sched.c 231.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126
DEFINE_TRACE(sched_wait_task);
DEFINE_TRACE(sched_wakeup);
DEFINE_TRACE(sched_wakeup_new);
DEFINE_TRACE(sched_switch);
DEFINE_TRACE(sched_migrate_task);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

148 149
static inline int rt_policy(int policy)
{
150
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
151 152 153 154 155 156 157 158 159
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
160
/*
I
Ingo Molnar 已提交
161
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
162
 */
I
Ingo Molnar 已提交
163 164 165 166 167
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

168
struct rt_bandwidth {
I
Ingo Molnar 已提交
169 170 171 172 173
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
207 208
	spin_lock_init(&rt_b->rt_runtime_lock);

209 210 211 212 213
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

214 215 216
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
217 218 219 220 221 222
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

223
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
224 225 226 227 228 229 230 231 232 233 234 235
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
236 237
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
238 239 240 241 242 243 244 245 246 247 248
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

249 250 251 252 253 254
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

255
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
256

257 258
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
259 260
struct cfs_rq;

P
Peter Zijlstra 已提交
261 262
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
263
/* task group related information */
264
struct task_group {
265
#ifdef CONFIG_CGROUP_SCHED
266 267
	struct cgroup_subsys_state css;
#endif
268

269 270 271 272
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

273
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
274 275 276 277 278
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
279 280 281 282 283 284
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

285
	struct rt_bandwidth rt_bandwidth;
286
#endif
287

288
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
289
	struct list_head list;
P
Peter Zijlstra 已提交
290 291 292 293

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
294 295
};

D
Dhaval Giani 已提交
296
#ifdef CONFIG_USER_SCHED
297

298 299 300 301 302 303
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

304 305 306 307 308 309 310
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

311
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
312 313 314 315
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
316
#endif /* CONFIG_FAIR_GROUP_SCHED */
317 318 319 320

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
321
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
322
#else /* !CONFIG_USER_SCHED */
323
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
324
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
325

326
/* task_group_lock serializes add/remove of task groups and also changes to
327 328
 * a task group's cpu shares.
 */
329
static DEFINE_SPINLOCK(task_group_lock);
330

331 332 333
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
334
#else /* !CONFIG_USER_SCHED */
335
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
336
#endif /* CONFIG_USER_SCHED */
337

338
/*
339 340 341 342
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
343 344 345
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
346
#define MIN_SHARES	2
347
#define MAX_SHARES	(1UL << 18)
348

349 350 351
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
352
/* Default task group.
I
Ingo Molnar 已提交
353
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
354
 */
355
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
356 357

/* return group to which a task belongs */
358
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
359
{
360
	struct task_group *tg;
361

362
#ifdef CONFIG_USER_SCHED
363 364 365
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
366
#elif defined(CONFIG_CGROUP_SCHED)
367 368
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
369
#else
I
Ingo Molnar 已提交
370
	tg = &init_task_group;
371
#endif
372
	return tg;
S
Srivatsa Vaddagiri 已提交
373 374 375
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
376
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
377
{
378
#ifdef CONFIG_FAIR_GROUP_SCHED
379 380
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
381
#endif
P
Peter Zijlstra 已提交
382

383
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
384 385
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
386
#endif
S
Srivatsa Vaddagiri 已提交
387 388 389 390
}

#else

P
Peter Zijlstra 已提交
391
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
392 393 394 395
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
396

397
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
398

I
Ingo Molnar 已提交
399 400 401 402 403 404
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
405
	u64 min_vruntime;
I
Ingo Molnar 已提交
406 407 408

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
409 410 411 412 413 414

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
415 416
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
417
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
418

P
Peter Zijlstra 已提交
419
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
420

421
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
422 423
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
424 425
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
426 427 428 429 430 431
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
432 433
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
434 435 436

#ifdef CONFIG_SMP
	/*
437
	 * the part of load.weight contributed by tasks
438
	 */
439
	unsigned long task_weight;
440

441 442 443 444 445 446 447
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
448

449 450 451 452
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
453 454 455 456 457

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
458
#endif
I
Ingo Molnar 已提交
459 460
#endif
};
L
Linus Torvalds 已提交
461

I
Ingo Molnar 已提交
462 463 464
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
465
	unsigned long rt_nr_running;
466
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
467 468
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
469
#ifdef CONFIG_SMP
470
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
471
	int overloaded;
P
Peter Zijlstra 已提交
472
#endif
P
Peter Zijlstra 已提交
473
	int rt_throttled;
P
Peter Zijlstra 已提交
474
	u64 rt_time;
P
Peter Zijlstra 已提交
475
	u64 rt_runtime;
I
Ingo Molnar 已提交
476
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
477
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
478

479
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
480 481
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
482 483 484 485 486
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
487 488
};

G
Gregory Haskins 已提交
489 490 491 492
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
493 494
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
495 496 497 498 499 500
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
501 502
	cpumask_var_t span;
	cpumask_var_t online;
503

I
Ingo Molnar 已提交
504
	/*
505 506 507
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
508
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
509
	atomic_t rto_count;
510 511 512
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
513 514 515 516 517 518 519 520
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
521 522
};

523 524 525 526
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
527 528 529 530
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
531 532 533 534 535 536 537
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
538
struct rq {
539 540
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
541 542 543 544 545 546

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
547 548
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
549
	unsigned char idle_at_tick;
550
#ifdef CONFIG_NO_HZ
551
	unsigned long last_tick_seen;
552 553
	unsigned char in_nohz_recently;
#endif
554 555
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
556 557 558 559
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
560 561
	struct rt_rq rt;

I
Ingo Molnar 已提交
562
#ifdef CONFIG_FAIR_GROUP_SCHED
563 564
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
565 566
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
567
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
568 569 570 571 572 573 574 575 576 577
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

578
	struct task_struct *curr, *idle;
579
	unsigned long next_balance;
L
Linus Torvalds 已提交
580
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
581

582
	u64 clock;
I
Ingo Molnar 已提交
583

L
Linus Torvalds 已提交
584 585 586
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
587
	struct root_domain *rd;
L
Linus Torvalds 已提交
588 589 590 591 592
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
593 594
	/* cpu of this runqueue: */
	int cpu;
595
	int online;
L
Linus Torvalds 已提交
596

597
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
598

599
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
600 601 602
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
603
#ifdef CONFIG_SCHED_HRTICK
604 605 606 607
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
608 609 610
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
611 612 613
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
614 615
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
616 617

	/* sys_sched_yield() stats */
618 619 620 621
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
622 623

	/* schedule() stats */
624 625 626
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
627 628

	/* try_to_wake_up() stats */
629 630
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
631 632

	/* BKL stats */
633
	unsigned int bkl_count;
L
Linus Torvalds 已提交
634 635 636
#endif
};

637
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
638

639
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
640
{
641
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
642 643
}

644 645 646 647 648 649 650 651 652
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
653 654
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
655
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
656 657 658 659
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
660 661
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
662 663 664 665 666 667

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

668 669 670 671 672
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
673 674 675 676 677 678 679 680 681
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
700 701 702
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
703 704 705 706

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
707
enum {
P
Peter Zijlstra 已提交
708
#include "sched_features.h"
I
Ingo Molnar 已提交
709 710
};

P
Peter Zijlstra 已提交
711 712 713 714 715
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
716
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
717 718 719 720 721 722 723 724 725
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

726
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
727 728 729 730 731 732
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
733
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
734 735 736 737
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
738 739 740
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
741
	}
L
Li Zefan 已提交
742
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
743

L
Li Zefan 已提交
744
	return 0;
P
Peter Zijlstra 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
764
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
789 790 791 792 793
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
794
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
795 796 797 798 799
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
814

815 816 817 818 819 820
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
821 822
/*
 * ratelimit for updating the group shares.
823
 * default: 0.25ms
P
Peter Zijlstra 已提交
824
 */
825
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
826

827 828 829 830 831 832 833
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
834
/*
P
Peter Zijlstra 已提交
835
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
836 837
 * default: 1s
 */
P
Peter Zijlstra 已提交
838
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
839

840 841
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
842 843 844 845 846
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
847

848 849 850 851 852 853 854
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
855
	if (sysctl_sched_rt_runtime < 0)
856 857 858 859
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
860

L
Linus Torvalds 已提交
861
#ifndef prepare_arch_switch
862 863 864 865 866 867
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

868 869 870 871 872
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

873
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
874
static inline int task_running(struct rq *rq, struct task_struct *p)
875
{
876
	return task_current(rq, p);
877 878
}

879
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 881 882
{
}

883
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884
{
885 886 887 888
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
889 890 891 892 893 894 895
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

896 897 898 899
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
900
static inline int task_running(struct rq *rq, struct task_struct *p)
901 902 903 904
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
905
	return task_current(rq, p);
906 907 908
#endif
}

909
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

926
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927 928 929 930 931 932 933 934 935 936 937 938
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
939
#endif
940 941
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
942

943 944 945 946
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
947
static inline struct rq *__task_rq_lock(struct task_struct *p)
948 949
	__acquires(rq->lock)
{
950 951 952 953 954
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
955 956 957 958
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
959 960
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
961
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
962 963
 * explicitly disabling preemption.
 */
964
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
965 966
	__acquires(rq->lock)
{
967
	struct rq *rq;
L
Linus Torvalds 已提交
968

969 970 971 972 973 974
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
975 976 977 978
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

979 980 981 982 983 984 985 986
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
987
static void __task_rq_unlock(struct rq *rq)
988 989 990 991 992
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

993
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
994 995 996 997 998 999
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1000
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1001
 */
A
Alexey Dobriyan 已提交
1002
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1003 1004
	__acquires(rq->lock)
{
1005
	struct rq *rq;
L
Linus Torvalds 已提交
1006 1007 1008 1009 1010 1011 1012 1013

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1035
	if (!cpu_active(cpu_of(rq)))
1036
		return 0;
P
Peter Zijlstra 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1057
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1058 1059 1060 1061 1062 1063
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1064
#ifdef CONFIG_SMP
1065 1066 1067 1068
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1069
{
1070
	struct rq *rq = arg;
1071

1072 1073 1074 1075
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1076 1077
}

1078 1079 1080 1081 1082 1083
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1084
{
1085 1086
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1087

1088
	hrtimer_set_expires(timer, time);
1089 1090 1091 1092 1093 1094 1095

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1110
		hrtick_clear(cpu_rq(cpu));
1111 1112 1113 1114 1115 1116
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1117
static __init void init_hrtick(void)
1118 1119 1120
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1131

A
Andrew Morton 已提交
1132
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1133 1134
{
}
1135
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1136

1137
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1138
{
1139 1140
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1141

1142 1143 1144 1145
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1146

1147 1148
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1149
}
A
Andrew Morton 已提交
1150
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1151 1152 1153 1154 1155 1156 1157 1158
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1159 1160 1161
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1162
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1163

I
Ingo Molnar 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1177
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1178 1179 1180 1181 1182
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1183
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1184 1185
		return;

1186
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1249
#endif /* CONFIG_NO_HZ */
1250

1251
#else /* !CONFIG_SMP */
1252
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1253 1254
{
	assert_spin_locked(&task_rq(p)->lock);
1255
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1256
}
1257
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1258

1259 1260 1261 1262 1263 1264 1265 1266
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1267 1268 1269
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1270
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1271

1272 1273 1274
/*
 * delta *= weight / lw
 */
1275
static unsigned long
1276 1277 1278 1279 1280
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1281 1282 1283 1284 1285 1286 1287
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1288 1289 1290 1291 1292

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1293
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1294
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1295 1296
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1297
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1298

1299
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1300 1301
}

1302
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1303 1304
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1305
	lw->inv_weight = 0;
1306 1307
}

1308
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1309 1310
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1311
	lw->inv_weight = 0;
1312 1313
}

1314 1315 1316 1317
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1318
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1319 1320 1321 1322
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1334 1335 1336
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1337 1338
 */
static const int prio_to_weight[40] = {
1339 1340 1341 1342 1343 1344 1345 1346
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1347 1348
};

1349 1350 1351 1352 1353 1354 1355
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1356
static const u32 prio_to_wmult[40] = {
1357 1358 1359 1360 1361 1362 1363 1364
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1365
};
1366

I
Ingo Molnar 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1392

1393 1394 1395 1396 1397 1398
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1409
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1410
typedef int (*tg_visitor)(struct task_group *, void *);
1411 1412 1413 1414 1415

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1416
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1417 1418
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1419
	int ret;
1420 1421 1422 1423

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1424 1425 1426
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1427 1428 1429 1430 1431 1432 1433
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1434 1435 1436
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1437 1438 1439 1440 1441

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1442
out_unlock:
1443
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1444 1445

	return ret;
1446 1447
}

P
Peter Zijlstra 已提交
1448 1449 1450
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1451
}
P
Peter Zijlstra 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1462
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1463

1464 1465
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1466 1467
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1468 1469 1470 1471 1472

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1473 1474 1475 1476 1477 1478 1479

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1480 1481
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1482
{
1483 1484 1485
	unsigned long shares;
	unsigned long rq_weight;

1486
	if (!tg->se[cpu])
1487 1488
		return;

1489
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1490

1491 1492 1493 1494 1495 1496
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1497
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1498
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1499

1500 1501 1502 1503
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1504

1505
		spin_lock_irqsave(&rq->lock, flags);
1506
		tg->cfs_rq[cpu]->shares = shares;
1507

1508 1509 1510
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1511
}
1512 1513

/*
1514 1515 1516
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1517
 */
P
Peter Zijlstra 已提交
1518
static int tg_shares_up(struct task_group *tg, void *data)
1519
{
1520
	unsigned long weight, rq_weight = 0;
1521
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1522
	struct sched_domain *sd = data;
1523
	int i;
1524

1525
	for_each_cpu(i, sched_domain_span(sd)) {
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1537
		shares += tg->cfs_rq[i]->shares;
1538 1539
	}

1540 1541 1542 1543 1544
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1545

1546
	for_each_cpu(i, sched_domain_span(sd))
1547
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1548 1549

	return 0;
1550 1551 1552
}

/*
1553 1554 1555
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1556
 */
P
Peter Zijlstra 已提交
1557
static int tg_load_down(struct task_group *tg, void *data)
1558
{
1559
	unsigned long load;
P
Peter Zijlstra 已提交
1560
	long cpu = (long)data;
1561

1562 1563 1564 1565 1566 1567 1568
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1569

1570
	tg->cfs_rq[cpu]->h_load = load;
1571

P
Peter Zijlstra 已提交
1572
	return 0;
1573 1574
}

1575
static void update_shares(struct sched_domain *sd)
1576
{
P
Peter Zijlstra 已提交
1577 1578 1579 1580 1581
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1582
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1583
	}
1584 1585
}

1586 1587 1588 1589 1590 1591 1592
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1593
static void update_h_load(long cpu)
1594
{
P
Peter Zijlstra 已提交
1595
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1596 1597 1598 1599
}

#else

1600
static inline void update_shares(struct sched_domain *sd)
1601 1602 1603
{
}

1604 1605 1606 1607
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1608 1609
#endif

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1643 1644
#endif

V
Vegard Nossum 已提交
1645
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1646 1647
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1648
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1649 1650 1651
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1652
#endif
1653

I
Ingo Molnar 已提交
1654 1655
#include "sched_stats.h"
#include "sched_idletask.c"
1656 1657
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1658 1659 1660 1661 1662
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1663 1664
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1665

1666
static void inc_nr_running(struct rq *rq)
1667 1668 1669 1670
{
	rq->nr_running++;
}

1671
static void dec_nr_running(struct rq *rq)
1672 1673 1674 1675
{
	rq->nr_running--;
}

1676 1677 1678
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1679 1680 1681 1682
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1683

I
Ingo Molnar 已提交
1684 1685 1686 1687 1688 1689 1690 1691
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1692

I
Ingo Molnar 已提交
1693 1694
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1695 1696
}

1697 1698 1699 1700 1701 1702
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1703
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1704
{
I
Ingo Molnar 已提交
1705
	sched_info_queued(p);
1706
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1707
	p->se.on_rq = 1;
1708 1709
}

1710
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1711
{
1712 1713 1714 1715 1716 1717
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1718
	sched_info_dequeued(p);
1719
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1720
	p->se.on_rq = 0;
1721 1722
}

1723
/*
I
Ingo Molnar 已提交
1724
 * __normal_prio - return the priority that is based on the static prio
1725 1726 1727
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1728
	return p->static_prio;
1729 1730
}

1731 1732 1733 1734 1735 1736 1737
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1738
static inline int normal_prio(struct task_struct *p)
1739 1740 1741
{
	int prio;

1742
	if (task_has_rt_policy(p))
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1756
static int effective_prio(struct task_struct *p)
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1769
/*
I
Ingo Molnar 已提交
1770
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1771
 */
I
Ingo Molnar 已提交
1772
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1773
{
1774
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1775
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1776

1777
	enqueue_task(rq, p, wakeup);
1778
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1779 1780 1781 1782 1783
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1784
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1785
{
1786
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1787 1788
		rq->nr_uninterruptible++;

1789
	dequeue_task(rq, p, sleep);
1790
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1791 1792 1793 1794 1795 1796
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1797
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1798 1799 1800 1801
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1802 1803
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1804
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1805
#ifdef CONFIG_SMP
1806 1807 1808 1809 1810 1811
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1812 1813
	task_thread_info(p)->cpu = cpu;
#endif
1814 1815
}

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1828
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1829

1830 1831 1832 1833 1834 1835
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1836 1837 1838
/*
 * Is this task likely cache-hot:
 */
1839
static int
1840 1841 1842 1843
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1844 1845 1846
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1847 1848 1849
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1850 1851
		return 1;

1852 1853 1854
	if (p->sched_class != &fair_sched_class)
		return 0;

1855 1856 1857 1858 1859
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1860 1861 1862 1863 1864 1865
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1866
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1867
{
I
Ingo Molnar 已提交
1868 1869
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1870 1871
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1872
	u64 clock_offset;
I
Ingo Molnar 已提交
1873 1874

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1875

1876 1877
	trace_sched_migrate_task(p, task_cpu(p), new_cpu);

I
Ingo Molnar 已提交
1878 1879 1880
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1881 1882 1883 1884
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1885 1886 1887 1888 1889
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1890
#endif
1891 1892
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1893 1894

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1895 1896
}

1897
struct migration_req {
L
Linus Torvalds 已提交
1898 1899
	struct list_head list;

1900
	struct task_struct *task;
L
Linus Torvalds 已提交
1901 1902 1903
	int dest_cpu;

	struct completion done;
1904
};
L
Linus Torvalds 已提交
1905 1906 1907 1908 1909

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1910
static int
1911
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1912
{
1913
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1914 1915 1916 1917 1918

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1919
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1920 1921 1922 1923 1924 1925 1926 1927
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1928

L
Linus Torvalds 已提交
1929 1930 1931 1932 1933 1934
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1935 1936 1937 1938 1939 1940 1941
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1942 1943 1944 1945 1946 1947
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1948
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1949 1950
{
	unsigned long flags;
I
Ingo Molnar 已提交
1951
	int running, on_rq;
R
Roland McGrath 已提交
1952
	unsigned long ncsw;
1953
	struct rq *rq;
L
Linus Torvalds 已提交
1954

1955 1956 1957 1958 1959 1960 1961 1962
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1963

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1975 1976 1977
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1978
			cpu_relax();
R
Roland McGrath 已提交
1979
		}
1980

1981 1982 1983 1984 1985 1986
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1987
		trace_sched_wait_task(rq, p);
1988 1989
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1990
		ncsw = 0;
1991
		if (!match_state || p->state == match_state)
1992
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1993
		task_rq_unlock(rq, &flags);
1994

R
Roland McGrath 已提交
1995 1996 1997 1998 1999 2000
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2011

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2025

2026 2027 2028 2029 2030 2031 2032
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2033 2034

	return ncsw;
L
Linus Torvalds 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2050
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2062 2063
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2064 2065 2066 2067
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2068
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2069
{
2070
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2071
	unsigned long total = weighted_cpuload(cpu);
2072

2073
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2074
		return total;
2075

I
Ingo Molnar 已提交
2076
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2077 2078 2079
}

/*
2080 2081
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2082
 */
A
Alexey Dobriyan 已提交
2083
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2084
{
2085
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2086
	unsigned long total = weighted_cpuload(cpu);
2087

2088
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2089
		return total;
2090

I
Ingo Molnar 已提交
2091
	return max(rq->cpu_load[type-1], total);
2092 2093
}

N
Nick Piggin 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2111
		/* Skip over this group if it has no CPUs allowed */
2112 2113
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2114
			continue;
2115

2116 2117
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2118 2119 2120 2121

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2122
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2133 2134
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2135 2136 2137 2138 2139 2140 2141 2142

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2143
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2144 2145 2146 2147 2148 2149 2150

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2151
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2152
 */
I
Ingo Molnar 已提交
2153
static int
2154
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2155 2156 2157 2158 2159
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2160
	/* Traverse only the allowed CPUs */
2161
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2162
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2188

2189
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2190 2191 2192
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2193 2194
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2195 2196
		if (tmp->flags & flag)
			sd = tmp;
2197
	}
N
Nick Piggin 已提交
2198

2199 2200 2201
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2202 2203
	while (sd) {
		struct sched_group *group;
2204 2205 2206 2207 2208 2209
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2210 2211

		group = find_idlest_group(sd, t, cpu);
2212 2213 2214 2215
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2216

2217
		new_cpu = find_idlest_cpu(group, t, cpu);
2218 2219 2220 2221 2222
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2223

2224
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2225
		cpu = new_cpu;
2226
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2227 2228
		sd = NULL;
		for_each_domain(cpu, tmp) {
2229
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2256
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2257
{
2258
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2259 2260
	unsigned long flags;
	long old_state;
2261
	struct rq *rq;
L
Linus Torvalds 已提交
2262

2263 2264 2265
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2266 2267 2268 2269 2270 2271 2272 2273
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2274
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2275 2276 2277 2278 2279 2280 2281
				update_shares(sd);
				break;
			}
		}
	}
#endif

2282
	smp_wmb();
L
Linus Torvalds 已提交
2283
	rq = task_rq_lock(p, &flags);
2284
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2285 2286 2287 2288
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2289
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2290 2291 2292
		goto out_running;

	cpu = task_cpu(p);
2293
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2294 2295 2296 2297 2298 2299
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2300 2301 2302
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2303 2304 2305 2306 2307 2308
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2309
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2310 2311 2312 2313 2314 2315
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2316 2317 2318 2319 2320 2321 2322
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2323
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2324 2325 2326 2327 2328
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2329
#endif /* CONFIG_SCHEDSTATS */
2330

L
Linus Torvalds 已提交
2331 2332
out_activate:
#endif /* CONFIG_SMP */
2333 2334 2335 2336 2337 2338 2339 2340 2341
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2342
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2343 2344 2345
	success = 1;

out_running:
2346
	trace_sched_wakeup(rq, p, success);
2347
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2348

L
Linus Torvalds 已提交
2349
	p->state = TASK_RUNNING;
2350 2351 2352 2353
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2354
out:
2355 2356
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2357 2358 2359 2360 2361
	task_rq_unlock(rq, &flags);

	return success;
}

2362
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2363
{
2364
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2365 2366 2367
}
EXPORT_SYMBOL(wake_up_process);

2368
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2369 2370 2371 2372 2373 2374 2375
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2376 2377 2378 2379 2380 2381 2382
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2383
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2384 2385
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2386 2387 2388

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2389 2390 2391 2392 2393 2394
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2395
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2396
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2397
#endif
N
Nick Piggin 已提交
2398

P
Peter Zijlstra 已提交
2399
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2400
	p->se.on_rq = 0;
2401
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2402

2403 2404 2405 2406
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2407 2408 2409 2410 2411 2412 2413
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2428
	set_task_cpu(p, cpu);
2429 2430 2431 2432 2433

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2434 2435
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2436

2437
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2438
	if (likely(sched_info_on()))
2439
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2440
#endif
2441
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2442 2443
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2444
#ifdef CONFIG_PREEMPT
2445
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2446
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2447
#endif
N
Nick Piggin 已提交
2448
	put_cpu();
L
Linus Torvalds 已提交
2449 2450 2451 2452 2453 2454 2455 2456 2457
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2458
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2459 2460
{
	unsigned long flags;
I
Ingo Molnar 已提交
2461
	struct rq *rq;
L
Linus Torvalds 已提交
2462 2463

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2464
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2465
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2466 2467 2468

	p->prio = effective_prio(p);

2469
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2470
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2471 2472
	} else {
		/*
I
Ingo Molnar 已提交
2473 2474
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2475
		 */
2476
		p->sched_class->task_new(rq, p);
2477
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2478
	}
2479
	trace_sched_wakeup_new(rq, p, 1);
2480
	check_preempt_curr(rq, p, 0);
2481 2482 2483 2484
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2485
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2486 2487
}

2488 2489 2490
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2491 2492
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2493 2494 2495 2496 2497 2498 2499 2500 2501
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2502
 * @notifier: notifier struct to unregister
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2532
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2544
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2545

2546 2547 2548
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2549
 * @prev: the current task that is being switched out
2550 2551 2552 2553 2554 2555 2556 2557 2558
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2559 2560 2561
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2562
{
2563
	fire_sched_out_preempt_notifiers(prev, next);
2564 2565 2566 2567
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2568 2569
/**
 * finish_task_switch - clean up after a task-switch
2570
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2571 2572
 * @prev: the thread we just switched away from.
 *
2573 2574 2575 2576
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2577 2578
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2579
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2580 2581 2582
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2583
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2584 2585 2586
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2587
	long prev_state;
L
Linus Torvalds 已提交
2588 2589 2590 2591 2592

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2593
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2594 2595
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2596
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2597 2598 2599 2600 2601
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2602
	prev_state = prev->state;
2603 2604
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2605 2606 2607 2608
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2609

2610
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2611 2612
	if (mm)
		mmdrop(mm);
2613
	if (unlikely(prev_state == TASK_DEAD)) {
2614 2615 2616
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2617
		 */
2618
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2619
		put_task_struct(prev);
2620
	}
L
Linus Torvalds 已提交
2621 2622 2623 2624 2625 2626
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2627
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2628 2629
	__releases(rq->lock)
{
2630 2631
	struct rq *rq = this_rq();

2632 2633 2634 2635 2636
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2637
	if (current->set_child_tid)
2638
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2639 2640 2641 2642 2643 2644
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2645
static inline void
2646
context_switch(struct rq *rq, struct task_struct *prev,
2647
	       struct task_struct *next)
L
Linus Torvalds 已提交
2648
{
I
Ingo Molnar 已提交
2649
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2650

2651
	prepare_task_switch(rq, prev, next);
2652
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2653 2654
	mm = next->mm;
	oldmm = prev->active_mm;
2655 2656 2657 2658 2659 2660 2661
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2662
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2663 2664 2665 2666 2667 2668
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2669
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2670 2671 2672
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2673 2674 2675 2676 2677 2678 2679
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2680
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2681
#endif
L
Linus Torvalds 已提交
2682 2683 2684 2685

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2686 2687 2688 2689 2690 2691 2692
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2716
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2731 2732
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2733

2734
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2744
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2745 2746 2747 2748 2749
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2765
/*
I
Ingo Molnar 已提交
2766 2767
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2768
 */
I
Ingo Molnar 已提交
2769
static void update_cpu_load(struct rq *this_rq)
2770
{
2771
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2784 2785 2786 2787 2788 2789 2790
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2791 2792
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2793 2794
}

I
Ingo Molnar 已提交
2795 2796
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2797 2798 2799 2800 2801 2802
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2803
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2804 2805 2806
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2807
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2808 2809 2810 2811
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2812
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2813
			spin_lock(&rq1->lock);
2814
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2815 2816
		} else {
			spin_lock(&rq2->lock);
2817
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2818 2819
		}
	}
2820 2821
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2822 2823 2824 2825 2826 2827 2828 2829
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2830
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2844
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2845 2846
 * the cpu_allowed mask is restored.
 */
2847
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2848
{
2849
	struct migration_req req;
L
Linus Torvalds 已提交
2850
	unsigned long flags;
2851
	struct rq *rq;
L
Linus Torvalds 已提交
2852 2853

	rq = task_rq_lock(p, &flags);
2854
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2855
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2856 2857 2858 2859 2860 2861
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2862

L
Linus Torvalds 已提交
2863 2864 2865 2866 2867
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2868

L
Linus Torvalds 已提交
2869 2870 2871 2872 2873 2874 2875
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2876 2877
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2878 2879 2880 2881
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2882
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2883
	put_cpu();
N
Nick Piggin 已提交
2884 2885
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2886 2887 2888 2889 2890 2891
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2892 2893
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2894
{
2895
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2896
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2897
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2898 2899 2900 2901
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2902
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2903 2904 2905 2906 2907
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2908
static
2909
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2910
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2911
		     int *all_pinned)
L
Linus Torvalds 已提交
2912 2913 2914 2915 2916 2917 2918
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2919
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2920
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2921
		return 0;
2922
	}
2923 2924
	*all_pinned = 0;

2925 2926
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2927
		return 0;
2928
	}
L
Linus Torvalds 已提交
2929

2930 2931 2932 2933 2934 2935
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2936 2937
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2938
#ifdef CONFIG_SCHEDSTATS
2939
		if (task_hot(p, rq->clock, sd)) {
2940
			schedstat_inc(sd, lb_hot_gained[idle]);
2941 2942
			schedstat_inc(p, se.nr_forced_migrations);
		}
2943 2944 2945 2946
#endif
		return 1;
	}

2947 2948
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2949
		return 0;
2950
	}
L
Linus Torvalds 已提交
2951 2952 2953
	return 1;
}

2954 2955 2956 2957 2958
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2959
{
2960
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2961 2962
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2963

2964
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2965 2966
		goto out;

2967 2968
	pinned = 1;

L
Linus Torvalds 已提交
2969
	/*
I
Ingo Molnar 已提交
2970
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2971
	 */
I
Ingo Molnar 已提交
2972 2973
	p = iterator->start(iterator->arg);
next:
2974
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2975
		goto out;
2976 2977

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2978 2979 2980
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2981 2982
	}

I
Ingo Molnar 已提交
2983
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2984
	pulled++;
I
Ingo Molnar 已提交
2985
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2986

2987
	/*
2988
	 * We only want to steal up to the prescribed amount of weighted load.
2989
	 */
2990
	if (rem_load_move > 0) {
2991 2992
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2993 2994
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2995 2996 2997
	}
out:
	/*
2998
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2999 3000 3001 3002
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3003 3004 3005

	if (all_pinned)
		*all_pinned = pinned;
3006 3007

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3008 3009
}

I
Ingo Molnar 已提交
3010
/*
P
Peter Williams 已提交
3011 3012 3013
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3014 3015 3016 3017
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3018
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3019 3020 3021
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3022
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3023
	unsigned long total_load_moved = 0;
3024
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3025 3026

	do {
P
Peter Williams 已提交
3027 3028
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3029
				max_load_move - total_load_moved,
3030
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3031
		class = class->next;
3032 3033 3034 3035

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3036
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3037

P
Peter Williams 已提交
3038 3039 3040
	return total_load_moved > 0;
}

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3077
	const struct sched_class *class;
P
Peter Williams 已提交
3078 3079

	for (class = sched_class_highest; class; class = class->next)
3080
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3081 3082 3083
			return 1;

	return 0;
I
Ingo Molnar 已提交
3084 3085
}

L
Linus Torvalds 已提交
3086 3087
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3088 3089
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3090 3091 3092
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3093
		   unsigned long *imbalance, enum cpu_idle_type idle,
3094
		   int *sd_idle, const struct cpumask *cpus, int *balance)
L
Linus Torvalds 已提交
3095 3096 3097
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3098
	unsigned long max_pull;
3099 3100
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3101
	int load_idx, group_imb = 0;
3102 3103 3104 3105 3106 3107
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3108 3109

	max_load = this_load = total_load = total_pwr = 0;
3110 3111
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3112

I
Ingo Molnar 已提交
3113
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3114
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3115
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3116 3117 3118
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3119 3120

	do {
3121
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3122 3123
		int local_group;
		int i;
3124
		int __group_imb = 0;
3125
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3126
		unsigned long sum_nr_running, sum_weighted_load;
3127 3128
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3129

3130 3131
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
L
Linus Torvalds 已提交
3132

3133
		if (local_group)
3134
			balance_cpu = cpumask_first(sched_group_cpus(group));
3135

L
Linus Torvalds 已提交
3136
		/* Tally up the load of all CPUs in the group */
3137
		sum_weighted_load = sum_nr_running = avg_load = 0;
3138 3139
		sum_avg_load_per_task = avg_load_per_task = 0;

3140 3141
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3142

3143 3144
		for_each_cpu_and(i, sched_group_cpus(group), cpus) {
			struct rq *rq = cpu_rq(i);
3145

3146
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3147 3148
				*sd_idle = 0;

L
Linus Torvalds 已提交
3149
			/* Bias balancing toward cpus of our domain */
3150 3151 3152 3153 3154 3155
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3156
				load = target_load(i, load_idx);
3157
			} else {
N
Nick Piggin 已提交
3158
				load = source_load(i, load_idx);
3159 3160 3161 3162 3163
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3164 3165

			avg_load += load;
3166
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3167
			sum_weighted_load += weighted_cpuload(i);
3168 3169

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3170 3171
		}

3172 3173 3174
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3175 3176
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3177
		 */
3178 3179
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3180 3181 3182 3183
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3184
		total_load += avg_load;
3185
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3186 3187

		/* Adjust by relative CPU power of the group */
3188 3189
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3190

3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3205 3206
			__group_imb = 1;

3207
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3208

L
Linus Torvalds 已提交
3209 3210 3211
		if (local_group) {
			this_load = avg_load;
			this = group;
3212 3213 3214
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3215
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3216 3217
			max_load = avg_load;
			busiest = group;
3218 3219
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3220
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3221
		}
3222 3223 3224 3225 3226 3227

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3228 3229 3230
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3231 3232 3233 3234 3235 3236 3237 3238 3239

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3240
		/*
3241 3242
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3243 3244
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3245
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3246
			goto group_next;
3247

I
Ingo Molnar 已提交
3248
		/*
3249
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3250 3251 3252 3253 3254
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3255
		     cpumask_first(sched_group_cpus(group)) >
3256
		     cpumask_first(sched_group_cpus(group_min)))) {
I
Ingo Molnar 已提交
3257 3258
			group_min = group;
			min_nr_running = sum_nr_running;
3259 3260
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3261
		}
3262

I
Ingo Molnar 已提交
3263
		/*
3264
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3265 3266 3267 3268 3269 3270
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
3271
			     cpumask_first(sched_group_cpus(group)) <
3272
			     cpumask_first(sched_group_cpus(group_leader)))) {
I
Ingo Molnar 已提交
3273 3274 3275
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3276
		}
3277 3278
group_next:
#endif
L
Linus Torvalds 已提交
3279 3280 3281
		group = group->next;
	} while (group != sd->groups);

3282
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3283 3284 3285 3286 3287 3288 3289 3290
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3291
	busiest_load_per_task /= busiest_nr_running;
3292 3293 3294
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3295 3296 3297 3298 3299 3300 3301 3302
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3303
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3304 3305
	 * appear as very large values with unsigned longs.
	 */
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3318 3319

	/* Don't want to pull so many tasks that a group would go idle */
3320
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3321

L
Linus Torvalds 已提交
3322
	/* How much load to actually move to equalise the imbalance */
3323 3324
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3325 3326
			/ SCHED_LOAD_SCALE;

3327 3328 3329 3330 3331 3332
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3333
	if (*imbalance < busiest_load_per_task) {
3334
		unsigned long tmp, pwr_now, pwr_move;
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3345
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3346

3347
		if (max_load - this_load + busiest_load_per_task >=
I
Ingo Molnar 已提交
3348
					busiest_load_per_task * imbn) {
3349
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3350 3351 3352 3353 3354 3355 3356 3357 3358
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3359 3360 3361 3362
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3363 3364 3365
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3366 3367
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3368
		if (max_load > tmp)
3369
			pwr_move += busiest->__cpu_power *
3370
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3371 3372

		/* Amount of load we'd add */
3373
		if (max_load * busiest->__cpu_power <
3374
				busiest_load_per_task * SCHED_LOAD_SCALE)
3375 3376
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3377
		else
3378 3379 3380 3381
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3382 3383 3384
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3385 3386
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3387 3388 3389 3390 3391
	}

	return busiest;

out_balanced:
3392
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3393
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3394
		goto ret;
L
Linus Torvalds 已提交
3395

3396 3397
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
3398 3399
		if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
			cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
I
Ingo Molnar 已提交
3400
				cpumask_first(sched_group_cpus(group_leader));
3401
		}
3402 3403 3404
		return group_min;
	}
#endif
3405
ret:
L
Linus Torvalds 已提交
3406 3407 3408 3409 3410 3411 3412
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3413
static struct rq *
I
Ingo Molnar 已提交
3414
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3415
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3416
{
3417
	struct rq *busiest = NULL, *rq;
3418
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3419 3420
	int i;

3421
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3422
		unsigned long wl;
3423

3424
		if (!cpumask_test_cpu(i, cpus))
3425 3426
			continue;

3427
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3428
		wl = weighted_cpuload(i);
3429

I
Ingo Molnar 已提交
3430
		if (rq->nr_running == 1 && wl > imbalance)
3431
			continue;
L
Linus Torvalds 已提交
3432

I
Ingo Molnar 已提交
3433 3434
		if (wl > max_load) {
			max_load = wl;
3435
			busiest = rq;
L
Linus Torvalds 已提交
3436 3437 3438 3439 3440 3441
		}
	}

	return busiest;
}

3442 3443 3444 3445 3446 3447
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3448 3449 3450 3451
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3452
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3453
			struct sched_domain *sd, enum cpu_idle_type idle,
3454
			int *balance, struct cpumask *cpus)
L
Linus Torvalds 已提交
3455
{
P
Peter Williams 已提交
3456
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3457 3458
	struct sched_group *group;
	unsigned long imbalance;
3459
	struct rq *busiest;
3460
	unsigned long flags;
N
Nick Piggin 已提交
3461

3462
	cpumask_setall(cpus);
3463

3464 3465 3466
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3467
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3468
	 * portraying it as CPU_NOT_IDLE.
3469
	 */
I
Ingo Molnar 已提交
3470
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3471
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3472
		sd_idle = 1;
L
Linus Torvalds 已提交
3473

3474
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3475

3476
redo:
3477
	update_shares(sd);
3478
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3479
				   cpus, balance);
3480

3481
	if (*balance == 0)
3482 3483
		goto out_balanced;

L
Linus Torvalds 已提交
3484 3485 3486 3487 3488
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3489
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3490 3491 3492 3493 3494
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3495
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3496 3497 3498

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3499
	ld_moved = 0;
L
Linus Torvalds 已提交
3500 3501 3502 3503
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3504
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3505 3506
		 * correctly treated as an imbalance.
		 */
3507
		local_irq_save(flags);
N
Nick Piggin 已提交
3508
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3509
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3510
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3511
		double_rq_unlock(this_rq, busiest);
3512
		local_irq_restore(flags);
3513

3514 3515 3516
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3517
		if (ld_moved && this_cpu != smp_processor_id())
3518 3519
			resched_cpu(this_cpu);

3520
		/* All tasks on this runqueue were pinned by CPU affinity */
3521
		if (unlikely(all_pinned)) {
3522 3523
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3524
				goto redo;
3525
			goto out_balanced;
3526
		}
L
Linus Torvalds 已提交
3527
	}
3528

P
Peter Williams 已提交
3529
	if (!ld_moved) {
L
Linus Torvalds 已提交
3530 3531 3532 3533 3534
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3535
			spin_lock_irqsave(&busiest->lock, flags);
3536 3537 3538 3539

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
3540 3541
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
3542
				spin_unlock_irqrestore(&busiest->lock, flags);
3543 3544 3545 3546
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3547 3548 3549
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3550
				active_balance = 1;
L
Linus Torvalds 已提交
3551
			}
3552
			spin_unlock_irqrestore(&busiest->lock, flags);
3553
			if (active_balance)
L
Linus Torvalds 已提交
3554 3555 3556 3557 3558 3559
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3560
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3561
		}
3562
	} else
L
Linus Torvalds 已提交
3563 3564
		sd->nr_balance_failed = 0;

3565
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3566 3567
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3568 3569 3570 3571 3572 3573 3574 3575 3576
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3577 3578
	}

P
Peter Williams 已提交
3579
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3580
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3581 3582 3583
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3584 3585 3586 3587

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3588
	sd->nr_balance_failed = 0;
3589 3590

out_one_pinned:
L
Linus Torvalds 已提交
3591
	/* tune up the balancing interval */
3592 3593
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3594 3595
		sd->balance_interval *= 2;

3596
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3597
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3598 3599 3600 3601
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3602 3603
	if (ld_moved)
		update_shares(sd);
3604
	return ld_moved;
L
Linus Torvalds 已提交
3605 3606 3607 3608 3609 3610
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3611
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3612 3613
 * this_rq is locked.
 */
3614
static int
3615
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3616
			struct cpumask *cpus)
L
Linus Torvalds 已提交
3617 3618
{
	struct sched_group *group;
3619
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3620
	unsigned long imbalance;
P
Peter Williams 已提交
3621
	int ld_moved = 0;
N
Nick Piggin 已提交
3622
	int sd_idle = 0;
3623
	int all_pinned = 0;
3624

3625
	cpumask_setall(cpus);
N
Nick Piggin 已提交
3626

3627 3628 3629 3630
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3631
	 * portraying it as CPU_NOT_IDLE.
3632 3633 3634
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3635
		sd_idle = 1;
L
Linus Torvalds 已提交
3636

3637
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3638
redo:
3639
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3640
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3641
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3642
	if (!group) {
I
Ingo Molnar 已提交
3643
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3644
		goto out_balanced;
L
Linus Torvalds 已提交
3645 3646
	}

3647
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3648
	if (!busiest) {
I
Ingo Molnar 已提交
3649
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3650
		goto out_balanced;
L
Linus Torvalds 已提交
3651 3652
	}

N
Nick Piggin 已提交
3653 3654
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3655
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3656

P
Peter Williams 已提交
3657
	ld_moved = 0;
3658 3659 3660
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3661 3662
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3663
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3664 3665
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3666
		double_unlock_balance(this_rq, busiest);
3667

3668
		if (unlikely(all_pinned)) {
3669 3670
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3671 3672
				goto redo;
		}
3673 3674
	}

P
Peter Williams 已提交
3675
	if (!ld_moved) {
3676
		int active_balance = 0;
3677

I
Ingo Molnar 已提交
3678
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3679 3680
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3681
			return -1;
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
3718
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
		if (active_balance)
			wake_up_process(busiest->migration_thread);

N
Nick Piggin 已提交
3734
	} else
3735
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3736

3737
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3738
	return ld_moved;
3739 3740

out_balanced:
I
Ingo Molnar 已提交
3741
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3742
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3743
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3744
		return -1;
3745
	sd->nr_balance_failed = 0;
3746

3747
	return 0;
L
Linus Torvalds 已提交
3748 3749 3750 3751 3752 3753
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3754
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3755 3756
{
	struct sched_domain *sd;
3757
	int pulled_task = 0;
I
Ingo Molnar 已提交
3758
	unsigned long next_balance = jiffies + HZ;
3759 3760 3761 3762
	cpumask_var_t tmpmask;

	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
3763 3764

	for_each_domain(this_cpu, sd) {
3765 3766 3767 3768 3769 3770
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3771
			/* If we've pulled tasks over stop searching: */
3772
			pulled_task = load_balance_newidle(this_cpu, this_rq,
3773
							   sd, tmpmask);
3774 3775 3776 3777 3778 3779

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3780
	}
I
Ingo Molnar 已提交
3781
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3782 3783 3784 3785 3786
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3787
	}
3788
	free_cpumask_var(tmpmask);
L
Linus Torvalds 已提交
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3799
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3800
{
3801
	int target_cpu = busiest_rq->push_cpu;
3802 3803
	struct sched_domain *sd;
	struct rq *target_rq;
3804

3805
	/* Is there any task to move? */
3806 3807 3808 3809
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3810 3811

	/*
3812
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3813
	 * we need to fix it. Originally reported by
3814
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3815
	 */
3816
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3817

3818 3819
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3820 3821
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3822 3823

	/* Search for an sd spanning us and the target CPU. */
3824
	for_each_domain(target_cpu, sd) {
3825
		if ((sd->flags & SD_LOAD_BALANCE) &&
3826
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3827
				break;
3828
	}
3829

3830
	if (likely(sd)) {
3831
		schedstat_inc(sd, alb_count);
3832

P
Peter Williams 已提交
3833 3834
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3835 3836 3837 3838
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3839
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3840 3841
}

3842 3843 3844
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
3845
	cpumask_var_t cpu_mask;
3846 3847 3848 3849
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

3850
/*
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3861
 *
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
3875
		cpumask_set_cpu(cpu, nohz.cpu_mask);
3876 3877 3878 3879 3880
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3881
		if (!cpu_active(cpu) &&
3882 3883 3884 3885 3886 3887 3888
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
3889
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
3902
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3903 3904
			return 0;

3905
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3918 3919 3920 3921 3922
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3923
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3924
{
3925 3926
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3927 3928
	unsigned long interval;
	struct sched_domain *sd;
3929
	/* Earliest time when we have to do rebalance again */
3930
	unsigned long next_balance = jiffies + 60*HZ;
3931
	int update_next_balance = 0;
3932
	int need_serialize;
3933 3934 3935 3936 3937
	cpumask_var_t tmp;

	/* Fails alloc?  Rebalancing probably not a priority right now. */
	if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
3938

3939
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3940 3941 3942 3943
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3944
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3945 3946 3947 3948 3949 3950
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3951 3952 3953
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3954
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3955

3956
		if (need_serialize) {
3957 3958 3959 3960
			if (!spin_trylock(&balancing))
				goto out;
		}

3961
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3962
			if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
3963 3964
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3965 3966 3967
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3968
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3969
			}
3970
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3971
		}
3972
		if (need_serialize)
3973 3974
			spin_unlock(&balancing);
out:
3975
		if (time_after(next_balance, sd->last_balance + interval)) {
3976
			next_balance = sd->last_balance + interval;
3977 3978
			update_next_balance = 1;
		}
3979 3980 3981 3982 3983 3984 3985 3986

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3987
	}
3988 3989 3990 3991 3992 3993 3994 3995

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3996 3997

	free_cpumask_var(tmp);
3998 3999 4000 4001 4002 4003 4004 4005 4006
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4007 4008 4009 4010
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4011

I
Ingo Molnar 已提交
4012
	rebalance_domains(this_cpu, idle);
4013 4014 4015 4016 4017 4018 4019

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4020 4021
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4022 4023 4024
		struct rq *rq;
		int balance_cpu;

4025 4026 4027 4028
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4029 4030 4031 4032 4033 4034 4035 4036
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4037
			rebalance_domains(balance_cpu, CPU_IDLE);
4038 4039

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4040 4041
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4054
static inline void trigger_load_balance(struct rq *rq, int cpu)
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4066
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
4079
			int ilb = cpumask_first(nohz.cpu_mask);
4080

4081
			if (ilb < nr_cpu_ids)
4082 4083 4084 4085 4086 4087 4088 4089 4090
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4091
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4092 4093 4094 4095 4096 4097 4098 4099 4100
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4101
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4102 4103 4104 4105
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4106
}
I
Ingo Molnar 已提交
4107 4108 4109

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4110 4111 4112
/*
 * on UP we do not need to balance between CPUs:
 */
4113
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4114 4115
{
}
I
Ingo Molnar 已提交
4116

L
Linus Torvalds 已提交
4117 4118 4119 4120 4121 4122 4123
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4124 4125
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4126
 */
4127
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4128 4129
{
	unsigned long flags;
4130
	struct rq *rq;
4131
	u64 ns = 0;
4132

4133
	rq = task_rq_lock(p, &flags);
4134

4135
	if (task_current(rq, p)) {
4136 4137
		u64 delta_exec;

I
Ingo Molnar 已提交
4138 4139
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4140
		if ((s64)delta_exec > 0)
4141
			ns = delta_exec;
4142
	}
4143

4144
	task_rq_unlock(rq, &flags);
4145

L
Linus Torvalds 已提交
4146 4147 4148 4149 4150 4151 4152
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4153
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4154
 */
4155 4156
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4157 4158 4159 4160
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4161
	/* Add user time to process. */
L
Linus Torvalds 已提交
4162
	p->utime = cputime_add(p->utime, cputime);
4163
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4164
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4165 4166 4167 4168 4169 4170 4171

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4172 4173
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4174 4175
}

4176 4177 4178 4179
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4180
 * @cputime_scaled: cputime scaled by cpu frequency
4181
 */
4182 4183
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4184 4185 4186 4187 4188 4189
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4190
	/* Add guest time to process. */
4191
	p->utime = cputime_add(p->utime, cputime);
4192
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4193
	account_group_user_time(p, cputime);
4194 4195
	p->gtime = cputime_add(p->gtime, cputime);

4196
	/* Add guest time to cpustat. */
4197 4198 4199 4200
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
4201 4202 4203 4204 4205
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
4206
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4207 4208
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
4209
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4210 4211 4212 4213
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4214
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4215
		account_guest_time(p, cputime, cputime_scaled);
4216 4217
		return;
	}
4218

4219
	/* Add system time to process. */
L
Linus Torvalds 已提交
4220
	p->stime = cputime_add(p->stime, cputime);
4221
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4222
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4223 4224 4225 4226 4227 4228 4229 4230

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
4231 4232
		cpustat->system = cputime64_add(cpustat->system, tmp);

L
Linus Torvalds 已提交
4233 4234 4235 4236
	/* Account for system time used */
	acct_update_integrals(p);
}

4237
/*
L
Linus Torvalds 已提交
4238 4239
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
4240
 */
4241
void account_steal_time(cputime_t cputime)
4242
{
4243 4244 4245 4246
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4247 4248
}

L
Linus Torvalds 已提交
4249
/*
4250 4251
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
4252
 */
4253
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
4254 4255
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4256
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
4257
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4258

4259 4260 4261 4262
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
4263 4264
}

4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
	else if (p != rq->idle)
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
4304 4305
}

4306 4307
#endif

4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4378
	struct task_struct *curr = rq->curr;
4379 4380

	sched_clock_tick();
I
Ingo Molnar 已提交
4381 4382

	spin_lock(&rq->lock);
4383
	update_rq_clock(rq);
4384
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4385
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4386
	spin_unlock(&rq->lock);
4387

4388
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4389 4390
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4391
#endif
L
Linus Torvalds 已提交
4392 4393
}

4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4406

4407
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4408
{
4409
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4410 4411 4412
	/*
	 * Underflow?
	 */
4413 4414
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4415
#endif
L
Linus Torvalds 已提交
4416
	preempt_count() += val;
4417
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4418 4419 4420
	/*
	 * Spinlock count overflowing soon?
	 */
4421 4422
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4423 4424 4425
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4426 4427 4428
}
EXPORT_SYMBOL(add_preempt_count);

4429
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4430
{
4431
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4432 4433 4434
	/*
	 * Underflow?
	 */
N
Nick Piggin 已提交
4435
       if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
4436
		return;
L
Linus Torvalds 已提交
4437 4438 4439
	/*
	 * Is the spinlock portion underflowing?
	 */
4440 4441 4442
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4443
#endif
4444

4445 4446
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4447 4448 4449 4450 4451 4452 4453
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4454
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4455
 */
I
Ingo Molnar 已提交
4456
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4457
{
4458 4459 4460 4461 4462
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4463
	debug_show_held_locks(prev);
4464
	print_modules();
I
Ingo Molnar 已提交
4465 4466
	if (irqs_disabled())
		print_irqtrace_events(prev);
4467 4468 4469 4470 4471

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4472
}
L
Linus Torvalds 已提交
4473

I
Ingo Molnar 已提交
4474 4475 4476 4477 4478
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4479
	/*
I
Ingo Molnar 已提交
4480
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4481 4482 4483
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4484
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4485 4486
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4487 4488
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4489
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4490 4491
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4492 4493
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4494 4495
	}
#endif
I
Ingo Molnar 已提交
4496 4497 4498 4499 4500 4501
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4502
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4503
{
4504
	const struct sched_class *class;
I
Ingo Molnar 已提交
4505
	struct task_struct *p;
L
Linus Torvalds 已提交
4506 4507

	/*
I
Ingo Molnar 已提交
4508 4509
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4510
	 */
I
Ingo Molnar 已提交
4511
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4512
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4513 4514
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4515 4516
	}

I
Ingo Molnar 已提交
4517 4518
	class = sched_class_highest;
	for ( ; ; ) {
4519
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4520 4521 4522 4523 4524 4525 4526 4527 4528
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4529

I
Ingo Molnar 已提交
4530 4531 4532 4533 4534 4535
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4536
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4537
	struct rq *rq;
4538
	int cpu;
I
Ingo Molnar 已提交
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4552

4553
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4554
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4555

4556
	spin_lock_irq(&rq->lock);
4557
	update_rq_clock(rq);
4558
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4559 4560

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4561
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4562
			prev->state = TASK_RUNNING;
4563
		else
4564
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4565
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4566 4567
	}

4568 4569 4570 4571
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4572

I
Ingo Molnar 已提交
4573
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4574 4575
		idle_balance(cpu, rq);

4576
	prev->sched_class->put_prev_task(rq, prev);
4577
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4578 4579

	if (likely(prev != next)) {
4580 4581
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4582 4583 4584 4585
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4586
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4587 4588 4589 4590 4591 4592
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4593 4594 4595
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4596
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4597
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4598

L
Linus Torvalds 已提交
4599 4600 4601 4602 4603 4604 4605 4606
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4607
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4608
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4609 4610 4611 4612 4613
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4614

L
Linus Torvalds 已提交
4615 4616
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4617
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4618
	 */
N
Nick Piggin 已提交
4619
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4620 4621
		return;

4622 4623 4624 4625
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4626

4627 4628 4629 4630 4631 4632
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4633 4634 4635 4636
}
EXPORT_SYMBOL(preempt_schedule);

/*
4637
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4638 4639 4640 4641 4642 4643 4644
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4645

4646
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4647 4648
	BUG_ON(ti->preempt_count || !irqs_disabled());

4649 4650 4651 4652 4653 4654
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4655

4656 4657 4658 4659 4660 4661
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4662 4663 4664 4665
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4666 4667
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4668
{
4669
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4670 4671 4672 4673
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4674 4675
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4676 4677 4678
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4679
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4680 4681 4682 4683 4684
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4685
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4686

4687
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4688 4689
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4690
		if (curr->func(curr, mode, sync, key) &&
4691
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4692 4693 4694 4695 4696 4697 4698 4699 4700
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4701
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4702
 */
4703
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4704
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4717
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4718 4719 4720 4721 4722
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4723
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4735
void
I
Ingo Molnar 已提交
4736
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4753 4754 4755 4756 4757 4758 4759 4760 4761
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4762
void complete(struct completion *x)
L
Linus Torvalds 已提交
4763 4764 4765 4766 4767
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4768
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4769 4770 4771 4772
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4773 4774 4775 4776 4777 4778
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4779
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4780 4781 4782 4783 4784
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4785
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4786 4787 4788 4789
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4790 4791
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4792 4793 4794 4795 4796 4797 4798
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4799
			if (signal_pending_state(state, current)) {
4800 4801
				timeout = -ERESTARTSYS;
				break;
4802 4803
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4804 4805 4806
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4807
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4808
		__remove_wait_queue(&x->wait, &wait);
4809 4810
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4811 4812
	}
	x->done--;
4813
	return timeout ?: 1;
L
Linus Torvalds 已提交
4814 4815
}

4816 4817
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4818 4819 4820 4821
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4822
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4823
	spin_unlock_irq(&x->wait.lock);
4824 4825
	return timeout;
}
L
Linus Torvalds 已提交
4826

4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4837
void __sched wait_for_completion(struct completion *x)
4838 4839
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4840
}
4841
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4842

4843 4844 4845 4846 4847 4848 4849 4850 4851
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4852
unsigned long __sched
4853
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4854
{
4855
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4856
}
4857
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4858

4859 4860 4861 4862 4863 4864 4865
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4866
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4867
{
4868 4869 4870 4871
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4872
}
4873
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4874

4875 4876 4877 4878 4879 4880 4881 4882
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4883
unsigned long __sched
4884 4885
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4886
{
4887
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4888
}
4889
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4890

4891 4892 4893 4894 4895 4896 4897
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4898 4899 4900 4901 4902 4903 4904 4905 4906
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4953 4954
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4955
{
I
Ingo Molnar 已提交
4956 4957 4958 4959
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4960

4961
	__set_current_state(state);
L
Linus Torvalds 已提交
4962

4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4977 4978 4979
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4980
long __sched
I
Ingo Molnar 已提交
4981
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4982
{
4983
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4984 4985 4986
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4987
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4988
{
4989
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4990 4991 4992
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4993
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4994
{
4995
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4996 4997 4998
}
EXPORT_SYMBOL(sleep_on_timeout);

4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5011
void rt_mutex_setprio(struct task_struct *p, int prio)
5012 5013
{
	unsigned long flags;
5014
	int oldprio, on_rq, running;
5015
	struct rq *rq;
5016
	const struct sched_class *prev_class = p->sched_class;
5017 5018 5019 5020

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5021
	update_rq_clock(rq);
5022

5023
	oldprio = p->prio;
I
Ingo Molnar 已提交
5024
	on_rq = p->se.on_rq;
5025
	running = task_current(rq, p);
5026
	if (on_rq)
5027
		dequeue_task(rq, p, 0);
5028 5029
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5030 5031 5032 5033 5034 5035

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5036 5037
	p->prio = prio;

5038 5039
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5040
	if (on_rq) {
5041
		enqueue_task(rq, p, 0);
5042 5043

		check_class_changed(rq, p, prev_class, oldprio, running);
5044 5045 5046 5047 5048 5049
	}
	task_rq_unlock(rq, &flags);
}

#endif

5050
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5051
{
I
Ingo Molnar 已提交
5052
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5053
	unsigned long flags;
5054
	struct rq *rq;
L
Linus Torvalds 已提交
5055 5056 5057 5058 5059 5060 5061 5062

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5063
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5064 5065 5066 5067
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5068
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5069
	 */
5070
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5071 5072 5073
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5074
	on_rq = p->se.on_rq;
5075
	if (on_rq)
5076
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5077 5078

	p->static_prio = NICE_TO_PRIO(nice);
5079
	set_load_weight(p);
5080 5081 5082
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5083

I
Ingo Molnar 已提交
5084
	if (on_rq) {
5085
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5086
		/*
5087 5088
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5089
		 */
5090
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5091 5092 5093 5094 5095 5096 5097
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5098 5099 5100 5101 5102
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5103
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5104
{
5105 5106
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5107

M
Matt Mackall 已提交
5108 5109 5110 5111
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
5123
	long nice, retval;
L
Linus Torvalds 已提交
5124 5125 5126 5127 5128 5129

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5130 5131
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5132 5133 5134 5135 5136 5137 5138 5139 5140
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5141 5142 5143
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5162
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5163 5164 5165 5166 5167 5168 5169 5170
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5171
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5172 5173 5174
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5175
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5190
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5191 5192 5193 5194 5195 5196 5197 5198
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5199
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5200
{
5201
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5202 5203 5204
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5205 5206
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5207
{
I
Ingo Molnar 已提交
5208
	BUG_ON(p->se.on_rq);
5209

L
Linus Torvalds 已提交
5210
	p->policy = policy;
I
Ingo Molnar 已提交
5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5223
	p->rt_priority = prio;
5224 5225 5226
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5227
	set_load_weight(p);
L
Linus Torvalds 已提交
5228 5229
}

5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

5246 5247
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5248
{
5249
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5250
	unsigned long flags;
5251
	const struct sched_class *prev_class = p->sched_class;
5252
	struct rq *rq;
L
Linus Torvalds 已提交
5253

5254 5255
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5256 5257 5258 5259 5260
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5261 5262
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5263
		return -EINVAL;
L
Linus Torvalds 已提交
5264 5265
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5266 5267
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5268 5269
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5270
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5271
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5272
		return -EINVAL;
5273
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5274 5275
		return -EINVAL;

5276 5277 5278
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5279
	if (user && !capable(CAP_SYS_NICE)) {
5280
		if (rt_policy(policy)) {
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5297 5298 5299 5300 5301 5302
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5303

5304
		/* can't change other user's priorities */
5305
		if (!check_same_owner(p))
5306 5307
			return -EPERM;
	}
L
Linus Torvalds 已提交
5308

5309
	if (user) {
5310
#ifdef CONFIG_RT_GROUP_SCHED
5311 5312 5313 5314
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5315 5316
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5317
			return -EPERM;
5318 5319
#endif

5320 5321 5322 5323 5324
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5325 5326 5327 5328 5329
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5330 5331 5332 5333
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5334
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5335 5336 5337
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5338 5339
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5340 5341
		goto recheck;
	}
I
Ingo Molnar 已提交
5342
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5343
	on_rq = p->se.on_rq;
5344
	running = task_current(rq, p);
5345
	if (on_rq)
5346
		deactivate_task(rq, p, 0);
5347 5348
	if (running)
		p->sched_class->put_prev_task(rq, p);
5349

L
Linus Torvalds 已提交
5350
	oldprio = p->prio;
I
Ingo Molnar 已提交
5351
	__setscheduler(rq, p, policy, param->sched_priority);
5352

5353 5354
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5355 5356
	if (on_rq) {
		activate_task(rq, p, 0);
5357 5358

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5359
	}
5360 5361 5362
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5363 5364
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5365 5366
	return 0;
}
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5381 5382
EXPORT_SYMBOL_GPL(sched_setscheduler);

5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5400 5401
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5402 5403 5404
{
	struct sched_param lparam;
	struct task_struct *p;
5405
	int retval;
L
Linus Torvalds 已提交
5406 5407 5408 5409 5410

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5411 5412 5413

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5414
	p = find_process_by_pid(pid);
5415 5416 5417
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5418

L
Linus Torvalds 已提交
5419 5420 5421 5422 5423 5424 5425 5426 5427
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5428 5429
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5430
{
5431 5432 5433 5434
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5454
	struct task_struct *p;
5455
	int retval;
L
Linus Torvalds 已提交
5456 5457

	if (pid < 0)
5458
		return -EINVAL;
L
Linus Torvalds 已提交
5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5480
	struct task_struct *p;
5481
	int retval;
L
Linus Torvalds 已提交
5482 5483

	if (!param || pid < 0)
5484
		return -EINVAL;
L
Linus Torvalds 已提交
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5511
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5512
{
5513
	cpumask_var_t cpus_allowed, new_mask;
5514 5515
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5516

5517
	get_online_cpus();
L
Linus Torvalds 已提交
5518 5519 5520 5521 5522
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5523
		put_online_cpus();
L
Linus Torvalds 已提交
5524 5525 5526 5527 5528
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5529
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5530 5531 5532 5533 5534
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

5535 5536 5537 5538 5539 5540 5541 5542
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5543
	retval = -EPERM;
5544
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
5545 5546
		goto out_unlock;

5547 5548 5549 5550
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5551 5552
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
5553
 again:
5554
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5555

P
Paul Menage 已提交
5556
	if (!retval) {
5557 5558
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5559 5560 5561 5562 5563
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5564
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5565 5566 5567
			goto again;
		}
	}
L
Linus Torvalds 已提交
5568
out_unlock:
5569 5570 5571 5572
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5573
	put_task_struct(p);
5574
	put_online_cpus();
L
Linus Torvalds 已提交
5575 5576 5577 5578
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5579
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5580
{
5581 5582 5583 5584 5585
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
5598
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5599 5600
	int retval;

5601 5602
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5603

5604 5605 5606 5607 5608
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5609 5610
}

5611
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5612
{
5613
	struct task_struct *p;
L
Linus Torvalds 已提交
5614 5615
	int retval;

5616
	get_online_cpus();
L
Linus Torvalds 已提交
5617 5618 5619 5620 5621 5622 5623
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5624 5625 5626 5627
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5628
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
5629 5630 5631

out_unlock:
	read_unlock(&tasklist_lock);
5632
	put_online_cpus();
L
Linus Torvalds 已提交
5633

5634
	return retval;
L
Linus Torvalds 已提交
5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
5647
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5648

5649
	if (len < cpumask_size())
L
Linus Torvalds 已提交
5650 5651
		return -EINVAL;

5652 5653
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5654

5655 5656 5657 5658 5659 5660 5661 5662
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5663

5664
	return ret;
L
Linus Torvalds 已提交
5665 5666 5667 5668 5669
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5670 5671
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5672 5673 5674
 */
asmlinkage long sys_sched_yield(void)
{
5675
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5676

5677
	schedstat_inc(rq, yld_count);
5678
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5679 5680 5681 5682 5683 5684

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5685
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5686 5687 5688 5689 5690 5691 5692 5693
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5694
static void __cond_resched(void)
L
Linus Torvalds 已提交
5695
{
5696 5697 5698
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5699 5700 5701 5702 5703
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5704 5705 5706 5707 5708 5709 5710
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5711
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5712
{
5713 5714
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5715 5716 5717 5718 5719
		__cond_resched();
		return 1;
	}
	return 0;
}
5720
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5721 5722 5723 5724 5725

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5726
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5727 5728 5729
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5730
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5731
{
N
Nick Piggin 已提交
5732
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5733 5734
	int ret = 0;

N
Nick Piggin 已提交
5735
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5736
		spin_unlock(lock);
N
Nick Piggin 已提交
5737 5738 5739 5740
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5741
		ret = 1;
L
Linus Torvalds 已提交
5742 5743
		spin_lock(lock);
	}
J
Jan Kara 已提交
5744
	return ret;
L
Linus Torvalds 已提交
5745 5746 5747 5748 5749 5750 5751
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5752
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5753
		local_bh_enable();
L
Linus Torvalds 已提交
5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5765
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5776
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5777 5778 5779 5780 5781 5782 5783
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5784
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5785

5786
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5787 5788 5789
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5790
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5791 5792 5793 5794 5795
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5796
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5797 5798
	long ret;

5799
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5800 5801 5802
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5803
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5824
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5825
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5849
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5850
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5867
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5868
	unsigned int time_slice;
5869
	int retval;
L
Linus Torvalds 已提交
5870 5871 5872
	struct timespec t;

	if (pid < 0)
5873
		return -EINVAL;
L
Linus Torvalds 已提交
5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5885 5886 5887 5888 5889 5890
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5891
		time_slice = DEF_TIMESLICE;
5892
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5893 5894 5895 5896 5897
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5898 5899
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5900 5901
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5902
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5903
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5904 5905
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5906

L
Linus Torvalds 已提交
5907 5908 5909 5910 5911
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5912
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5913

5914
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5915 5916
{
	unsigned long free = 0;
5917
	unsigned state;
L
Linus Torvalds 已提交
5918 5919

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5920
	printk(KERN_INFO "%-13.13s %c", p->comm,
5921
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5922
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5923
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5924
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5925
	else
I
Ingo Molnar 已提交
5926
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5927 5928
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5929
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5930
	else
I
Ingo Molnar 已提交
5931
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5932 5933 5934
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5935
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5936 5937
		while (!*n)
			n++;
5938
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5939 5940
	}
#endif
5941
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5942
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5943

5944
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5945 5946
}

I
Ingo Molnar 已提交
5947
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5948
{
5949
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5950

5951 5952 5953
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5954
#else
5955 5956
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5957 5958 5959 5960 5961 5962 5963 5964
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5965
		if (!state_filter || (p->state & state_filter))
5966
			sched_show_task(p);
L
Linus Torvalds 已提交
5967 5968
	} while_each_thread(g, p);

5969 5970
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5971 5972 5973
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5974
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5975 5976 5977 5978 5979
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5980 5981
}

I
Ingo Molnar 已提交
5982 5983
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5984
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5985 5986
}

5987 5988 5989 5990 5991 5992 5993 5994
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5995
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5996
{
5997
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5998 5999
	unsigned long flags;

6000 6001
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6002 6003 6004
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6005
	idle->prio = idle->normal_prio = MAX_PRIO;
6006
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6007
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6008 6009

	rq->curr = rq->idle = idle;
6010 6011 6012
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6013 6014 6015
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6016 6017 6018
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6019
	task_thread_info(idle)->preempt_count = 0;
6020
#endif
I
Ingo Molnar 已提交
6021 6022 6023 6024
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6025
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6026 6027 6028 6029 6030 6031 6032
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6033
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6034
 */
6035
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6036

I
Ingo Molnar 已提交
6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6060 6061

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6062 6063
}

L
Linus Torvalds 已提交
6064 6065 6066 6067
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6068
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6087
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6088 6089
 * call is not atomic; no spinlocks may be held.
 */
6090
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6091
{
6092
	struct migration_req req;
L
Linus Torvalds 已提交
6093
	unsigned long flags;
6094
	struct rq *rq;
6095
	int ret = 0;
L
Linus Torvalds 已提交
6096 6097

	rq = task_rq_lock(p, &flags);
6098
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6099 6100 6101 6102
		ret = -EINVAL;
		goto out;
	}

6103
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6104
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6105 6106 6107 6108
		ret = -EINVAL;
		goto out;
	}

6109
	if (p->sched_class->set_cpus_allowed)
6110
		p->sched_class->set_cpus_allowed(p, new_mask);
6111
	else {
6112 6113
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6114 6115
	}

L
Linus Torvalds 已提交
6116
	/* Can the task run on the task's current CPU? If so, we're done */
6117
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6118 6119
		goto out;

R
Rusty Russell 已提交
6120
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6121 6122 6123 6124 6125 6126 6127 6128 6129
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6130

L
Linus Torvalds 已提交
6131 6132
	return ret;
}
6133
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6134 6135

/*
I
Ingo Molnar 已提交
6136
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6137 6138 6139 6140 6141 6142
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6143 6144
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6145
 */
6146
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6147
{
6148
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6149
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6150

6151
	if (unlikely(!cpu_active(dest_cpu)))
6152
		return ret;
L
Linus Torvalds 已提交
6153 6154 6155 6156 6157 6158 6159

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6160
		goto done;
L
Linus Torvalds 已提交
6161
	/* Affinity changed (again). */
6162
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6163
		goto fail;
L
Linus Torvalds 已提交
6164

I
Ingo Molnar 已提交
6165
	on_rq = p->se.on_rq;
6166
	if (on_rq)
6167
		deactivate_task(rq_src, p, 0);
6168

L
Linus Torvalds 已提交
6169
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6170 6171
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6172
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6173
	}
L
Linus Torvalds 已提交
6174
done:
6175
	ret = 1;
L
Linus Torvalds 已提交
6176
fail:
L
Linus Torvalds 已提交
6177
	double_rq_unlock(rq_src, rq_dest);
6178
	return ret;
L
Linus Torvalds 已提交
6179 6180 6181 6182 6183 6184 6185
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6186
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6187 6188
{
	int cpu = (long)data;
6189
	struct rq *rq;
L
Linus Torvalds 已提交
6190 6191 6192 6193 6194 6195

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6196
		struct migration_req *req;
L
Linus Torvalds 已提交
6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6219
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6220 6221
		list_del_init(head->next);

N
Nick Piggin 已提交
6222 6223 6224
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6254
/*
6255
 * Figure out where task on dead CPU should go, use force if necessary.
6256
 */
6257
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6258
{
6259
	int dest_cpu;
6260
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
6277

6278 6279 6280 6281 6282 6283 6284 6285 6286
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
6287
		}
6288 6289 6290 6291 6292 6293
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
6294 6295 6296 6297 6298 6299 6300 6301 6302
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6303
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6304
{
R
Rusty Russell 已提交
6305
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6319
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6320

6321
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6322

6323 6324
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6325 6326
			continue;

6327 6328 6329
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6330

6331
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6332 6333
}

I
Ingo Molnar 已提交
6334 6335
/*
 * Schedules idle task to be the next runnable task on current CPU.
6336 6337
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6338 6339 6340
 */
void sched_idle_next(void)
{
6341
	int this_cpu = smp_processor_id();
6342
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6343 6344 6345 6346
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6347
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6348

6349 6350 6351
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6352 6353 6354
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6355
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6356

6357 6358
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6359 6360 6361 6362

	spin_unlock_irqrestore(&rq->lock, flags);
}

6363 6364
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6378
/* called under rq->lock with disabled interrupts */
6379
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6380
{
6381
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6382 6383

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6384
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6385 6386

	/* Cannot have done final schedule yet: would have vanished. */
6387
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6388

6389
	get_task_struct(p);
L
Linus Torvalds 已提交
6390 6391 6392

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6393
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6394 6395
	 * fine.
	 */
6396
	spin_unlock_irq(&rq->lock);
6397
	move_task_off_dead_cpu(dead_cpu, p);
6398
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6399

6400
	put_task_struct(p);
L
Linus Torvalds 已提交
6401 6402 6403 6404 6405
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6406
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6407
	struct task_struct *next;
6408

I
Ingo Molnar 已提交
6409 6410 6411
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6412
		update_rq_clock(rq);
6413
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6414 6415
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6416
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6417
		migrate_dead(dead_cpu, next);
6418

L
Linus Torvalds 已提交
6419 6420 6421 6422
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6423 6424 6425
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6426 6427
	{
		.procname	= "sched_domain",
6428
		.mode		= 0555,
6429
	},
I
Ingo Molnar 已提交
6430
	{0, },
6431 6432 6433
};

static struct ctl_table sd_ctl_root[] = {
6434
	{
6435
		.ctl_name	= CTL_KERN,
6436
		.procname	= "kernel",
6437
		.mode		= 0555,
6438 6439
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6440
	{0, },
6441 6442 6443 6444 6445
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6446
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6447 6448 6449 6450

	return entry;
}

6451 6452
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6453
	struct ctl_table *entry;
6454

6455 6456 6457
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6458
	 * will always be set. In the lowest directory the names are
6459 6460 6461
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6462 6463
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6464 6465 6466
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6467 6468 6469 6470 6471

	kfree(*tablep);
	*tablep = NULL;
}

6472
static void
6473
set_table_entry(struct ctl_table *entry,
6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6487
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6488

6489 6490 6491
	if (table == NULL)
		return NULL;

6492
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6493
		sizeof(long), 0644, proc_doulongvec_minmax);
6494
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6495
		sizeof(long), 0644, proc_doulongvec_minmax);
6496
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6497
		sizeof(int), 0644, proc_dointvec_minmax);
6498
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6499
		sizeof(int), 0644, proc_dointvec_minmax);
6500
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6501
		sizeof(int), 0644, proc_dointvec_minmax);
6502
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6503
		sizeof(int), 0644, proc_dointvec_minmax);
6504
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6505
		sizeof(int), 0644, proc_dointvec_minmax);
6506
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6507
		sizeof(int), 0644, proc_dointvec_minmax);
6508
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6509
		sizeof(int), 0644, proc_dointvec_minmax);
6510
	set_table_entry(&table[9], "cache_nice_tries",
6511 6512
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6513
	set_table_entry(&table[10], "flags", &sd->flags,
6514
		sizeof(int), 0644, proc_dointvec_minmax);
6515 6516 6517
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6518 6519 6520 6521

	return table;
}

6522
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6523 6524 6525 6526 6527 6528 6529 6530 6531
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6532 6533
	if (table == NULL)
		return NULL;
6534 6535 6536 6537 6538

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6539
		entry->mode = 0555;
6540 6541 6542 6543 6544 6545 6546 6547
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6548
static void register_sched_domain_sysctl(void)
6549 6550 6551 6552 6553
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6554 6555 6556
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6557 6558 6559
	if (entry == NULL)
		return;

6560
	for_each_online_cpu(i) {
6561 6562
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6563
		entry->mode = 0555;
6564
		entry->child = sd_alloc_ctl_cpu_table(i);
6565
		entry++;
6566
	}
6567 6568

	WARN_ON(sd_sysctl_header);
6569 6570
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6571

6572
/* may be called multiple times per register */
6573 6574
static void unregister_sched_domain_sysctl(void)
{
6575 6576
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6577
	sd_sysctl_header = NULL;
6578 6579
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6580
}
6581
#else
6582 6583 6584 6585
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6586 6587 6588 6589
{
}
#endif

6590 6591 6592 6593 6594
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6595
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6615
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6616 6617 6618 6619
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6620 6621 6622 6623
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6624 6625
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6626 6627
{
	struct task_struct *p;
6628
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6629
	unsigned long flags;
6630
	struct rq *rq;
L
Linus Torvalds 已提交
6631 6632

	switch (action) {
6633

L
Linus Torvalds 已提交
6634
	case CPU_UP_PREPARE:
6635
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6636
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6637 6638 6639 6640 6641
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6642
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6643 6644 6645
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6646

L
Linus Torvalds 已提交
6647
	case CPU_ONLINE:
6648
	case CPU_ONLINE_FROZEN:
6649
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6650
		wake_up_process(cpu_rq(cpu)->migration_thread);
6651 6652 6653 6654 6655

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6656
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6657 6658

			set_rq_online(rq);
6659 6660
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6661
		break;
6662

L
Linus Torvalds 已提交
6663 6664
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6665
	case CPU_UP_CANCELED_FROZEN:
6666 6667
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6668
		/* Unbind it from offline cpu so it can run. Fall thru. */
6669
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
6670
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6671 6672 6673
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6674

L
Linus Torvalds 已提交
6675
	case CPU_DEAD:
6676
	case CPU_DEAD_FROZEN:
6677
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6678 6679 6680 6681 6682
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6683
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6684
		update_rq_clock(rq);
6685
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6686
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6687 6688
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6689
		migrate_dead_tasks(cpu);
6690
		spin_unlock_irq(&rq->lock);
6691
		cpuset_unlock();
L
Linus Torvalds 已提交
6692 6693 6694
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6695 6696 6697 6698 6699
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6700 6701
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6702 6703
			struct migration_req *req;

L
Linus Torvalds 已提交
6704
			req = list_entry(rq->migration_queue.next,
6705
					 struct migration_req, list);
L
Linus Torvalds 已提交
6706
			list_del_init(&req->list);
B
Brian King 已提交
6707
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
6708
			complete(&req->done);
B
Brian King 已提交
6709
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6710 6711 6712
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6713

6714 6715
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6716 6717 6718 6719
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6720
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6721
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6722 6723 6724
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6725 6726 6727 6728 6729 6730 6731 6732
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6733
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6734 6735 6736 6737
	.notifier_call = migration_call,
	.priority = 10
};

6738
static int __init migration_init(void)
L
Linus Torvalds 已提交
6739 6740
{
	void *cpu = (void *)(long)smp_processor_id();
6741
	int err;
6742 6743

	/* Start one for the boot CPU: */
6744 6745
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6746 6747
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6748 6749

	return err;
L
Linus Torvalds 已提交
6750
}
6751
early_initcall(migration_init);
L
Linus Torvalds 已提交
6752 6753 6754
#endif

#ifdef CONFIG_SMP
6755

6756
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6757

6758
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6759
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6760
{
I
Ingo Molnar 已提交
6761
	struct sched_group *group = sd->groups;
6762
	char str[256];
L
Linus Torvalds 已提交
6763

R
Rusty Russell 已提交
6764
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6765
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6766 6767 6768 6769 6770 6771 6772 6773 6774

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6775 6776
	}

6777
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6778

6779
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
6780 6781 6782
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
6783
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6784 6785 6786
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6787

I
Ingo Molnar 已提交
6788
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6789
	do {
I
Ingo Molnar 已提交
6790 6791 6792
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6793 6794 6795
			break;
		}

I
Ingo Molnar 已提交
6796 6797 6798 6799 6800 6801
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6802

6803
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6804 6805 6806 6807
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6808

6809
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6810 6811 6812 6813
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6814

6815
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6816

R
Rusty Russell 已提交
6817
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
I
Ingo Molnar 已提交
6818
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6819

I
Ingo Molnar 已提交
6820 6821 6822
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6823

6824
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
6825
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6826

6827 6828
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
6829 6830 6831 6832
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6833

I
Ingo Molnar 已提交
6834 6835
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6836
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6837
	int level = 0;
L
Linus Torvalds 已提交
6838

I
Ingo Molnar 已提交
6839 6840 6841 6842
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6843

I
Ingo Molnar 已提交
6844 6845
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6846
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6847 6848 6849 6850
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6851
	for (;;) {
6852
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6853
			break;
L
Linus Torvalds 已提交
6854 6855
		level++;
		sd = sd->parent;
6856
		if (!sd)
I
Ingo Molnar 已提交
6857 6858
			break;
	}
6859
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6860
}
6861
#else /* !CONFIG_SCHED_DEBUG */
6862
# define sched_domain_debug(sd, cpu) do { } while (0)
6863
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6864

6865
static int sd_degenerate(struct sched_domain *sd)
6866
{
6867
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6868 6869 6870 6871 6872 6873
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6874 6875 6876
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6890 6891
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6892 6893 6894 6895 6896 6897
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6898
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6910 6911 6912
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6913 6914
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6915 6916 6917 6918 6919 6920 6921
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6922 6923
static void free_rootdomain(struct root_domain *rd)
{
6924 6925
	cpupri_cleanup(&rd->cpupri);

6926 6927 6928 6929 6930 6931
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6932 6933 6934 6935 6936 6937 6938 6939 6940
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6941
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6942
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6943

6944
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6945

G
Gregory Haskins 已提交
6946
		if (atomic_dec_and_test(&old_rd->refcount))
6947
			free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6948 6949 6950 6951 6952
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6953 6954
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
6955
		set_rq_online(rq);
G
Gregory Haskins 已提交
6956 6957 6958 6959

	spin_unlock_irqrestore(&rq->lock, flags);
}

L
Li Zefan 已提交
6960
static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6961 6962 6963
{
	memset(rd, 0, sizeof(*rd));

6964 6965 6966 6967
	if (bootmem) {
		alloc_bootmem_cpumask_var(&def_root_domain.span);
		alloc_bootmem_cpumask_var(&def_root_domain.online);
		alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
6968
		cpupri_init(&rd->cpupri, true);
6969 6970 6971 6972
		return 0;
	}

	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6973
		goto out;
6974 6975 6976 6977
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
		goto free_span;
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_online;
6978

6979 6980
	if (cpupri_init(&rd->cpupri, false) != 0)
		goto free_rto_mask;
6981
	return 0;
6982

6983 6984
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6985 6986 6987 6988
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6989
out:
6990
	return -ENOMEM;
G
Gregory Haskins 已提交
6991 6992 6993 6994
}

static void init_defrootdomain(void)
{
6995 6996
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6997 6998 6999
	atomic_set(&def_root_domain.refcount, 1);
}

7000
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7001 7002 7003 7004 7005 7006 7007
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7008 7009 7010 7011
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7012 7013 7014 7015

	return rd;
}

L
Linus Torvalds 已提交
7016
/*
I
Ingo Molnar 已提交
7017
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7018 7019
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7020 7021
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7022
{
7023
	struct rq *rq = cpu_rq(cpu);
7024 7025 7026
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7027
	for (tmp = sd; tmp; ) {
7028 7029 7030
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7031

7032
		if (sd_parent_degenerate(tmp, parent)) {
7033
			tmp->parent = parent->parent;
7034 7035
			if (parent->parent)
				parent->parent->child = tmp;
7036 7037
		} else
			tmp = tmp->parent;
7038 7039
	}

7040
	if (sd && sd_degenerate(sd)) {
7041
		sd = sd->parent;
7042 7043 7044
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7045 7046 7047

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7048
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7049
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7050 7051 7052
}

/* cpus with isolated domains */
7053
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7054 7055 7056 7057

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7058
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7059 7060 7061
	return 1;
}

I
Ingo Molnar 已提交
7062
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7063 7064

/*
7065 7066
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7067 7068
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7069 7070 7071 7072 7073
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7074
static void
7075 7076 7077
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7078
					struct sched_group **sg,
7079 7080
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7081 7082 7083 7084
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7085
	cpumask_clear(covered);
7086

7087
	for_each_cpu(i, span) {
7088
		struct sched_group *sg;
7089
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7090 7091
		int j;

7092
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7093 7094
			continue;

7095
		cpumask_clear(sched_group_cpus(sg));
7096
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7097

7098
		for_each_cpu(j, span) {
7099
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7100 7101
				continue;

7102
			cpumask_set_cpu(j, covered);
7103
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7104 7105 7106 7107 7108 7109 7110 7111 7112 7113
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7114
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7115

7116
#ifdef CONFIG_NUMA
7117

7118 7119 7120 7121 7122
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7123
 * Find the next node to include in a given scheduling domain. Simply
7124 7125 7126 7127
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7128
static int find_next_best_node(int node, nodemask_t *used_nodes)
7129 7130 7131 7132 7133
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7134
	for (i = 0; i < nr_node_ids; i++) {
7135
		/* Start at @node */
7136
		n = (node + i) % nr_node_ids;
7137 7138 7139 7140 7141

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7142
		if (node_isset(n, *used_nodes))
7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7154
	node_set(best_node, *used_nodes);
7155 7156 7157 7158 7159 7160
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7161
 * @span: resulting cpumask
7162
 *
I
Ingo Molnar 已提交
7163
 * Given a node, construct a good cpumask for its sched_domain to span. It
7164 7165 7166
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7167
static void sched_domain_node_span(int node, struct cpumask *span)
7168
{
7169
	nodemask_t used_nodes;
7170
	int i;
7171

7172
	cpumask_clear(span);
7173
	nodes_clear(used_nodes);
7174

7175
	cpumask_or(span, span, cpumask_of_node(node));
7176
	node_set(node, used_nodes);
7177 7178

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7179
		int next_node = find_next_best_node(node, &used_nodes);
7180

7181
		cpumask_or(span, span, cpumask_of_node(next_node));
7182 7183
	}
}
7184
#endif /* CONFIG_NUMA */
7185

7186
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7187

7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
 * for nr_cpu_ids < CONFIG_NR_CPUS.
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

7203
/*
7204
 * SMT sched-domains:
7205
 */
L
Linus Torvalds 已提交
7206
#ifdef CONFIG_SCHED_SMT
7207 7208
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7209

I
Ingo Molnar 已提交
7210
static int
7211 7212
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
7213
{
7214
	if (sg)
7215
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
7216 7217
	return cpu;
}
7218
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7219

7220 7221 7222
/*
 * multi-core sched-domains:
 */
7223
#ifdef CONFIG_SCHED_MC
7224 7225
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7226
#endif /* CONFIG_SCHED_MC */
7227 7228

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7229
static int
7230 7231
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
7232
{
7233
	int group;
7234

7235 7236
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
7237
	if (sg)
7238
		*sg = &per_cpu(sched_group_core, group).sg;
7239
	return group;
7240 7241
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7242
static int
7243 7244
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
7245
{
7246
	if (sg)
7247
		*sg = &per_cpu(sched_group_core, cpu).sg;
7248 7249 7250 7251
	return cpu;
}
#endif

7252 7253
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7254

I
Ingo Molnar 已提交
7255
static int
7256 7257
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
7258
{
7259
	int group;
7260
#ifdef CONFIG_SCHED_MC
7261
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7262
	group = cpumask_first(mask);
7263
#elif defined(CONFIG_SCHED_SMT)
7264 7265
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
7266
#else
7267
	group = cpu;
L
Linus Torvalds 已提交
7268
#endif
7269
	if (sg)
7270
		*sg = &per_cpu(sched_group_phys, group).sg;
7271
	return group;
L
Linus Torvalds 已提交
7272 7273 7274 7275
}

#ifdef CONFIG_NUMA
/*
7276 7277 7278
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7279
 */
7280
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7281
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7282

7283
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7284
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7285

7286 7287 7288
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
7289
{
7290 7291
	int group;

7292
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7293
	group = cpumask_first(nodemask);
7294 7295

	if (sg)
7296
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7297
	return group;
L
Linus Torvalds 已提交
7298
}
7299

7300 7301 7302 7303 7304 7305 7306
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7307
	do {
7308
		for_each_cpu(j, sched_group_cpus(sg)) {
7309
			struct sched_domain *sd;
7310

7311
			sd = &per_cpu(phys_domains, j).sd;
7312
			if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7313 7314 7315 7316 7317 7318
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7319

7320 7321 7322 7323
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7324
}
7325
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7326

7327
#ifdef CONFIG_NUMA
7328
/* Free memory allocated for various sched_group structures */
7329 7330
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7331
{
7332
	int cpu, i;
7333

7334
	for_each_cpu(cpu, cpu_map) {
7335 7336 7337 7338 7339 7340
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7341
		for (i = 0; i < nr_node_ids; i++) {
7342 7343
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7344
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7345
			if (cpumask_empty(nodemask))
7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7362
#else /* !CONFIG_NUMA */
7363 7364
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7365 7366
{
}
7367
#endif /* CONFIG_NUMA */
7368

7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

7390
	if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7391 7392 7393 7394
		return;

	child = sd->child;

7395 7396
	sd->groups->__cpu_power = 0;

7397 7398 7399 7400 7401 7402 7403 7404 7405 7406
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7407
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7408 7409 7410 7411 7412 7413 7414 7415
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7416
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7417 7418 7419 7420
		group = group->next;
	} while (group != child->groups);
}

7421 7422 7423 7424 7425
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7426 7427 7428 7429 7430 7431
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7432
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7433

7434 7435 7436 7437 7438
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7439
	sd->level = SD_LV_##type;				\
7440
	SD_INIT_NAME(sd, type);					\
7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

7455 7456 7457 7458
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7459 7460 7461 7462 7463 7464
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7490
/*
7491 7492
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7493
 */
7494
static int __build_sched_domains(const struct cpumask *cpu_map,
7495
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7496
{
7497
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
7498
	struct root_domain *rd;
7499 7500
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
7501
#ifdef CONFIG_NUMA
7502
	cpumask_var_t domainspan, covered, notcovered;
7503
	struct sched_group **sched_group_nodes = NULL;
7504
	int sd_allnodes = 0;
7505

7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
7526 7527 7528
	/*
	 * Allocate the per-node list of sched groups
	 */
7529
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7530
				    GFP_KERNEL);
7531 7532
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7533
		goto free_tmpmask;
7534 7535
	}
#endif
L
Linus Torvalds 已提交
7536

7537
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7538 7539
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7540
		goto free_sched_groups;
G
Gregory Haskins 已提交
7541 7542
	}

7543
#ifdef CONFIG_NUMA
7544
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7545 7546
#endif

L
Linus Torvalds 已提交
7547
	/*
7548
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7549
	 */
7550
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7551 7552
		struct sched_domain *sd = NULL, *p;

7553
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
7554 7555

#ifdef CONFIG_NUMA
7556 7557
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7558
			sd = &per_cpu(allnodes_domains, i);
7559
			SD_INIT(sd, ALLNODES);
7560
			set_domain_attribute(sd, attr);
7561
			cpumask_copy(sched_domain_span(sd), cpu_map);
7562
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7563
			p = sd;
7564
			sd_allnodes = 1;
7565 7566 7567
		} else
			p = NULL;

L
Linus Torvalds 已提交
7568
		sd = &per_cpu(node_domains, i);
7569
		SD_INIT(sd, NODE);
7570
		set_domain_attribute(sd, attr);
7571
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7572
		sd->parent = p;
7573 7574
		if (p)
			p->child = sd;
7575 7576
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7577 7578 7579
#endif

		p = sd;
7580
		sd = &per_cpu(phys_domains, i).sd;
7581
		SD_INIT(sd, CPU);
7582
		set_domain_attribute(sd, attr);
7583
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
7584
		sd->parent = p;
7585 7586
		if (p)
			p->child = sd;
7587
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7588

7589 7590
#ifdef CONFIG_SCHED_MC
		p = sd;
7591
		sd = &per_cpu(core_domains, i).sd;
7592
		SD_INIT(sd, MC);
7593
		set_domain_attribute(sd, attr);
7594 7595
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
7596
		sd->parent = p;
7597
		p->child = sd;
7598
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7599 7600
#endif

L
Linus Torvalds 已提交
7601 7602
#ifdef CONFIG_SCHED_SMT
		p = sd;
7603
		sd = &per_cpu(cpu_domains, i).sd;
7604
		SD_INIT(sd, SIBLING);
7605
		set_domain_attribute(sd, attr);
7606 7607
		cpumask_and(sched_domain_span(sd),
			    &per_cpu(cpu_sibling_map, i), cpu_map);
L
Linus Torvalds 已提交
7608
		sd->parent = p;
7609
		p->child = sd;
7610
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7611 7612 7613 7614 7615
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7616
	for_each_cpu(i, cpu_map) {
7617 7618 7619
		cpumask_and(this_sibling_map,
			    &per_cpu(cpu_sibling_map, i), cpu_map);
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
7620 7621
			continue;

I
Ingo Molnar 已提交
7622
		init_sched_build_groups(this_sibling_map, cpu_map,
7623 7624
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7625 7626 7627
	}
#endif

7628 7629
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7630
	for_each_cpu(i, cpu_map) {
7631
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7632
		if (i != cpumask_first(this_core_map))
7633
			continue;
7634

I
Ingo Molnar 已提交
7635
		init_sched_build_groups(this_core_map, cpu_map,
7636 7637
					&cpu_to_core_group,
					send_covered, tmpmask);
7638 7639 7640
	}
#endif

L
Linus Torvalds 已提交
7641
	/* Set up physical groups */
7642
	for (i = 0; i < nr_node_ids; i++) {
7643
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7644
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
7645 7646
			continue;

7647 7648 7649
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7650 7651 7652 7653
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7654 7655 7656 7657 7658
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7659

7660
	for (i = 0; i < nr_node_ids; i++) {
7661 7662 7663 7664
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

7665
		cpumask_clear(covered);
7666
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7667
		if (cpumask_empty(nodemask)) {
7668
			sched_group_nodes[i] = NULL;
7669
			continue;
7670
		}
7671

7672
		sched_domain_node_span(i, domainspan);
7673
		cpumask_and(domainspan, domainspan, cpu_map);
7674

7675 7676
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
7677 7678 7679 7680 7681
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7682
		sched_group_nodes[i] = sg;
7683
		for_each_cpu(j, nodemask) {
7684
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7685

7686 7687 7688
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7689
		sg->__cpu_power = 0;
7690
		cpumask_copy(sched_group_cpus(sg), nodemask);
7691
		sg->next = sg;
7692
		cpumask_or(covered, covered, nodemask);
7693 7694
		prev = sg;

7695 7696
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
7697

7698 7699 7700 7701
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
7702 7703
				break;

7704
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7705
			if (cpumask_empty(tmpmask))
7706 7707
				continue;

7708 7709
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
7710
					  GFP_KERNEL, i);
7711 7712 7713
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7714
				goto error;
7715
			}
7716
			sg->__cpu_power = 0;
7717
			cpumask_copy(sched_group_cpus(sg), tmpmask);
7718
			sg->next = prev->next;
7719
			cpumask_or(covered, covered, tmpmask);
7720 7721 7722 7723
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7724 7725 7726
#endif

	/* Calculate CPU power for physical packages and nodes */
7727
#ifdef CONFIG_SCHED_SMT
7728
	for_each_cpu(i, cpu_map) {
7729
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
7730

7731
		init_sched_groups_power(i, sd);
7732
	}
L
Linus Torvalds 已提交
7733
#endif
7734
#ifdef CONFIG_SCHED_MC
7735
	for_each_cpu(i, cpu_map) {
7736
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
7737

7738
		init_sched_groups_power(i, sd);
7739 7740
	}
#endif
7741

7742
	for_each_cpu(i, cpu_map) {
7743
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
7744

7745
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7746 7747
	}

7748
#ifdef CONFIG_NUMA
7749
	for (i = 0; i < nr_node_ids; i++)
7750
		init_numa_sched_groups_power(sched_group_nodes[i]);
7751

7752 7753
	if (sd_allnodes) {
		struct sched_group *sg;
7754

7755
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7756
								tmpmask);
7757 7758
		init_numa_sched_groups_power(sg);
	}
7759 7760
#endif

L
Linus Torvalds 已提交
7761
	/* Attach the domains */
7762
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7763 7764
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
7765
		sd = &per_cpu(cpu_domains, i).sd;
7766
#elif defined(CONFIG_SCHED_MC)
7767
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7768
#else
7769
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7770
#endif
G
Gregory Haskins 已提交
7771
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7772
	}
7773

7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
7802

7803
#ifdef CONFIG_NUMA
7804
error:
7805
	free_sched_groups(cpu_map, tmpmask);
7806
	free_rootdomain(rd);
7807
	goto free_tmpmask;
7808
#endif
L
Linus Torvalds 已提交
7809
}
P
Paul Jackson 已提交
7810

7811
static int build_sched_domains(const struct cpumask *cpu_map)
7812 7813 7814 7815
{
	return __build_sched_domains(cpu_map, NULL);
}

7816
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7817
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7818 7819
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7820 7821 7822

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7823 7824
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7825
 */
7826
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7827

7828 7829 7830 7831 7832 7833
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7834
{
7835
	return 0;
7836 7837
}

7838
/*
I
Ingo Molnar 已提交
7839
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7840 7841
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7842
 */
7843
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7844
{
7845 7846
	int err;

7847
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7848
	ndoms_cur = 1;
7849
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
7850
	if (!doms_cur)
7851
		doms_cur = fallback_doms;
7852
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7853
	dattr_cur = NULL;
7854
	err = build_sched_domains(doms_cur);
7855
	register_sched_domain_sysctl();
7856 7857

	return err;
7858 7859
}

7860 7861
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7862
{
7863
	free_sched_groups(cpu_map, tmpmask);
7864
}
L
Linus Torvalds 已提交
7865

7866 7867 7868 7869
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7870
static void detach_destroy_domains(const struct cpumask *cpu_map)
7871
{
7872 7873
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7874 7875
	int i;

7876
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7877
		cpu_attach_domain(NULL, &def_root_domain, i);
7878
	synchronize_sched();
7879
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7880 7881
}

7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7898 7899
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7900
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7901 7902 7903
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7904
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7905 7906 7907
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7908 7909 7910
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7911 7912
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
7913 7914 7915 7916
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
7917
 *
7918
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7919 7920
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7921
 *
P
Paul Jackson 已提交
7922 7923
 * Call with hotplug lock held
 */
7924 7925
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
7926
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7927
{
7928
	int i, j, n;
7929
	int new_topology;
P
Paul Jackson 已提交
7930

7931
	mutex_lock(&sched_domains_mutex);
7932

7933 7934 7935
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7936 7937 7938
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7939
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7940 7941 7942

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7943
		for (j = 0; j < n && !new_topology; j++) {
7944
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
7945
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7946 7947 7948 7949 7950 7951 7952 7953
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7954 7955
	if (doms_new == NULL) {
		ndoms_cur = 0;
7956
		doms_new = fallback_doms;
7957
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
7958
		WARN_ON_ONCE(dattr_new);
7959 7960
	}

P
Paul Jackson 已提交
7961 7962
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7963
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7964
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
7965
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7966 7967 7968
				goto match2;
		}
		/* no match - add a new doms_new */
7969 7970
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7971 7972 7973 7974 7975
match2:
		;
	}

	/* Remember the new sched domains */
7976
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
7977
		kfree(doms_cur);
7978
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7979
	doms_cur = doms_new;
7980
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7981
	ndoms_cur = ndoms_new;
7982 7983

	register_sched_domain_sysctl();
7984

7985
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7986 7987
}

7988
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7989
static void arch_reinit_sched_domains(void)
7990
{
7991
	get_online_cpus();
7992 7993 7994 7995

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7996
	rebuild_sched_domains();
7997
	put_online_cpus();
7998 7999 8000 8001
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8002
	unsigned int level = 0;
8003

8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8015 8016 8017
		return -EINVAL;

	if (smt)
8018
		sched_smt_power_savings = level;
8019
	else
8020
		sched_mc_power_savings = level;
8021

8022
	arch_reinit_sched_domains();
8023

8024
	return count;
8025 8026 8027
}

#ifdef CONFIG_SCHED_MC
8028 8029
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8030 8031 8032
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8033
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8034
					    const char *buf, size_t count)
8035 8036 8037
{
	return sched_power_savings_store(buf, count, 0);
}
8038 8039 8040
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8041 8042 8043
#endif

#ifdef CONFIG_SCHED_SMT
8044 8045
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8046 8047 8048
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8049
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8050
					     const char *buf, size_t count)
8051 8052 8053
{
	return sched_power_savings_store(buf, count, 1);
}
8054 8055
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8056 8057 8058
		   sched_smt_power_savings_store);
#endif

8059
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8075
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8076

8077
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8078
/*
8079 8080
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8081 8082 8083
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8084 8085 8086 8087 8088 8089
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8090
		partition_sched_domains(1, NULL, NULL);
8091 8092 8093 8094 8095 8096 8097 8098 8099 8100
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8101
{
P
Peter Zijlstra 已提交
8102 8103
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8104 8105
	switch (action) {
	case CPU_DOWN_PREPARE:
8106
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8107
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8108 8109 8110
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8111
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8112
	case CPU_ONLINE:
8113
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8114
		enable_runtime(cpu_rq(cpu));
8115 8116
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8117 8118 8119 8120 8121 8122 8123
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8124 8125 8126
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8127

8128 8129 8130 8131 8132
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8133
	get_online_cpus();
8134
	mutex_lock(&sched_domains_mutex);
8135 8136 8137 8138
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8139
	mutex_unlock(&sched_domains_mutex);
8140
	put_online_cpus();
8141 8142

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8143 8144
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8145 8146 8147 8148 8149
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8150
	init_hrtick();
8151 8152

	/* Move init over to a non-isolated CPU */
8153
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8154
		BUG();
I
Ingo Molnar 已提交
8155
	sched_init_granularity();
8156
	free_cpumask_var(non_isolated_cpus);
8157 8158

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8159
	init_sched_rt_class();
L
Linus Torvalds 已提交
8160 8161 8162 8163
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8164
	sched_init_granularity();
L
Linus Torvalds 已提交
8165 8166 8167 8168 8169 8170 8171 8172 8173 8174
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8175
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8176 8177
{
	cfs_rq->tasks_timeline = RB_ROOT;
8178
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8179 8180 8181
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8182
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8183 8184
}

P
Peter Zijlstra 已提交
8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8198
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8199 8200
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8201 8202 8203 8204 8205 8206 8207
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8208 8209
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8210

8211
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8212
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8213 8214
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8215 8216
}

P
Peter Zijlstra 已提交
8217
#ifdef CONFIG_FAIR_GROUP_SCHED
8218 8219 8220
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8221
{
8222
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8223 8224 8225 8226 8227 8228 8229
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8230 8231 8232 8233
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8234 8235 8236 8237 8238
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8239 8240
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8241
	se->load.inv_weight = 0;
8242
	se->parent = parent;
P
Peter Zijlstra 已提交
8243
}
8244
#endif
P
Peter Zijlstra 已提交
8245

8246
#ifdef CONFIG_RT_GROUP_SCHED
8247 8248 8249
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8250
{
8251 8252
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8253 8254 8255 8256
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8257
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8258 8259 8260 8261
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8262 8263 8264
	if (!rt_se)
		return;

8265 8266 8267 8268 8269
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8270
	rt_se->my_q = rt_rq;
8271
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8272 8273 8274 8275
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8276 8277
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8278
	int i, j;
8279 8280 8281 8282 8283 8284 8285
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8286 8287 8288
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8289 8290 8291 8292 8293 8294
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8295
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8296 8297 8298 8299 8300 8301 8302

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8303 8304 8305 8306 8307 8308 8309

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8310 8311
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8312 8313 8314 8315 8316
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8317 8318 8319 8320 8321 8322 8323 8324
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8325 8326
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8327
	}
I
Ingo Molnar 已提交
8328

G
Gregory Haskins 已提交
8329 8330 8331 8332
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8333 8334 8335 8336 8337 8338
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8339 8340 8341
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8342 8343
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8344

8345
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8346
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8347 8348 8349 8350 8351 8352
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8353 8354
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8355

8356
	for_each_possible_cpu(i) {
8357
		struct rq *rq;
L
Linus Torvalds 已提交
8358 8359 8360

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8361
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8362
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8363
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8364
#ifdef CONFIG_FAIR_GROUP_SCHED
8365
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8366
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8387
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8388
#elif defined CONFIG_USER_SCHED
8389 8390
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8402
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8403
				&per_cpu(init_cfs_rq, i),
8404 8405
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8406

8407
#endif
D
Dhaval Giani 已提交
8408 8409 8410
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8411
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8412
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8413
#ifdef CONFIG_CGROUP_SCHED
8414
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8415
#elif defined CONFIG_USER_SCHED
8416
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8417
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8418
				&per_cpu(init_rt_rq, i),
8419 8420
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8421
#endif
I
Ingo Molnar 已提交
8422
#endif
L
Linus Torvalds 已提交
8423

I
Ingo Molnar 已提交
8424 8425
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8426
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8427
		rq->sd = NULL;
G
Gregory Haskins 已提交
8428
		rq->rd = NULL;
L
Linus Torvalds 已提交
8429
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8430
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8431
		rq->push_cpu = 0;
8432
		rq->cpu = i;
8433
		rq->online = 0;
L
Linus Torvalds 已提交
8434 8435
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8436
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8437
#endif
P
Peter Zijlstra 已提交
8438
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8439 8440 8441
		atomic_set(&rq->nr_iowait, 0);
	}

8442
	set_load_weight(&init_task);
8443

8444 8445 8446 8447
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8448
#ifdef CONFIG_SMP
8449
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8450 8451
#endif

8452 8453 8454 8455
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8469 8470 8471 8472
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8473

8474 8475
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
	alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8476
#ifdef CONFIG_SMP
8477 8478 8479
#ifdef CONFIG_NO_HZ
	alloc_bootmem_cpumask_var(&nohz.cpu_mask);
#endif
8480
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
8481
#endif /* SMP */
8482

8483
	scheduler_running = 1;
L
Linus Torvalds 已提交
8484 8485 8486 8487 8488
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8489
#ifdef in_atomic
L
Linus Torvalds 已提交
8490 8491
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8511 8512 8513 8514 8515 8516
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8517 8518 8519
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8520

8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8532 8533
void normalize_rt_tasks(void)
{
8534
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8535
	unsigned long flags;
8536
	struct rq *rq;
L
Linus Torvalds 已提交
8537

8538
	read_lock_irqsave(&tasklist_lock, flags);
8539
	do_each_thread(g, p) {
8540 8541 8542 8543 8544 8545
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8546 8547
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8548 8549 8550
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8551
#endif
I
Ingo Molnar 已提交
8552 8553 8554 8555 8556 8557 8558 8559

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8560
			continue;
I
Ingo Molnar 已提交
8561
		}
L
Linus Torvalds 已提交
8562

8563
		spin_lock(&p->pi_lock);
8564
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8565

8566
		normalize_task(rq, p);
8567

8568
		__task_rq_unlock(rq);
8569
		spin_unlock(&p->pi_lock);
8570 8571
	} while_each_thread(g, p);

8572
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8573 8574 8575
}

#endif /* CONFIG_MAGIC_SYSRQ */
8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8594
struct task_struct *curr_task(int cpu)
8595 8596 8597 8598 8599 8600 8601 8602 8603 8604
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8605 8606
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8607 8608 8609 8610 8611 8612 8613
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8614
void set_curr_task(int cpu, struct task_struct *p)
8615 8616 8617 8618 8619
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8620

8621 8622
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8637 8638
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8639 8640
{
	struct cfs_rq *cfs_rq;
8641
	struct sched_entity *se;
8642
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8643 8644
	int i;

8645
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8646 8647
	if (!tg->cfs_rq)
		goto err;
8648
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8649 8650
	if (!tg->se)
		goto err;
8651 8652

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8653 8654

	for_each_possible_cpu(i) {
8655
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8656

8657 8658
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8659 8660 8661
		if (!cfs_rq)
			goto err;

8662 8663
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8664 8665 8666
		if (!se)
			goto err;

8667
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8686
#else /* !CONFG_FAIR_GROUP_SCHED */
8687 8688 8689 8690
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8691 8692
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8704
#endif /* CONFIG_FAIR_GROUP_SCHED */
8705 8706

#ifdef CONFIG_RT_GROUP_SCHED
8707 8708 8709 8710
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8711 8712
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8724 8725
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8726 8727
{
	struct rt_rq *rt_rq;
8728
	struct sched_rt_entity *rt_se;
8729 8730 8731
	struct rq *rq;
	int i;

8732
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8733 8734
	if (!tg->rt_rq)
		goto err;
8735
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8736 8737 8738
	if (!tg->rt_se)
		goto err;

8739 8740
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8741 8742 8743 8744

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8745 8746
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8747 8748
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8749

8750 8751
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8752 8753
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8754

8755
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8756 8757
	}

8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8774
#else /* !CONFIG_RT_GROUP_SCHED */
8775 8776 8777 8778
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8779 8780
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8792
#endif /* CONFIG_RT_GROUP_SCHED */
8793

8794
#ifdef CONFIG_GROUP_SCHED
8795 8796 8797 8798 8799 8800 8801 8802
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8803
struct task_group *sched_create_group(struct task_group *parent)
8804 8805 8806 8807 8808 8809 8810 8811 8812
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8813
	if (!alloc_fair_sched_group(tg, parent))
8814 8815
		goto err;

8816
	if (!alloc_rt_sched_group(tg, parent))
8817 8818
		goto err;

8819
	spin_lock_irqsave(&task_group_lock, flags);
8820
	for_each_possible_cpu(i) {
8821 8822
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8823
	}
P
Peter Zijlstra 已提交
8824
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8825 8826 8827 8828 8829

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8830
	list_add_rcu(&tg->siblings, &parent->children);
8831
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8832

8833
	return tg;
S
Srivatsa Vaddagiri 已提交
8834 8835

err:
P
Peter Zijlstra 已提交
8836
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8837 8838 8839
	return ERR_PTR(-ENOMEM);
}

8840
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8841
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8842 8843
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8844
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8845 8846
}

8847
/* Destroy runqueue etc associated with a task group */
8848
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8849
{
8850
	unsigned long flags;
8851
	int i;
S
Srivatsa Vaddagiri 已提交
8852

8853
	spin_lock_irqsave(&task_group_lock, flags);
8854
	for_each_possible_cpu(i) {
8855 8856
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8857
	}
P
Peter Zijlstra 已提交
8858
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8859
	list_del_rcu(&tg->siblings);
8860
	spin_unlock_irqrestore(&task_group_lock, flags);
8861 8862

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8863
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8864 8865
}

8866
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8867 8868 8869
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8870 8871
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8872 8873 8874 8875 8876 8877 8878 8879 8880
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8881
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8882 8883
	on_rq = tsk->se.on_rq;

8884
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8885
		dequeue_task(rq, tsk, 0);
8886 8887
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8888

P
Peter Zijlstra 已提交
8889
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8890

P
Peter Zijlstra 已提交
8891 8892 8893 8894 8895
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8896 8897 8898
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8899
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8900 8901 8902

	task_rq_unlock(rq, &flags);
}
8903
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8904

8905
#ifdef CONFIG_FAIR_GROUP_SCHED
8906
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8907 8908 8909 8910 8911
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8912
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8913 8914 8915
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8916
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8917

8918
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8919
		enqueue_entity(cfs_rq, se, 0);
8920
}
8921

8922 8923 8924 8925 8926 8927 8928 8929 8930
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8931 8932
}

8933 8934
static DEFINE_MUTEX(shares_mutex);

8935
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8936 8937
{
	int i;
8938
	unsigned long flags;
8939

8940 8941 8942 8943 8944 8945
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8946 8947
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8948 8949
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8950

8951
	mutex_lock(&shares_mutex);
8952
	if (tg->shares == shares)
8953
		goto done;
S
Srivatsa Vaddagiri 已提交
8954

8955
	spin_lock_irqsave(&task_group_lock, flags);
8956 8957
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8958
	list_del_rcu(&tg->siblings);
8959
	spin_unlock_irqrestore(&task_group_lock, flags);
8960 8961 8962 8963 8964 8965 8966 8967

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8968
	tg->shares = shares;
8969 8970 8971 8972 8973
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8974
		set_se_shares(tg->se[i], shares);
8975
	}
S
Srivatsa Vaddagiri 已提交
8976

8977 8978 8979 8980
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8981
	spin_lock_irqsave(&task_group_lock, flags);
8982 8983
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8984
	list_add_rcu(&tg->siblings, &tg->parent->children);
8985
	spin_unlock_irqrestore(&task_group_lock, flags);
8986
done:
8987
	mutex_unlock(&shares_mutex);
8988
	return 0;
S
Srivatsa Vaddagiri 已提交
8989 8990
}

8991 8992 8993 8994
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8995
#endif
8996

8997
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8998
/*
P
Peter Zijlstra 已提交
8999
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9000
 */
P
Peter Zijlstra 已提交
9001 9002 9003 9004 9005
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9006
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9007

P
Peter Zijlstra 已提交
9008
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9009 9010
}

P
Peter Zijlstra 已提交
9011 9012
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9013
{
P
Peter Zijlstra 已提交
9014
	struct task_struct *g, *p;
9015

P
Peter Zijlstra 已提交
9016 9017 9018 9019
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9020

P
Peter Zijlstra 已提交
9021 9022
	return 0;
}
9023

P
Peter Zijlstra 已提交
9024 9025 9026 9027 9028
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9029

P
Peter Zijlstra 已提交
9030 9031 9032 9033 9034 9035
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9036

P
Peter Zijlstra 已提交
9037 9038
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9039

P
Peter Zijlstra 已提交
9040 9041 9042
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9043 9044
	}

9045 9046 9047 9048 9049
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9050

9051 9052 9053
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9054 9055
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9056

P
Peter Zijlstra 已提交
9057
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9058

9059 9060 9061 9062 9063
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9064

9065 9066 9067
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9068 9069 9070
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9071

P
Peter Zijlstra 已提交
9072 9073 9074 9075
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9076

P
Peter Zijlstra 已提交
9077
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9078
	}
P
Peter Zijlstra 已提交
9079

P
Peter Zijlstra 已提交
9080 9081 9082 9083
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
9084 9085
}

P
Peter Zijlstra 已提交
9086
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9087
{
P
Peter Zijlstra 已提交
9088 9089 9090 9091 9092 9093 9094
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
9095 9096
}

9097 9098
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
9099
{
P
Peter Zijlstra 已提交
9100
	int i, err = 0;
P
Peter Zijlstra 已提交
9101 9102

	mutex_lock(&rt_constraints_mutex);
9103
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
9104 9105
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
9106
		goto unlock;
P
Peter Zijlstra 已提交
9107 9108

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9109 9110
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
9111 9112 9113 9114 9115 9116 9117 9118 9119

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
9120
 unlock:
9121
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
9122 9123 9124
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
9125 9126
}

9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
9139 9140 9141 9142
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

9143
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9144 9145
		return -1;

9146
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9147 9148 9149
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9150 9151 9152 9153 9154 9155 9156 9157

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9158 9159 9160
	if (rt_period == 0)
		return -EINVAL;

9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9175
	u64 runtime, period;
9176 9177
	int ret = 0;

9178 9179 9180
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9181 9182 9183 9184 9185 9186 9187 9188
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9189

9190
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9191
	read_lock(&tasklist_lock);
9192
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9193
	read_unlock(&tasklist_lock);
9194 9195 9196 9197
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9198
#else /* !CONFIG_RT_GROUP_SCHED */
9199 9200
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9201 9202 9203
	unsigned long flags;
	int i;

9204 9205 9206
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9207 9208 9209 9210 9211 9212 9213 9214 9215 9216
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9217 9218
	return 0;
}
9219
#endif /* CONFIG_RT_GROUP_SCHED */
9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9250

9251
#ifdef CONFIG_CGROUP_SCHED
9252 9253

/* return corresponding task_group object of a cgroup */
9254
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9255
{
9256 9257
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9258 9259 9260
}

static struct cgroup_subsys_state *
9261
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9262
{
9263
	struct task_group *tg, *parent;
9264

9265
	if (!cgrp->parent) {
9266 9267 9268 9269
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9270 9271
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9272 9273 9274 9275 9276 9277
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9278 9279
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9280
{
9281
	struct task_group *tg = cgroup_tg(cgrp);
9282 9283 9284 9285

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9286 9287 9288
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9289
{
9290 9291
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9292
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9293 9294
		return -EINVAL;
#else
9295 9296 9297
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9298
#endif
9299 9300 9301 9302 9303

	return 0;
}

static void
9304
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9305 9306 9307 9308 9309
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9310
#ifdef CONFIG_FAIR_GROUP_SCHED
9311
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9312
				u64 shareval)
9313
{
9314
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9315 9316
}

9317
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9318
{
9319
	struct task_group *tg = cgroup_tg(cgrp);
9320 9321 9322

	return (u64) tg->shares;
}
9323
#endif /* CONFIG_FAIR_GROUP_SCHED */
9324

9325
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9326
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9327
				s64 val)
P
Peter Zijlstra 已提交
9328
{
9329
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9330 9331
}

9332
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9333
{
9334
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9335
}
9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9347
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9348

9349
static struct cftype cpu_files[] = {
9350
#ifdef CONFIG_FAIR_GROUP_SCHED
9351 9352
	{
		.name = "shares",
9353 9354
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9355
	},
9356 9357
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9358
	{
P
Peter Zijlstra 已提交
9359
		.name = "rt_runtime_us",
9360 9361
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9362
	},
9363 9364
	{
		.name = "rt_period_us",
9365 9366
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9367
	},
9368
#endif
9369 9370 9371 9372
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9373
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9374 9375 9376
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9377 9378 9379 9380 9381 9382 9383
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9384 9385 9386
	.early_init	= 1,
};

9387
#endif	/* CONFIG_CGROUP_SCHED */
9388 9389 9390 9391 9392 9393 9394 9395 9396 9397

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9398
/* track cpu usage of a group of tasks and its child groups */
9399 9400 9401 9402
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
9403
	struct cpuacct *parent;
9404 9405 9406 9407 9408
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9409
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9410
{
9411
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9424
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

9437 9438 9439
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9440 9441 9442 9443
	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9444
static void
9445
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9446
{
9447
	struct cpuacct *ca = cgroup_ca(cgrp);
9448 9449 9450 9451 9452

	free_percpu(ca->cpuusage);
	kfree(ca);
}

9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
	u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
	u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

9488
/* return total cpu usage (in nanoseconds) of a group */
9489
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9490
{
9491
	struct cpuacct *ca = cgroup_ca(cgrp);
9492 9493 9494
	u64 totalcpuusage = 0;
	int i;

9495 9496
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9497 9498 9499 9500

	return totalcpuusage;
}

9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9513 9514
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9515 9516 9517 9518 9519

out:
	return err;
}

9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9535 9536 9537
static struct cftype files[] = {
	{
		.name = "usage",
9538 9539
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9540
	},
9541 9542 9543 9544 9545
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},

9546 9547
};

9548
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9549
{
9550
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9551 9552 9553 9554 9555 9556 9557 9558 9559 9560
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9561
	int cpu;
9562 9563 9564 9565

	if (!cpuacct_subsys.active)
		return;

9566
	cpu = task_cpu(tsk);
9567 9568
	ca = task_ca(tsk);

9569 9570
	for (; ca; ca = ca->parent) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582
		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */