sched.c 175.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
30
#include <linux/capability.h>
L
Linus Torvalds 已提交
31 32
#include <linux/completion.h>
#include <linux/kernel_stat.h>
33
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
37
#include <linux/freezer.h>
38
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
#include <linux/syscalls.h>
#include <linux/times.h>
52
#include <linux/tsacct_kern.h>
53
#include <linux/kprobes.h>
54
#include <linux/delayacct.h>
L
Linus Torvalds 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
#include <asm/tlb.h>

#include <asm/unistd.h>

/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
#define ON_RUNQUEUE_WEIGHT	 30
#define CHILD_PENALTY		 95
#define PARENT_PENALTY		100
#define EXIT_WEIGHT		  3
#define PRIO_BONUS_RATIO	 25
#define MAX_BONUS		(MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
#define INTERACTIVE_DELTA	  2
#define MAX_SLEEP_AVG		(DEF_TIMESLICE * MAX_BONUS)
#define STARVATION_LIMIT	(MAX_SLEEP_AVG)
#define NS_MAX_SLEEP_AVG	(JIFFIES_TO_NS(MAX_SLEEP_AVG))

/*
 * If a task is 'interactive' then we reinsert it in the active
 * array after it has expired its current timeslice. (it will not
 * continue to run immediately, it will still roundrobin with
 * other interactive tasks.)
 *
 * This part scales the interactivity limit depending on niceness.
 *
 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
 * Here are a few examples of different nice levels:
 *
 *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
 *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
 *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
 *
 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
 *  priority range a task can explore, a value of '1' means the
 *  task is rated interactive.)
 *
 * Ie. nice +19 tasks can never get 'interactive' enough to be
 * reinserted into the active array. And only heavily CPU-hog nice -20
 * tasks will be expired. Default nice 0 tasks are somewhere between,
 * it takes some effort for them to get interactive, but it's not
 * too hard.
 */

#define CURRENT_BONUS(p) \
	(NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
		MAX_SLEEP_AVG)

#define GRANULARITY	(10 * HZ / 1000 ? : 1)

#ifdef CONFIG_SMP
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
			num_online_cpus())
#else
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
#endif

#define SCALE(v1,v1_max,v2_max) \
	(v1) * (v2_max) / (v1_max)

#define DELTA(p) \
150 151
	(SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
		INTERACTIVE_DELTA)
L
Linus Torvalds 已提交
152 153 154 155 156 157 158 159 160 161 162 163

#define TASK_INTERACTIVE(p) \
	((p)->prio <= (p)->static_prio - DELTA(p))

#define INTERACTIVE_SLEEP(p) \
	(JIFFIES_TO_NS(MAX_SLEEP_AVG * \
		(MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))

#define TASK_PREEMPTS_CURR(p, rq) \
	((p)->prio < (rq)->curr->prio)

#define SCALE_PRIO(x, prio) \
164
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
L
Linus Torvalds 已提交
165

166
static unsigned int static_prio_timeslice(int static_prio)
L
Linus Torvalds 已提交
167
{
168 169
	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
L
Linus Torvalds 已提交
170
	else
171
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
L
Linus Torvalds 已提交
172
}
173

174 175 176 177 178 179 180 181 182
/*
 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
 * to time slice values: [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */

183
static inline unsigned int task_timeslice(struct task_struct *p)
184 185 186 187
{
	return static_prio_timeslice(p->static_prio);
}

L
Linus Torvalds 已提交
188 189 190 191 192 193
/*
 * These are the runqueue data structures:
 */

struct prio_array {
	unsigned int nr_active;
194
	DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
L
Linus Torvalds 已提交
195 196 197 198 199 200 201 202 203 204
	struct list_head queue[MAX_PRIO];
};

/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
205
struct rq {
L
Linus Torvalds 已提交
206 207 208 209 210 211 212
	spinlock_t lock;

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
213
	unsigned long raw_weighted_load;
L
Linus Torvalds 已提交
214
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
215
	unsigned long cpu_load[3];
L
Linus Torvalds 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228
#endif
	unsigned long long nr_switches;

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

	unsigned long expired_timestamp;
	unsigned long long timestamp_last_tick;
229
	struct task_struct *curr, *idle;
230
	unsigned long next_balance;
L
Linus Torvalds 已提交
231
	struct mm_struct *prev_mm;
232
	struct prio_array *active, *expired, arrays[2];
L
Linus Torvalds 已提交
233 234 235 236 237 238 239 240 241
	int best_expired_prio;
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
242
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
243

244
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
267
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
268 269
};

270
static DEFINE_PER_CPU(struct rq, runqueues);
L
Linus Torvalds 已提交
271

272 273 274 275 276 277 278 279 280
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
281 282
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
283
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
284 285 286 287
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
288 289
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
290 291 292 293 294 295 296

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

#ifndef prepare_arch_switch
297 298 299 300 301 302 303
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
304
static inline int task_running(struct rq *rq, struct task_struct *p)
305 306 307 308
{
	return rq->curr == p;
}

309
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
310 311 312
{
}

313
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
314
{
315 316 317 318
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
319 320 321 322 323 324 325
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

326 327 328 329
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
330
static inline int task_running(struct rq *rq, struct task_struct *p)
331 332 333 334 335 336 337 338
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

339
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

356
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
357 358 359 360 361 362 363 364 365 366 367 368
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
369
#endif
370 371
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
372

373 374 375 376
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
377
static inline struct rq *__task_rq_lock(struct task_struct *p)
378 379
	__acquires(rq->lock)
{
380
	struct rq *rq;
381 382 383 384 385 386 387 388 389 390 391

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
392 393 394 395 396
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
397
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
398 399
	__acquires(rq->lock)
{
400
	struct rq *rq;
L
Linus Torvalds 已提交
401 402 403 404 405 406 407 408 409 410 411 412

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

413
static inline void __task_rq_unlock(struct rq *rq)
414 415 416 417 418
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

419
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
420 421 422 423 424 425 426 427 428 429
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

#ifdef CONFIG_SCHEDSTATS
/*
 * bump this up when changing the output format or the meaning of an existing
 * format, so that tools can adapt (or abort)
 */
430
#define SCHEDSTAT_VERSION 12
L
Linus Torvalds 已提交
431 432 433 434 435 436 437 438

static int show_schedstat(struct seq_file *seq, void *v)
{
	int cpu;

	seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
	seq_printf(seq, "timestamp %lu\n", jiffies);
	for_each_online_cpu(cpu) {
439
		struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
#ifdef CONFIG_SMP
		struct sched_domain *sd;
		int dcnt = 0;
#endif

		/* runqueue-specific stats */
		seq_printf(seq,
		    "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
		    cpu, rq->yld_both_empty,
		    rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
		    rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
		    rq->ttwu_cnt, rq->ttwu_local,
		    rq->rq_sched_info.cpu_time,
		    rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);

		seq_printf(seq, "\n");

#ifdef CONFIG_SMP
		/* domain-specific stats */
N
Nick Piggin 已提交
459
		preempt_disable();
L
Linus Torvalds 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
		for_each_domain(cpu, sd) {
			enum idle_type itype;
			char mask_str[NR_CPUS];

			cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
			seq_printf(seq, "domain%d %s", dcnt++, mask_str);
			for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
					itype++) {
				seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
				    sd->lb_cnt[itype],
				    sd->lb_balanced[itype],
				    sd->lb_failed[itype],
				    sd->lb_imbalance[itype],
				    sd->lb_gained[itype],
				    sd->lb_hot_gained[itype],
				    sd->lb_nobusyq[itype],
				    sd->lb_nobusyg[itype]);
			}
478
			seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
L
Linus Torvalds 已提交
479
			    sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
480 481
			    sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
			    sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
L
Linus Torvalds 已提交
482 483
			    sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
		}
N
Nick Piggin 已提交
484
		preempt_enable();
L
Linus Torvalds 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
#endif
	}
	return 0;
}

static int schedstat_open(struct inode *inode, struct file *file)
{
	unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
	char *buf = kmalloc(size, GFP_KERNEL);
	struct seq_file *m;
	int res;

	if (!buf)
		return -ENOMEM;
	res = single_open(file, show_schedstat, NULL);
	if (!res) {
		m = file->private_data;
		m->buf = buf;
		m->size = size;
	} else
		kfree(buf);
	return res;
}

509
const struct file_operations proc_schedstat_operations = {
L
Linus Torvalds 已提交
510 511 512 513 514 515
	.open    = schedstat_open,
	.read    = seq_read,
	.llseek  = seq_lseek,
	.release = single_release,
};

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
/*
 * Expects runqueue lock to be held for atomicity of update
 */
static inline void
rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
{
	if (rq) {
		rq->rq_sched_info.run_delay += delta_jiffies;
		rq->rq_sched_info.pcnt++;
	}
}

/*
 * Expects runqueue lock to be held for atomicity of update
 */
static inline void
rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
{
	if (rq)
		rq->rq_sched_info.cpu_time += delta_jiffies;
}
L
Linus Torvalds 已提交
537 538 539
# define schedstat_inc(rq, field)	do { (rq)->field++; } while (0)
# define schedstat_add(rq, field, amt)	do { (rq)->field += (amt); } while (0)
#else /* !CONFIG_SCHEDSTATS */
540 541 542 543 544 545
static inline void
rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
{}
static inline void
rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
{}
L
Linus Torvalds 已提交
546 547 548 549 550
# define schedstat_inc(rq, field)	do { } while (0)
# define schedstat_add(rq, field, amt)	do { } while (0)
#endif

/*
551
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
552
 */
553
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
554 555
	__acquires(rq->lock)
{
556
	struct rq *rq;
L
Linus Torvalds 已提交
557 558 559 560 561 562 563 564

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

565
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
L
Linus Torvalds 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
/*
 * Called when a process is dequeued from the active array and given
 * the cpu.  We should note that with the exception of interactive
 * tasks, the expired queue will become the active queue after the active
 * queue is empty, without explicitly dequeuing and requeuing tasks in the
 * expired queue.  (Interactive tasks may be requeued directly to the
 * active queue, thus delaying tasks in the expired queue from running;
 * see scheduler_tick()).
 *
 * This function is only called from sched_info_arrive(), rather than
 * dequeue_task(). Even though a task may be queued and dequeued multiple
 * times as it is shuffled about, we're really interested in knowing how
 * long it was from the *first* time it was queued to the time that it
 * finally hit a cpu.
 */
581
static inline void sched_info_dequeued(struct task_struct *t)
L
Linus Torvalds 已提交
582 583 584 585 586 587 588 589 590
{
	t->sched_info.last_queued = 0;
}

/*
 * Called when a task finally hits the cpu.  We can now calculate how
 * long it was waiting to run.  We also note when it began so that we
 * can keep stats on how long its timeslice is.
 */
591
static void sched_info_arrive(struct task_struct *t)
L
Linus Torvalds 已提交
592
{
593
	unsigned long now = jiffies, delta_jiffies = 0;
L
Linus Torvalds 已提交
594 595

	if (t->sched_info.last_queued)
596
		delta_jiffies = now - t->sched_info.last_queued;
L
Linus Torvalds 已提交
597
	sched_info_dequeued(t);
598
	t->sched_info.run_delay += delta_jiffies;
L
Linus Torvalds 已提交
599 600 601
	t->sched_info.last_arrival = now;
	t->sched_info.pcnt++;

602
	rq_sched_info_arrive(task_rq(t), delta_jiffies);
L
Linus Torvalds 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
}

/*
 * Called when a process is queued into either the active or expired
 * array.  The time is noted and later used to determine how long we
 * had to wait for us to reach the cpu.  Since the expired queue will
 * become the active queue after active queue is empty, without dequeuing
 * and requeuing any tasks, we are interested in queuing to either. It
 * is unusual but not impossible for tasks to be dequeued and immediately
 * requeued in the same or another array: this can happen in sched_yield(),
 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
 * to runqueue.
 *
 * This function is only called from enqueue_task(), but also only updates
 * the timestamp if it is already not set.  It's assumed that
 * sched_info_dequeued() will clear that stamp when appropriate.
 */
620
static inline void sched_info_queued(struct task_struct *t)
L
Linus Torvalds 已提交
621
{
622 623 624
	if (unlikely(sched_info_on()))
		if (!t->sched_info.last_queued)
			t->sched_info.last_queued = jiffies;
L
Linus Torvalds 已提交
625 626 627 628 629 630
}

/*
 * Called when a process ceases being the active-running process, either
 * voluntarily or involuntarily.  Now we can calculate how long we ran.
 */
631
static inline void sched_info_depart(struct task_struct *t)
L
Linus Torvalds 已提交
632
{
633
	unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
L
Linus Torvalds 已提交
634

635 636
	t->sched_info.cpu_time += delta_jiffies;
	rq_sched_info_depart(task_rq(t), delta_jiffies);
L
Linus Torvalds 已提交
637 638 639 640 641 642 643
}

/*
 * Called when tasks are switched involuntarily due, typically, to expiring
 * their time slice.  (This may also be called when switching to or from
 * the idle task.)  We are only called when prev != next.
 */
644
static inline void
645
__sched_info_switch(struct task_struct *prev, struct task_struct *next)
L
Linus Torvalds 已提交
646
{
647
	struct rq *rq = task_rq(prev);
L
Linus Torvalds 已提交
648 649 650 651 652 653 654 655 656 657 658 659

	/*
	 * prev now departs the cpu.  It's not interesting to record
	 * stats about how efficient we were at scheduling the idle
	 * process, however.
	 */
	if (prev != rq->idle)
		sched_info_depart(prev);

	if (next != rq->idle)
		sched_info_arrive(next);
}
660 661 662 663 664 665
static inline void
sched_info_switch(struct task_struct *prev, struct task_struct *next)
{
	if (unlikely(sched_info_on()))
		__sched_info_switch(prev, next);
}
L
Linus Torvalds 已提交
666 667 668
#else
#define sched_info_queued(t)		do { } while (0)
#define sched_info_switch(t, next)	do { } while (0)
669
#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
L
Linus Torvalds 已提交
670 671 672 673

/*
 * Adding/removing a task to/from a priority array:
 */
674
static void dequeue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
675 676 677 678 679 680 681
{
	array->nr_active--;
	list_del(&p->run_list);
	if (list_empty(array->queue + p->prio))
		__clear_bit(p->prio, array->bitmap);
}

682
static void enqueue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
683 684 685 686 687 688 689 690 691 692 693 694
{
	sched_info_queued(p);
	list_add_tail(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
	array->nr_active++;
	p->array = array;
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
695
static void requeue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
696 697 698 699
{
	list_move_tail(&p->run_list, array->queue + p->prio);
}

700 701
static inline void
enqueue_task_head(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
702 703 704 705 706 707 708 709
{
	list_add(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
	array->nr_active++;
	p->array = array;
}

/*
710
 * __normal_prio - return the priority that is based on the static
L
Linus Torvalds 已提交
711 712 713 714 715 716 717 718 719 720 721 722
 * priority but is modified by bonuses/penalties.
 *
 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
 * into the -5 ... 0 ... +5 bonus/penalty range.
 *
 * We use 25% of the full 0...39 priority range so that:
 *
 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
 *
 * Both properties are important to certain workloads.
 */
723

724
static inline int __normal_prio(struct task_struct *p)
L
Linus Torvalds 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737
{
	int bonus, prio;

	bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;

	prio = p->static_prio - bonus;
	if (prio < MAX_RT_PRIO)
		prio = MAX_RT_PRIO;
	if (prio > MAX_PRIO-1)
		prio = MAX_PRIO-1;
	return prio;
}

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

/*
 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
 * If static_prio_timeslice() is ever changed to break this assumption then
 * this code will need modification
 */
#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
#define LOAD_WEIGHT(lp) \
	(((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
#define PRIO_TO_LOAD_WEIGHT(prio) \
	LOAD_WEIGHT(static_prio_timeslice(prio))
#define RTPRIO_TO_LOAD_WEIGHT(rp) \
	(PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))

760
static void set_load_weight(struct task_struct *p)
761
{
762
	if (has_rt_policy(p)) {
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
#ifdef CONFIG_SMP
		if (p == task_rq(p)->migration_thread)
			/*
			 * The migration thread does the actual balancing.
			 * Giving its load any weight will skew balancing
			 * adversely.
			 */
			p->load_weight = 0;
		else
#endif
			p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
	} else
		p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
}

778
static inline void
779
inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
780 781 782 783
{
	rq->raw_weighted_load += p->load_weight;
}

784
static inline void
785
dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
786 787 788 789
{
	rq->raw_weighted_load -= p->load_weight;
}

790
static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
791 792 793 794 795
{
	rq->nr_running++;
	inc_raw_weighted_load(rq, p);
}

796
static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
797 798 799 800 801
{
	rq->nr_running--;
	dec_raw_weighted_load(rq, p);
}

802 803 804 805 806 807 808
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
809
static inline int normal_prio(struct task_struct *p)
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
{
	int prio;

	if (has_rt_policy(p))
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
827
static int effective_prio(struct task_struct *p)
828 829 830 831 832 833 834 835 836 837 838 839
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
840 841 842
/*
 * __activate_task - move a task to the runqueue.
 */
843
static void __activate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
844
{
845
	struct prio_array *target = rq->active;
846

847
	if (batch_task(p))
848 849
		target = rq->expired;
	enqueue_task(p, target);
850
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
851 852 853 854 855
}

/*
 * __activate_idle_task - move idle task to the _front_ of runqueue.
 */
856
static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
857 858
{
	enqueue_task_head(p, rq->active);
859
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
860 861
}

862 863 864 865
/*
 * Recalculate p->normal_prio and p->prio after having slept,
 * updating the sleep-average too:
 */
866
static int recalc_task_prio(struct task_struct *p, unsigned long long now)
L
Linus Torvalds 已提交
867 868
{
	/* Caller must always ensure 'now >= p->timestamp' */
869
	unsigned long sleep_time = now - p->timestamp;
L
Linus Torvalds 已提交
870

871
	if (batch_task(p))
872
		sleep_time = 0;
L
Linus Torvalds 已提交
873 874 875

	if (likely(sleep_time > 0)) {
		/*
876 877 878
		 * This ceiling is set to the lowest priority that would allow
		 * a task to be reinserted into the active array on timeslice
		 * completion.
L
Linus Torvalds 已提交
879
		 */
880
		unsigned long ceiling = INTERACTIVE_SLEEP(p);
881

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
		if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
			/*
			 * Prevents user tasks from achieving best priority
			 * with one single large enough sleep.
			 */
			p->sleep_avg = ceiling;
			/*
			 * Using INTERACTIVE_SLEEP() as a ceiling places a
			 * nice(0) task 1ms sleep away from promotion, and
			 * gives it 700ms to round-robin with no chance of
			 * being demoted.  This is more than generous, so
			 * mark this sleep as non-interactive to prevent the
			 * on-runqueue bonus logic from intervening should
			 * this task not receive cpu immediately.
			 */
			p->sleep_type = SLEEP_NONINTERACTIVE;
L
Linus Torvalds 已提交
898 899 900 901 902 903
		} else {
			/*
			 * Tasks waking from uninterruptible sleep are
			 * limited in their sleep_avg rise as they
			 * are likely to be waiting on I/O
			 */
904
			if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
905
				if (p->sleep_avg >= ceiling)
L
Linus Torvalds 已提交
906 907
					sleep_time = 0;
				else if (p->sleep_avg + sleep_time >=
908 909 910
					 ceiling) {
						p->sleep_avg = ceiling;
						sleep_time = 0;
L
Linus Torvalds 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924
				}
			}

			/*
			 * This code gives a bonus to interactive tasks.
			 *
			 * The boost works by updating the 'average sleep time'
			 * value here, based on ->timestamp. The more time a
			 * task spends sleeping, the higher the average gets -
			 * and the higher the priority boost gets as well.
			 */
			p->sleep_avg += sleep_time;

		}
925 926
		if (p->sleep_avg > NS_MAX_SLEEP_AVG)
			p->sleep_avg = NS_MAX_SLEEP_AVG;
L
Linus Torvalds 已提交
927 928
	}

929
	return effective_prio(p);
L
Linus Torvalds 已提交
930 931 932 933 934 935 936 937
}

/*
 * activate_task - move a task to the runqueue and do priority recalculation
 *
 * Update all the scheduling statistics stuff. (sleep average
 * calculation, priority modifiers, etc.)
 */
938
static void activate_task(struct task_struct *p, struct rq *rq, int local)
L
Linus Torvalds 已提交
939 940 941 942 943 944 945
{
	unsigned long long now;

	now = sched_clock();
#ifdef CONFIG_SMP
	if (!local) {
		/* Compensate for drifting sched_clock */
946
		struct rq *this_rq = this_rq();
L
Linus Torvalds 已提交
947 948 949 950 951
		now = (now - this_rq->timestamp_last_tick)
			+ rq->timestamp_last_tick;
	}
#endif

I
Ingo Molnar 已提交
952 953 954 955 956 957 958 959 960 961 962
	/*
	 * Sleep time is in units of nanosecs, so shift by 20 to get a
	 * milliseconds-range estimation of the amount of time that the task
	 * spent sleeping:
	 */
	if (unlikely(prof_on == SLEEP_PROFILING)) {
		if (p->state == TASK_UNINTERRUPTIBLE)
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
				     (now - p->timestamp) >> 20);
	}

C
Chen, Kenneth W 已提交
963 964
	if (!rt_task(p))
		p->prio = recalc_task_prio(p, now);
L
Linus Torvalds 已提交
965 966 967 968 969

	/*
	 * This checks to make sure it's not an uninterruptible task
	 * that is now waking up.
	 */
970
	if (p->sleep_type == SLEEP_NORMAL) {
L
Linus Torvalds 已提交
971 972 973 974 975 976 977 978
		/*
		 * Tasks which were woken up by interrupts (ie. hw events)
		 * are most likely of interactive nature. So we give them
		 * the credit of extending their sleep time to the period
		 * of time they spend on the runqueue, waiting for execution
		 * on a CPU, first time around:
		 */
		if (in_interrupt())
979
			p->sleep_type = SLEEP_INTERRUPTED;
L
Linus Torvalds 已提交
980 981 982 983 984
		else {
			/*
			 * Normal first-time wakeups get a credit too for
			 * on-runqueue time, but it will be weighted down:
			 */
985
			p->sleep_type = SLEEP_INTERACTIVE;
L
Linus Torvalds 已提交
986 987 988 989 990 991 992 993 994 995
		}
	}
	p->timestamp = now;

	__activate_task(p, rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
996
static void deactivate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
997
{
998
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	dequeue_task(p, p->array);
	p->array = NULL;
}

/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP
1011 1012 1013 1014 1015

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1016
static void resched_task(struct task_struct *p)
L
Linus Torvalds 已提交
1017
{
1018
	int cpu;
L
Linus Torvalds 已提交
1019 1020 1021

	assert_spin_locked(&task_rq(p)->lock);

1022 1023 1024 1025
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
L
Linus Torvalds 已提交
1026

1027 1028 1029 1030
	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

1031
	/* NEED_RESCHED must be visible before we test polling */
1032
	smp_mb();
1033
	if (!tsk_is_polling(p))
1034
		smp_send_reschedule(cpu);
L
Linus Torvalds 已提交
1035 1036
}
#else
1037
static inline void resched_task(struct task_struct *p)
L
Linus Torvalds 已提交
1038
{
1039
	assert_spin_locked(&task_rq(p)->lock);
L
Linus Torvalds 已提交
1040 1041 1042 1043 1044 1045 1046 1047
	set_tsk_need_resched(p);
}
#endif

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1048
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1049 1050 1051 1052
{
	return cpu_curr(task_cpu(p)) == p;
}

1053 1054 1055 1056 1057 1058
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->raw_weighted_load;
}

L
Linus Torvalds 已提交
1059
#ifdef CONFIG_SMP
1060
struct migration_req {
L
Linus Torvalds 已提交
1061 1062
	struct list_head list;

1063
	struct task_struct *task;
L
Linus Torvalds 已提交
1064 1065 1066
	int dest_cpu;

	struct completion done;
1067
};
L
Linus Torvalds 已提交
1068 1069 1070 1071 1072

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1073
static int
1074
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1075
{
1076
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
	if (!p->array && !task_running(rq, p)) {
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1091

L
Linus Torvalds 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1104
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1105 1106
{
	unsigned long flags;
1107
	struct rq *rq;
L
Linus Torvalds 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	int preempted;

repeat:
	rq = task_rq_lock(p, &flags);
	/* Must be off runqueue entirely, not preempted. */
	if (unlikely(p->array || task_running(rq, p))) {
		/* If it's preempted, we yield.  It could be a while. */
		preempted = !task_running(rq, p);
		task_rq_unlock(rq, &flags);
		cpu_relax();
		if (preempted)
			yield();
		goto repeat;
	}
	task_rq_unlock(rq, &flags);
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1138
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1150 1151
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1152 1153 1154 1155
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1156
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1157
{
1158
	struct rq *rq = cpu_rq(cpu);
1159

1160
	if (type == 0)
1161
		return rq->raw_weighted_load;
1162

1163
	return min(rq->cpu_load[type-1], rq->raw_weighted_load);
L
Linus Torvalds 已提交
1164 1165 1166
}

/*
1167 1168
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1169
 */
N
Nick Piggin 已提交
1170
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1171
{
1172
	struct rq *rq = cpu_rq(cpu);
1173

N
Nick Piggin 已提交
1174
	if (type == 0)
1175
		return rq->raw_weighted_load;
1176

1177 1178 1179 1180 1181 1182 1183 1184
	return max(rq->cpu_load[type-1], rq->raw_weighted_load);
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1185
	struct rq *rq = cpu_rq(cpu);
1186 1187
	unsigned long n = rq->nr_running;

1188
	return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1189 1190
}

N
Nick Piggin 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1208 1209 1210 1211
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1237
nextgroup:
N
Nick Piggin 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1247
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1248
 */
I
Ingo Molnar 已提交
1249 1250
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1251
{
1252
	cpumask_t tmp;
N
Nick Piggin 已提交
1253 1254 1255 1256
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1257 1258 1259 1260
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1261
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1287

1288
	for_each_domain(cpu, tmp) {
1289 1290 1291 1292 1293
 		/*
 	 	 * If power savings logic is enabled for a domain, stop there.
 	 	 */
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1294 1295
		if (tmp->flags & flag)
			sd = tmp;
1296
	}
N
Nick Piggin 已提交
1297 1298 1299 1300

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1301 1302 1303 1304 1305 1306
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1307 1308 1309

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1310 1311 1312 1313
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1314

1315
		new_cpu = find_idlest_cpu(group, t, cpu);
1316 1317 1318 1319 1320
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1321

1322
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1349
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	if (idle_cpu(cpu))
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1360
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1361 1362 1363 1364 1365
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
		}
N
Nick Piggin 已提交
1366 1367
		else
			break;
L
Linus Torvalds 已提交
1368 1369 1370 1371
	}
	return cpu;
}
#else
1372
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1392
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1393 1394 1395 1396
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1397
	struct rq *rq;
L
Linus Torvalds 已提交
1398
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1399
	struct sched_domain *sd, *this_sd = NULL;
1400
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

	if (p->array)
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1419 1420
	new_cpu = cpu;

L
Linus Torvalds 已提交
1421 1422 1423
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1424 1425 1426 1427 1428 1429 1430 1431
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1432 1433 1434
		}
	}

N
Nick Piggin 已提交
1435
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1436 1437 1438
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1439
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1440
	 */
N
Nick Piggin 已提交
1441 1442 1443
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1444

1445 1446
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1447 1448
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1449

N
Nick Piggin 已提交
1450 1451
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1452 1453
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1454 1455
			unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);

L
Linus Torvalds 已提交
1456
			/*
1457 1458 1459
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1460
			 */
1461
			if (sync)
1462
				tl -= current->load_weight;
1463 1464

			if ((tl <= load &&
1465 1466
				tl + target_load(cpu, idx) <= tl_per_task) ||
				100*(tl + p->load_weight) <= imbalance*load) {
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
		if (p->array)
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
	if (old_state == TASK_UNINTERRUPTIBLE) {
		rq->nr_uninterruptible--;
		/*
		 * Tasks on involuntary sleep don't earn
		 * sleep_avg beyond just interactive state.
		 */
1515
		p->sleep_type = SLEEP_NONINTERACTIVE;
1516
	} else
L
Linus Torvalds 已提交
1517

I
Ingo Molnar 已提交
1518 1519
	/*
	 * Tasks that have marked their sleep as noninteractive get
1520 1521
	 * woken up with their sleep average not weighted in an
	 * interactive way.
I
Ingo Molnar 已提交
1522
	 */
1523 1524 1525 1526 1527
		if (old_state & TASK_NONINTERACTIVE)
			p->sleep_type = SLEEP_NONINTERACTIVE;


	activate_task(p, rq, cpu == this_cpu);
L
Linus Torvalds 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
	if (!sync || cpu != this_cpu) {
		if (TASK_PREEMPTS_CURR(p, rq))
			resched_task(rq->curr);
	}
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1550
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1551 1552 1553 1554 1555 1556
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1557
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1558 1559 1560 1561 1562 1563 1564 1565
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
 */
1566
void fastcall sched_fork(struct task_struct *p, int clone_flags)
L
Linus Torvalds 已提交
1567
{
N
Nick Piggin 已提交
1568 1569 1570 1571 1572 1573 1574
	int cpu = get_cpu();

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	set_task_cpu(p, cpu);

L
Linus Torvalds 已提交
1575 1576 1577 1578 1579 1580 1581
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
1582 1583 1584 1585 1586 1587

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

L
Linus Torvalds 已提交
1588 1589
	INIT_LIST_HEAD(&p->run_list);
	p->array = NULL;
1590 1591 1592
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
	if (unlikely(sched_info_on()))
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1593
#endif
1594
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1595 1596
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1597
#ifdef CONFIG_PREEMPT
1598
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1599
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
#endif
	/*
	 * Share the timeslice between parent and child, thus the
	 * total amount of pending timeslices in the system doesn't change,
	 * resulting in more scheduling fairness.
	 */
	local_irq_disable();
	p->time_slice = (current->time_slice + 1) >> 1;
	/*
	 * The remainder of the first timeslice might be recovered by
	 * the parent if the child exits early enough.
	 */
	p->first_time_slice = 1;
	current->time_slice >>= 1;
	p->timestamp = sched_clock();
	if (unlikely(!current->time_slice)) {
		/*
		 * This case is rare, it happens when the parent has only
		 * a single jiffy left from its timeslice. Taking the
		 * runqueue lock is not a problem.
		 */
		current->time_slice = 1;
		scheduler_tick();
N
Nick Piggin 已提交
1623 1624 1625
	}
	local_irq_enable();
	put_cpu();
L
Linus Torvalds 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1635
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1636
{
1637
	struct rq *rq, *this_rq;
L
Linus Torvalds 已提交
1638 1639 1640 1641
	unsigned long flags;
	int this_cpu, cpu;

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1642
	BUG_ON(p->state != TASK_RUNNING);
L
Linus Torvalds 已提交
1643
	this_cpu = smp_processor_id();
N
Nick Piggin 已提交
1644
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

	/*
	 * We decrease the sleep average of forking parents
	 * and children as well, to keep max-interactive tasks
	 * from forking tasks that are max-interactive. The parent
	 * (current) is done further down, under its lock.
	 */
	p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
		CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);

	p->prio = effective_prio(p);

	if (likely(cpu == this_cpu)) {
		if (!(clone_flags & CLONE_VM)) {
			/*
			 * The VM isn't cloned, so we're in a good position to
			 * do child-runs-first in anticipation of an exec. This
			 * usually avoids a lot of COW overhead.
			 */
			if (unlikely(!current->array))
				__activate_task(p, rq);
			else {
				p->prio = current->prio;
1668
				p->normal_prio = current->normal_prio;
L
Linus Torvalds 已提交
1669 1670 1671
				list_add_tail(&p->run_list, &current->run_list);
				p->array = current->array;
				p->array->nr_active++;
1672
				inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
			}
			set_need_resched();
		} else
			/* Run child last */
			__activate_task(p, rq);
		/*
		 * We skip the following code due to cpu == this_cpu
	 	 *
		 *   task_rq_unlock(rq, &flags);
		 *   this_rq = task_rq_lock(current, &flags);
		 */
		this_rq = rq;
	} else {
		this_rq = cpu_rq(this_cpu);

		/*
		 * Not the local CPU - must adjust timestamp. This should
		 * get optimised away in the !CONFIG_SMP case.
		 */
		p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
					+ rq->timestamp_last_tick;
		__activate_task(p, rq);
		if (TASK_PREEMPTS_CURR(p, rq))
			resched_task(rq->curr);

		/*
		 * Parent and child are on different CPUs, now get the
		 * parent runqueue to update the parent's ->sleep_avg:
		 */
		task_rq_unlock(rq, &flags);
		this_rq = task_rq_lock(current, &flags);
	}
	current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
		PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
	task_rq_unlock(this_rq, &flags);
}

/*
 * Potentially available exiting-child timeslices are
 * retrieved here - this way the parent does not get
 * penalized for creating too many threads.
 *
 * (this cannot be used to 'generate' timeslices
 * artificially, because any timeslice recovered here
 * was given away by the parent in the first place.)
 */
1719
void fastcall sched_exit(struct task_struct *p)
L
Linus Torvalds 已提交
1720 1721
{
	unsigned long flags;
1722
	struct rq *rq;
L
Linus Torvalds 已提交
1723 1724 1725 1726 1727 1728

	/*
	 * If the child was a (relative-) CPU hog then decrease
	 * the sleep_avg of the parent as well.
	 */
	rq = task_rq_lock(p->parent, &flags);
1729
	if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
L
Linus Torvalds 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
		p->parent->time_slice += p->time_slice;
		if (unlikely(p->parent->time_slice > task_timeslice(p)))
			p->parent->time_slice = task_timeslice(p);
	}
	if (p->sleep_avg < p->parent->sleep_avg)
		p->parent->sleep_avg = p->parent->sleep_avg /
		(EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
		(EXIT_WEIGHT + 1);
	task_rq_unlock(rq, &flags);
}

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1753
static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1754 1755 1756 1757 1758
{
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1759 1760
/**
 * finish_task_switch - clean up after a task-switch
1761
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1762 1763
 * @prev: the thread we just switched away from.
 *
1764 1765 1766 1767
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1768 1769 1770 1771 1772 1773
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1774
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1775 1776 1777
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1778
	long prev_state;
L
Linus Torvalds 已提交
1779 1780 1781 1782 1783

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1784
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1785 1786
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1787
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1788 1789 1790 1791 1792
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1793
	prev_state = prev->state;
1794 1795
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
L
Linus Torvalds 已提交
1796 1797
	if (mm)
		mmdrop(mm);
1798
	if (unlikely(prev_state == TASK_DEAD)) {
1799 1800 1801 1802 1803
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
	 	 */
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1804
		put_task_struct(prev);
1805
	}
L
Linus Torvalds 已提交
1806 1807 1808 1809 1810 1811
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1812
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1813 1814
	__releases(rq->lock)
{
1815 1816
	struct rq *rq = this_rq();

1817 1818 1819 1820 1821
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1822 1823 1824 1825 1826 1827 1828 1829
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
1830
static inline struct task_struct *
1831
context_switch(struct rq *rq, struct task_struct *prev,
1832
	       struct task_struct *next)
L
Linus Torvalds 已提交
1833 1834 1835 1836
{
	struct mm_struct *mm = next->mm;
	struct mm_struct *oldmm = prev->active_mm;

N
Nick Piggin 已提交
1837
	if (!mm) {
L
Linus Torvalds 已提交
1838 1839 1840 1841 1842 1843
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

N
Nick Piggin 已提交
1844
	if (!prev->mm) {
L
Linus Torvalds 已提交
1845 1846 1847 1848
		prev->active_mm = NULL;
		WARN_ON(rq->prev_mm);
		rq->prev_mm = oldmm;
	}
1849 1850 1851 1852 1853 1854 1855
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1856
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1857
#endif
L
Linus Torvalds 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

	return prev;
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1886
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1901 1902
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1903

1904
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1914
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1915 1916 1917 1918 1919
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

L
Linus Torvalds 已提交
1935 1936
#ifdef CONFIG_SMP

1937 1938 1939 1940 1941 1942 1943 1944 1945
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
{
	return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
}

L
Linus Torvalds 已提交
1946 1947 1948 1949 1950 1951
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
1952
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1953 1954 1955
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
1956
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
1957 1958 1959 1960
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
1961
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
1977
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
1991
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
1992 1993 1994 1995
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1996 1997 1998 1999 2000
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2001
	if (unlikely(!spin_trylock(&busiest->lock))) {
2002
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2017
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2018
{
2019
	struct migration_req req;
L
Linus Torvalds 已提交
2020
	unsigned long flags;
2021
	struct rq *rq;
L
Linus Torvalds 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2032

L
Linus Torvalds 已提交
2033 2034 2035 2036 2037
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2038

L
Linus Torvalds 已提交
2039 2040 2041 2042 2043 2044 2045
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2046 2047
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2048 2049 2050 2051
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2052
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2053
	put_cpu();
N
Nick Piggin 已提交
2054 2055
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2056 2057 2058 2059 2060 2061
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
2062 2063 2064
static void pull_task(struct rq *src_rq, struct prio_array *src_array,
		      struct task_struct *p, struct rq *this_rq,
		      struct prio_array *this_array, int this_cpu)
L
Linus Torvalds 已提交
2065 2066
{
	dequeue_task(p, src_array);
2067
	dec_nr_running(p, src_rq);
L
Linus Torvalds 已提交
2068
	set_task_cpu(p, this_cpu);
2069
	inc_nr_running(p, this_rq);
L
Linus Torvalds 已提交
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	enqueue_task(p, this_array);
	p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
				+ this_rq->timestamp_last_tick;
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
	if (TASK_PREEMPTS_CURR(p, this_rq))
		resched_task(this_rq->curr);
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2084
static
2085
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2086 2087
		     struct sched_domain *sd, enum idle_type idle,
		     int *all_pinned)
L
Linus Torvalds 已提交
2088 2089 2090 2091 2092 2093 2094 2095 2096
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2097 2098 2099 2100
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2101 2102 2103

	/*
	 * Aggressive migration if:
2104
	 * 1) task is cache cold, or
L
Linus Torvalds 已提交
2105 2106 2107
	 * 2) too many balance attempts have failed.
	 */

2108
	if (sd->nr_balance_failed > sd->cache_nice_tries)
L
Linus Torvalds 已提交
2109 2110 2111
		return 1;

	if (task_hot(p, rq->timestamp_last_tick, sd))
2112
		return 0;
L
Linus Torvalds 已提交
2113 2114 2115
	return 1;
}

2116
#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2117

L
Linus Torvalds 已提交
2118
/*
2119 2120 2121
 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
 * load from busiest to this_rq, as part of a balancing operation within
 * "domain". Returns the number of tasks moved.
L
Linus Torvalds 已提交
2122 2123 2124
 *
 * Called with both runqueues locked.
 */
2125
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2126 2127 2128
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum idle_type idle,
		      int *all_pinned)
L
Linus Torvalds 已提交
2129
{
2130 2131
	int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
	    best_prio_seen, skip_for_load;
2132
	struct prio_array *array, *dst_array;
L
Linus Torvalds 已提交
2133
	struct list_head *head, *curr;
2134
	struct task_struct *tmp;
2135
	long rem_load_move;
L
Linus Torvalds 已提交
2136

2137
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2138 2139
		goto out;

2140
	rem_load_move = max_load_move;
2141
	pinned = 1;
2142
	this_best_prio = rq_best_prio(this_rq);
2143
	best_prio = rq_best_prio(busiest);
2144 2145 2146
	/*
	 * Enable handling of the case where there is more than one task
	 * with the best priority.   If the current running task is one
2147
	 * of those with prio==best_prio we know it won't be moved
2148 2149 2150
	 * and therefore it's safe to override the skip (based on load) of
	 * any task we find with that prio.
	 */
2151
	best_prio_seen = best_prio == busiest->curr->prio;
2152

L
Linus Torvalds 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
	/*
	 * We first consider expired tasks. Those will likely not be
	 * executed in the near future, and they are most likely to
	 * be cache-cold, thus switching CPUs has the least effect
	 * on them.
	 */
	if (busiest->expired->nr_active) {
		array = busiest->expired;
		dst_array = this_rq->expired;
	} else {
		array = busiest->active;
		dst_array = this_rq->active;
	}

new_array:
	/* Start searching at priority 0: */
	idx = 0;
skip_bitmap:
	if (!idx)
		idx = sched_find_first_bit(array->bitmap);
	else
		idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
	if (idx >= MAX_PRIO) {
		if (array == busiest->expired && busiest->active->nr_active) {
			array = busiest->active;
			dst_array = this_rq->active;
			goto new_array;
		}
		goto out;
	}

	head = array->queue + idx;
	curr = head->prev;
skip_queue:
2187
	tmp = list_entry(curr, struct task_struct, run_list);
L
Linus Torvalds 已提交
2188 2189 2190

	curr = curr->prev;

2191 2192 2193 2194 2195
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
2196 2197
	skip_for_load = tmp->load_weight > rem_load_move;
	if (skip_for_load && idx < this_best_prio)
2198
		skip_for_load = !best_prio_seen && idx == best_prio;
2199
	if (skip_for_load ||
2200
	    !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2201 2202

		best_prio_seen |= idx == best_prio;
L
Linus Torvalds 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
		if (curr != head)
			goto skip_queue;
		idx++;
		goto skip_bitmap;
	}

#ifdef CONFIG_SCHEDSTATS
	if (task_hot(tmp, busiest->timestamp_last_tick, sd))
		schedstat_inc(sd, lb_hot_gained[idle]);
#endif

	pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
	pulled++;
2216
	rem_load_move -= tmp->load_weight;
L
Linus Torvalds 已提交
2217

2218 2219 2220 2221 2222
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2223 2224
		if (idx < this_best_prio)
			this_best_prio = idx;
L
Linus Torvalds 已提交
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
		if (curr != head)
			goto skip_queue;
		idx++;
		goto skip_bitmap;
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2237 2238 2239

	if (all_pinned)
		*all_pinned = pinned;
L
Linus Torvalds 已提交
2240 2241 2242 2243 2244
	return pulled;
}

/*
 * find_busiest_group finds and returns the busiest CPU group within the
2245 2246
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2247 2248 2249
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
2250 2251
		   unsigned long *imbalance, enum idle_type idle, int *sd_idle,
		   cpumask_t *cpus)
L
Linus Torvalds 已提交
2252 2253 2254
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2255
	unsigned long max_pull;
2256 2257
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2258
	int load_idx;
2259 2260 2261 2262 2263 2264
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2265 2266

	max_load = this_load = total_load = total_pwr = 0;
2267 2268
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
N
Nick Piggin 已提交
2269 2270 2271 2272 2273 2274
	if (idle == NOT_IDLE)
		load_idx = sd->busy_idx;
	else if (idle == NEWLY_IDLE)
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2275 2276

	do {
2277
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2278 2279
		int local_group;
		int i;
2280
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2281 2282 2283 2284

		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
2285
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2286 2287

		for_each_cpu_mask(i, group->cpumask) {
2288 2289 2290 2291 2292 2293
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2294

N
Nick Piggin 已提交
2295 2296 2297
			if (*sd_idle && !idle_cpu(i))
				*sd_idle = 0;

L
Linus Torvalds 已提交
2298 2299
			/* Bias balancing toward cpus of our domain */
			if (local_group)
N
Nick Piggin 已提交
2300
				load = target_load(i, load_idx);
L
Linus Torvalds 已提交
2301
			else
N
Nick Piggin 已提交
2302
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2303 2304

			avg_load += load;
2305 2306
			sum_nr_running += rq->nr_running;
			sum_weighted_load += rq->raw_weighted_load;
L
Linus Torvalds 已提交
2307 2308 2309 2310 2311 2312 2313 2314
		}

		total_load += avg_load;
		total_pwr += group->cpu_power;

		/* Adjust by relative CPU power of the group */
		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;

2315 2316
		group_capacity = group->cpu_power / SCHED_LOAD_SCALE;

L
Linus Torvalds 已提交
2317 2318 2319
		if (local_group) {
			this_load = avg_load;
			this = group;
2320 2321 2322
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2323
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2324 2325
			max_load = avg_load;
			busiest = group;
2326 2327
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2328
		}
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
 		if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
 			goto group_next;

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

 		/*
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
 		 */
 		if (!power_savings_balance || sum_nr_running >= group_capacity
		    || !sum_nr_running)
 			goto group_next;

 		/*
		 * Calculate the group which has the least non-idle load.
 		 * This is the group from where we need to pick up the load
 		 * for saving power
 		 */
 		if ((sum_nr_running < min_nr_running) ||
 		    (sum_nr_running == min_nr_running &&
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
 			group_min = group;
 			min_nr_running = sum_nr_running;
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
 		}

 		/*
		 * Calculate the group which is almost near its
 		 * capacity but still has some space to pick up some load
 		 * from other group and save more power
 		 */
2374
 		if (sum_nr_running <= group_capacity - 1) {
2375 2376 2377 2378 2379 2380 2381
 			if (sum_nr_running > leader_nr_running ||
 			    (sum_nr_running == leader_nr_running &&
 			     first_cpu(group->cpumask) >
 			      first_cpu(group_leader->cpumask))) {
 				group_leader = group;
 				leader_nr_running = sum_nr_running;
 			}
2382
		}
2383 2384
group_next:
#endif
L
Linus Torvalds 已提交
2385 2386 2387
		group = group->next;
	} while (group != sd->groups);

2388
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2389 2390 2391 2392 2393 2394 2395 2396
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2397
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2421 2422

	/* Don't want to pull so many tasks that a group would go idle */
2423
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2424

L
Linus Torvalds 已提交
2425
	/* How much load to actually move to equalise the imbalance */
2426
	*imbalance = min(max_pull * busiest->cpu_power,
L
Linus Torvalds 已提交
2427 2428 2429
				(avg_load - this_load) * this->cpu_power)
			/ SCHED_LOAD_SCALE;

2430 2431 2432 2433 2434 2435 2436
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
	if (*imbalance < busiest_load_per_task) {
2437
		unsigned long tmp, pwr_now, pwr_move;
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2449

2450 2451
		if (max_load - this_load >= busiest_load_per_task * imbn) {
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2461 2462 2463 2464
		pwr_now += busiest->cpu_power *
			min(busiest_load_per_task, max_load);
		pwr_now += this->cpu_power *
			min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2465 2466 2467
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2468
		tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
L
Linus Torvalds 已提交
2469
		if (max_load > tmp)
2470 2471
			pwr_move += busiest->cpu_power *
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2472 2473 2474

		/* Amount of load we'd add */
		if (max_load*busiest->cpu_power <
2475
				busiest_load_per_task*SCHED_LOAD_SCALE)
L
Linus Torvalds 已提交
2476 2477
			tmp = max_load*busiest->cpu_power/this->cpu_power;
		else
2478 2479
			tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
		pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2480 2481 2482 2483 2484 2485
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2486
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2487 2488 2489 2490 2491
	}

	return busiest;

out_balanced:
2492 2493 2494
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		goto ret;
L
Linus Torvalds 已提交
2495

2496 2497 2498 2499 2500 2501
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
ret:
#endif
L
Linus Torvalds 已提交
2502 2503 2504 2505 2506 2507 2508
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2509
static struct rq *
2510
find_busiest_queue(struct sched_group *group, enum idle_type idle,
2511
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2512
{
2513
	struct rq *busiest = NULL, *rq;
2514
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2515 2516 2517
	int i;

	for_each_cpu_mask(i, group->cpumask) {
2518 2519 2520 2521

		if (!cpu_isset(i, *cpus))
			continue;

2522
		rq = cpu_rq(i);
2523

2524
		if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2525
			continue;
L
Linus Torvalds 已提交
2526

2527 2528 2529
		if (rq->raw_weighted_load > max_load) {
			max_load = rq->raw_weighted_load;
			busiest = rq;
L
Linus Torvalds 已提交
2530 2531 2532 2533 2534 2535
		}
	}

	return busiest;
}

2536 2537 2538 2539 2540 2541
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

2542 2543 2544 2545 2546
static inline unsigned long minus_1_or_zero(unsigned long n)
{
	return n > 0 ? n - 1 : 0;
}

L
Linus Torvalds 已提交
2547 2548 2549 2550
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2551
static int load_balance(int this_cpu, struct rq *this_rq,
L
Linus Torvalds 已提交
2552 2553
			struct sched_domain *sd, enum idle_type idle)
{
2554
	int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2555 2556
	struct sched_group *group;
	unsigned long imbalance;
2557
	struct rq *busiest;
2558
	cpumask_t cpus = CPU_MASK_ALL;
2559
	unsigned long flags;
N
Nick Piggin 已提交
2560

2561 2562 2563 2564 2565 2566
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
	 * portraying it as NOT_IDLE.
	 */
2567
	if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2568
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2569
		sd_idle = 1;
L
Linus Torvalds 已提交
2570 2571 2572

	schedstat_inc(sd, lb_cnt[idle]);

2573 2574 2575
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
							&cpus);
L
Linus Torvalds 已提交
2576 2577 2578 2579 2580
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2581
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2582 2583 2584 2585 2586
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2587
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598

	schedstat_add(sd, lb_imbalance[idle], imbalance);

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. nr_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
2599
		local_irq_save(flags);
N
Nick Piggin 已提交
2600
		double_rq_lock(this_rq, busiest);
L
Linus Torvalds 已提交
2601
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2602 2603
				      minus_1_or_zero(busiest->nr_running),
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2604
		double_rq_unlock(this_rq, busiest);
2605
		local_irq_restore(flags);
2606 2607

		/* All tasks on this runqueue were pinned by CPU affinity */
2608 2609 2610 2611
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2612
			goto out_balanced;
2613
		}
L
Linus Torvalds 已提交
2614
	}
2615

L
Linus Torvalds 已提交
2616 2617 2618 2619 2620 2621
	if (!nr_moved) {
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2622
			spin_lock_irqsave(&busiest->lock, flags);
2623 2624 2625 2626 2627

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2628
				spin_unlock_irqrestore(&busiest->lock, flags);
2629 2630 2631 2632
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2633 2634 2635
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2636
				active_balance = 1;
L
Linus Torvalds 已提交
2637
			}
2638
			spin_unlock_irqrestore(&busiest->lock, flags);
2639
			if (active_balance)
L
Linus Torvalds 已提交
2640 2641 2642 2643 2644 2645
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2646
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2647
		}
2648
	} else
L
Linus Torvalds 已提交
2649 2650
		sd->nr_balance_failed = 0;

2651
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2652 2653
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2654 2655 2656 2657 2658 2659 2660 2661 2662
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2663 2664
	}

2665
	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2666
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2667
		return -1;
L
Linus Torvalds 已提交
2668 2669 2670 2671 2672
	return nr_moved;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2673
	sd->nr_balance_failed = 0;
2674 2675

out_one_pinned:
L
Linus Torvalds 已提交
2676
	/* tune up the balancing interval */
2677 2678
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2679 2680
		sd->balance_interval *= 2;

2681
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2682
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2683
		return -1;
L
Linus Torvalds 已提交
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
 * this_rq is locked.
 */
2694
static int
2695
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2696 2697
{
	struct sched_group *group;
2698
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2699 2700
	unsigned long imbalance;
	int nr_moved = 0;
N
Nick Piggin 已提交
2701
	int sd_idle = 0;
2702
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2703

2704 2705 2706 2707 2708 2709 2710 2711
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
	 * portraying it as NOT_IDLE.
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2712
		sd_idle = 1;
L
Linus Torvalds 已提交
2713 2714

	schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2715 2716 2717
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
				&sd_idle, &cpus);
L
Linus Torvalds 已提交
2718 2719
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2720
		goto out_balanced;
L
Linus Torvalds 已提交
2721 2722
	}

2723 2724
	busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
				&cpus);
N
Nick Piggin 已提交
2725
	if (!busiest) {
L
Linus Torvalds 已提交
2726
		schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2727
		goto out_balanced;
L
Linus Torvalds 已提交
2728 2729
	}

N
Nick Piggin 已提交
2730 2731
	BUG_ON(busiest == this_rq);

L
Linus Torvalds 已提交
2732
	schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2733 2734 2735 2736 2737 2738

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2739
					minus_1_or_zero(busiest->nr_running),
2740
					imbalance, sd, NEWLY_IDLE, NULL);
2741
		spin_unlock(&busiest->lock);
2742 2743 2744 2745 2746 2747

		if (!nr_moved) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2748 2749
	}

N
Nick Piggin 已提交
2750
	if (!nr_moved) {
L
Linus Torvalds 已提交
2751
		schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2752 2753
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2754 2755
			return -1;
	} else
2756
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2757 2758

	return nr_moved;
2759 2760 2761

out_balanced:
	schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2762
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2763
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2764
		return -1;
2765
	sd->nr_balance_failed = 0;
2766

2767
	return 0;
L
Linus Torvalds 已提交
2768 2769 2770 2771 2772 2773
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2774
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2775 2776 2777 2778 2779
{
	struct sched_domain *sd;

	for_each_domain(this_cpu, sd) {
		if (sd->flags & SD_BALANCE_NEWIDLE) {
2780 2781
			/* If we've pulled tasks over stop searching: */
			if (load_balance_newidle(this_cpu, this_rq, sd))
L
Linus Torvalds 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
				break;
		}
	}
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2795
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2796
{
2797
	int target_cpu = busiest_rq->push_cpu;
2798 2799
	struct sched_domain *sd;
	struct rq *target_rq;
2800

2801
	/* Is there any task to move? */
2802 2803 2804 2805
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2806 2807

	/*
2808 2809 2810
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2811
	 */
2812
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2813

2814 2815 2816 2817
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
2818
	for_each_domain(target_cpu, sd) {
2819
		if ((sd->flags & SD_LOAD_BALANCE) &&
2820
		    cpu_isset(busiest_cpu, sd->span))
2821
				break;
2822
	}
2823

2824 2825
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2826

2827 2828 2829 2830 2831 2832 2833
		if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
			       RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
			       NULL))
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2834
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2835 2836
}

2837
static void update_load(struct rq *this_rq)
L
Linus Torvalds 已提交
2838
{
2839
	unsigned long this_load;
2840
	int i, scale;
L
Linus Torvalds 已提交
2841

2842
	this_load = this_rq->raw_weighted_load;
2843 2844 2845 2846 2847

	/* Update our load: */
	for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
		unsigned long old_load, new_load;

N
Nick Piggin 已提交
2848
		old_load = this_rq->cpu_load[i];
2849
		new_load = this_load;
N
Nick Piggin 已提交
2850 2851 2852 2853 2854 2855 2856 2857 2858
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
	}
2859 2860 2861
}

/*
2862
 * run_rebalance_domains is triggered when needed from the scheduler tick.
2863 2864 2865 2866 2867 2868 2869
 *
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */

2870
static void run_rebalance_domains(struct softirq_action *h)
2871
{
2872 2873
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
2874 2875
	unsigned long interval;
	struct sched_domain *sd;
2876 2877 2878 2879 2880 2881
	/*
	 * We are idle if there are no processes running. This
	 * is valid even if we are the idle process (SMT).
	 */
	enum idle_type idle = !this_rq->nr_running ?
				SCHED_IDLE : NOT_IDLE;
2882 2883
	/* Earliest time when we have to call run_rebalance_domains again */
	unsigned long next_balance = jiffies + 60*HZ;
L
Linus Torvalds 已提交
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897

	for_each_domain(this_cpu, sd) {
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
		if (idle != SCHED_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;

2898
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
L
Linus Torvalds 已提交
2899
			if (load_balance(this_cpu, this_rq, sd, idle)) {
2900 2901
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
2902 2903 2904
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
L
Linus Torvalds 已提交
2905 2906 2907 2908
				idle = NOT_IDLE;
			}
			sd->last_balance += interval;
		}
2909 2910
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
L
Linus Torvalds 已提交
2911
	}
2912
	this_rq->next_balance = next_balance;
L
Linus Torvalds 已提交
2913 2914 2915 2916 2917
}
#else
/*
 * on UP we do not need to balance between CPUs:
 */
2918
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
2919 2920 2921 2922
{
}
#endif

2923
static inline void wake_priority_sleeper(struct rq *rq)
L
Linus Torvalds 已提交
2924 2925
{
#ifdef CONFIG_SCHED_SMT
2926
	if (!rq->nr_running)
2927
		return;
2928

L
Linus Torvalds 已提交
2929 2930 2931 2932 2933
	spin_lock(&rq->lock);
	/*
	 * If an SMT sibling task has been put to sleep for priority
	 * reasons reschedule the idle task to see if it can now run.
	 */
2934
	if (rq->nr_running)
L
Linus Torvalds 已提交
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
		resched_task(rq->idle);
	spin_unlock(&rq->lock);
#endif
}

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
 * This is called on clock ticks and on context switches.
 * Bank in p->sched_time the ns elapsed since the last tick or switch.
 */
2948
static inline void
2949
update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
L
Linus Torvalds 已提交
2950
{
2951
	p->sched_time += now - max(p->timestamp, rq->timestamp_last_tick);
L
Linus Torvalds 已提交
2952 2953 2954 2955 2956 2957
}

/*
 * Return current->sched_time plus any more ns on the sched_clock
 * that have not yet been banked.
 */
2958
unsigned long long current_sched_time(const struct task_struct *p)
L
Linus Torvalds 已提交
2959 2960 2961
{
	unsigned long long ns;
	unsigned long flags;
2962

L
Linus Torvalds 已提交
2963
	local_irq_save(flags);
2964 2965
	ns = max(p->timestamp, task_rq(p)->timestamp_last_tick);
	ns = p->sched_time + sched_clock() - ns;
L
Linus Torvalds 已提交
2966
	local_irq_restore(flags);
2967

L
Linus Torvalds 已提交
2968 2969 2970
	return ns;
}

2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
/*
 * We place interactive tasks back into the active array, if possible.
 *
 * To guarantee that this does not starve expired tasks we ignore the
 * interactivity of a task if the first expired task had to wait more
 * than a 'reasonable' amount of time. This deadline timeout is
 * load-dependent, as the frequency of array switched decreases with
 * increasing number of running tasks. We also ignore the interactivity
 * if a better static_prio task has expired:
 */
2981
static inline int expired_starving(struct rq *rq)
2982 2983 2984 2985 2986 2987 2988 2989 2990
{
	if (rq->curr->static_prio > rq->best_expired_prio)
		return 1;
	if (!STARVATION_LIMIT || !rq->expired_timestamp)
		return 0;
	if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
		return 1;
	return 0;
}
2991

L
Linus Torvalds 已提交
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3023
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3053
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3065
static void task_running_tick(struct rq *rq, struct task_struct *p)
L
Linus Torvalds 已提交
3066 3067
{
	if (p->array != rq->active) {
3068
		/* Task has expired but was not scheduled yet */
L
Linus Torvalds 已提交
3069
		set_tsk_need_resched(p);
3070
		return;
L
Linus Torvalds 已提交
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
	}
	spin_lock(&rq->lock);
	/*
	 * The task was running during this tick - update the
	 * time slice counter. Note: we do not update a thread's
	 * priority until it either goes to sleep or uses up its
	 * timeslice. This makes it possible for interactive tasks
	 * to use up their timeslices at their highest priority levels.
	 */
	if (rt_task(p)) {
		/*
		 * RR tasks need a special form of timeslice management.
		 * FIFO tasks have no timeslices.
		 */
		if ((p->policy == SCHED_RR) && !--p->time_slice) {
			p->time_slice = task_timeslice(p);
			p->first_time_slice = 0;
			set_tsk_need_resched(p);

			/* put it at the end of the queue: */
			requeue_task(p, rq->active);
		}
		goto out_unlock;
	}
	if (!--p->time_slice) {
		dequeue_task(p, rq->active);
		set_tsk_need_resched(p);
		p->prio = effective_prio(p);
		p->time_slice = task_timeslice(p);
		p->first_time_slice = 0;

		if (!rq->expired_timestamp)
			rq->expired_timestamp = jiffies;
3104
		if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
L
Linus Torvalds 已提交
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
			enqueue_task(p, rq->expired);
			if (p->static_prio < rq->best_expired_prio)
				rq->best_expired_prio = p->static_prio;
		} else
			enqueue_task(p, rq->active);
	} else {
		/*
		 * Prevent a too long timeslice allowing a task to monopolize
		 * the CPU. We do this by splitting up the timeslice into
		 * smaller pieces.
		 *
		 * Note: this does not mean the task's timeslices expire or
		 * get lost in any way, they just might be preempted by
		 * another task of equal priority. (one with higher
		 * priority would have preempted this task already.) We
		 * requeue this task to the end of the list on this priority
		 * level, which is in essence a round-robin of tasks with
		 * equal priority.
		 *
		 * This only applies to tasks in the interactive
		 * delta range with at least TIMESLICE_GRANULARITY to requeue.
		 */
		if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
			p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
			(p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
			(p->array == rq->active)) {

			requeue_task(p, rq->active);
			set_tsk_need_resched(p);
		}
	}
out_unlock:
	spin_unlock(&rq->lock);
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
}

/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	unsigned long long now = sched_clock();
	struct task_struct *p = current;
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);

	update_cpu_clock(p, rq, now);

	rq->timestamp_last_tick = now;

3158
	if (p == rq->idle)
3159
		/* Task on the idle queue */
3160 3161
		wake_priority_sleeper(rq);
	else
3162
		task_running_tick(rq, p);
3163
#ifdef CONFIG_SMP
3164
	update_load(rq);
3165 3166
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
3167
#endif
L
Linus Torvalds 已提交
3168 3169 3170
}

#ifdef CONFIG_SCHED_SMT
3171
static inline void wakeup_busy_runqueue(struct rq *rq)
3172 3173 3174 3175 3176 3177
{
	/* If an SMT runqueue is sleeping due to priority reasons wake it up */
	if (rq->curr == rq->idle && rq->nr_running)
		resched_task(rq->idle);
}

3178 3179 3180 3181
/*
 * Called with interrupt disabled and this_rq's runqueue locked.
 */
static void wake_sleeping_dependent(int this_cpu)
L
Linus Torvalds 已提交
3182
{
N
Nick Piggin 已提交
3183
	struct sched_domain *tmp, *sd = NULL;
L
Linus Torvalds 已提交
3184 3185
	int i;

3186 3187
	for_each_domain(this_cpu, tmp) {
		if (tmp->flags & SD_SHARE_CPUPOWER) {
N
Nick Piggin 已提交
3188
			sd = tmp;
3189 3190 3191
			break;
		}
	}
N
Nick Piggin 已提交
3192 3193

	if (!sd)
L
Linus Torvalds 已提交
3194 3195
		return;

3196
	for_each_cpu_mask(i, sd->span) {
3197
		struct rq *smt_rq = cpu_rq(i);
L
Linus Torvalds 已提交
3198

3199 3200 3201 3202 3203
		if (i == this_cpu)
			continue;
		if (unlikely(!spin_trylock(&smt_rq->lock)))
			continue;

3204
		wakeup_busy_runqueue(smt_rq);
3205
		spin_unlock(&smt_rq->lock);
L
Linus Torvalds 已提交
3206 3207 3208
	}
}

3209 3210 3211 3212 3213
/*
 * number of 'lost' timeslices this task wont be able to fully
 * utilize, if another task runs on a sibling. This models the
 * slowdown effect of other tasks running on siblings:
 */
3214 3215
static inline unsigned long
smt_slice(struct task_struct *p, struct sched_domain *sd)
3216 3217 3218 3219
{
	return p->time_slice * (100 - sd->per_cpu_gain) / 100;
}

3220 3221 3222 3223 3224 3225
/*
 * To minimise lock contention and not have to drop this_rq's runlock we only
 * trylock the sibling runqueues and bypass those runqueues if we fail to
 * acquire their lock. As we only trylock the normal locking order does not
 * need to be obeyed.
 */
3226
static int
3227
dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
L
Linus Torvalds 已提交
3228
{
N
Nick Piggin 已提交
3229
	struct sched_domain *tmp, *sd = NULL;
L
Linus Torvalds 已提交
3230 3231
	int ret = 0, i;

3232 3233 3234 3235 3236 3237
	/* kernel/rt threads do not participate in dependent sleeping */
	if (!p->mm || rt_task(p))
		return 0;

	for_each_domain(this_cpu, tmp) {
		if (tmp->flags & SD_SHARE_CPUPOWER) {
N
Nick Piggin 已提交
3238
			sd = tmp;
3239 3240 3241
			break;
		}
	}
N
Nick Piggin 已提交
3242 3243

	if (!sd)
L
Linus Torvalds 已提交
3244 3245
		return 0;

3246
	for_each_cpu_mask(i, sd->span) {
3247
		struct task_struct *smt_curr;
3248
		struct rq *smt_rq;
L
Linus Torvalds 已提交
3249

3250 3251
		if (i == this_cpu)
			continue;
L
Linus Torvalds 已提交
3252

3253 3254 3255
		smt_rq = cpu_rq(i);
		if (unlikely(!spin_trylock(&smt_rq->lock)))
			continue;
L
Linus Torvalds 已提交
3256

3257
		smt_curr = smt_rq->curr;
L
Linus Torvalds 已提交
3258

3259 3260
		if (!smt_curr->mm)
			goto unlock;
3261

L
Linus Torvalds 已提交
3262 3263 3264 3265 3266 3267 3268 3269
		/*
		 * If a user task with lower static priority than the
		 * running task on the SMT sibling is trying to schedule,
		 * delay it till there is proportionately less timeslice
		 * left of the sibling task to prevent a lower priority
		 * task from using an unfair proportion of the
		 * physical cpu's resources. -ck
		 */
3270 3271 3272 3273 3274 3275 3276 3277
		if (rt_task(smt_curr)) {
			/*
			 * With real time tasks we run non-rt tasks only
			 * per_cpu_gain% of the time.
			 */
			if ((jiffies % DEF_TIMESLICE) >
				(sd->per_cpu_gain * DEF_TIMESLICE / 100))
					ret = 1;
3278
		} else {
3279 3280 3281
			if (smt_curr->static_prio < p->static_prio &&
				!TASK_PREEMPTS_CURR(p, smt_rq) &&
				smt_slice(smt_curr, sd) > task_timeslice(p))
3282 3283
					ret = 1;
		}
3284 3285
unlock:
		spin_unlock(&smt_rq->lock);
L
Linus Torvalds 已提交
3286 3287 3288 3289
	}
	return ret;
}
#else
3290
static inline void wake_sleeping_dependent(int this_cpu)
L
Linus Torvalds 已提交
3291 3292
{
}
3293
static inline int
3294
dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
L
Linus Torvalds 已提交
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
{
	return 0;
}
#endif

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3307 3308
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3309 3310 3311 3312
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3313
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
L
Linus Torvalds 已提交
3314 3315 3316 3317 3318 3319 3320 3321
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3322 3323
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3324 3325 3326
	/*
	 * Is the spinlock portion underflowing?
	 */
3327 3328 3329 3330
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3331 3332 3333 3334 3335 3336
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

3337 3338 3339 3340 3341 3342
static inline int interactive_sleep(enum sleep_type sleep_type)
{
	return (sleep_type == SLEEP_INTERACTIVE ||
		sleep_type == SLEEP_INTERRUPTED);
}

L
Linus Torvalds 已提交
3343 3344 3345 3346 3347
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
3348
	struct task_struct *prev, *next;
3349
	struct prio_array *array;
L
Linus Torvalds 已提交
3350 3351 3352
	struct list_head *queue;
	unsigned long long now;
	unsigned long run_time;
3353
	int cpu, idx, new_prio;
3354
	long *switch_count;
3355
	struct rq *rq;
L
Linus Torvalds 已提交
3356 3357 3358 3359 3360 3361

	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3362 3363 3364 3365
	if (unlikely(in_atomic() && !current->exit_state)) {
		printk(KERN_ERR "BUG: scheduling while atomic: "
			"%s/0x%08x/%d\n",
			current->comm, preempt_count(), current->pid);
3366
		debug_show_held_locks(current);
3367
		dump_stack();
L
Linus Torvalds 已提交
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
	}
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

need_resched:
	preempt_disable();
	prev = current;
	release_kernel_lock(prev);
need_resched_nonpreemptible:
	rq = this_rq();

	/*
	 * The idle thread is not allowed to schedule!
	 * Remove this check after it has been exercised a bit.
	 */
	if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
		printk(KERN_ERR "bad: scheduling from the idle thread!\n");
		dump_stack();
	}

	schedstat_inc(rq, sched_cnt);
	now = sched_clock();
3389
	if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
L
Linus Torvalds 已提交
3390
		run_time = now - prev->timestamp;
3391
		if (unlikely((long long)(now - prev->timestamp) < 0))
L
Linus Torvalds 已提交
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
			run_time = 0;
	} else
		run_time = NS_MAX_SLEEP_AVG;

	/*
	 * Tasks charged proportionately less run_time at high sleep_avg to
	 * delay them losing their interactive status
	 */
	run_time /= (CURRENT_BONUS(prev) ? : 1);

	spin_lock_irq(&rq->lock);

	switch_count = &prev->nivcsw;
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		switch_count = &prev->nvcsw;
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
				unlikely(signal_pending(prev))))
			prev->state = TASK_RUNNING;
		else {
			if (prev->state == TASK_UNINTERRUPTIBLE)
				rq->nr_uninterruptible++;
			deactivate_task(prev, rq);
		}
	}

	cpu = smp_processor_id();
	if (unlikely(!rq->nr_running)) {
		idle_balance(cpu, rq);
		if (!rq->nr_running) {
			next = rq->idle;
			rq->expired_timestamp = 0;
3423
			wake_sleeping_dependent(cpu);
L
Linus Torvalds 已提交
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
			goto switch_tasks;
		}
	}

	array = rq->active;
	if (unlikely(!array->nr_active)) {
		/*
		 * Switch the active and expired arrays.
		 */
		schedstat_inc(rq, sched_switch);
		rq->active = rq->expired;
		rq->expired = array;
		array = rq->active;
		rq->expired_timestamp = 0;
		rq->best_expired_prio = MAX_PRIO;
	}

	idx = sched_find_first_bit(array->bitmap);
	queue = array->queue + idx;
3443
	next = list_entry(queue->next, struct task_struct, run_list);
L
Linus Torvalds 已提交
3444

3445
	if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
L
Linus Torvalds 已提交
3446
		unsigned long long delta = now - next->timestamp;
3447
		if (unlikely((long long)(now - next->timestamp) < 0))
L
Linus Torvalds 已提交
3448 3449
			delta = 0;

3450
		if (next->sleep_type == SLEEP_INTERACTIVE)
L
Linus Torvalds 已提交
3451 3452 3453
			delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;

		array = next->array;
3454 3455 3456 3457 3458 3459
		new_prio = recalc_task_prio(next, next->timestamp + delta);

		if (unlikely(next->prio != new_prio)) {
			dequeue_task(next, array);
			next->prio = new_prio;
			enqueue_task(next, array);
3460
		}
L
Linus Torvalds 已提交
3461
	}
3462
	next->sleep_type = SLEEP_NORMAL;
3463 3464
	if (dependent_sleeper(cpu, rq, next))
		next = rq->idle;
L
Linus Torvalds 已提交
3465 3466 3467 3468
switch_tasks:
	if (next == rq->idle)
		schedstat_inc(rq, sched_goidle);
	prefetch(next);
3469
	prefetch_stack(next);
L
Linus Torvalds 已提交
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
	clear_tsk_need_resched(prev);
	rcu_qsctr_inc(task_cpu(prev));

	update_cpu_clock(prev, rq, now);

	prev->sleep_avg -= run_time;
	if ((long)prev->sleep_avg <= 0)
		prev->sleep_avg = 0;
	prev->timestamp = prev->last_ran = now;

	sched_info_switch(prev, next);
	if (likely(prev != next)) {
		next->timestamp = now;
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3487
		prepare_task_switch(rq, next);
L
Linus Torvalds 已提交
3488 3489
		prev = context_switch(rq, prev, next);
		barrier();
3490 3491 3492 3493 3494 3495
		/*
		 * this_rq must be evaluated again because prev may have moved
		 * CPUs since it called schedule(), thus the 'rq' on its stack
		 * frame will be invalid.
		 */
		finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
	} else
		spin_unlock_irq(&rq->lock);

	prev = current;
	if (unlikely(reacquire_kernel_lock(prev) < 0))
		goto need_resched_nonpreemptible;
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3510
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3525
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3553
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3565
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3595 3596
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3597
{
3598
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3617 3618 3619
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3620
		if (curr->func(curr, mode, sync, key) &&
3621
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3622 3623 3624 3625 3626 3627 3628 3629 3630
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3631
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3632 3633
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3634
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3653
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3665 3666
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3710

L
Linus Torvalds 已提交
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);


#define	SLEEP_ON_VAR					\
	unsigned long flags;				\
	wait_queue_t wait;				\
	init_waitqueue_entry(&wait, current);

#define SLEEP_ON_HEAD					\
	spin_lock_irqsave(&q->lock,flags);		\
	__add_wait_queue(q, &wait);			\
	spin_unlock(&q->lock);

#define	SLEEP_ON_TAIL					\
	spin_lock_irq(&q->lock);			\
	__remove_wait_queue(q, &wait);			\
	spin_unlock_irqrestore(&q->lock, flags);

void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3857 3858
long fastcall __sched
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

void fastcall __sched sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}
EXPORT_SYMBOL(sleep_on);

long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
	SLEEP_ON_VAR

	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}

EXPORT_SYMBOL(sleep_on_timeout);

3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3911
void rt_mutex_setprio(struct task_struct *p, int prio)
3912
{
3913
	struct prio_array *array;
3914
	unsigned long flags;
3915
	struct rq *rq;
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
	int oldprio;

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

	oldprio = p->prio;
	array = p->array;
	if (array)
		dequeue_task(p, array);
	p->prio = prio;

	if (array) {
		/*
		 * If changing to an RT priority then queue it
		 * in the active array!
		 */
		if (rt_task(p))
			array = rq->active;
		enqueue_task(p, array);
		/*
		 * Reschedule if we are currently running on this runqueue and
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
		 */
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
		} else if (TASK_PREEMPTS_CURR(p, rq))
			resched_task(rq->curr);
	}
	task_rq_unlock(rq, &flags);
}

#endif

3952
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3953
{
3954
	struct prio_array *array;
3955
	int old_prio, delta;
L
Linus Torvalds 已提交
3956
	unsigned long flags;
3957
	struct rq *rq;
L
Linus Torvalds 已提交
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3970
	 * not SCHED_NORMAL/SCHED_BATCH:
L
Linus Torvalds 已提交
3971
	 */
3972
	if (has_rt_policy(p)) {
L
Linus Torvalds 已提交
3973 3974 3975 3976
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
	array = p->array;
3977
	if (array) {
L
Linus Torvalds 已提交
3978
		dequeue_task(p, array);
3979 3980
		dec_raw_weighted_load(rq, p);
	}
L
Linus Torvalds 已提交
3981 3982

	p->static_prio = NICE_TO_PRIO(nice);
3983
	set_load_weight(p);
3984 3985 3986
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3987 3988 3989

	if (array) {
		enqueue_task(p, array);
3990
		inc_raw_weighted_load(rq, p);
L
Linus Torvalds 已提交
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
		/*
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
		 */
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4003 4004 4005 4006 4007
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4008
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4009
{
4010 4011
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4012

M
Matt Mackall 已提交
4013 4014 4015 4016
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4028
	long nice, retval;
L
Linus Torvalds 已提交
4029 4030 4031 4032 4033 4034

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4035 4036
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4037 4038 4039 4040 4041 4042 4043 4044 4045
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4046 4047 4048
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4067
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4068 4069 4070 4071 4072 4073 4074 4075
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4076
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4095
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4096 4097 4098 4099 4100 4101 4102 4103
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4104
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4105 4106 4107 4108 4109 4110 4111 4112
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
static void __setscheduler(struct task_struct *p, int policy, int prio)
{
	BUG_ON(p->array);
4113

L
Linus Torvalds 已提交
4114 4115
	p->policy = policy;
	p->rt_priority = prio;
4116 4117 4118 4119 4120 4121 4122 4123
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
	/*
	 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
	 */
	if (policy == SCHED_BATCH)
		p->sleep_avg = 0;
4124
	set_load_weight(p);
L
Linus Torvalds 已提交
4125 4126 4127 4128 4129 4130 4131 4132
}

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of
 * a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4133 4134
 *
 * NOTE: the task may be already dead
L
Linus Torvalds 已提交
4135
 */
I
Ingo Molnar 已提交
4136 4137
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4138
{
4139
	int retval, oldprio, oldpolicy = -1;
4140
	struct prio_array *array;
L
Linus Torvalds 已提交
4141
	unsigned long flags;
4142
	struct rq *rq;
L
Linus Torvalds 已提交
4143

4144 4145
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4146 4147 4148 4149 4150
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4151 4152
			policy != SCHED_NORMAL && policy != SCHED_BATCH)
		return -EINVAL;
L
Linus Torvalds 已提交
4153 4154
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4155 4156
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
	 * SCHED_BATCH is 0.
L
Linus Torvalds 已提交
4157 4158
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4159
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4160
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4161
		return -EINVAL;
4162
	if (is_rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4163 4164
		return -EINVAL;

4165 4166 4167 4168
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
		if (is_rt_policy(policy)) {
			unsigned long rlim_rtprio;
			unsigned long flags;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4187

4188 4189 4190 4191 4192
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4193 4194 4195 4196

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4197 4198 4199 4200 4201
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4202 4203 4204 4205
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4206
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4207 4208 4209
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4210 4211
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
		goto recheck;
	}
	array = p->array;
	if (array)
		deactivate_task(p, rq);
	oldprio = p->prio;
	__setscheduler(p, policy, param->sched_priority);
	if (array) {
		__activate_task(p, rq);
		/*
		 * Reschedule if we are currently running on this runqueue and
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
		 */
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
		} else if (TASK_PREEMPTS_CURR(p, rq))
			resched_task(rq->curr);
	}
4232 4233 4234
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4235 4236
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4237 4238 4239 4240
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4241 4242
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4243 4244 4245
{
	struct sched_param lparam;
	struct task_struct *p;
4246
	int retval;
L
Linus Torvalds 已提交
4247 4248 4249 4250 4251

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4252 4253 4254

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4255
	p = find_process_by_pid(pid);
4256 4257 4258
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4259

L
Linus Torvalds 已提交
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4272 4273 4274 4275
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4295
	struct task_struct *p;
L
Linus Torvalds 已提交
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4323
	struct task_struct *p;
L
Linus Torvalds 已提交
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4358 4359
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383

	lock_cpu_hotplug();
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
		unlock_cpu_hotplug();
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4384 4385 4386 4387
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
	unlock_cpu_hotplug();
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4435
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4436 4437 4438
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4439
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4440 4441
EXPORT_SYMBOL(cpu_online_map);

4442
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4443
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4444 4445 4446 4447
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4448
	struct task_struct *p;
L
Linus Torvalds 已提交
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
	int retval;

	lock_cpu_hotplug();
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4459 4460 4461 4462
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4463
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507

out_unlock:
	read_unlock(&tasklist_lock);
	unlock_cpu_hotplug();
	if (retval)
		return retval;

	return 0;
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
 * this function yields the current CPU by moving the calling thread
 * to the expired array. If there are no other threads running on this
 * CPU then this function will return.
 */
asmlinkage long sys_sched_yield(void)
{
4508 4509
	struct rq *rq = this_rq_lock();
	struct prio_array *array = current->array, *target = rq->expired;
L
Linus Torvalds 已提交
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521

	schedstat_inc(rq, yld_cnt);
	/*
	 * We implement yielding by moving the task into the expired
	 * queue.
	 *
	 * (special rule: RT tasks will just roundrobin in the active
	 *  array.)
	 */
	if (rt_task(current))
		target = rq->active;

4522
	if (array->nr_active == 1) {
L
Linus Torvalds 已提交
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
		schedstat_inc(rq, yld_act_empty);
		if (!rq->expired->nr_active)
			schedstat_inc(rq, yld_both_empty);
	} else if (!rq->expired->nr_active)
		schedstat_inc(rq, yld_exp_empty);

	if (array != target) {
		dequeue_task(current, array);
		enqueue_task(current, target);
	} else
		/*
		 * requeue_task is cheaper so perform that if possible.
		 */
		requeue_task(current, array);

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4543
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4544 4545 4546 4547 4548 4549 4550 4551
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

J
Jim Houston 已提交
4552
static inline int __resched_legal(int expected_preempt_count)
A
Andrew Morton 已提交
4553
{
J
Jim Houston 已提交
4554
	if (unlikely(preempt_count() != expected_preempt_count))
A
Andrew Morton 已提交
4555 4556 4557 4558 4559 4560 4561
		return 0;
	if (unlikely(system_state != SYSTEM_RUNNING))
		return 0;
	return 1;
}

static void __cond_resched(void)
L
Linus Torvalds 已提交
4562
{
4563 4564 4565
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4566 4567 4568 4569 4570
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4571 4572 4573 4574 4575 4576 4577 4578 4579
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
J
Jim Houston 已提交
4580
	if (need_resched() && __resched_legal(0)) {
L
Linus Torvalds 已提交
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4596
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4597
{
J
Jan Kara 已提交
4598 4599
	int ret = 0;

L
Linus Torvalds 已提交
4600 4601 4602
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4603
		ret = 1;
L
Linus Torvalds 已提交
4604 4605
		spin_lock(lock);
	}
J
Jim Houston 已提交
4606
	if (need_resched() && __resched_legal(1)) {
4607
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4608 4609 4610
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4611
		ret = 1;
L
Linus Torvalds 已提交
4612 4613
		spin_lock(lock);
	}
J
Jan Kara 已提交
4614
	return ret;
L
Linus Torvalds 已提交
4615 4616 4617 4618 4619 4620 4621
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

J
Jim Houston 已提交
4622
	if (need_resched() && __resched_legal(0)) {
4623 4624 4625
		raw_local_irq_disable();
		_local_bh_enable();
		raw_local_irq_enable();
L
Linus Torvalds 已提交
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
 * this is a shortcut for kernel-space yielding - it marks the
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4656
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4657

4658
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4659 4660 4661
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4662
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4663 4664 4665 4666 4667
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4668
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4669 4670
	long ret;

4671
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4672 4673 4674
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4675
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4696
	case SCHED_BATCH:
L
Linus Torvalds 已提交
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4720
	case SCHED_BATCH:
L
Linus Torvalds 已提交
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4737
	struct task_struct *p;
L
Linus Torvalds 已提交
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4754
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
L
Linus Torvalds 已提交
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
				0 : task_timeslice(p), &t);
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

static inline struct task_struct *eldest_child(struct task_struct *p)
{
4767 4768
	if (list_empty(&p->children))
		return NULL;
L
Linus Torvalds 已提交
4769 4770 4771 4772 4773
	return list_entry(p->children.next,struct task_struct,sibling);
}

static inline struct task_struct *older_sibling(struct task_struct *p)
{
4774 4775
	if (p->sibling.prev==&p->parent->children)
		return NULL;
L
Linus Torvalds 已提交
4776 4777 4778 4779 4780
	return list_entry(p->sibling.prev,struct task_struct,sibling);
}

static inline struct task_struct *younger_sibling(struct task_struct *p)
{
4781 4782
	if (p->sibling.next==&p->parent->children)
		return NULL;
L
Linus Torvalds 已提交
4783 4784 4785
	return list_entry(p->sibling.next,struct task_struct,sibling);
}

4786
static const char stat_nam[] = "RSDTtZX";
4787 4788

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4789
{
4790
	struct task_struct *relative;
L
Linus Torvalds 已提交
4791
	unsigned long free = 0;
4792
	unsigned state;
L
Linus Torvalds 已提交
4793 4794

	state = p->state ? __ffs(p->state) + 1 : 0;
4795 4796
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
L
Linus Torvalds 已提交
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
#if (BITS_PER_LONG == 32)
	if (state == TASK_RUNNING)
		printk(" running ");
	else
		printk(" %08lX ", thread_saved_pc(p));
#else
	if (state == TASK_RUNNING)
		printk("  running task   ");
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4810
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4811 4812
		while (!*n)
			n++;
4813
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
	}
#endif
	printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
	if ((relative = eldest_child(p)))
		printk("%5d ", relative->pid);
	else
		printk("      ");
	if ((relative = younger_sibling(p)))
		printk("%7d", relative->pid);
	else
		printk("       ");
	if ((relative = older_sibling(p)))
		printk(" %5d", relative->pid);
	else
		printk("      ");
	if (!p->mm)
		printk(" (L-TLB)\n");
	else
		printk(" (NOTLB)\n");

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4838
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4839
{
4840
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4841 4842 4843

#if (BITS_PER_LONG == 32)
	printk("\n"
4844 4845
	       "                         free                        sibling\n");
	printk("  task             PC    stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4846 4847
#else
	printk("\n"
4848 4849
	       "                                 free                        sibling\n");
	printk("  task                 PC        stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4850 4851 4852 4853 4854 4855 4856 4857
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4858 4859
		if (p->state & state_filter)
			show_task(p);
L
Linus Torvalds 已提交
4860 4861 4862
	} while_each_thread(g, p);

	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4863 4864 4865 4866 4867
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4868 4869
}

4870 4871 4872 4873 4874 4875 4876 4877
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4878
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4879
{
4880
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4881 4882
	unsigned long flags;

4883
	idle->timestamp = sched_clock();
L
Linus Torvalds 已提交
4884 4885
	idle->sleep_avg = 0;
	idle->array = NULL;
4886
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4887 4888 4889 4890 4891 4892
	idle->state = TASK_RUNNING;
	idle->cpus_allowed = cpumask_of_cpu(cpu);
	set_task_cpu(idle, cpu);

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4893 4894 4895
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4896 4897 4898 4899
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4900
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4901
#else
A
Al Viro 已提交
4902
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
#endif
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4919
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4941
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4942
{
4943
	struct migration_req req;
L
Linus Torvalds 已提交
4944
	unsigned long flags;
4945
	struct rq *rq;
4946
	int ret = 0;
L
Linus Torvalds 已提交
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4969

L
Linus Torvalds 已提交
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4982 4983
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4984
 */
4985
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4986
{
4987
	struct rq *rq_dest, *rq_src;
4988
	int ret = 0;
L
Linus Torvalds 已提交
4989 4990

	if (unlikely(cpu_is_offline(dest_cpu)))
4991
		return ret;
L
Linus Torvalds 已提交
4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

	set_task_cpu(p, dest_cpu);
	if (p->array) {
		/*
		 * Sync timestamp with rq_dest's before activating.
		 * The same thing could be achieved by doing this step
		 * afterwards, and pretending it was a local activate.
		 * This way is cleaner and logically correct.
		 */
		p->timestamp = p->timestamp - rq_src->timestamp_last_tick
				+ rq_dest->timestamp_last_tick;
		deactivate_task(p, rq_src);
5015
		__activate_task(p, rq_dest);
L
Linus Torvalds 已提交
5016 5017 5018
		if (TASK_PREEMPTS_CURR(p, rq_dest))
			resched_task(rq_dest->curr);
	}
5019
	ret = 1;
L
Linus Torvalds 已提交
5020 5021
out:
	double_rq_unlock(rq_src, rq_dest);
5022
	return ret;
L
Linus Torvalds 已提交
5023 5024 5025 5026 5027 5028 5029
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5030
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5031 5032
{
	int cpu = (long)data;
5033
	struct rq *rq;
L
Linus Torvalds 已提交
5034 5035 5036 5037 5038 5039

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5040
		struct migration_req *req;
L
Linus Torvalds 已提交
5041 5042
		struct list_head *head;

5043
		try_to_freeze();
L
Linus Torvalds 已提交
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5065
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5066 5067
		list_del_init(head->next);

N
Nick Piggin 已提交
5068 5069 5070
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5089 5090 5091 5092
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5093
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5094
{
5095
	unsigned long flags;
L
Linus Torvalds 已提交
5096
	cpumask_t mask;
5097 5098
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5099

5100
restart:
L
Linus Torvalds 已提交
5101 5102
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5103
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5104 5105 5106 5107
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5108
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5109 5110 5111

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5112 5113 5114
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5115
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5116 5117 5118 5119 5120 5121

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5122
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5123 5124
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5125
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5126
	}
5127
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5128
		goto restart;
L
Linus Torvalds 已提交
5129 5130 5131 5132 5133 5134 5135 5136 5137
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5138
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5139
{
5140
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5154
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5155 5156 5157

	write_lock_irq(&tasklist_lock);

5158 5159
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5160 5161
			continue;

5162 5163 5164
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5165 5166 5167 5168 5169 5170

	write_unlock_irq(&tasklist_lock);
}

/* Schedules idle task to be the next runnable task on current CPU.
 * It does so by boosting its priority to highest possible and adding it to
5171
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5172 5173 5174
 */
void sched_idle_next(void)
{
5175
	int this_cpu = smp_processor_id();
5176
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5177 5178 5179 5180
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5181
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5182

5183 5184 5185
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5186 5187 5188 5189
	 */
	spin_lock_irqsave(&rq->lock, flags);

	__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5190 5191

	/* Add idle task to the _front_ of its priority queue: */
L
Linus Torvalds 已提交
5192 5193 5194 5195 5196
	__activate_idle_task(p, rq);

	spin_unlock_irqrestore(&rq->lock, flags);
}

5197 5198
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5212
/* called under rq->lock with disabled interrupts */
5213
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5214
{
5215
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5216 5217

	/* Must be exiting, otherwise would be on tasklist. */
5218
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5219 5220

	/* Cannot have done final schedule yet: would have vanished. */
5221
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5222

5223
	get_task_struct(p);
L
Linus Torvalds 已提交
5224 5225 5226 5227 5228

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5229
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5230
	 */
5231
	spin_unlock(&rq->lock);
5232
	move_task_off_dead_cpu(dead_cpu, p);
5233
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5234

5235
	put_task_struct(p);
L
Linus Torvalds 已提交
5236 5237 5238 5239 5240
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5241
	struct rq *rq = cpu_rq(dead_cpu);
5242
	unsigned int arr, i;
L
Linus Torvalds 已提交
5243 5244 5245 5246

	for (arr = 0; arr < 2; arr++) {
		for (i = 0; i < MAX_PRIO; i++) {
			struct list_head *list = &rq->arrays[arr].queue[i];
5247

L
Linus Torvalds 已提交
5248
			while (!list_empty(list))
5249 5250
				migrate_dead(dead_cpu, list_entry(list->next,
					     struct task_struct, run_list));
L
Linus Torvalds 已提交
5251 5252 5253 5254 5255 5256 5257 5258 5259
		}
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5260 5261
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5262 5263
{
	struct task_struct *p;
5264
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5265
	unsigned long flags;
5266
	struct rq *rq;
L
Linus Torvalds 已提交
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280

	switch (action) {
	case CPU_UP_PREPARE:
		p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
		if (IS_ERR(p))
			return NOTIFY_BAD;
		p->flags |= PF_NOFREEZE;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
		__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5281

L
Linus Torvalds 已提交
5282 5283 5284 5285
	case CPU_ONLINE:
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5286

L
Linus Torvalds 已提交
5287 5288
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5289 5290
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5291
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5292 5293
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5294 5295 5296
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5297

L
Linus Torvalds 已提交
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
	case CPU_DEAD:
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
		deactivate_task(rq->idle, rq);
		rq->idle->static_prio = MAX_PRIO;
		__setscheduler(rq->idle, SCHED_NORMAL, 0);
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
		 * they didn't do lock_cpu_hotplug().  Just wake up
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5318 5319
			struct migration_req *req;

L
Linus Torvalds 已提交
5320
			req = list_entry(rq->migration_queue.next,
5321
					 struct migration_req, list);
L
Linus Torvalds 已提交
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5335
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5336 5337 5338 5339 5340 5341 5342
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5343
	int err;
5344 5345

	/* Start one for the boot CPU: */
5346 5347
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5348 5349
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5350

L
Linus Torvalds 已提交
5351 5352 5353 5354 5355
	return 0;
}
#endif

#ifdef CONFIG_SMP
5356
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5357 5358 5359 5360 5361
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5362 5363 5364 5365 5366
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
			printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
		if (!cpu_isset(cpu, group->cpumask))
			printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

			if (!group->cpu_power) {
				printk("\n");
				printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
			printk(KERN_ERR "ERROR: groups don't span domain->span\n");

		level++;
		sd = sd->parent;

		if (sd) {
			if (!cpus_subset(groupmask, sd->span))
				printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
		}

	} while (sd);
}
#else
5446
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5447 5448
#endif

5449
static int sd_degenerate(struct sched_domain *sd)
5450 5451 5452 5453 5454 5455 5456 5457
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5458 5459 5460
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5474 5475
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5494 5495 5496
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5497 5498 5499 5500 5501 5502 5503
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5504 5505 5506 5507
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5508
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5509
{
5510
	struct rq *rq = cpu_rq(cpu);
5511 5512 5513 5514 5515 5516 5517
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5518
		if (sd_parent_degenerate(tmp, parent)) {
5519
			tmp->parent = parent->parent;
5520 5521 5522
			if (parent->parent)
				parent->parent->child = tmp;
		}
5523 5524
	}

5525
	if (sd && sd_degenerate(sd)) {
5526
		sd = sd->parent;
5527 5528 5529
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5530 5531 5532

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5533
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5534 5535 5536
}

/* cpus with isolated domains */
5537
static cpumask_t __cpuinitdata cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5555 5556 5557 5558
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5559 5560 5561 5562 5563
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5564
static void
5565 5566 5567
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5568 5569 5570 5571 5572 5573
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5574 5575
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5576 5577 5578 5579 5580 5581 5582 5583 5584
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
		sg->cpu_power = 0;

		for_each_cpu_mask(j, span) {
5585
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5600
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5601

5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629
/*
 * Self-tuning task migration cost measurement between source and target CPUs.
 *
 * This is done by measuring the cost of manipulating buffers of varying
 * sizes. For a given buffer-size here are the steps that are taken:
 *
 * 1) the source CPU reads+dirties a shared buffer
 * 2) the target CPU reads+dirties the same shared buffer
 *
 * We measure how long they take, in the following 4 scenarios:
 *
 *  - source: CPU1, target: CPU2 | cost1
 *  - source: CPU2, target: CPU1 | cost2
 *  - source: CPU1, target: CPU1 | cost3
 *  - source: CPU2, target: CPU2 | cost4
 *
 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
 * the cost of migration.
 *
 * We then start off from a small buffer-size and iterate up to larger
 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
 * doing a maximum search for the cost. (The maximum cost for a migration
 * normally occurs when the working set size is around the effective cache
 * size.)
 */
#define SEARCH_SCOPE		2
#define MIN_CACHE_SIZE		(64*1024U)
#define DEFAULT_CACHE_SIZE	(5*1024*1024U)
5630
#define ITERATIONS		1
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647
#define SIZE_THRESH		130
#define COST_THRESH		130

/*
 * The migration cost is a function of 'domain distance'. Domain
 * distance is the number of steps a CPU has to iterate down its
 * domain tree to share a domain with the other CPU. The farther
 * two CPUs are from each other, the larger the distance gets.
 *
 * Note that we use the distance only to cache measurement results,
 * the distance value is not used numerically otherwise. When two
 * CPUs have the same distance it is assumed that the migration
 * cost is the same. (this is a simplification but quite practical)
 */
#define MAX_DOMAIN_DISTANCE 32

static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
		{ [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
/*
 * Architectures may override the migration cost and thus avoid
 * boot-time calibration. Unit is nanoseconds. Mostly useful for
 * virtualized hardware:
 */
#ifdef CONFIG_DEFAULT_MIGRATION_COST
			CONFIG_DEFAULT_MIGRATION_COST
#else
			-1LL
#endif
};
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778

/*
 * Allow override of migration cost - in units of microseconds.
 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
 */
static int __init migration_cost_setup(char *str)
{
	int ints[MAX_DOMAIN_DISTANCE+1], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);

	printk("#ints: %d\n", ints[0]);
	for (i = 1; i <= ints[0]; i++) {
		migration_cost[i-1] = (unsigned long long)ints[i]*1000;
		printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
	}
	return 1;
}

__setup ("migration_cost=", migration_cost_setup);

/*
 * Global multiplier (divisor) for migration-cutoff values,
 * in percentiles. E.g. use a value of 150 to get 1.5 times
 * longer cache-hot cutoff times.
 *
 * (We scale it from 100 to 128 to long long handling easier.)
 */

#define MIGRATION_FACTOR_SCALE 128

static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;

static int __init setup_migration_factor(char *str)
{
	get_option(&str, &migration_factor);
	migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
	return 1;
}

__setup("migration_factor=", setup_migration_factor);

/*
 * Estimated distance of two CPUs, measured via the number of domains
 * we have to pass for the two CPUs to be in the same span:
 */
static unsigned long domain_distance(int cpu1, int cpu2)
{
	unsigned long distance = 0;
	struct sched_domain *sd;

	for_each_domain(cpu1, sd) {
		WARN_ON(!cpu_isset(cpu1, sd->span));
		if (cpu_isset(cpu2, sd->span))
			return distance;
		distance++;
	}
	if (distance >= MAX_DOMAIN_DISTANCE) {
		WARN_ON(1);
		distance = MAX_DOMAIN_DISTANCE-1;
	}

	return distance;
}

static unsigned int migration_debug;

static int __init setup_migration_debug(char *str)
{
	get_option(&str, &migration_debug);
	return 1;
}

__setup("migration_debug=", setup_migration_debug);

/*
 * Maximum cache-size that the scheduler should try to measure.
 * Architectures with larger caches should tune this up during
 * bootup. Gets used in the domain-setup code (i.e. during SMP
 * bootup).
 */
unsigned int max_cache_size;

static int __init setup_max_cache_size(char *str)
{
	get_option(&str, &max_cache_size);
	return 1;
}

__setup("max_cache_size=", setup_max_cache_size);

/*
 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
 * is the operation that is timed, so we try to generate unpredictable
 * cachemisses that still end up filling the L2 cache:
 */
static void touch_cache(void *__cache, unsigned long __size)
{
	unsigned long size = __size/sizeof(long), chunk1 = size/3,
			chunk2 = 2*size/3;
	unsigned long *cache = __cache;
	int i;

	for (i = 0; i < size/6; i += 8) {
		switch (i % 6) {
			case 0: cache[i]++;
			case 1: cache[size-1-i]++;
			case 2: cache[chunk1-i]++;
			case 3: cache[chunk1+i]++;
			case 4: cache[chunk2-i]++;
			case 5: cache[chunk2+i]++;
		}
	}
}

/*
 * Measure the cache-cost of one task migration. Returns in units of nsec.
 */
5779 5780
static unsigned long long
measure_one(void *cache, unsigned long size, int source, int target)
5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931
{
	cpumask_t mask, saved_mask;
	unsigned long long t0, t1, t2, t3, cost;

	saved_mask = current->cpus_allowed;

	/*
	 * Flush source caches to RAM and invalidate them:
	 */
	sched_cacheflush();

	/*
	 * Migrate to the source CPU:
	 */
	mask = cpumask_of_cpu(source);
	set_cpus_allowed(current, mask);
	WARN_ON(smp_processor_id() != source);

	/*
	 * Dirty the working set:
	 */
	t0 = sched_clock();
	touch_cache(cache, size);
	t1 = sched_clock();

	/*
	 * Migrate to the target CPU, dirty the L2 cache and access
	 * the shared buffer. (which represents the working set
	 * of a migrated task.)
	 */
	mask = cpumask_of_cpu(target);
	set_cpus_allowed(current, mask);
	WARN_ON(smp_processor_id() != target);

	t2 = sched_clock();
	touch_cache(cache, size);
	t3 = sched_clock();

	cost = t1-t0 + t3-t2;

	if (migration_debug >= 2)
		printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
			source, target, t1-t0, t1-t0, t3-t2, cost);
	/*
	 * Flush target caches to RAM and invalidate them:
	 */
	sched_cacheflush();

	set_cpus_allowed(current, saved_mask);

	return cost;
}

/*
 * Measure a series of task migrations and return the average
 * result. Since this code runs early during bootup the system
 * is 'undisturbed' and the average latency makes sense.
 *
 * The algorithm in essence auto-detects the relevant cache-size,
 * so it will properly detect different cachesizes for different
 * cache-hierarchies, depending on how the CPUs are connected.
 *
 * Architectures can prime the upper limit of the search range via
 * max_cache_size, otherwise the search range defaults to 20MB...64K.
 */
static unsigned long long
measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
{
	unsigned long long cost1, cost2;
	int i;

	/*
	 * Measure the migration cost of 'size' bytes, over an
	 * average of 10 runs:
	 *
	 * (We perturb the cache size by a small (0..4k)
	 *  value to compensate size/alignment related artifacts.
	 *  We also subtract the cost of the operation done on
	 *  the same CPU.)
	 */
	cost1 = 0;

	/*
	 * dry run, to make sure we start off cache-cold on cpu1,
	 * and to get any vmalloc pagefaults in advance:
	 */
	measure_one(cache, size, cpu1, cpu2);
	for (i = 0; i < ITERATIONS; i++)
		cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);

	measure_one(cache, size, cpu2, cpu1);
	for (i = 0; i < ITERATIONS; i++)
		cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);

	/*
	 * (We measure the non-migrating [cached] cost on both
	 *  cpu1 and cpu2, to handle CPUs with different speeds)
	 */
	cost2 = 0;

	measure_one(cache, size, cpu1, cpu1);
	for (i = 0; i < ITERATIONS; i++)
		cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);

	measure_one(cache, size, cpu2, cpu2);
	for (i = 0; i < ITERATIONS; i++)
		cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);

	/*
	 * Get the per-iteration migration cost:
	 */
	do_div(cost1, 2*ITERATIONS);
	do_div(cost2, 2*ITERATIONS);

	return cost1 - cost2;
}

static unsigned long long measure_migration_cost(int cpu1, int cpu2)
{
	unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
	unsigned int max_size, size, size_found = 0;
	long long cost = 0, prev_cost;
	void *cache;

	/*
	 * Search from max_cache_size*5 down to 64K - the real relevant
	 * cachesize has to lie somewhere inbetween.
	 */
	if (max_cache_size) {
		max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
		size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
	} else {
		/*
		 * Since we have no estimation about the relevant
		 * search range
		 */
		max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
		size = MIN_CACHE_SIZE;
	}

	if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
		printk("cpu %d and %d not both online!\n", cpu1, cpu2);
		return 0;
	}

	/*
	 * Allocate the working set:
	 */
	cache = vmalloc(max_size);
	if (!cache) {
		printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5932
		return 1000000; /* return 1 msec on very small boxen */
5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979
	}

	while (size <= max_size) {
		prev_cost = cost;
		cost = measure_cost(cpu1, cpu2, cache, size);

		/*
		 * Update the max:
		 */
		if (cost > 0) {
			if (max_cost < cost) {
				max_cost = cost;
				size_found = size;
			}
		}
		/*
		 * Calculate average fluctuation, we use this to prevent
		 * noise from triggering an early break out of the loop:
		 */
		fluct = abs(cost - prev_cost);
		avg_fluct = (avg_fluct + fluct)/2;

		if (migration_debug)
			printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
				cpu1, cpu2, size,
				(long)cost / 1000000,
				((long)cost / 100000) % 10,
				(long)max_cost / 1000000,
				((long)max_cost / 100000) % 10,
				domain_distance(cpu1, cpu2),
				cost, avg_fluct);

		/*
		 * If we iterated at least 20% past the previous maximum,
		 * and the cost has dropped by more than 20% already,
		 * (taking fluctuations into account) then we assume to
		 * have found the maximum and break out of the loop early:
		 */
		if (size_found && (size*100 > size_found*SIZE_THRESH))
			if (cost+avg_fluct <= 0 ||
				max_cost*100 > (cost+avg_fluct)*COST_THRESH) {

				if (migration_debug)
					printk("-> found max.\n");
				break;
			}
		/*
5980
		 * Increase the cachesize in 10% steps:
5981
		 */
5982
		size = size * 10 / 9;
5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
	}

	if (migration_debug)
		printk("[%d][%d] working set size found: %d, cost: %Ld\n",
			cpu1, cpu2, size_found, max_cost);

	vfree(cache);

	/*
	 * A task is considered 'cache cold' if at least 2 times
	 * the worst-case cost of migration has passed.
	 *
	 * (this limit is only listened to if the load-balancing
	 * situation is 'nice' - if there is a large imbalance we
	 * ignore it for the sake of CPU utilization and
	 * processing fairness.)
	 */
	return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
}

static void calibrate_migration_costs(const cpumask_t *cpu_map)
{
	int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
	unsigned long j0, j1, distance, max_distance = 0;
	struct sched_domain *sd;

	j0 = jiffies;

	/*
	 * First pass - calculate the cacheflush times:
	 */
	for_each_cpu_mask(cpu1, *cpu_map) {
		for_each_cpu_mask(cpu2, *cpu_map) {
			if (cpu1 == cpu2)
				continue;
			distance = domain_distance(cpu1, cpu2);
			max_distance = max(max_distance, distance);
			/*
			 * No result cached yet?
			 */
			if (migration_cost[distance] == -1LL)
				migration_cost[distance] =
					measure_migration_cost(cpu1, cpu2);
		}
	}
	/*
	 * Second pass - update the sched domain hierarchy with
	 * the new cache-hot-time estimations:
	 */
	for_each_cpu_mask(cpu, *cpu_map) {
		distance = 0;
		for_each_domain(cpu, sd) {
			sd->cache_hot_time = migration_cost[distance];
			distance++;
		}
	}
	/*
	 * Print the matrix:
	 */
	if (migration_debug)
		printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
			max_cache_size,
#ifdef CONFIG_X86
			cpu_khz/1000
#else
			-1
#endif
		);
6051
	if (system_state == SYSTEM_BOOTING) {
6052 6053 6054 6055 6056 6057 6058 6059
		if (num_online_cpus() > 1) {
			printk("migration_cost=");
			for (distance = 0; distance <= max_distance; distance++) {
				if (distance)
					printk(",");
				printk("%ld", (long)migration_cost[distance] / 1000);
			}
			printk("\n");
6060
		}
6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078
	}
	j1 = jiffies;
	if (migration_debug)
		printk("migration: %ld seconds\n", (j1-j0)/HZ);

	/*
	 * Move back to the original CPU. NUMA-Q gets confused
	 * if we migrate to another quad during bootup.
	 */
	if (raw_smp_processor_id() != orig_cpu) {
		cpumask_t mask = cpumask_of_cpu(orig_cpu),
			saved_mask = current->cpus_allowed;

		set_cpus_allowed(current, mask);
		set_cpus_allowed(current, saved_mask);
	}
}

6079
#ifdef CONFIG_NUMA
6080

6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6133 6134
	cpumask_t span, nodemask;
	int i;
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
6145

6146 6147 6148 6149 6150 6151 6152 6153
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6154
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6155

6156
/*
6157
 * SMT sched-domains:
6158
 */
L
Linus Torvalds 已提交
6159 6160
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6161
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6162

6163 6164
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
6165
{
6166 6167
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6168 6169 6170 6171
	return cpu;
}
#endif

6172 6173 6174
/*
 * multi-core sched-domains:
 */
6175 6176
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6177
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6178 6179 6180
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6181 6182
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
6183
{
6184
	int group;
6185 6186
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
6187 6188 6189 6190
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6191 6192
}
#elif defined(CONFIG_SCHED_MC)
6193 6194
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
6195
{
6196 6197
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6198 6199 6200 6201
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6202
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6203
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6204

6205 6206
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
6207
{
6208
	int group;
6209
#ifdef CONFIG_SCHED_MC
6210
	cpumask_t mask = cpu_coregroup_map(cpu);
6211
	cpus_and(mask, mask, *cpu_map);
6212
	group = first_cpu(mask);
6213
#elif defined(CONFIG_SCHED_SMT)
6214 6215
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
6216
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6217
#else
6218
	group = cpu;
L
Linus Torvalds 已提交
6219
#endif
6220 6221 6222
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6223 6224 6225 6226
}

#ifdef CONFIG_NUMA
/*
6227 6228 6229
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6230
 */
6231
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6232
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6233

6234
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6235
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6236

6237 6238
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6239
{
6240 6241 6242 6243 6244 6245 6246 6247 6248
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6249
}
6250

6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

		sg->cpu_power += sd->groups->cpu_power;
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
6277 6278
#endif

6279
#ifdef CONFIG_NUMA
6280 6281 6282
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6283
	int cpu, i;
6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6314 6315 6316 6317 6318
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6319

6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
		sd->groups->cpu_power = SCHED_LOAD_SCALE;
		return;
	}

	sd->groups->cpu_power = 0;

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
		sd->groups->cpu_power += group->cpu_power;
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6372
/*
6373 6374
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6375
 */
6376
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6377 6378
{
	int i;
6379
	struct sched_domain *sd;
6380 6381
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6382
	int sd_allnodes = 0;
6383 6384 6385 6386

	/*
	 * Allocate the per-node list of sched groups
	 */
6387
	sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6388
					   GFP_KERNEL);
6389 6390
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6391
		return -ENOMEM;
6392 6393 6394
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6395 6396

	/*
6397
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6398
	 */
6399
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6400 6401 6402
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6403
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6404 6405

#ifdef CONFIG_NUMA
6406
		if (cpus_weight(*cpu_map)
6407 6408 6409 6410
				> SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6411
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6412
			p = sd;
6413
			sd_allnodes = 1;
6414 6415 6416
		} else
			p = NULL;

L
Linus Torvalds 已提交
6417 6418
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6419 6420
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6421 6422
		if (p)
			p->child = sd;
6423
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6424 6425 6426 6427 6428 6429 6430
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6431 6432
		if (p)
			p->child = sd;
6433
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6434

6435 6436 6437 6438 6439 6440 6441
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6442
		p->child = sd;
6443
		cpu_to_core_group(i, cpu_map, &sd->groups);
6444 6445
#endif

L
Linus Torvalds 已提交
6446 6447 6448 6449 6450
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6451
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6452
		sd->parent = p;
6453
		p->child = sd;
6454
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6455 6456 6457 6458 6459
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6460
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6461
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6462
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6463 6464 6465
		if (i != first_cpu(this_sibling_map))
			continue;

6466
		init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
L
Linus Torvalds 已提交
6467 6468 6469
	}
#endif

6470 6471 6472 6473 6474 6475 6476
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
6477
		init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
6478 6479 6480 6481
	}
#endif


L
Linus Torvalds 已提交
6482 6483 6484 6485
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6486
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6487 6488 6489
		if (cpus_empty(nodemask))
			continue;

6490
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6491 6492 6493 6494
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6495 6496
	if (sd_allnodes)
		init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
6497 6498 6499 6500 6501 6502 6503 6504 6505 6506

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6507 6508
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6509
			continue;
6510
		}
6511 6512 6513 6514

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6515
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6516 6517 6518 6519 6520
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6521 6522 6523 6524 6525 6526 6527 6528
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
		sg->cpu_power = 0;
		sg->cpumask = nodemask;
6529
		sg->next = sg;
6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6548 6549
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6550 6551 6552
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6553
				goto error;
6554 6555 6556
			}
			sg->cpu_power = 0;
			sg->cpumask = tmp;
6557
			sg->next = prev->next;
6558 6559 6560 6561 6562
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6563 6564 6565
#endif

	/* Calculate CPU power for physical packages and nodes */
6566
#ifdef CONFIG_SCHED_SMT
6567
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6568
		sd = &per_cpu(cpu_domains, i);
6569
		init_sched_groups_power(i, sd);
6570
	}
L
Linus Torvalds 已提交
6571
#endif
6572
#ifdef CONFIG_SCHED_MC
6573
	for_each_cpu_mask(i, *cpu_map) {
6574
		sd = &per_cpu(core_domains, i);
6575
		init_sched_groups_power(i, sd);
6576 6577
	}
#endif
6578

6579
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6580
		sd = &per_cpu(phys_domains, i);
6581
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6582 6583
	}

6584
#ifdef CONFIG_NUMA
6585 6586
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6587

6588 6589
	if (sd_allnodes) {
		struct sched_group *sg;
6590

6591
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6592 6593
		init_numa_sched_groups_power(sg);
	}
6594 6595
#endif

L
Linus Torvalds 已提交
6596
	/* Attach the domains */
6597
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6598 6599 6600
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6601 6602
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6603 6604 6605 6606 6607
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6608 6609 6610 6611
	/*
	 * Tune cache-hot values:
	 */
	calibrate_migration_costs(cpu_map);
6612 6613 6614

	return 0;

6615
#ifdef CONFIG_NUMA
6616 6617 6618
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6619
#endif
L
Linus Torvalds 已提交
6620
}
6621 6622 6623
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6624
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6625 6626
{
	cpumask_t cpu_default_map;
6627
	int err;
L
Linus Torvalds 已提交
6628

6629 6630 6631 6632 6633 6634 6635
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6636 6637 6638
	err = build_sched_domains(&cpu_default_map);

	return err;
6639 6640 6641
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6642
{
6643
	free_sched_groups(cpu_map);
6644
}
L
Linus Torvalds 已提交
6645

6646 6647 6648 6649
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6650
static void detach_destroy_domains(const cpumask_t *cpu_map)
6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6668
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6669 6670
{
	cpumask_t change_map;
6671
	int err = 0;
6672 6673 6674 6675 6676 6677 6678 6679

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6680 6681 6682 6683 6684
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6685 6686
}

6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int arch_reinit_sched_domains(void)
{
	int err;

	lock_cpu_hotplug();
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
	unlock_cpu_hotplug();

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;
6720

6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739
#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
#endif

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6740 6741
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753
{
	return sched_power_savings_store(buf, count, 0);
}
SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
	    sched_mc_power_savings_store);
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6754 6755
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6756 6757 6758 6759 6760 6761 6762
{
	return sched_power_savings_store(buf, count, 1);
}
SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
	    sched_smt_power_savings_store);
#endif

L
Linus Torvalds 已提交
6763 6764 6765
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6766
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6767 6768 6769 6770 6771 6772 6773 6774
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_DOWN_PREPARE:
6775
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
	case CPU_DEAD:
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6791
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6792 6793 6794 6795 6796 6797

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6798 6799
	cpumask_t non_isolated_cpus;

L
Linus Torvalds 已提交
6800
	lock_cpu_hotplug();
6801
	arch_init_sched_domains(&cpu_online_map);
6802 6803 6804
	cpus_andnot(non_isolated_cpus, cpu_online_map, cpu_isolated_map);
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
L
Linus Torvalds 已提交
6805 6806 6807
	unlock_cpu_hotplug();
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6808 6809 6810 6811

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6823

L
Linus Torvalds 已提交
6824 6825 6826 6827 6828 6829 6830 6831 6832
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

void __init sched_init(void)
{
	int i, j, k;

6833
	for_each_possible_cpu(i) {
6834 6835
		struct prio_array *array;
		struct rq *rq;
L
Linus Torvalds 已提交
6836 6837 6838

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6839
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6840
		rq->nr_running = 0;
L
Linus Torvalds 已提交
6841 6842 6843 6844 6845
		rq->active = rq->arrays;
		rq->expired = rq->arrays + 1;
		rq->best_expired_prio = MAX_PRIO;

#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6846
		rq->sd = NULL;
N
Nick Piggin 已提交
6847 6848
		for (j = 1; j < 3; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6849 6850
		rq->active_balance = 0;
		rq->push_cpu = 0;
6851
		rq->cpu = i;
L
Linus Torvalds 已提交
6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

		for (j = 0; j < 2; j++) {
			array = rq->arrays + j;
			for (k = 0; k < MAX_PRIO; k++) {
				INIT_LIST_HEAD(array->queue + k);
				__clear_bit(k, array->bitmap);
			}
			// delimiter for bitsearch
			__set_bit(MAX_PRIO, array->bitmap);
		}
	}

6868
	set_load_weight(&init_task);
6869

6870 6871 6872 6873
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6874 6875 6876 6877
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6896
#ifdef in_atomic
L
Linus Torvalds 已提交
6897 6898 6899 6900 6901 6902 6903
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6904
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6905 6906 6907
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6908
		debug_show_held_locks(current);
L
Linus Torvalds 已提交
6909 6910 6911 6912 6913 6914 6915 6916 6917 6918
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6919
	struct prio_array *array;
L
Linus Torvalds 已提交
6920 6921
	struct task_struct *p;
	unsigned long flags;
6922
	struct rq *rq;
L
Linus Torvalds 已提交
6923 6924

	read_lock_irq(&tasklist_lock);
6925
	for_each_process(p) {
L
Linus Torvalds 已提交
6926 6927 6928
		if (!rt_task(p))
			continue;

6929 6930
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6931 6932 6933 6934 6935 6936 6937 6938 6939 6940

		array = p->array;
		if (array)
			deactivate_task(p, task_rq(p));
		__setscheduler(p, SCHED_NORMAL, 0);
		if (array) {
			__activate_task(p, task_rq(p));
			resched_task(rq->curr);
		}

6941 6942
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6943 6944 6945 6946 6947
	}
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6966
struct task_struct *curr_task(int cpu)
6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6986
void set_curr_task(int cpu, struct task_struct *p)
6987 6988 6989 6990 6991
{
	cpu_curr(cpu) = p;
}

#endif