sched.c 170.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
J
Jens Axboe 已提交
64
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
65

66
#include <asm/tlb.h>
L
Linus Torvalds 已提交
67

68 69 70 71 72 73 74 75 76 77
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107 108 109 110 111 112 113
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

I
Ingo Molnar 已提交
136 137 138
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)

139
/*
I
Ingo Molnar 已提交
140
 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 142
 * to time slice values: [800ms ... 100ms ... 5ms]
 */
I
Ingo Molnar 已提交
143
static unsigned int static_prio_timeslice(int static_prio)
144
{
I
Ingo Molnar 已提交
145 146 147 148 149 150 151
	if (static_prio == NICE_TO_PRIO(19))
		return 1;

	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
	else
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
152 153
}

154 155 156 157 158 159 160 161 162 163 164 165
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
166
/*
I
Ingo Molnar 已提交
167
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
168
 */
I
Ingo Molnar 已提交
169 170 171 172 173
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
#ifdef CONFIG_FAIR_GROUP_SCHED

#include <linux/container.h>

struct cfs_rq;

/* task group related information */
struct task_grp {
	struct container_subsys_state css;
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

static struct sched_entity *init_sched_entity_p[CONFIG_NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[CONFIG_NR_CPUS];

/* Default task group.
 * 	Every task in system belong to this group at bootup.
 */
static struct task_grp init_task_grp =  {
					.se     = init_sched_entity_p,
					.cfs_rq = init_cfs_rq_p,
					};

/* return group to which a task belongs */
static inline struct task_grp *task_grp(struct task_struct *p)
{
	return container_of(task_subsys_state(p, cpu_subsys_id),
				struct task_grp, css);
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = task_grp(p)->cfs_rq[task_cpu(p)];
	p->se.parent = task_grp(p)->se[task_cpu(p)];
}

#else

static inline void set_task_cfs_rq(struct task_struct *p) { }

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
226 227 228 229 230 231
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
232
	u64 min_vruntime;
I
Ingo Molnar 已提交
233 234 235 236 237 238 239 240

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
241
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
242 243 244 245 246 247 248 249 250 251
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
S
Srivatsa Vaddagiri 已提交
252
	struct task_grp *tg;    /* group that "owns" this runqueue */
I
Ingo Molnar 已提交
253 254
#endif
};
L
Linus Torvalds 已提交
255

I
Ingo Molnar 已提交
256 257 258 259 260 261 262
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
263 264 265 266 267 268 269
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
270
struct rq {
I
Ingo Molnar 已提交
271
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
272 273 274 275 276 277

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
278 279
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
280
	unsigned char idle_at_tick;
281 282 283
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
284
	struct load_weight load;	/* capture load from *all* tasks on this cpu */
I
Ingo Molnar 已提交
285 286 287 288 289 290
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
291
#endif
I
Ingo Molnar 已提交
292
	struct rt_rq  rt;
L
Linus Torvalds 已提交
293 294 295 296 297 298 299 300 301

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

302
	struct task_struct *curr, *idle;
303
	unsigned long next_balance;
L
Linus Torvalds 已提交
304
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
305 306 307 308 309

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
310 311
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
312
	u64 tick_timestamp;
I
Ingo Molnar 已提交
313

L
Linus Torvalds 已提交
314 315 316 317 318 319 320 321
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
322
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
323

324
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
347
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
348 349
};

350
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
351
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
352

I
Ingo Molnar 已提交
353 354 355 356 357
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

358 359 360 361 362 363 364 365 366
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
367
/*
I
Ingo Molnar 已提交
368 369
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
370
 */
I
Ingo Molnar 已提交
371
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
372 373 374 375 376 377
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
378 379 380
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
381 382 383 384 385 386 387 388 389 390
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
391 392 393 394 395
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
396 397 398 399 400 401 402 403 404 405
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
406
}
I
Ingo Molnar 已提交
407

I
Ingo Molnar 已提交
408 409 410 411
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
412 413
}

N
Nick Piggin 已提交
414 415
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
416
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
417 418 419 420
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
421 422
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
423 424 425 426 427 428

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
442 443 444 445
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_START_DEBIT		= 2,
	SCHED_FEAT_USE_TREE_AVG         = 4,
	SCHED_FEAT_APPROX_AVG           = 8,
I
Ingo Molnar 已提交
446 447 448 449
};

const_debug unsigned int sysctl_sched_features =
		SCHED_FEAT_NEW_FAIR_SLEEPERS	*1 |
P
Peter Zijlstra 已提交
450 451 452
		SCHED_FEAT_START_DEBIT		*1 |
		SCHED_FEAT_USE_TREE_AVG		*0 |
		SCHED_FEAT_APPROX_AVG		*0;
I
Ingo Molnar 已提交
453 454 455

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

456 457 458 459 460 461 462 463
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
464
	struct rq *rq;
465

466
	local_irq_save(flags);
I
Ingo Molnar 已提交
467 468 469
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
470
	local_irq_restore(flags);
471 472 473 474

	return now;
}

L
Linus Torvalds 已提交
475
#ifndef prepare_arch_switch
476 477 478 479 480 481 482
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
483
static inline int task_running(struct rq *rq, struct task_struct *p)
484 485 486 487
{
	return rq->curr == p;
}

488
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
489 490 491
{
}

492
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
493
{
494 495 496 497
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
498 499 500 501 502 503 504
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

505 506 507 508
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
509
static inline int task_running(struct rq *rq, struct task_struct *p)
510 511 512 513 514 515 516 517
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

518
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

535
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
536 537 538 539 540 541 542 543 544 545 546 547
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
548
#endif
549 550
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
551

552 553 554 555
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
556
static inline struct rq *__task_rq_lock(struct task_struct *p)
557 558
	__acquires(rq->lock)
{
559
	struct rq *rq;
560 561 562 563 564 565 566 567 568 569 570

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
571 572 573 574 575
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
576
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
577 578
	__acquires(rq->lock)
{
579
	struct rq *rq;
L
Linus Torvalds 已提交
580 581 582 583 584 585 586 587 588 589 590 591

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

592
static inline void __task_rq_unlock(struct rq *rq)
593 594 595 596 597
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

598
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
599 600 601 602 603 604
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
605
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
606
 */
607
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
608 609
	__acquires(rq->lock)
{
610
	struct rq *rq;
L
Linus Torvalds 已提交
611 612 613 614 615 616 617 618

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

619
/*
620
 * We are going deep-idle (irqs are disabled):
621
 */
622
void sched_clock_idle_sleep_event(void)
623
{
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
640

641 642 643 644 645 646 647 648 649 650 651
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
652
}
653
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
654

I
Ingo Molnar 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

707 708 709 710 711 712 713 714
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
715 716 717
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
718
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
719

720
static unsigned long
721 722 723 724 725 726
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
727
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
728 729 730 731 732

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
733
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
734
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
735 736
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
737
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
738

739
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
740 741 742 743 744 745 746 747
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

748
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
749 750 751 752
{
	lw->weight += inc;
}

753
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
754 755 756 757
{
	lw->weight -= dec;
}

758 759 760 761 762 763 764 765 766
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
767 768 769 770 771 772 773 774 775 776 777
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
778 779 780
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
781 782
 */
static const int prio_to_weight[40] = {
783 784 785 786 787 788 789 790
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
791 792
};

793 794 795 796 797 798 799
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
800
static const u32 prio_to_wmult[40] = {
801 802 803 804 805 806 807 808
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
809
};
810

I
Ingo Molnar 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
828
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
829 830 831 832 833 834 835 836 837 838 839

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

840 841 842 843
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
844
 * total load (rq->load.weight) on the runqueue, while
845 846 847 848 849 850 851
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
852
 * This function is called /before/ updating rq->load
853 854
 * and when switching tasks.
 */
855
static inline void inc_load(struct rq *rq, const struct task_struct *p)
856
{
857
	update_load_add(&rq->load, p->se.load.weight);
858 859
}

860
static inline void dec_load(struct rq *rq, const struct task_struct *p)
861
{
862
	update_load_sub(&rq->load, p->se.load.weight);
863 864
}

865
static void inc_nr_running(struct task_struct *p, struct rq *rq)
866 867
{
	rq->nr_running++;
868
	inc_load(rq, p);
869 870
}

871
static void dec_nr_running(struct task_struct *p, struct rq *rq)
872 873
{
	rq->nr_running--;
874
	dec_load(rq, p);
875 876
}

877 878 879
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
880 881 882 883
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
884

I
Ingo Molnar 已提交
885 886 887 888 889 890 891 892
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
893

I
Ingo Molnar 已提交
894 895
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
896 897
}

898
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
899
{
I
Ingo Molnar 已提交
900
	sched_info_queued(p);
901
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
902
	p->se.on_rq = 1;
903 904
}

905
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
906
{
907
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
908
	p->se.on_rq = 0;
909 910
}

911
/*
I
Ingo Molnar 已提交
912
 * __normal_prio - return the priority that is based on the static prio
913 914 915
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
916
	return p->static_prio;
917 918
}

919 920 921 922 923 924 925
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
926
static inline int normal_prio(struct task_struct *p)
927 928 929
{
	int prio;

930
	if (task_has_rt_policy(p))
931 932 933 934 935 936 937 938 939 940 941 942 943
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
944
static int effective_prio(struct task_struct *p)
945 946 947 948 949 950 951 952 953 954 955 956
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
957
/*
I
Ingo Molnar 已提交
958
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
959
 */
I
Ingo Molnar 已提交
960
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
961
{
I
Ingo Molnar 已提交
962 963
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
964

965
	enqueue_task(rq, p, wakeup);
966
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
967 968 969
}

/*
I
Ingo Molnar 已提交
970
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
971
 */
I
Ingo Molnar 已提交
972
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
973
{
I
Ingo Molnar 已提交
974
	update_rq_clock(rq);
L
Linus Torvalds 已提交
975

I
Ingo Molnar 已提交
976 977
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
978

979
	enqueue_task(rq, p, 0);
980
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
981 982 983 984 985
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
986
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
987
{
I
Ingo Molnar 已提交
988 989 990
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

991
	dequeue_task(rq, p, sleep);
992
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
993 994 995 996 997 998
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
999
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1000 1001 1002 1003
{
	return cpu_curr(task_cpu(p)) == p;
}

1004 1005 1006
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1007
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1008 1009 1010 1011 1012 1013 1014
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
#endif
S
Srivatsa Vaddagiri 已提交
1015
	set_task_cfs_rq(p);
1016 1017
}

L
Linus Torvalds 已提交
1018
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1019

I
Ingo Molnar 已提交
1020
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1021
{
I
Ingo Molnar 已提交
1022 1023
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1024
	u64 clock_offset;
I
Ingo Molnar 已提交
1025 1026

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1027 1028 1029 1030

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1031 1032 1033 1034
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
I
Ingo Molnar 已提交
1035
#endif
1036 1037 1038
	if (likely(new_rq->cfs.min_vruntime))
		p->se.vruntime -= old_rq->cfs.min_vruntime -
						new_rq->cfs.min_vruntime;
I
Ingo Molnar 已提交
1039 1040

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1041 1042
}

1043
struct migration_req {
L
Linus Torvalds 已提交
1044 1045
	struct list_head list;

1046
	struct task_struct *task;
L
Linus Torvalds 已提交
1047 1048 1049
	int dest_cpu;

	struct completion done;
1050
};
L
Linus Torvalds 已提交
1051 1052 1053 1054 1055

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1056
static int
1057
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1058
{
1059
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1060 1061 1062 1063 1064

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1065
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1066 1067 1068 1069 1070 1071 1072 1073
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1074

L
Linus Torvalds 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1087
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1088 1089
{
	unsigned long flags;
I
Ingo Molnar 已提交
1090
	int running, on_rq;
1091
	struct rq *rq;
L
Linus Torvalds 已提交
1092 1093

repeat:
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1121
	rq = task_rq_lock(p, &flags);
1122
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1123
	on_rq = p->se.on_rq;
1124 1125 1126 1127 1128 1129 1130 1131 1132
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1133 1134 1135
		cpu_relax();
		goto repeat;
	}
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1146
	if (unlikely(on_rq)) {
1147 1148 1149 1150 1151 1152 1153 1154 1155
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1171
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1183 1184
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1185 1186 1187 1188
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1189
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1190
{
1191
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1192
	unsigned long total = weighted_cpuload(cpu);
1193

1194
	if (type == 0)
I
Ingo Molnar 已提交
1195
		return total;
1196

I
Ingo Molnar 已提交
1197
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1198 1199 1200
}

/*
1201 1202
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1203
 */
N
Nick Piggin 已提交
1204
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1205
{
1206
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1207
	unsigned long total = weighted_cpuload(cpu);
1208

N
Nick Piggin 已提交
1209
	if (type == 0)
I
Ingo Molnar 已提交
1210
		return total;
1211

I
Ingo Molnar 已提交
1212
	return max(rq->cpu_load[type-1], total);
1213 1214 1215 1216 1217 1218 1219
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1220
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1221
	unsigned long total = weighted_cpuload(cpu);
1222 1223
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1224
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1225 1226
}

N
Nick Piggin 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1244 1245 1246 1247
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1264 1265
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1266 1267 1268 1269 1270 1271 1272 1273

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1274
nextgroup:
N
Nick Piggin 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1284
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1285
 */
I
Ingo Molnar 已提交
1286 1287
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1288
{
1289
	cpumask_t tmp;
N
Nick Piggin 已提交
1290 1291 1292 1293
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1294 1295 1296 1297
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1298
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1324

1325
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1326 1327 1328
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1329 1330
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1331 1332
		if (tmp->flags & flag)
			sd = tmp;
1333
	}
N
Nick Piggin 已提交
1334 1335 1336 1337

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1338 1339 1340 1341 1342 1343
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1344 1345 1346

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1347 1348 1349 1350
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1351

1352
		new_cpu = find_idlest_cpu(group, t, cpu);
1353 1354 1355 1356 1357
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1358

1359
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1386
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1387 1388 1389 1390 1391
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1402 1403 1404 1405
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1406
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1407 1408 1409 1410
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1411
		} else {
N
Nick Piggin 已提交
1412
			break;
I
Ingo Molnar 已提交
1413
		}
L
Linus Torvalds 已提交
1414 1415 1416 1417
	}
	return cpu;
}
#else
1418
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1438
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1439 1440 1441 1442
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1443
	struct rq *rq;
L
Linus Torvalds 已提交
1444
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1445
	struct sched_domain *sd, *this_sd = NULL;
1446
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1447 1448 1449 1450 1451 1452 1453 1454
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1455
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1465 1466
	new_cpu = cpu;

L
Linus Torvalds 已提交
1467 1468 1469
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1470 1471 1472 1473 1474 1475 1476 1477
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1478 1479 1480
		}
	}

N
Nick Piggin 已提交
1481
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1482 1483 1484
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1485
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1486
	 */
N
Nick Piggin 已提交
1487 1488 1489
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1490

1491 1492
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1493 1494
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1495

N
Nick Piggin 已提交
1496 1497
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1498 1499
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1500 1501 1502
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1503

L
Linus Torvalds 已提交
1504
			/*
1505 1506 1507
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1508
			 */
1509
			if (sync)
I
Ingo Molnar 已提交
1510
				tl -= current->se.load.weight;
1511 1512

			if ((tl <= load &&
1513
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1514
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1548
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1549 1550 1551 1552 1553 1554 1555 1556
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1557
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1558
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1559 1560 1561 1562 1563 1564 1565 1566
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1567 1568
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1579
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1580 1581 1582 1583 1584 1585
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1586
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1587 1588 1589 1590 1591 1592 1593
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1594 1595 1596 1597 1598 1599 1600
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1601
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1602 1603 1604

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1605 1606 1607 1608 1609 1610
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1611
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1612
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1613
#endif
N
Nick Piggin 已提交
1614

I
Ingo Molnar 已提交
1615 1616
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1617

1618 1619 1620 1621
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1622 1623 1624 1625 1626 1627 1628
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1644 1645 1646 1647 1648 1649

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1650
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1651
	if (likely(sched_info_on()))
1652
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1653
#endif
1654
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1655 1656
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1657
#ifdef CONFIG_PREEMPT
1658
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1659
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1660
#endif
N
Nick Piggin 已提交
1661
	put_cpu();
L
Linus Torvalds 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1671
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1672 1673
{
	unsigned long flags;
I
Ingo Molnar 已提交
1674 1675
	struct rq *rq;
	int this_cpu;
L
Linus Torvalds 已提交
1676 1677

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1678
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1679
	this_cpu = smp_processor_id(); /* parent's CPU */
I
Ingo Molnar 已提交
1680
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1681 1682 1683

	p->prio = effective_prio(p);

1684 1685 1686 1687 1688
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

1689 1690
	if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
							!current->se.on_rq) {
I
Ingo Molnar 已提交
1691
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1692 1693
	} else {
		/*
I
Ingo Molnar 已提交
1694 1695
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1696
		 */
1697
		p->sched_class->task_new(rq, p);
1698
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1699
	}
I
Ingo Molnar 已提交
1700 1701
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1702 1703
}

1704 1705 1706
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1707 1708
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1709 1710 1711 1712 1713 1714 1715 1716 1717
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1718
 * @notifier: notifier struct to unregister
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1762 1763 1764
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1765
 * @prev: the current task that is being switched out
1766 1767 1768 1769 1770 1771 1772 1773 1774
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1775 1776 1777
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1778
{
1779
	fire_sched_out_preempt_notifiers(prev, next);
1780 1781 1782 1783
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1784 1785
/**
 * finish_task_switch - clean up after a task-switch
1786
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1787 1788
 * @prev: the thread we just switched away from.
 *
1789 1790 1791 1792
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1793 1794 1795 1796 1797 1798
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1799
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1800 1801 1802
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1803
	long prev_state;
L
Linus Torvalds 已提交
1804 1805 1806 1807 1808

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1809
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1810 1811
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1812
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1813 1814 1815 1816 1817
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1818
	prev_state = prev->state;
1819 1820
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1821
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1822 1823
	if (mm)
		mmdrop(mm);
1824
	if (unlikely(prev_state == TASK_DEAD)) {
1825 1826 1827
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1828
		 */
1829
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1830
		put_task_struct(prev);
1831
	}
L
Linus Torvalds 已提交
1832 1833 1834 1835 1836 1837
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1838
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1839 1840
	__releases(rq->lock)
{
1841 1842
	struct rq *rq = this_rq();

1843 1844 1845 1846 1847
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1848 1849 1850 1851 1852 1853 1854 1855
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1856
static inline void
1857
context_switch(struct rq *rq, struct task_struct *prev,
1858
	       struct task_struct *next)
L
Linus Torvalds 已提交
1859
{
I
Ingo Molnar 已提交
1860
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1861

1862
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1863 1864
	mm = next->mm;
	oldmm = prev->active_mm;
1865 1866 1867 1868 1869 1870 1871
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1872
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877 1878
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1879
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1880 1881 1882
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1883 1884 1885 1886 1887 1888 1889
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1890
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1891
#endif
L
Linus Torvalds 已提交
1892 1893 1894 1895

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1896 1897 1898 1899 1900 1901 1902
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1926
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1941 1942
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1943

1944
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1954
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1955 1956 1957 1958 1959
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1975
/*
I
Ingo Molnar 已提交
1976 1977
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1978
 */
I
Ingo Molnar 已提交
1979
static void update_cpu_load(struct rq *this_rq)
1980
{
1981
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
1994 1995 1996 1997 1998 1999 2000
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2001 2002
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2003 2004
}

I
Ingo Molnar 已提交
2005 2006
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2007 2008 2009 2010 2011 2012
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2013
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2014 2015 2016
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2017
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2018 2019 2020 2021
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2022
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2023 2024 2025 2026 2027 2028 2029
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2030 2031
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2032 2033 2034 2035 2036 2037 2038 2039
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2040
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2054
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2055 2056 2057 2058
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2059 2060 2061 2062 2063
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2064
	if (unlikely(!spin_trylock(&busiest->lock))) {
2065
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2080
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2081
{
2082
	struct migration_req req;
L
Linus Torvalds 已提交
2083
	unsigned long flags;
2084
	struct rq *rq;
L
Linus Torvalds 已提交
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2095

L
Linus Torvalds 已提交
2096 2097 2098 2099 2100
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2101

L
Linus Torvalds 已提交
2102 2103 2104 2105 2106 2107 2108
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2109 2110
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2111 2112 2113 2114
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2115
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2116
	put_cpu();
N
Nick Piggin 已提交
2117 2118
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2119 2120 2121 2122 2123 2124
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2125 2126
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2127
{
2128
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2129
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2130
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2131 2132 2133 2134
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2135
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2136 2137 2138 2139 2140
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2141
static
2142
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2143
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2144
		     int *all_pinned)
L
Linus Torvalds 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2154 2155 2156 2157
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2158 2159 2160 2161

	return 1;
}

I
Ingo Molnar 已提交
2162
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2163
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2164
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2165
		      int *all_pinned, unsigned long *load_moved,
2166
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2167
{
I
Ingo Molnar 已提交
2168 2169 2170
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2171

2172
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2173 2174
		goto out;

2175 2176
	pinned = 1;

L
Linus Torvalds 已提交
2177
	/*
I
Ingo Molnar 已提交
2178
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2179
	 */
I
Ingo Molnar 已提交
2180 2181 2182
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2183
		goto out;
2184 2185 2186 2187 2188
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2189 2190
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2191
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2192 2193 2194
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2195 2196
	}

I
Ingo Molnar 已提交
2197
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2198
	pulled++;
I
Ingo Molnar 已提交
2199
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2200

2201 2202 2203 2204 2205
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2206 2207
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2208 2209
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2210 2211 2212 2213 2214 2215 2216 2217
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2218 2219 2220

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2221
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2222 2223 2224
	return pulled;
}

I
Ingo Molnar 已提交
2225
/*
P
Peter Williams 已提交
2226 2227 2228
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2229 2230 2231 2232
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2233
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2234 2235 2236 2237
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2238
	unsigned long total_load_moved = 0;
2239
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2240 2241

	do {
P
Peter Williams 已提交
2242 2243 2244
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2245
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2246
		class = class->next;
P
Peter Williams 已提交
2247
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2248

P
Peter Williams 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct sched_class *class;
2263
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2264 2265 2266

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2267 2268
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2269 2270 2271
			return 1;

	return 0;
I
Ingo Molnar 已提交
2272 2273
}

L
Linus Torvalds 已提交
2274 2275
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2276 2277
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2278 2279 2280
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2281 2282
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2283 2284 2285
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2286
	unsigned long max_pull;
2287 2288
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2289
	int load_idx;
2290 2291 2292 2293 2294 2295
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2296 2297

	max_load = this_load = total_load = total_pwr = 0;
2298 2299
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2300
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2301
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2302
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2303 2304 2305
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2306 2307

	do {
2308
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2309 2310
		int local_group;
		int i;
2311
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2312
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2313 2314 2315

		local_group = cpu_isset(this_cpu, group->cpumask);

2316 2317 2318
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2319
		/* Tally up the load of all CPUs in the group */
2320
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2321 2322

		for_each_cpu_mask(i, group->cpumask) {
2323 2324 2325 2326 2327 2328
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2329

2330
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2331 2332
				*sd_idle = 0;

L
Linus Torvalds 已提交
2333
			/* Bias balancing toward cpus of our domain */
2334 2335 2336 2337 2338 2339
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2340
				load = target_load(i, load_idx);
2341
			} else
N
Nick Piggin 已提交
2342
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2343 2344

			avg_load += load;
2345
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2346
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2347 2348
		}

2349 2350 2351
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2352 2353
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2354
		 */
2355 2356
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2357 2358 2359 2360
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2361
		total_load += avg_load;
2362
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2363 2364

		/* Adjust by relative CPU power of the group */
2365 2366
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2367

2368
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2369

L
Linus Torvalds 已提交
2370 2371 2372
		if (local_group) {
			this_load = avg_load;
			this = group;
2373 2374 2375
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2376
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2377 2378
			max_load = avg_load;
			busiest = group;
2379 2380
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2381
		}
2382 2383 2384 2385 2386 2387

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2388 2389 2390
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2391 2392 2393 2394 2395 2396 2397 2398 2399

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2400
		/*
2401 2402
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2403 2404
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2405
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2406
			goto group_next;
2407

I
Ingo Molnar 已提交
2408
		/*
2409
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2410 2411 2412 2413 2414
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2415 2416
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2417 2418
			group_min = group;
			min_nr_running = sum_nr_running;
2419 2420
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2421
		}
2422

I
Ingo Molnar 已提交
2423
		/*
2424
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2436
		}
2437 2438
group_next:
#endif
L
Linus Torvalds 已提交
2439 2440 2441
		group = group->next;
	} while (group != sd->groups);

2442
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2443 2444 2445 2446 2447 2448 2449 2450
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2451
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2475 2476

	/* Don't want to pull so many tasks that a group would go idle */
2477
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2478

L
Linus Torvalds 已提交
2479
	/* How much load to actually move to equalise the imbalance */
2480 2481
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2482 2483
			/ SCHED_LOAD_SCALE;

2484 2485 2486 2487 2488 2489
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2490
	if (*imbalance < busiest_load_per_task) {
2491
		unsigned long tmp, pwr_now, pwr_move;
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2503

I
Ingo Molnar 已提交
2504 2505
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2506
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2507 2508 2509 2510 2511 2512 2513 2514 2515
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2516 2517 2518 2519
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2520 2521 2522
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2523 2524
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2525
		if (max_load > tmp)
2526
			pwr_move += busiest->__cpu_power *
2527
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2528 2529

		/* Amount of load we'd add */
2530
		if (max_load * busiest->__cpu_power <
2531
				busiest_load_per_task * SCHED_LOAD_SCALE)
2532 2533
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2534
		else
2535 2536 2537 2538
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2539 2540 2541
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2542 2543
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2544 2545 2546 2547 2548
	}

	return busiest;

out_balanced:
2549
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2550
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2551
		goto ret;
L
Linus Torvalds 已提交
2552

2553 2554 2555 2556 2557
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2558
ret:
L
Linus Torvalds 已提交
2559 2560 2561 2562 2563 2564 2565
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2566
static struct rq *
I
Ingo Molnar 已提交
2567
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2568
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2569
{
2570
	struct rq *busiest = NULL, *rq;
2571
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2572 2573 2574
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2575
		unsigned long wl;
2576 2577 2578 2579

		if (!cpu_isset(i, *cpus))
			continue;

2580
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2581
		wl = weighted_cpuload(i);
2582

I
Ingo Molnar 已提交
2583
		if (rq->nr_running == 1 && wl > imbalance)
2584
			continue;
L
Linus Torvalds 已提交
2585

I
Ingo Molnar 已提交
2586 2587
		if (wl > max_load) {
			max_load = wl;
2588
			busiest = rq;
L
Linus Torvalds 已提交
2589 2590 2591 2592 2593 2594
		}
	}

	return busiest;
}

2595 2596 2597 2598 2599 2600
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2601 2602 2603 2604
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2605
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2606
			struct sched_domain *sd, enum cpu_idle_type idle,
2607
			int *balance)
L
Linus Torvalds 已提交
2608
{
P
Peter Williams 已提交
2609
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2610 2611
	struct sched_group *group;
	unsigned long imbalance;
2612
	struct rq *busiest;
2613
	cpumask_t cpus = CPU_MASK_ALL;
2614
	unsigned long flags;
N
Nick Piggin 已提交
2615

2616 2617 2618
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2619
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2620
	 * portraying it as CPU_NOT_IDLE.
2621
	 */
I
Ingo Molnar 已提交
2622
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2623
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2624
		sd_idle = 1;
L
Linus Torvalds 已提交
2625 2626 2627

	schedstat_inc(sd, lb_cnt[idle]);

2628 2629
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2630 2631
				   &cpus, balance);

2632
	if (*balance == 0)
2633 2634
		goto out_balanced;

L
Linus Torvalds 已提交
2635 2636 2637 2638 2639
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2640
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2641 2642 2643 2644 2645
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2646
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2647 2648 2649

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2650
	ld_moved = 0;
L
Linus Torvalds 已提交
2651 2652 2653 2654
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2655
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2656 2657
		 * correctly treated as an imbalance.
		 */
2658
		local_irq_save(flags);
N
Nick Piggin 已提交
2659
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2660
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2661
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2662
		double_rq_unlock(this_rq, busiest);
2663
		local_irq_restore(flags);
2664

2665 2666 2667
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2668
		if (ld_moved && this_cpu != smp_processor_id())
2669 2670
			resched_cpu(this_cpu);

2671
		/* All tasks on this runqueue were pinned by CPU affinity */
2672 2673 2674 2675
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2676
			goto out_balanced;
2677
		}
L
Linus Torvalds 已提交
2678
	}
2679

P
Peter Williams 已提交
2680
	if (!ld_moved) {
L
Linus Torvalds 已提交
2681 2682 2683 2684 2685
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2686
			spin_lock_irqsave(&busiest->lock, flags);
2687 2688 2689 2690 2691

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2692
				spin_unlock_irqrestore(&busiest->lock, flags);
2693 2694 2695 2696
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2697 2698 2699
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2700
				active_balance = 1;
L
Linus Torvalds 已提交
2701
			}
2702
			spin_unlock_irqrestore(&busiest->lock, flags);
2703
			if (active_balance)
L
Linus Torvalds 已提交
2704 2705 2706 2707 2708 2709
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2710
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2711
		}
2712
	} else
L
Linus Torvalds 已提交
2713 2714
		sd->nr_balance_failed = 0;

2715
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2716 2717
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2718 2719 2720 2721 2722 2723 2724 2725 2726
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2727 2728
	}

P
Peter Williams 已提交
2729
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2730
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2731
		return -1;
P
Peter Williams 已提交
2732
	return ld_moved;
L
Linus Torvalds 已提交
2733 2734 2735 2736

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2737
	sd->nr_balance_failed = 0;
2738 2739

out_one_pinned:
L
Linus Torvalds 已提交
2740
	/* tune up the balancing interval */
2741 2742
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2743 2744
		sd->balance_interval *= 2;

2745
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2746
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2747
		return -1;
L
Linus Torvalds 已提交
2748 2749 2750 2751 2752 2753 2754
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2755
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2756 2757
 * this_rq is locked.
 */
2758
static int
2759
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2760 2761
{
	struct sched_group *group;
2762
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2763
	unsigned long imbalance;
P
Peter Williams 已提交
2764
	int ld_moved = 0;
N
Nick Piggin 已提交
2765
	int sd_idle = 0;
2766
	int all_pinned = 0;
2767
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2768

2769 2770 2771 2772
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2773
	 * portraying it as CPU_NOT_IDLE.
2774 2775 2776
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2777
		sd_idle = 1;
L
Linus Torvalds 已提交
2778

I
Ingo Molnar 已提交
2779
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2780
redo:
I
Ingo Molnar 已提交
2781
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2782
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2783
	if (!group) {
I
Ingo Molnar 已提交
2784
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2785
		goto out_balanced;
L
Linus Torvalds 已提交
2786 2787
	}

I
Ingo Molnar 已提交
2788
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2789
				&cpus);
N
Nick Piggin 已提交
2790
	if (!busiest) {
I
Ingo Molnar 已提交
2791
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2792
		goto out_balanced;
L
Linus Torvalds 已提交
2793 2794
	}

N
Nick Piggin 已提交
2795 2796
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2797
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2798

P
Peter Williams 已提交
2799
	ld_moved = 0;
2800 2801 2802
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2803 2804
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2805
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2806 2807
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2808
		spin_unlock(&busiest->lock);
2809

2810
		if (unlikely(all_pinned)) {
2811 2812 2813 2814
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2815 2816
	}

P
Peter Williams 已提交
2817
	if (!ld_moved) {
I
Ingo Molnar 已提交
2818
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2819 2820
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2821 2822
			return -1;
	} else
2823
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2824

P
Peter Williams 已提交
2825
	return ld_moved;
2826 2827

out_balanced:
I
Ingo Molnar 已提交
2828
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2829
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2830
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2831
		return -1;
2832
	sd->nr_balance_failed = 0;
2833

2834
	return 0;
L
Linus Torvalds 已提交
2835 2836 2837 2838 2839 2840
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2841
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2842 2843
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2844 2845
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2846 2847

	for_each_domain(this_cpu, sd) {
2848 2849 2850 2851 2852 2853
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2854
			/* If we've pulled tasks over stop searching: */
2855
			pulled_task = load_balance_newidle(this_cpu,
2856 2857 2858 2859 2860 2861 2862
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2863
	}
I
Ingo Molnar 已提交
2864
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2865 2866 2867 2868 2869
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2870
	}
L
Linus Torvalds 已提交
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2881
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2882
{
2883
	int target_cpu = busiest_rq->push_cpu;
2884 2885
	struct sched_domain *sd;
	struct rq *target_rq;
2886

2887
	/* Is there any task to move? */
2888 2889 2890 2891
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2892 2893

	/*
2894 2895 2896
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2897
	 */
2898
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2899

2900 2901
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2902 2903
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2904 2905

	/* Search for an sd spanning us and the target CPU. */
2906
	for_each_domain(target_cpu, sd) {
2907
		if ((sd->flags & SD_LOAD_BALANCE) &&
2908
		    cpu_isset(busiest_cpu, sd->span))
2909
				break;
2910
	}
2911

2912 2913
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2914

P
Peter Williams 已提交
2915 2916
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2917 2918 2919 2920
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2921
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2922 2923
}

2924 2925 2926 2927 2928 2929 2930 2931 2932
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2933
/*
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2944
 *
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3001 3002 3003 3004 3005
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
3006
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3007
{
3008 3009
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3010 3011
	unsigned long interval;
	struct sched_domain *sd;
3012
	/* Earliest time when we have to do rebalance again */
3013
	unsigned long next_balance = jiffies + 60*HZ;
3014
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3015

3016
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3017 3018 3019 3020
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3021
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3022 3023 3024 3025 3026 3027
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3028 3029 3030
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3031

3032 3033 3034 3035 3036
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3037
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3038
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3039 3040
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3041 3042 3043
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3044
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3045
			}
3046
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3047
		}
3048 3049 3050
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3051
		if (time_after(next_balance, sd->last_balance + interval)) {
3052
			next_balance = sd->last_balance + interval;
3053 3054
			update_next_balance = 1;
		}
3055 3056 3057 3058 3059 3060 3061 3062

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3063
	}
3064 3065 3066 3067 3068 3069 3070 3071

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3072 3073 3074 3075 3076 3077 3078 3079 3080
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3081 3082 3083 3084
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3085

I
Ingo Molnar 已提交
3086
	rebalance_domains(this_cpu, idle);
3087 3088 3089 3090 3091 3092 3093

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3094 3095
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3096 3097 3098 3099
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3100
		cpu_clear(this_cpu, cpus);
3101 3102 3103 3104 3105 3106 3107 3108 3109
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3110
			rebalance_domains(balance_cpu, CPU_IDLE);
3111 3112

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3113 3114
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3127
static inline void trigger_load_balance(struct rq *rq, int cpu)
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3179
}
I
Ingo Molnar 已提交
3180 3181 3182

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3183 3184 3185
/*
 * on UP we do not need to balance between CPUs:
 */
3186
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3187 3188
{
}
I
Ingo Molnar 已提交
3189 3190 3191 3192 3193 3194

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3195
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3196 3197 3198 3199 3200 3201
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3202 3203 3204 3205 3206 3207 3208
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3209 3210
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3211
 */
3212
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3213 3214
{
	unsigned long flags;
3215 3216
	u64 ns, delta_exec;
	struct rq *rq;
3217

3218 3219 3220
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3221 3222
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3223 3224 3225 3226
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3227

L
Linus Torvalds 已提交
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3262
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3292
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3315
	struct task_struct *curr = rq->curr;
3316
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3317 3318

	spin_lock(&rq->lock);
3319
	__update_rq_clock(rq);
3320 3321 3322 3323 3324 3325
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3326
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3327 3328 3329
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3330

3331
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3332 3333
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3334
#endif
L
Linus Torvalds 已提交
3335 3336 3337 3338 3339 3340 3341 3342 3343
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3344 3345
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3346 3347 3348 3349
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3350 3351
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3352 3353 3354 3355 3356 3357 3358 3359
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3360 3361
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3362 3363 3364
	/*
	 * Is the spinlock portion underflowing?
	 */
3365 3366 3367 3368
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3369 3370 3371 3372 3373 3374 3375
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3376
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3377
 */
I
Ingo Molnar 已提交
3378
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3379
{
I
Ingo Molnar 已提交
3380 3381 3382 3383 3384 3385 3386
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3387

I
Ingo Molnar 已提交
3388 3389 3390 3391 3392
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3393 3394 3395 3396 3397
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3398 3399 3400
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3401 3402
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3403 3404 3405 3406 3407 3408 3409
	schedstat_inc(this_rq(), sched_cnt);
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3410
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3411 3412 3413
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3414 3415

	/*
I
Ingo Molnar 已提交
3416 3417
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3418
	 */
I
Ingo Molnar 已提交
3419
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3420
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3421 3422
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3423 3424
	}

I
Ingo Molnar 已提交
3425 3426
	class = sched_class_highest;
	for ( ; ; ) {
3427
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3428 3429 3430 3431 3432 3433 3434 3435 3436
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3437

I
Ingo Molnar 已提交
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3460 3461

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3462
	clear_tsk_need_resched(prev);
I
Ingo Molnar 已提交
3463
	__update_rq_clock(rq);
L
Linus Torvalds 已提交
3464 3465 3466

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3467
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3468
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3469
		} else {
3470
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3471
		}
I
Ingo Molnar 已提交
3472
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3473 3474
	}

I
Ingo Molnar 已提交
3475
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3476 3477
		idle_balance(cpu, rq);

3478
	prev->sched_class->put_prev_task(rq, prev);
3479
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3480 3481

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3482

L
Linus Torvalds 已提交
3483 3484 3485 3486 3487
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3488
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3489 3490 3491
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3492 3493 3494
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3495
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3496
	}
L
Linus Torvalds 已提交
3497 3498 3499 3500 3501 3502 3503 3504
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3505
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3520
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3548
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3560
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3590 3591
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3592
{
3593
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3609
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3610

3611
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3612 3613
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3614
		if (curr->func(curr, mode, sync, key) &&
3615
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3616 3617 3618 3619 3620 3621 3622 3623 3624
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3625
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3626 3627
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3628
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3647
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3659 3660
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3704

L
Linus Torvalds 已提交
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3823 3824 3825 3826 3827
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3828
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3829
}
L
Linus Torvalds 已提交
3830

I
Ingo Molnar 已提交
3831 3832 3833 3834 3835 3836 3837
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3838

I
Ingo Molnar 已提交
3839
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3840
{
I
Ingo Molnar 已提交
3841 3842 3843 3844
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3845 3846 3847

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3848
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3849
	schedule();
I
Ingo Molnar 已提交
3850
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3851 3852 3853
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3854
long __sched
I
Ingo Molnar 已提交
3855
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3856
{
I
Ingo Molnar 已提交
3857 3858 3859 3860
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3861 3862 3863

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3864
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3865
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3866
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3867 3868 3869 3870 3871

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3872
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3873
{
I
Ingo Molnar 已提交
3874 3875 3876 3877
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3878 3879 3880

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3881
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3882
	schedule();
I
Ingo Molnar 已提交
3883
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3884 3885 3886
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3887
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3888
{
I
Ingo Molnar 已提交
3889 3890 3891 3892
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3893 3894 3895

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3896
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3897
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3898
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3899 3900 3901 3902 3903

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3916
void rt_mutex_setprio(struct task_struct *p, int prio)
3917 3918
{
	unsigned long flags;
I
Ingo Molnar 已提交
3919
	int oldprio, on_rq;
3920
	struct rq *rq;
3921 3922 3923 3924

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3925
	update_rq_clock(rq);
3926

3927
	oldprio = p->prio;
I
Ingo Molnar 已提交
3928
	on_rq = p->se.on_rq;
S
Srivatsa Vaddagiri 已提交
3929
	if (on_rq) {
3930
		dequeue_task(rq, p, 0);
S
Srivatsa Vaddagiri 已提交
3931 3932 3933
		if (task_running(rq, p))
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
3934 3935 3936 3937 3938 3939

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3940 3941
	p->prio = prio;

I
Ingo Molnar 已提交
3942
	if (on_rq) {
3943
		enqueue_task(rq, p, 0);
3944 3945
		/*
		 * Reschedule if we are currently running on this runqueue and
3946 3947
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3948
		 */
3949 3950 3951
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
S
Srivatsa Vaddagiri 已提交
3952
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
3953 3954 3955
		} else {
			check_preempt_curr(rq, p);
		}
3956 3957 3958 3959 3960 3961
	}
	task_rq_unlock(rq, &flags);
}

#endif

3962
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3963
{
I
Ingo Molnar 已提交
3964
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3965
	unsigned long flags;
3966
	struct rq *rq;
L
Linus Torvalds 已提交
3967 3968 3969 3970 3971 3972 3973 3974

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3975
	update_rq_clock(rq);
L
Linus Torvalds 已提交
3976 3977 3978 3979
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3980
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3981
	 */
3982
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3983 3984 3985
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3986 3987
	on_rq = p->se.on_rq;
	if (on_rq) {
3988
		dequeue_task(rq, p, 0);
3989
		dec_load(rq, p);
3990
	}
L
Linus Torvalds 已提交
3991 3992

	p->static_prio = NICE_TO_PRIO(nice);
3993
	set_load_weight(p);
3994 3995 3996
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3997

I
Ingo Molnar 已提交
3998
	if (on_rq) {
3999
		enqueue_task(rq, p, 0);
4000
		inc_load(rq, p);
L
Linus Torvalds 已提交
4001
		/*
4002 4003
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4004
		 */
4005
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4006 4007 4008 4009 4010 4011 4012
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4013 4014 4015 4016 4017
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4018
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4019
{
4020 4021
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4022

M
Matt Mackall 已提交
4023 4024 4025 4026
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4038
	long nice, retval;
L
Linus Torvalds 已提交
4039 4040 4041 4042 4043 4044

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4045 4046
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4047 4048 4049 4050 4051 4052 4053 4054 4055
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4056 4057 4058
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4077
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4078 4079 4080 4081 4082 4083 4084 4085
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4086
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4105
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4106 4107 4108 4109 4110 4111 4112 4113
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4114
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4115 4116 4117 4118 4119
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4120 4121
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4122
{
I
Ingo Molnar 已提交
4123
	BUG_ON(p->se.on_rq);
4124

L
Linus Torvalds 已提交
4125
	p->policy = policy;
I
Ingo Molnar 已提交
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4138
	p->rt_priority = prio;
4139 4140 4141
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4142
	set_load_weight(p);
L
Linus Torvalds 已提交
4143 4144 4145
}

/**
4146
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4147 4148 4149
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4150
 *
4151
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4152
 */
I
Ingo Molnar 已提交
4153 4154
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4155
{
I
Ingo Molnar 已提交
4156
	int retval, oldprio, oldpolicy = -1, on_rq;
L
Linus Torvalds 已提交
4157
	unsigned long flags;
4158
	struct rq *rq;
L
Linus Torvalds 已提交
4159

4160 4161
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4162 4163 4164 4165 4166
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4167 4168
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4169
		return -EINVAL;
L
Linus Torvalds 已提交
4170 4171
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4172 4173
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4174 4175
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4176
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4177
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4178
		return -EINVAL;
4179
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4180 4181
		return -EINVAL;

4182 4183 4184 4185
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4186
		if (rt_policy(policy)) {
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4203 4204 4205 4206 4207 4208
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4209

4210 4211 4212 4213 4214
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4215 4216 4217 4218

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4219 4220 4221 4222 4223
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4224 4225 4226 4227
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4228
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4229 4230 4231
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4232 4233
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4234 4235
		goto recheck;
	}
I
Ingo Molnar 已提交
4236
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4237
	on_rq = p->se.on_rq;
S
Srivatsa Vaddagiri 已提交
4238
	if (on_rq) {
4239
		deactivate_task(rq, p, 0);
S
Srivatsa Vaddagiri 已提交
4240 4241 4242
		if (task_running(rq, p))
			p->sched_class->put_prev_task(rq, p);
	}
L
Linus Torvalds 已提交
4243
	oldprio = p->prio;
I
Ingo Molnar 已提交
4244 4245 4246
	__setscheduler(rq, p, policy, param->sched_priority);
	if (on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4247 4248
		/*
		 * Reschedule if we are currently running on this runqueue and
4249 4250
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4251
		 */
4252 4253 4254
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
S
Srivatsa Vaddagiri 已提交
4255
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4256 4257 4258
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4259
	}
4260 4261 4262
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4263 4264
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4265 4266 4267 4268
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4269 4270
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4271 4272 4273
{
	struct sched_param lparam;
	struct task_struct *p;
4274
	int retval;
L
Linus Torvalds 已提交
4275 4276 4277 4278 4279

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4280 4281 4282

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4283
	p = find_process_by_pid(pid);
4284 4285 4286
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4287

L
Linus Torvalds 已提交
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4300 4301 4302 4303
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4323
	struct task_struct *p;
L
Linus Torvalds 已提交
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4351
	struct task_struct *p;
L
Linus Torvalds 已提交
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4386 4387
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4388

4389
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4390 4391 4392 4393 4394
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4395
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4412 4413 4414 4415
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4416 4417 4418 4419 4420 4421
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4422
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4463
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4464 4465 4466
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4467
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4468 4469
EXPORT_SYMBOL(cpu_online_map);

4470
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4471
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4472 4473 4474 4475
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4476
	struct task_struct *p;
L
Linus Torvalds 已提交
4477 4478
	int retval;

4479
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4480 4481 4482 4483 4484 4485 4486
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4487 4488 4489 4490
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4491
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4492 4493 4494

out_unlock:
	read_unlock(&tasklist_lock);
4495
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4496

4497
	return retval;
L
Linus Torvalds 已提交
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4528 4529
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4530 4531 4532
 */
asmlinkage long sys_sched_yield(void)
{
4533
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4534 4535

	schedstat_inc(rq, yld_cnt);
4536
	current->sched_class->yield_task(rq, current);
L
Linus Torvalds 已提交
4537 4538 4539 4540 4541 4542

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4543
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4544 4545 4546 4547 4548 4549 4550 4551
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4552
static void __cond_resched(void)
L
Linus Torvalds 已提交
4553
{
4554 4555 4556
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4557 4558 4559 4560 4561
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4562 4563 4564 4565 4566 4567 4568 4569 4570
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4571 4572
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4588
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4589
{
J
Jan Kara 已提交
4590 4591
	int ret = 0;

L
Linus Torvalds 已提交
4592 4593 4594
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4595
		ret = 1;
L
Linus Torvalds 已提交
4596 4597
		spin_lock(lock);
	}
4598
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4599
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4600 4601 4602
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4603
		ret = 1;
L
Linus Torvalds 已提交
4604 4605
		spin_lock(lock);
	}
J
Jan Kara 已提交
4606
	return ret;
L
Linus Torvalds 已提交
4607 4608 4609 4610 4611 4612 4613
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4614
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4615
		local_bh_enable();
L
Linus Torvalds 已提交
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4627
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4646
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4647

4648
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4649 4650 4651
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4652
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4653 4654 4655 4656 4657
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4658
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4659 4660
	long ret;

4661
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4662 4663 4664
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4665
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4686
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4687
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4711
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4712
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4729
	struct task_struct *p;
L
Linus Torvalds 已提交
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4746
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4747
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4748 4749 4750 4751 4752 4753 4754 4755 4756
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4757
static const char stat_nam[] = "RSDTtZX";
4758 4759

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4760 4761
{
	unsigned long free = 0;
4762
	unsigned state;
L
Linus Torvalds 已提交
4763 4764

	state = p->state ? __ffs(p->state) + 1 : 0;
4765 4766
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4767
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4768
	if (state == TASK_RUNNING)
4769
		printk(" running  ");
L
Linus Torvalds 已提交
4770
	else
4771
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4772 4773
#else
	if (state == TASK_RUNNING)
4774
		printk("  running task    ");
L
Linus Torvalds 已提交
4775 4776 4777 4778 4779
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4780
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4781 4782
		while (!*n)
			n++;
4783
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4784 4785
	}
#endif
4786
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4787 4788 4789 4790 4791

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4792
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4793
{
4794
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4795

4796 4797 4798
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4799
#else
4800 4801
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4802 4803 4804 4805 4806 4807 4808 4809
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4810
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4811
			show_task(p);
L
Linus Torvalds 已提交
4812 4813
	} while_each_thread(g, p);

4814 4815
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4816 4817 4818
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4819
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4820 4821 4822 4823 4824
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4825 4826
}

I
Ingo Molnar 已提交
4827 4828
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4829
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4830 4831
}

4832 4833 4834 4835 4836 4837 4838 4839
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4840
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4841
{
4842
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4843 4844
	unsigned long flags;

I
Ingo Molnar 已提交
4845 4846 4847
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4848
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4849
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4850
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4851 4852 4853

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4854 4855 4856
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4857 4858 4859 4860
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4861
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4862
#else
A
Al Viro 已提交
4863
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4864
#endif
I
Ingo Molnar 已提交
4865 4866 4867 4868
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4884
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4906
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4907
{
4908
	struct migration_req req;
L
Linus Torvalds 已提交
4909
	unsigned long flags;
4910
	struct rq *rq;
4911
	int ret = 0;
L
Linus Torvalds 已提交
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4934

L
Linus Torvalds 已提交
4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4947 4948
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4949
 */
4950
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4951
{
4952
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4953
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4954 4955

	if (unlikely(cpu_is_offline(dest_cpu)))
4956
		return ret;
L
Linus Torvalds 已提交
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4969
	on_rq = p->se.on_rq;
4970
	if (on_rq)
4971
		deactivate_task(rq_src, p, 0);
4972

L
Linus Torvalds 已提交
4973
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4974 4975 4976
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4977
	}
4978
	ret = 1;
L
Linus Torvalds 已提交
4979 4980
out:
	double_rq_unlock(rq_src, rq_dest);
4981
	return ret;
L
Linus Torvalds 已提交
4982 4983 4984 4985 4986 4987 4988
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
4989
static int migration_thread(void *data)
L
Linus Torvalds 已提交
4990 4991
{
	int cpu = (long)data;
4992
	struct rq *rq;
L
Linus Torvalds 已提交
4993 4994 4995 4996 4997 4998

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
4999
		struct migration_req *req;
L
Linus Torvalds 已提交
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5022
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5023 5024
		list_del_init(head->next);

N
Nick Piggin 已提交
5025 5026 5027
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5046 5047 5048 5049
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5050
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5051
{
5052
	unsigned long flags;
L
Linus Torvalds 已提交
5053
	cpumask_t mask;
5054 5055
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5056

5057
restart:
L
Linus Torvalds 已提交
5058 5059
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5060
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5061 5062 5063 5064
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5065
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5066 5067 5068

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5069 5070 5071
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5072
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5073 5074 5075 5076 5077 5078

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5079
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5080 5081
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5082
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5083
	}
5084
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5085
		goto restart;
L
Linus Torvalds 已提交
5086 5087 5088 5089 5090 5091 5092 5093 5094
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5095
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5096
{
5097
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5111
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5112 5113 5114

	write_lock_irq(&tasklist_lock);

5115 5116
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5117 5118
			continue;

5119 5120 5121
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5122 5123 5124 5125

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5126 5127
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5128
 * It does so by boosting its priority to highest possible and adding it to
5129
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5130 5131 5132
 */
void sched_idle_next(void)
{
5133
	int this_cpu = smp_processor_id();
5134
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5135 5136 5137 5138
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5139
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5140

5141 5142 5143
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5144 5145 5146
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5147
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5148 5149

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5150
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5151 5152 5153 5154

	spin_unlock_irqrestore(&rq->lock, flags);
}

5155 5156
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5170
/* called under rq->lock with disabled interrupts */
5171
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5172
{
5173
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5174 5175

	/* Must be exiting, otherwise would be on tasklist. */
5176
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5177 5178

	/* Cannot have done final schedule yet: would have vanished. */
5179
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5180

5181
	get_task_struct(p);
L
Linus Torvalds 已提交
5182 5183 5184 5185 5186

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5187
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5188
	 */
5189
	spin_unlock(&rq->lock);
5190
	move_task_off_dead_cpu(dead_cpu, p);
5191
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5192

5193
	put_task_struct(p);
L
Linus Torvalds 已提交
5194 5195 5196 5197 5198
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5199
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5200
	struct task_struct *next;
5201

I
Ingo Molnar 已提交
5202 5203 5204
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5205
		update_rq_clock(rq);
5206
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5207 5208 5209
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5210

L
Linus Torvalds 已提交
5211 5212 5213 5214
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5215 5216 5217
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5218 5219
	{
		.procname	= "sched_domain",
5220
		.mode		= 0555,
5221
	},
5222 5223 5224 5225
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5226
	{
5227
		.ctl_name	= CTL_KERN,
5228
		.procname	= "kernel",
5229
		.mode		= 0555,
5230 5231
		.child		= sd_ctl_dir,
	},
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);

	BUG_ON(!entry);
	memset(entry, 0, n * sizeof(struct ctl_table));

	return entry;
}

static void
5247
set_table_entry(struct ctl_table *entry,
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
	struct ctl_table *table = sd_alloc_ctl_entry(14);

5263
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5264
		sizeof(long), 0644, proc_doulongvec_minmax);
5265
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5266
		sizeof(long), 0644, proc_doulongvec_minmax);
5267
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5268
		sizeof(int), 0644, proc_dointvec_minmax);
5269
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5270
		sizeof(int), 0644, proc_dointvec_minmax);
5271
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5272
		sizeof(int), 0644, proc_dointvec_minmax);
5273
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5274
		sizeof(int), 0644, proc_dointvec_minmax);
5275
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5276
		sizeof(int), 0644, proc_dointvec_minmax);
5277
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5278
		sizeof(int), 0644, proc_dointvec_minmax);
5279
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5280
		sizeof(int), 0644, proc_dointvec_minmax);
5281
	set_table_entry(&table[10], "cache_nice_tries",
5282 5283
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5284
	set_table_entry(&table[12], "flags", &sd->flags,
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
		sizeof(int), 0644, proc_dointvec_minmax);

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5305
		entry->mode = 0555;
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
static void init_sched_domain_sysctl(void)
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

	sd_ctl_dir[0].child = entry;

	for (i = 0; i < cpu_num; i++, entry++) {
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5325
		entry->mode = 0555;
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
		entry->child = sd_alloc_ctl_cpu_table(i);
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
#else
static void init_sched_domain_sysctl(void)
{
}
#endif

L
Linus Torvalds 已提交
5336 5337 5338 5339
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5340 5341
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5342 5343
{
	struct task_struct *p;
5344
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5345
	unsigned long flags;
5346
	struct rq *rq;
L
Linus Torvalds 已提交
5347 5348

	switch (action) {
5349 5350 5351 5352
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5353
	case CPU_UP_PREPARE:
5354
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5355
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5356 5357 5358 5359 5360
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5361
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5362 5363 5364
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5365

L
Linus Torvalds 已提交
5366
	case CPU_ONLINE:
5367
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5368 5369 5370
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5371

L
Linus Torvalds 已提交
5372 5373
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5374
	case CPU_UP_CANCELED_FROZEN:
5375 5376
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5377
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5378 5379
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5380 5381 5382
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5383

L
Linus Torvalds 已提交
5384
	case CPU_DEAD:
5385
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5386 5387 5388 5389 5390 5391
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5392
		update_rq_clock(rq);
5393
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5394
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5395 5396
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5397 5398 5399 5400 5401 5402
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5403
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5404 5405 5406
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5407 5408
			struct migration_req *req;

L
Linus Torvalds 已提交
5409
			req = list_entry(rq->migration_queue.next,
5410
					 struct migration_req, list);
L
Linus Torvalds 已提交
5411 5412 5413 5414 5415 5416
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5417 5418 5419
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5420 5421 5422 5423 5424 5425 5426
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5427
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5428 5429 5430 5431 5432 5433 5434
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5435
	int err;
5436 5437

	/* Start one for the boot CPU: */
5438 5439
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5440 5441
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5442

L
Linus Torvalds 已提交
5443 5444 5445 5446 5447
	return 0;
}
#endif

#ifdef CONFIG_SMP
5448 5449 5450 5451 5452

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5453
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5454 5455 5456 5457 5458
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5459 5460 5461 5462 5463
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5483 5484
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5485 5486 5487 5488 5489 5490
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5491 5492
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5493
		if (!cpu_isset(cpu, group->cpumask))
5494 5495
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5508
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5509
				printk("\n");
5510 5511
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5534 5535
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5536 5537 5538

		level++;
		sd = sd->parent;
5539 5540
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5541

5542 5543 5544
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5545 5546 5547 5548

	} while (sd);
}
#else
5549
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5550 5551
#endif

5552
static int sd_degenerate(struct sched_domain *sd)
5553 5554 5555 5556 5557 5558 5559 5560
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5561 5562 5563
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5577 5578
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5597 5598 5599
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5600 5601 5602 5603 5604 5605 5606
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5607 5608 5609 5610
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5611
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5612
{
5613
	struct rq *rq = cpu_rq(cpu);
5614 5615 5616 5617 5618 5619 5620
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5621
		if (sd_parent_degenerate(tmp, parent)) {
5622
			tmp->parent = parent->parent;
5623 5624 5625
			if (parent->parent)
				parent->parent->child = tmp;
		}
5626 5627
	}

5628
	if (sd && sd_degenerate(sd)) {
5629
		sd = sd->parent;
5630 5631 5632
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5633 5634 5635

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5636
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5637 5638 5639
}

/* cpus with isolated domains */
5640
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5658 5659 5660 5661
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5662 5663 5664 5665 5666
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5667
static void
5668 5669 5670
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5671 5672 5673 5674 5675 5676
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5677 5678
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5679 5680 5681 5682 5683 5684
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5685
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5686 5687

		for_each_cpu_mask(j, span) {
5688
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5703
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5704

5705
#ifdef CONFIG_NUMA
5706

5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5759 5760
	cpumask_t span, nodemask;
	int i;
5761 5762 5763 5764 5765 5766 5767 5768 5769 5770

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5771

5772 5773 5774 5775 5776 5777 5778 5779
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5780
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5781

5782
/*
5783
 * SMT sched-domains:
5784
 */
L
Linus Torvalds 已提交
5785 5786
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5787
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5788

5789 5790
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5791
{
5792 5793
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5794 5795 5796 5797
	return cpu;
}
#endif

5798 5799 5800
/*
 * multi-core sched-domains:
 */
5801 5802
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5803
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5804 5805 5806
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5807 5808
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5809
{
5810
	int group;
5811 5812
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5813 5814 5815 5816
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5817 5818
}
#elif defined(CONFIG_SCHED_MC)
5819 5820
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5821
{
5822 5823
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5824 5825 5826 5827
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5828
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5829
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5830

5831 5832
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5833
{
5834
	int group;
5835
#ifdef CONFIG_SCHED_MC
5836
	cpumask_t mask = cpu_coregroup_map(cpu);
5837
	cpus_and(mask, mask, *cpu_map);
5838
	group = first_cpu(mask);
5839
#elif defined(CONFIG_SCHED_SMT)
5840 5841
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5842
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5843
#else
5844
	group = cpu;
L
Linus Torvalds 已提交
5845
#endif
5846 5847 5848
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5849 5850 5851 5852
}

#ifdef CONFIG_NUMA
/*
5853 5854 5855
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5856
 */
5857
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5858
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5859

5860
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5861
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5862

5863 5864
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5865
{
5866 5867 5868 5869 5870 5871 5872 5873 5874
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5875
}
5876

5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5897
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5898 5899 5900 5901 5902
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5903 5904
#endif

5905
#ifdef CONFIG_NUMA
5906 5907 5908
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5909
	int cpu, i;
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5940 5941 5942 5943 5944
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5945

5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5972 5973
	sd->groups->__cpu_power = 0;

5974 5975 5976 5977 5978 5979 5980 5981 5982 5983
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5984
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5985 5986 5987 5988 5989 5990 5991 5992
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
5993
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
5994 5995 5996 5997
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
5998
/*
5999 6000
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6001
 */
6002
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6003 6004
{
	int i;
6005 6006
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6007
	int sd_allnodes = 0;
6008 6009 6010 6011

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
6012
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6013
					   GFP_KERNEL);
6014 6015
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6016
		return -ENOMEM;
6017 6018 6019
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6020 6021

	/*
6022
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6023
	 */
6024
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6025 6026 6027
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6028
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6029 6030

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6031 6032
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6033 6034 6035
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6036
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6037
			p = sd;
6038
			sd_allnodes = 1;
6039 6040 6041
		} else
			p = NULL;

L
Linus Torvalds 已提交
6042 6043
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6044 6045
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6046 6047
		if (p)
			p->child = sd;
6048
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6049 6050 6051 6052 6053 6054 6055
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6056 6057
		if (p)
			p->child = sd;
6058
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6059

6060 6061 6062 6063 6064 6065 6066
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6067
		p->child = sd;
6068
		cpu_to_core_group(i, cpu_map, &sd->groups);
6069 6070
#endif

L
Linus Torvalds 已提交
6071 6072 6073 6074 6075
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6076
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6077
		sd->parent = p;
6078
		p->child = sd;
6079
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6080 6081 6082 6083 6084
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6085
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6086
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6087
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6088 6089 6090
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6091 6092
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6093 6094 6095
	}
#endif

6096 6097 6098 6099 6100 6101 6102
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6103 6104
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6105 6106 6107
	}
#endif

L
Linus Torvalds 已提交
6108 6109 6110 6111
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6112
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6113 6114 6115
		if (cpus_empty(nodemask))
			continue;

6116
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6117 6118 6119 6120
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6121
	if (sd_allnodes)
I
Ingo Molnar 已提交
6122 6123
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6124 6125 6126 6127 6128 6129 6130 6131 6132 6133

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6134 6135
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6136
			continue;
6137
		}
6138 6139 6140 6141

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6142
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6143 6144 6145 6146 6147
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6148 6149 6150
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6151

6152 6153 6154
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6155
		sg->__cpu_power = 0;
6156
		sg->cpumask = nodemask;
6157
		sg->next = sg;
6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6176 6177
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6178 6179 6180
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6181
				goto error;
6182
			}
6183
			sg->__cpu_power = 0;
6184
			sg->cpumask = tmp;
6185
			sg->next = prev->next;
6186 6187 6188 6189 6190
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6191 6192 6193
#endif

	/* Calculate CPU power for physical packages and nodes */
6194
#ifdef CONFIG_SCHED_SMT
6195
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6196 6197
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6198
		init_sched_groups_power(i, sd);
6199
	}
L
Linus Torvalds 已提交
6200
#endif
6201
#ifdef CONFIG_SCHED_MC
6202
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6203 6204
		struct sched_domain *sd = &per_cpu(core_domains, i);

6205
		init_sched_groups_power(i, sd);
6206 6207
	}
#endif
6208

6209
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6210 6211
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6212
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6213 6214
	}

6215
#ifdef CONFIG_NUMA
6216 6217
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6218

6219 6220
	if (sd_allnodes) {
		struct sched_group *sg;
6221

6222
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6223 6224
		init_numa_sched_groups_power(sg);
	}
6225 6226
#endif

L
Linus Torvalds 已提交
6227
	/* Attach the domains */
6228
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6229 6230 6231
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6232 6233
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6234 6235 6236 6237 6238
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6239 6240 6241

	return 0;

6242
#ifdef CONFIG_NUMA
6243 6244 6245
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6246
#endif
L
Linus Torvalds 已提交
6247
}
6248 6249 6250
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6251
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6252 6253
{
	cpumask_t cpu_default_map;
6254
	int err;
L
Linus Torvalds 已提交
6255

6256 6257 6258 6259 6260 6261 6262
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6263 6264 6265
	err = build_sched_domains(&cpu_default_map);

	return err;
6266 6267 6268
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6269
{
6270
	free_sched_groups(cpu_map);
6271
}
L
Linus Torvalds 已提交
6272

6273 6274 6275 6276
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6277
static void detach_destroy_domains(const cpumask_t *cpu_map)
6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6295
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6296 6297
{
	cpumask_t change_map;
6298
	int err = 0;
6299 6300 6301 6302 6303 6304 6305 6306

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6307 6308 6309 6310 6311
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6312 6313
}

6314
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6315
static int arch_reinit_sched_domains(void)
6316 6317 6318
{
	int err;

6319
	mutex_lock(&sched_hotcpu_mutex);
6320 6321
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6322
	mutex_unlock(&sched_hotcpu_mutex);
6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6349 6350
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6351 6352 6353
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6354 6355
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6356 6357 6358 6359 6360 6361 6362
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6363 6364
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6365 6366 6367
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6388 6389
#endif

L
Linus Torvalds 已提交
6390 6391 6392
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6393
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6394 6395 6396 6397 6398 6399 6400
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6401
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6402
	case CPU_DOWN_PREPARE:
6403
	case CPU_DOWN_PREPARE_FROZEN:
6404
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6405 6406 6407
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6408
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6409
	case CPU_DOWN_FAILED:
6410
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6411
	case CPU_ONLINE:
6412
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6413
	case CPU_DEAD:
6414
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6415 6416 6417 6418 6419 6420 6421 6422 6423
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6424
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6425 6426 6427 6428 6429 6430

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6431 6432
	cpumask_t non_isolated_cpus;

6433
	mutex_lock(&sched_hotcpu_mutex);
6434
	arch_init_sched_domains(&cpu_online_map);
6435
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6436 6437
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6438
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6439 6440
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6441

6442 6443
	init_sched_domain_sysctl();

6444 6445 6446
	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6458

L
Linus Torvalds 已提交
6459 6460 6461 6462 6463
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6464 6465 6466 6467 6468 6469 6470 6471
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
}

L
Linus Torvalds 已提交
6472 6473
void __init sched_init(void)
{
6474
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6475 6476 6477 6478 6479 6480 6481 6482
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6483

6484
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6485
		struct rt_prio_array *array;
6486
		struct rq *rq;
L
Linus Torvalds 已提交
6487 6488 6489

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6490
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6491
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6492 6493 6494 6495
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
S
Srivatsa Vaddagiri 已提交
6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514
	 	{
 			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
 			struct sched_entity *se =
 					 &per_cpu(init_sched_entity, i);

 			init_cfs_rq_p[i] = cfs_rq;
 			init_cfs_rq(cfs_rq, rq);
 			cfs_rq->tg = &init_task_grp;
 			list_add(&cfs_rq->leaf_cfs_rq_list,
							 &rq->leaf_cfs_rq_list);

 			init_sched_entity_p[i] = se;
 			se->cfs_rq = &rq->cfs;
 			se->my_q = cfs_rq;
 			se->load.weight = NICE_0_LOAD;
			se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
 			se->parent = NULL;
 		}
		init_task_grp.shares = NICE_0_LOAD;
I
Ingo Molnar 已提交
6515
#endif
L
Linus Torvalds 已提交
6516

I
Ingo Molnar 已提交
6517 6518
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6519
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6520
		rq->sd = NULL;
L
Linus Torvalds 已提交
6521
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6522
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6523
		rq->push_cpu = 0;
6524
		rq->cpu = i;
L
Linus Torvalds 已提交
6525 6526 6527 6528 6529
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6530 6531 6532 6533
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6534
		}
6535
		highest_cpu = i;
I
Ingo Molnar 已提交
6536 6537
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6538 6539
	}

6540
	set_load_weight(&init_task);
6541

6542 6543 6544 6545
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6546
#ifdef CONFIG_SMP
6547
	nr_cpu_ids = highest_cpu + 1;
6548 6549 6550
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6551 6552 6553 6554
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6568 6569 6570 6571
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6572 6573 6574 6575 6576
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6577
#ifdef in_atomic
L
Linus Torvalds 已提交
6578 6579 6580 6581 6582 6583 6584
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6585
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6586 6587 6588
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6589
		debug_show_held_locks(current);
6590 6591
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6602
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6603
	unsigned long flags;
6604
	struct rq *rq;
I
Ingo Molnar 已提交
6605
	int on_rq;
L
Linus Torvalds 已提交
6606 6607

	read_lock_irq(&tasklist_lock);
6608
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6609
		p->se.fair_key			= 0;
I
Ingo Molnar 已提交
6610 6611
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6612 6613 6614
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6615
#endif
I
Ingo Molnar 已提交
6616 6617 6618 6619 6620 6621 6622 6623 6624
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6625
			continue;
I
Ingo Molnar 已提交
6626
		}
L
Linus Torvalds 已提交
6627

6628 6629
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6630 6631 6632 6633 6634 6635 6636
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6637

I
Ingo Molnar 已提交
6638
		update_rq_clock(rq);
I
Ingo Molnar 已提交
6639
		on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
6640 6641
		if (on_rq)
			deactivate_task(rq, p, 0);
I
Ingo Molnar 已提交
6642 6643
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
I
Ingo Molnar 已提交
6644
			activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6645 6646
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6647 6648 6649
#ifdef CONFIG_SMP
 out_unlock:
#endif
6650 6651
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6652 6653
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6654 6655 6656 6657
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6676
struct task_struct *curr_task(int cpu)
6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6696
void set_curr_task(int cpu, struct task_struct *p)
6697 6698 6699 6700 6701
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948

#ifdef CONFIG_FAIR_GROUP_SCHED

/* return corresponding task_grp object of a container */
static inline struct task_grp *container_tg(struct container *cont)
{
	return container_of(container_subsys_state(cont, cpu_subsys_id),
					 struct task_grp, css);
}

/* allocate runqueue etc for a new task group */
static struct container_subsys_state *
sched_create_group(struct container_subsys *ss, struct container *cont)
{
	struct task_grp *tg;
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	if (!cont->parent) {
		/* This is early initialization for the top container */
		init_task_grp.css.container = cont;
		return &init_task_grp.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
	if (cont->parent->parent)
		return ERR_PTR(-EINVAL);

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * num_possible_cpus(), GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * num_possible_cpus(), GFP_KERNEL);
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

	tg->shares = NICE_0_LOAD;

	/* Bind the container to task_grp object we just created */
	tg->css.container = cont;

	return &tg->css;

err:
	for_each_possible_cpu(i) {
		if (tg->cfs_rq && tg->cfs_rq[i])
			kfree(tg->cfs_rq[i]);
		if (tg->se && tg->se[i])
			kfree(tg->se[i]);
	}
	if (tg->cfs_rq)
		kfree(tg->cfs_rq);
	if (tg->se)
		kfree(tg->se);
	if (tg)
		kfree(tg);

	return ERR_PTR(-ENOMEM);
}


/* destroy runqueue etc associated with a task group */
static void sched_destroy_group(struct container_subsys *ss,
					struct container *cont)
{
	struct task_grp *tg = container_tg(cont);
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

	/* wait for possible concurrent references to cfs_rqs complete */
	synchronize_sched();

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

static int sched_can_attach(struct container_subsys *ss,
			     struct container *cont, struct task_struct *tsk)
{
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;

	return 0;
}

/* change task's runqueue when it moves between groups */
static void sched_move_task(struct container_subsys *ss, struct container *cont,
			struct container *old_cont, struct task_struct *tsk)
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	if (tsk->sched_class != &fair_sched_class)
		goto done;

	update_rq_clock(rq);

	running = task_running(rq, tsk);
	on_rq = tsk->se.on_rq;

	if (on_rq) {
		dequeue_task(rq, tsk, 0);
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}

	set_task_cfs_rq(tsk);

	if (on_rq) {
		enqueue_task(rq, tsk, 0);
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
	}

done:
	task_rq_unlock(rq, &flags);
}

static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

	spin_lock_irq(&rq->lock);

	on_rq = se->on_rq;
	if (on_rq)
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

	if (on_rq)
		enqueue_entity(cfs_rq, se, 0);

	spin_unlock_irq(&rq->lock);
}

static ssize_t cpu_shares_write(struct container *cont, struct cftype *cftype,
				struct file *file, const char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	int i;
	unsigned long shareval;
	struct task_grp *tg = container_tg(cont);
	char buffer[2*sizeof(unsigned long) + 1];

	if (nbytes > 2*sizeof(unsigned long))	/* safety check */
		return -E2BIG;

	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;	/* nul-terminate */
	shareval = simple_strtoul(buffer, NULL, 10);

	tg->shares = shareval;
	for_each_possible_cpu(i)
		set_se_shares(tg->se[i], shareval);

	return nbytes;
}

static u64 cpu_shares_read_uint(struct container *cont, struct cftype *cft)
{
	struct task_grp *tg = container_tg(cont);

	return (u64) tg->shares;
}

struct cftype cpuctl_share = {
	.name = "shares",
	.read_uint = cpu_shares_read_uint,
	.write = cpu_shares_write,
};

static int sched_populate(struct container_subsys *ss, struct container *cont)
{
	return container_add_file(cont, ss, &cpuctl_share);
}

struct container_subsys cpu_subsys = {
	.name = "cpu",
	.create = sched_create_group,
	.destroy  = sched_destroy_group,
	.can_attach = sched_can_attach,
	.attach = sched_move_task,
	.populate = sched_populate,
	.subsys_id = cpu_subsys_id,
	.early_init = 1,
};

#endif	/* CONFIG_FAIR_GROUP_SCHED */