5909 5910
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5911 5912 5913
	}
}

5914 5915
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5916
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5917 5918 5919
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5920 5921 5922
	struct file *file;
	size_t offset;
	int err;
5923

5924
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5925
	if (IS_ERR(obj))
5926 5927
		return obj;

5928
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5929

5930 5931 5932 5933 5934 5935
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5936

5937 5938 5939 5940 5941
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5942

5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5957 5958 5959 5960

	return obj;

fail:
5961
	i915_gem_object_put(obj);
5962
	return ERR_PTR(err);
5963
}
5964 5965 5966 5967 5968 5969

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5970
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5971 5972 5973 5974 5975
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5976
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
6101
	if (!obj->mm.dirty)
6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
6117

6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

6153
	pages = __i915_gem_object_unset_pages(obj);
6154

6155 6156
	obj->ops = &i915_gem_phys_ops;

6157
	err = ____i915_gem_object_get_pages(obj);
6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
6171 6172 6173 6174 6175
	if (!IS_ERR_OR_NULL(pages)) {
		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);

		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
	}
6176 6177 6178 6179 6180
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

6181 6182
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
6183
#include "selftests/mock_gem_device.c"
6184
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
6185
#include "selftests/huge_pages.c"
6186
#include "selftests/i915_gem_object.c"
6187
#include "selftests/i915_gem_coherency.c"
6188
#endif