sched.c 244.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126
DEFINE_TRACE(sched_wait_task);
DEFINE_TRACE(sched_wakeup);
DEFINE_TRACE(sched_wakeup_new);
DEFINE_TRACE(sched_switch);
DEFINE_TRACE(sched_migrate_task);

127
#ifdef CONFIG_SMP
128 129 130

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

151 152
static inline int rt_policy(int policy)
{
153
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 155 156 157 158 159 160 161 162
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
163
/*
I
Ingo Molnar 已提交
164
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
165
 */
I
Ingo Molnar 已提交
166 167 168 169 170
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

171
struct rt_bandwidth {
I
Ingo Molnar 已提交
172 173 174 175 176
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
210 211
	spin_lock_init(&rt_b->rt_runtime_lock);

212 213 214 215 216
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

217 218 219
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
220 221 222 223 224 225
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

226
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
227 228 229 230 231 232 233 234 235 236 237 238
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 240
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
241 242 243 244 245 246 247 248 249 250 251
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

252 253 254 255 256 257
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

258
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
259

260 261
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
262 263
struct cfs_rq;

P
Peter Zijlstra 已提交
264 265
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
266
/* task group related information */
267
struct task_group {
268
#ifdef CONFIG_CGROUP_SCHED
269 270
	struct cgroup_subsys_state css;
#endif
271

272 273 274 275
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

276
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
277 278 279 280 281
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
282 283 284 285 286 287
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

288
	struct rt_bandwidth rt_bandwidth;
289
#endif
290

291
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
292
	struct list_head list;
P
Peter Zijlstra 已提交
293 294 295 296

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
297 298
};

D
Dhaval Giani 已提交
299
#ifdef CONFIG_USER_SCHED
300

301 302 303 304 305 306
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

307 308 309 310 311 312 313
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

314
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
315 316 317 318
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
319
#endif /* CONFIG_FAIR_GROUP_SCHED */
320 321 322 323

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
324
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
325
#else /* !CONFIG_USER_SCHED */
326
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
327
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
328

329
/* task_group_lock serializes add/remove of task groups and also changes to
330 331
 * a task group's cpu shares.
 */
332
static DEFINE_SPINLOCK(task_group_lock);
333

334 335 336 337 338 339 340
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

341 342 343
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
344
#else /* !CONFIG_USER_SCHED */
345
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
346
#endif /* CONFIG_USER_SCHED */
347

348
/*
349 350 351 352
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
353 354 355
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
356
#define MIN_SHARES	2
357
#define MAX_SHARES	(1UL << 18)
358

359 360 361
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
362
/* Default task group.
I
Ingo Molnar 已提交
363
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
364
 */
365
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
366 367

/* return group to which a task belongs */
368
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
369
{
370
	struct task_group *tg;
371

372
#ifdef CONFIG_USER_SCHED
373 374 375
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
376
#elif defined(CONFIG_CGROUP_SCHED)
377 378
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
379
#else
I
Ingo Molnar 已提交
380
	tg = &init_task_group;
381
#endif
382
	return tg;
S
Srivatsa Vaddagiri 已提交
383 384 385
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
386
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
387
{
388
#ifdef CONFIG_FAIR_GROUP_SCHED
389 390
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
391
#endif
P
Peter Zijlstra 已提交
392

393
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
394 395
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
396
#endif
S
Srivatsa Vaddagiri 已提交
397 398 399 400
}

#else

401 402 403 404 405 406 407
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
408
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
409 410 411 412
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
413

414
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
415

I
Ingo Molnar 已提交
416 417 418 419 420 421
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
422
	u64 min_vruntime;
I
Ingo Molnar 已提交
423 424 425

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
426 427 428 429 430 431

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
432 433
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
434
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
435

P
Peter Zijlstra 已提交
436
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
437

438
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
439 440
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
441 442
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
443 444 445 446 447 448
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
449 450
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
451 452 453

#ifdef CONFIG_SMP
	/*
454
	 * the part of load.weight contributed by tasks
455
	 */
456
	unsigned long task_weight;
457

458 459 460 461 462 463 464
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
465

466 467 468 469
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
470 471 472 473 474

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
475
#endif
I
Ingo Molnar 已提交
476 477
#endif
};
L
Linus Torvalds 已提交
478

I
Ingo Molnar 已提交
479 480 481
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
482
	unsigned long rt_nr_running;
483
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
484 485
	struct {
		int curr; /* highest queued rt task prio */
486
#ifdef CONFIG_SMP
487
		int next; /* next highest */
488
#endif
489
	} highest_prio;
P
Peter Zijlstra 已提交
490
#endif
P
Peter Zijlstra 已提交
491
#ifdef CONFIG_SMP
492
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
493
	int overloaded;
494
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
495
#endif
P
Peter Zijlstra 已提交
496
	int rt_throttled;
P
Peter Zijlstra 已提交
497
	u64 rt_time;
P
Peter Zijlstra 已提交
498
	u64 rt_runtime;
I
Ingo Molnar 已提交
499
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
500
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
501

502
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
503 504
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
505 506 507 508 509
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
510 511
};

G
Gregory Haskins 已提交
512 513 514 515
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
516 517
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
518 519 520 521 522 523
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
524 525
	cpumask_var_t span;
	cpumask_var_t online;
526

I
Ingo Molnar 已提交
527
	/*
528 529 530
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
531
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
532
	atomic_t rto_count;
533 534 535
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
536 537 538 539 540 541 542 543
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
544 545
};

546 547 548 549
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
550 551 552 553
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
554 555 556 557 558 559 560
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
561
struct rq {
562 563
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
564 565 566 567 568 569

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
570 571
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
572
#ifdef CONFIG_NO_HZ
573
	unsigned long last_tick_seen;
574 575
	unsigned char in_nohz_recently;
#endif
576 577
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
578 579 580 581
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
582 583
	struct rt_rq rt;

I
Ingo Molnar 已提交
584
#ifdef CONFIG_FAIR_GROUP_SCHED
585 586
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
587 588
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
589
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
590 591 592 593 594 595 596 597 598 599
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

600
	struct task_struct *curr, *idle;
601
	unsigned long next_balance;
L
Linus Torvalds 已提交
602
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
603

604
	u64 clock;
I
Ingo Molnar 已提交
605

L
Linus Torvalds 已提交
606 607 608
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
609
	struct root_domain *rd;
L
Linus Torvalds 已提交
610 611
	struct sched_domain *sd;

612
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
613 614 615
	/* For active balancing */
	int active_balance;
	int push_cpu;
616 617
	/* cpu of this runqueue: */
	int cpu;
618
	int online;
L
Linus Torvalds 已提交
619

620
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
621

622
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
623 624 625
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
626
#ifdef CONFIG_SCHED_HRTICK
627 628 629 630
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
631 632 633
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
634 635 636
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
637 638
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
639 640

	/* sys_sched_yield() stats */
641
	unsigned int yld_count;
L
Linus Torvalds 已提交
642 643

	/* schedule() stats */
644 645 646
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
647 648

	/* try_to_wake_up() stats */
649 650
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
651 652

	/* BKL stats */
653
	unsigned int bkl_count;
L
Linus Torvalds 已提交
654 655 656
#endif
};

657
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
658

659
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
660
{
661
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
662 663
}

664 665 666 667 668 669 670 671 672
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
673 674
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
675
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
676 677 678 679
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
680 681
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
682 683 684 685 686 687

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

688 689 690 691 692
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
693 694 695 696 697 698 699 700 701
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
720 721 722
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
723 724 725 726

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
727
enum {
P
Peter Zijlstra 已提交
728
#include "sched_features.h"
I
Ingo Molnar 已提交
729 730
};

P
Peter Zijlstra 已提交
731 732 733 734 735
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
736
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
737 738 739 740 741 742 743 744 745
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

746
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
747 748 749 750 751 752
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
753
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
754 755 756 757
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
758 759 760
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
761
	}
L
Li Zefan 已提交
762
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
763

L
Li Zefan 已提交
764
	return 0;
P
Peter Zijlstra 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
784
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
809 810 811 812 813
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
814
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
815 816 817 818 819
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
834

835 836 837 838 839 840
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
841 842
/*
 * ratelimit for updating the group shares.
843
 * default: 0.25ms
P
Peter Zijlstra 已提交
844
 */
845
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
846

847 848 849 850 851 852 853
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
854
/*
P
Peter Zijlstra 已提交
855
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
856 857
 * default: 1s
 */
P
Peter Zijlstra 已提交
858
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
859

860 861
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
862 863 864 865 866
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
867

868 869 870 871 872 873 874
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
875
	if (sysctl_sched_rt_runtime < 0)
876 877 878 879
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
880

L
Linus Torvalds 已提交
881
#ifndef prepare_arch_switch
882 883 884 885 886 887
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

888 889 890 891 892
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

893
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
894
static inline int task_running(struct rq *rq, struct task_struct *p)
895
{
896
	return task_current(rq, p);
897 898
}

899
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
900 901 902
{
}

903
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
904
{
905 906 907 908
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
909 910 911 912 913 914 915
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

916 917 918 919
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
920
static inline int task_running(struct rq *rq, struct task_struct *p)
921 922 923 924
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
925
	return task_current(rq, p);
926 927 928
#endif
}

929
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

946
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
947 948 949 950 951 952 953 954 955 956 957 958
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
959
#endif
960 961
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
962

963 964 965 966
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
967
static inline struct rq *__task_rq_lock(struct task_struct *p)
968 969
	__acquires(rq->lock)
{
970 971 972 973 974
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
975 976 977 978
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
979 980
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
981
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
982 983
 * explicitly disabling preemption.
 */
984
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
985 986
	__acquires(rq->lock)
{
987
	struct rq *rq;
L
Linus Torvalds 已提交
988

989 990 991 992 993 994
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
995 996 997 998
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

999 1000 1001 1002 1003 1004 1005 1006
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1007
static void __task_rq_unlock(struct rq *rq)
1008 1009 1010 1011 1012
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1013
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1014 1015 1016 1017 1018 1019
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1020
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1021
 */
A
Alexey Dobriyan 已提交
1022
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1023 1024
	__acquires(rq->lock)
{
1025
	struct rq *rq;
L
Linus Torvalds 已提交
1026 1027 1028 1029 1030 1031 1032 1033

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1055
	if (!cpu_active(cpu_of(rq)))
1056
		return 0;
P
Peter Zijlstra 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1077
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1078 1079 1080 1081 1082 1083
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1084
#ifdef CONFIG_SMP
1085 1086 1087 1088
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1089
{
1090
	struct rq *rq = arg;
1091

1092 1093 1094 1095
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1096 1097
}

1098 1099 1100 1101 1102 1103
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1104
{
1105 1106
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1107

1108
	hrtimer_set_expires(timer, time);
1109 1110 1111 1112 1113 1114 1115

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1130
		hrtick_clear(cpu_rq(cpu));
1131 1132 1133 1134 1135 1136
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1137
static __init void init_hrtick(void)
1138 1139 1140
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1151

A
Andrew Morton 已提交
1152
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1153 1154
{
}
1155
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1156

1157
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1158
{
1159 1160
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1161

1162 1163 1164 1165
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1166

1167 1168
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1169
}
A
Andrew Morton 已提交
1170
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1171 1172 1173 1174 1175 1176 1177 1178
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1179 1180 1181
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1182
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1183

I
Ingo Molnar 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1197
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1198 1199 1200 1201 1202
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1203
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1204 1205
		return;

1206
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1262
	set_tsk_need_resched(rq->idle);
1263 1264 1265 1266 1267 1268

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1269
#endif /* CONFIG_NO_HZ */
1270

1271
#else /* !CONFIG_SMP */
1272
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1273 1274
{
	assert_spin_locked(&task_rq(p)->lock);
1275
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1276
}
1277
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1278

1279 1280 1281 1282 1283 1284 1285 1286
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1287 1288 1289
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1290
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1291

1292 1293 1294
/*
 * delta *= weight / lw
 */
1295
static unsigned long
1296 1297 1298 1299 1300
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1301 1302 1303 1304 1305 1306 1307
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1308 1309 1310 1311 1312

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1313
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1314
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1315 1316
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1317
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1318

1319
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1320 1321
}

1322
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1323 1324
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1325
	lw->inv_weight = 0;
1326 1327
}

1328
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1329 1330
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1331
	lw->inv_weight = 0;
1332 1333
}

1334 1335 1336 1337
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1338
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1339 1340 1341 1342
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1343 1344
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1354 1355 1356
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1357 1358
 */
static const int prio_to_weight[40] = {
1359 1360 1361 1362 1363 1364 1365 1366
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1367 1368
};

1369 1370 1371 1372 1373 1374 1375
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1376
static const u32 prio_to_wmult[40] = {
1377 1378 1379 1380 1381 1382 1383 1384
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1385
};
1386

I
Ingo Molnar 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1412

1413 1414 1415 1416 1417 1418
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1429
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1430
typedef int (*tg_visitor)(struct task_group *, void *);
1431 1432 1433 1434 1435

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1436
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1437 1438
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1439
	int ret;
1440 1441 1442 1443

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1444 1445 1446
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1447 1448 1449 1450 1451 1452 1453
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1454 1455 1456
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1457 1458 1459 1460 1461

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1462
out_unlock:
1463
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1464 1465

	return ret;
1466 1467
}

P
Peter Zijlstra 已提交
1468 1469 1470
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1471
}
P
Peter Zijlstra 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1482
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1483

1484 1485
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1486 1487
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1488 1489 1490 1491 1492

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1493 1494 1495 1496 1497 1498 1499

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1500 1501
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1502
{
1503 1504 1505
	unsigned long shares;
	unsigned long rq_weight;

1506
	if (!tg->se[cpu])
1507 1508
		return;

1509
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1510

1511 1512 1513 1514 1515 1516
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1517
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1518
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1519

1520 1521 1522 1523
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1524

1525
		spin_lock_irqsave(&rq->lock, flags);
1526
		tg->cfs_rq[cpu]->shares = shares;
1527

1528 1529 1530
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1531
}
1532 1533

/*
1534 1535 1536
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1537
 */
P
Peter Zijlstra 已提交
1538
static int tg_shares_up(struct task_group *tg, void *data)
1539
{
1540
	unsigned long weight, rq_weight = 0;
1541
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1542
	struct sched_domain *sd = data;
1543
	int i;
1544

1545
	for_each_cpu(i, sched_domain_span(sd)) {
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1557
		shares += tg->cfs_rq[i]->shares;
1558 1559
	}

1560 1561 1562 1563 1564
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1565

1566
	for_each_cpu(i, sched_domain_span(sd))
1567
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1568 1569

	return 0;
1570 1571 1572
}

/*
1573 1574 1575
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1576
 */
P
Peter Zijlstra 已提交
1577
static int tg_load_down(struct task_group *tg, void *data)
1578
{
1579
	unsigned long load;
P
Peter Zijlstra 已提交
1580
	long cpu = (long)data;
1581

1582 1583 1584 1585 1586 1587 1588
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1589

1590
	tg->cfs_rq[cpu]->h_load = load;
1591

P
Peter Zijlstra 已提交
1592
	return 0;
1593 1594
}

1595
static void update_shares(struct sched_domain *sd)
1596
{
P
Peter Zijlstra 已提交
1597 1598 1599 1600 1601
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1602
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1603
	}
1604 1605
}

1606 1607 1608 1609 1610 1611 1612
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1613
static void update_h_load(long cpu)
1614
{
P
Peter Zijlstra 已提交
1615
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1616 1617 1618 1619
}

#else

1620
static inline void update_shares(struct sched_domain *sd)
1621 1622 1623
{
}

1624 1625 1626 1627
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1628 1629
#endif

1630 1631
#ifdef CONFIG_PREEMPT

1632
/*
1633 1634 1635 1636 1637 1638
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1639
 */
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1694 1695 1696 1697 1698 1699
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1700 1701
#endif

V
Vegard Nossum 已提交
1702
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1703 1704
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1705
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1706 1707 1708
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1709
#endif
1710

I
Ingo Molnar 已提交
1711 1712
#include "sched_stats.h"
#include "sched_idletask.c"
1713 1714
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1715 1716 1717 1718 1719
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1720 1721
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1722

1723
static void inc_nr_running(struct rq *rq)
1724 1725 1726 1727
{
	rq->nr_running++;
}

1728
static void dec_nr_running(struct rq *rq)
1729 1730 1731 1732
{
	rq->nr_running--;
}

1733 1734 1735
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1736 1737 1738 1739
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1740

I
Ingo Molnar 已提交
1741 1742 1743 1744 1745 1746 1747 1748
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1749

I
Ingo Molnar 已提交
1750 1751
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1752 1753
}

1754 1755 1756 1757 1758 1759
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1760
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1761
{
P
Peter Zijlstra 已提交
1762 1763 1764
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1765
	sched_info_queued(p);
1766
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1767
	p->se.on_rq = 1;
1768 1769
}

1770
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1771
{
P
Peter Zijlstra 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1781 1782
	}

1783
	sched_info_dequeued(p);
1784
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1785
	p->se.on_rq = 0;
1786 1787
}

1788
/*
I
Ingo Molnar 已提交
1789
 * __normal_prio - return the priority that is based on the static prio
1790 1791 1792
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1793
	return p->static_prio;
1794 1795
}

1796 1797 1798 1799 1800 1801 1802
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1803
static inline int normal_prio(struct task_struct *p)
1804 1805 1806
{
	int prio;

1807
	if (task_has_rt_policy(p))
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1821
static int effective_prio(struct task_struct *p)
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1834
/*
I
Ingo Molnar 已提交
1835
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1836
 */
I
Ingo Molnar 已提交
1837
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1838
{
1839
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1840
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1841

1842
	enqueue_task(rq, p, wakeup);
1843
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1844 1845 1846 1847 1848
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1849
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1850
{
1851
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1852 1853
		rq->nr_uninterruptible++;

1854
	dequeue_task(rq, p, sleep);
1855
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1856 1857 1858 1859 1860 1861
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1862
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1863 1864 1865 1866
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1867 1868
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1869
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1870
#ifdef CONFIG_SMP
1871 1872 1873 1874 1875 1876
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1877 1878
	task_thread_info(p)->cpu = cpu;
#endif
1879 1880
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1893
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1894

1895 1896 1897 1898 1899 1900
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1901 1902 1903
/*
 * Is this task likely cache-hot:
 */
1904
static int
1905 1906 1907 1908
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1909 1910 1911
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1912 1913 1914
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1915 1916
		return 1;

1917 1918 1919
	if (p->sched_class != &fair_sched_class)
		return 0;

1920 1921 1922 1923 1924
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1925 1926 1927 1928 1929 1930
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1931
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1932
{
I
Ingo Molnar 已提交
1933 1934
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1935 1936
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1937
	u64 clock_offset;
I
Ingo Molnar 已提交
1938 1939

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1940

1941 1942
	trace_sched_migrate_task(p, task_cpu(p), new_cpu);

I
Ingo Molnar 已提交
1943 1944 1945
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1946 1947 1948 1949
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1950 1951 1952 1953 1954
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1955
#endif
1956 1957
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1958 1959

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1960 1961
}

1962
struct migration_req {
L
Linus Torvalds 已提交
1963 1964
	struct list_head list;

1965
	struct task_struct *task;
L
Linus Torvalds 已提交
1966 1967 1968
	int dest_cpu;

	struct completion done;
1969
};
L
Linus Torvalds 已提交
1970 1971 1972 1973 1974

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1975
static int
1976
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1977
{
1978
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1979 1980 1981 1982 1983

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1984
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1985 1986 1987 1988 1989 1990 1991 1992
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1993

L
Linus Torvalds 已提交
1994 1995 1996 1997 1998 1999
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2000 2001 2002 2003 2004 2005 2006
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2007 2008 2009 2010 2011 2012
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2013
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2014 2015
{
	unsigned long flags;
I
Ingo Molnar 已提交
2016
	int running, on_rq;
R
Roland McGrath 已提交
2017
	unsigned long ncsw;
2018
	struct rq *rq;
L
Linus Torvalds 已提交
2019

2020 2021 2022 2023 2024 2025 2026 2027
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2028

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2040 2041 2042
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2043
			cpu_relax();
R
Roland McGrath 已提交
2044
		}
2045

2046 2047 2048 2049 2050 2051
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2052
		trace_sched_wait_task(rq, p);
2053 2054
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2055
		ncsw = 0;
2056
		if (!match_state || p->state == match_state)
2057
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2058
		task_rq_unlock(rq, &flags);
2059

R
Roland McGrath 已提交
2060 2061 2062 2063 2064 2065
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2076

2077 2078 2079 2080 2081
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2082
		 * So if it was still runnable (but just not actively
2083 2084 2085 2086 2087 2088 2089
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2090

2091 2092 2093 2094 2095 2096 2097
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2098 2099

	return ncsw;
L
Linus Torvalds 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2115
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2127 2128
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2129 2130 2131 2132
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2133
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2134
{
2135
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2136
	unsigned long total = weighted_cpuload(cpu);
2137

2138
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2139
		return total;
2140

I
Ingo Molnar 已提交
2141
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2142 2143 2144
}

/*
2145 2146
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2147
 */
A
Alexey Dobriyan 已提交
2148
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2149
{
2150
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2151
	unsigned long total = weighted_cpuload(cpu);
2152

2153
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2154
		return total;
2155

I
Ingo Molnar 已提交
2156
	return max(rq->cpu_load[type-1], total);
2157 2158
}

N
Nick Piggin 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2176
		/* Skip over this group if it has no CPUs allowed */
2177 2178
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2179
			continue;
2180

2181 2182
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2183 2184 2185 2186

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2187
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2198 2199
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2200 2201 2202 2203 2204 2205 2206 2207

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2208
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2209 2210 2211 2212 2213 2214 2215

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2216
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2217
 */
I
Ingo Molnar 已提交
2218
static int
2219
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2220 2221 2222 2223 2224
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2225
	/* Traverse only the allowed CPUs */
2226
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2227
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2253

2254
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2255 2256 2257
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2258 2259
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2260 2261
		if (tmp->flags & flag)
			sd = tmp;
2262
	}
N
Nick Piggin 已提交
2263

2264 2265 2266
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2267 2268
	while (sd) {
		struct sched_group *group;
2269 2270 2271 2272 2273 2274
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2275 2276

		group = find_idlest_group(sd, t, cpu);
2277 2278 2279 2280
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2281

2282
		new_cpu = find_idlest_cpu(group, t, cpu);
2283 2284 2285 2286 2287
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2288

2289
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2290
		cpu = new_cpu;
2291
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2292 2293
		sd = NULL;
		for_each_domain(cpu, tmp) {
2294
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2321
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2322
{
2323
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2324 2325
	unsigned long flags;
	long old_state;
2326
	struct rq *rq;
L
Linus Torvalds 已提交
2327

2328 2329 2330
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2331
#ifdef CONFIG_SMP
2332
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2333 2334 2335 2336 2337 2338
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2339
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2340 2341 2342 2343 2344 2345 2346
				update_shares(sd);
				break;
			}
		}
	}
#endif

2347
	smp_wmb();
L
Linus Torvalds 已提交
2348
	rq = task_rq_lock(p, &flags);
2349
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2350 2351 2352 2353
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2354
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2355 2356 2357
		goto out_running;

	cpu = task_cpu(p);
2358
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2359 2360 2361 2362 2363 2364
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2365 2366 2367
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2368 2369 2370 2371 2372 2373
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2374
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2375 2376 2377 2378 2379 2380
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2381 2382 2383 2384 2385 2386 2387
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2388
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2389 2390 2391 2392 2393
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2394
#endif /* CONFIG_SCHEDSTATS */
2395

L
Linus Torvalds 已提交
2396 2397
out_activate:
#endif /* CONFIG_SMP */
2398 2399 2400 2401 2402 2403 2404 2405 2406
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2407
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2408 2409
	success = 1;

P
Peter Zijlstra 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2426
out_running:
2427
	trace_sched_wakeup(rq, p, success);
2428
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2429

L
Linus Torvalds 已提交
2430
	p->state = TASK_RUNNING;
2431 2432 2433 2434
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2435 2436 2437 2438 2439 2440
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2441
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2442
{
2443
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2444 2445 2446
}
EXPORT_SYMBOL(wake_up_process);

2447
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2448 2449 2450 2451 2452 2453 2454
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2455 2456 2457 2458 2459 2460 2461
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2462
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2463 2464
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2465 2466
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2467 2468 2469

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2470 2471 2472 2473 2474 2475
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2476
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2477
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2478
#endif
N
Nick Piggin 已提交
2479

P
Peter Zijlstra 已提交
2480
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2481
	p->se.on_rq = 0;
2482
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2483

2484 2485 2486 2487
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2488 2489 2490 2491 2492 2493 2494
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2509
	set_task_cpu(p, cpu);
2510 2511 2512 2513 2514

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2515 2516
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2517

2518
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2519
	if (likely(sched_info_on()))
2520
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2521
#endif
2522
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2523 2524
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2525
#ifdef CONFIG_PREEMPT
2526
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2527
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2528
#endif
2529 2530
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2531
	put_cpu();
L
Linus Torvalds 已提交
2532 2533 2534 2535 2536 2537 2538 2539 2540
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2541
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2542 2543
{
	unsigned long flags;
I
Ingo Molnar 已提交
2544
	struct rq *rq;
L
Linus Torvalds 已提交
2545 2546

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2547
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2548
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2549 2550 2551

	p->prio = effective_prio(p);

2552
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2553
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2554 2555
	} else {
		/*
I
Ingo Molnar 已提交
2556 2557
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2558
		 */
2559
		p->sched_class->task_new(rq, p);
2560
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2561
	}
2562
	trace_sched_wakeup_new(rq, p, 1);
2563
	check_preempt_curr(rq, p, 0);
2564 2565 2566 2567
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2568
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2569 2570
}

2571 2572 2573
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2574
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2575
 * @notifier: notifier struct to register
2576 2577 2578 2579 2580 2581 2582 2583 2584
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2585
 * @notifier: notifier struct to unregister
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2615
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2627
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2628

2629 2630 2631
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2632
 * @prev: the current task that is being switched out
2633 2634 2635 2636 2637 2638 2639 2640 2641
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2642 2643 2644
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2645
{
2646
	fire_sched_out_preempt_notifiers(prev, next);
2647 2648 2649 2650
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2651 2652
/**
 * finish_task_switch - clean up after a task-switch
2653
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2654 2655
 * @prev: the thread we just switched away from.
 *
2656 2657 2658 2659
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2660 2661
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2662
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2663 2664 2665
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2666
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2667 2668 2669
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2670
	long prev_state;
2671 2672 2673 2674 2675 2676
#ifdef CONFIG_SMP
	int post_schedule = 0;

	if (current->sched_class->needs_post_schedule)
		post_schedule = current->sched_class->needs_post_schedule(rq);
#endif
L
Linus Torvalds 已提交
2677 2678 2679 2680 2681

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2682
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2683 2684
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2685
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2686 2687 2688 2689 2690
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2691
	prev_state = prev->state;
2692 2693
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2694
#ifdef CONFIG_SMP
2695
	if (post_schedule)
2696 2697
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2698

2699
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2700 2701
	if (mm)
		mmdrop(mm);
2702
	if (unlikely(prev_state == TASK_DEAD)) {
2703 2704 2705
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2706
		 */
2707
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2708
		put_task_struct(prev);
2709
	}
L
Linus Torvalds 已提交
2710 2711 2712 2713 2714 2715
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2716
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2717 2718
	__releases(rq->lock)
{
2719 2720
	struct rq *rq = this_rq();

2721 2722 2723 2724 2725
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2726
	if (current->set_child_tid)
2727
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2728 2729 2730 2731 2732 2733
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2734
static inline void
2735
context_switch(struct rq *rq, struct task_struct *prev,
2736
	       struct task_struct *next)
L
Linus Torvalds 已提交
2737
{
I
Ingo Molnar 已提交
2738
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2739

2740
	prepare_task_switch(rq, prev, next);
2741
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2742 2743
	mm = next->mm;
	oldmm = prev->active_mm;
2744 2745 2746 2747 2748 2749 2750
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2751
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2752 2753 2754 2755 2756 2757
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2758
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2759 2760 2761
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2762 2763 2764 2765 2766 2767 2768
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2769
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2770
#endif
L
Linus Torvalds 已提交
2771 2772 2773 2774

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2775 2776 2777 2778 2779 2780 2781
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2805
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2820 2821
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2822

2823
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2824 2825 2826 2827 2828 2829 2830 2831 2832
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2833
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2834 2835 2836 2837 2838
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2854
/*
I
Ingo Molnar 已提交
2855 2856
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2857
 */
I
Ingo Molnar 已提交
2858
static void update_cpu_load(struct rq *this_rq)
2859
{
2860
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2873 2874 2875 2876 2877 2878 2879
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2880 2881
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2882 2883
}

I
Ingo Molnar 已提交
2884 2885
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2886 2887 2888 2889 2890 2891
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2892
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2893 2894 2895
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2896
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2897 2898 2899 2900
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2901
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2902
			spin_lock(&rq1->lock);
2903
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2904 2905
		} else {
			spin_lock(&rq2->lock);
2906
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2907 2908
		}
	}
2909 2910
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2911 2912 2913 2914 2915 2916 2917 2918
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2919
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2933
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2934 2935
 * the cpu_allowed mask is restored.
 */
2936
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2937
{
2938
	struct migration_req req;
L
Linus Torvalds 已提交
2939
	unsigned long flags;
2940
	struct rq *rq;
L
Linus Torvalds 已提交
2941 2942

	rq = task_rq_lock(p, &flags);
2943
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2944
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2945 2946 2947 2948 2949 2950
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2951

L
Linus Torvalds 已提交
2952 2953 2954 2955 2956
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2957

L
Linus Torvalds 已提交
2958 2959 2960 2961 2962 2963 2964
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2965 2966
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2967 2968 2969 2970
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2971
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2972
	put_cpu();
N
Nick Piggin 已提交
2973 2974
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2975 2976 2977 2978 2979 2980
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2981 2982
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2983
{
2984
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2985
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2986
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2987 2988 2989 2990
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2991
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2992 2993 2994 2995 2996
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2997
static
2998
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2999
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3000
		     int *all_pinned)
L
Linus Torvalds 已提交
3001
{
3002
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3003 3004 3005 3006 3007 3008
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3009
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3010
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3011
		return 0;
3012
	}
3013 3014
	*all_pinned = 0;

3015 3016
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3017
		return 0;
3018
	}
L
Linus Torvalds 已提交
3019

3020 3021 3022 3023 3024 3025
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3026 3027 3028
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3029
#ifdef CONFIG_SCHEDSTATS
3030
		if (tsk_cache_hot) {
3031
			schedstat_inc(sd, lb_hot_gained[idle]);
3032 3033
			schedstat_inc(p, se.nr_forced_migrations);
		}
3034 3035 3036 3037
#endif
		return 1;
	}

3038
	if (tsk_cache_hot) {
3039
		schedstat_inc(p, se.nr_failed_migrations_hot);
3040
		return 0;
3041
	}
L
Linus Torvalds 已提交
3042 3043 3044
	return 1;
}

3045 3046 3047 3048 3049
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3050
{
3051
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3052 3053
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3054

3055
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3056 3057
		goto out;

3058 3059
	pinned = 1;

L
Linus Torvalds 已提交
3060
	/*
I
Ingo Molnar 已提交
3061
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3062
	 */
I
Ingo Molnar 已提交
3063 3064
	p = iterator->start(iterator->arg);
next:
3065
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3066
		goto out;
3067 3068

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3069 3070 3071
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3072 3073
	}

I
Ingo Molnar 已提交
3074
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3075
	pulled++;
I
Ingo Molnar 已提交
3076
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3077

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3088
	/*
3089
	 * We only want to steal up to the prescribed amount of weighted load.
3090
	 */
3091
	if (rem_load_move > 0) {
3092 3093
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3094 3095
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3096 3097 3098
	}
out:
	/*
3099
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3100 3101 3102 3103
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3104 3105 3106

	if (all_pinned)
		*all_pinned = pinned;
3107 3108

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3109 3110
}

I
Ingo Molnar 已提交
3111
/*
P
Peter Williams 已提交
3112 3113 3114
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3115 3116 3117 3118
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3119
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3120 3121 3122
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3123
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3124
	unsigned long total_load_moved = 0;
3125
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3126 3127

	do {
P
Peter Williams 已提交
3128 3129
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3130
				max_load_move - total_load_moved,
3131
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3132
		class = class->next;
3133

3134 3135 3136 3137 3138 3139
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3140 3141
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3142
#endif
P
Peter Williams 已提交
3143
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3144

P
Peter Williams 已提交
3145 3146 3147
	return total_load_moved > 0;
}

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3184
	const struct sched_class *class;
P
Peter Williams 已提交
3185 3186

	for (class = sched_class_highest; class; class = class->next)
3187
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3188 3189 3190
			return 1;

	return 0;
I
Ingo Molnar 已提交
3191
}
3192
/********** Helpers for find_busiest_group ************************/
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
/**
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
#endif
};
3224

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
/**
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};

3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}
3271 3272


3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}

/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{

	if (!sds->power_savings_balance)
		return;

	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;

	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;

	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}

	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
	if (sgs->sum_nr_running > sgs->group_capacity - 1)
		return;

	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}

/**
 * check_power_save_busiest_group - Check if we have potential to perform
 *	some power-savings balance. If yes, set the busiest group to be
 *	the least loaded group in the sched_domain, so that it's CPUs can
 *	be put to idle.
 *
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;

	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;

	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;

	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
			group_first_cpu(sds->group_leader);
	}

	return 1;

}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}

static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */


3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

	if (local_group)
		balance_cpu = group_first_cpu(group);

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;

	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);

		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;

		/* Bias balancing toward cpus of our domain */
		if (local_group) {
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
		}

		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);

		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}

	/* Adjust by relative CPU power of the group */
	sgs->avg_load = sg_div_cpu_power(group,
			sgs->group_load * SCHED_LOAD_SCALE);


	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
	avg_load_per_task = sg_div_cpu_power(group,
			sum_avg_load_per_task * SCHED_LOAD_SCALE);

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

	sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;

}
I
Ingo Molnar 已提交
3513

3514 3515 3516 3517 3518 3519 3520 3521 3522
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3523
 */
3524 3525 3526 3527
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3528
{
3529
	struct sched_group *group = sd->groups;
3530
	struct sg_lb_stats sgs;
3531 3532
	int load_idx;

3533
	init_sd_power_savings_stats(sd, sds, idle);
3534
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3535 3536 3537 3538

	do {
		int local_group;

3539 3540
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3541
		memset(&sgs, 0, sizeof(sgs));
3542 3543
		update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3544

3545 3546
		if (local_group && balance && !(*balance))
			return;
3547

3548 3549
		sds->total_load += sgs.group_load;
		sds->total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3550 3551

		if (local_group) {
3552 3553 3554 3555 3556
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3557 3558
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3559 3560 3561 3562 3563
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
L
Linus Torvalds 已提交
3564
		}
3565

3566
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3567 3568 3569
		group = group->next;
	} while (group != sd->groups);

3570
}
3571 3572 3573

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3574 3575
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);

	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

	pwr_now += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
	tmp = sg_div_cpu_power(sds->busiest,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->__cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		tmp = sg_div_cpu_power(sds->this,
			sds->max_load * sds->busiest->__cpu_power);
	else
		tmp = sg_div_cpu_power(sds->this,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	pwr_move += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (sds->max_load < sds->avg_load) {
		*imbalance = 0;
		return fix_small_imbalance(sds, this_cpu, imbalance);
	}

	/* Don't want to pull so many tasks that a group would go idle */
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);

	/* How much load to actually move to equalise the imbalance */
	*imbalance = min(max_pull * sds->busiest->__cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->__cpu_power)
			/ SCHED_LOAD_SCALE;

	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);

}
3677 3678
/******* find_busiest_group() helpers end here *********************/

3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;

	memset(&sds, 0, sizeof(sds));

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
3730 3731 3732
	if (balance && !(*balance))
		goto ret;

3733 3734 3735 3736
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;

	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
3737 3738
		goto out_balanced;

3739
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
3740

3741 3742 3743 3744
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
3745 3746
		goto out_balanced;

3747 3748 3749 3750
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
3751

L
Linus Torvalds 已提交
3752 3753 3754 3755 3756 3757 3758 3759
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3760
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3761 3762
	 * appear as very large values with unsigned longs.
	 */
3763
	if (sds.max_load <= sds.busiest_load_per_task)
3764 3765
		goto out_balanced;

3766 3767
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
3768
	return sds.busiest;
L
Linus Torvalds 已提交
3769 3770

out_balanced:
3771 3772 3773 3774 3775 3776
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
3777
ret:
L
Linus Torvalds 已提交
3778 3779 3780 3781 3782 3783 3784
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3785
static struct rq *
I
Ingo Molnar 已提交
3786
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3787
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3788
{
3789
	struct rq *busiest = NULL, *rq;
3790
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3791 3792
	int i;

3793
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3794
		unsigned long wl;
3795

3796
		if (!cpumask_test_cpu(i, cpus))
3797 3798
			continue;

3799
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3800
		wl = weighted_cpuload(i);
3801

I
Ingo Molnar 已提交
3802
		if (rq->nr_running == 1 && wl > imbalance)
3803
			continue;
L
Linus Torvalds 已提交
3804

I
Ingo Molnar 已提交
3805 3806
		if (wl > max_load) {
			max_load = wl;
3807
			busiest = rq;
L
Linus Torvalds 已提交
3808 3809 3810 3811 3812 3813
		}
	}

	return busiest;
}

3814 3815 3816 3817 3818 3819
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3820 3821 3822 3823
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3824
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3825
			struct sched_domain *sd, enum cpu_idle_type idle,
3826
			int *balance, struct cpumask *cpus)
L
Linus Torvalds 已提交
3827
{
P
Peter Williams 已提交
3828
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3829 3830
	struct sched_group *group;
	unsigned long imbalance;
3831
	struct rq *busiest;
3832
	unsigned long flags;
N
Nick Piggin 已提交
3833

3834
	cpumask_setall(cpus);
3835

3836 3837 3838
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3839
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3840
	 * portraying it as CPU_NOT_IDLE.
3841
	 */
I
Ingo Molnar 已提交
3842
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3843
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3844
		sd_idle = 1;
L
Linus Torvalds 已提交
3845

3846
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3847

3848
redo:
3849
	update_shares(sd);
3850
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3851
				   cpus, balance);
3852

3853
	if (*balance == 0)
3854 3855
		goto out_balanced;

L
Linus Torvalds 已提交
3856 3857 3858 3859 3860
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3861
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3862 3863 3864 3865 3866
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3867
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3868 3869 3870

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3871
	ld_moved = 0;
L
Linus Torvalds 已提交
3872 3873 3874 3875
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3876
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3877 3878
		 * correctly treated as an imbalance.
		 */
3879
		local_irq_save(flags);
N
Nick Piggin 已提交
3880
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3881
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3882
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3883
		double_rq_unlock(this_rq, busiest);
3884
		local_irq_restore(flags);
3885

3886 3887 3888
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3889
		if (ld_moved && this_cpu != smp_processor_id())
3890 3891
			resched_cpu(this_cpu);

3892
		/* All tasks on this runqueue were pinned by CPU affinity */
3893
		if (unlikely(all_pinned)) {
3894 3895
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3896
				goto redo;
3897
			goto out_balanced;
3898
		}
L
Linus Torvalds 已提交
3899
	}
3900

P
Peter Williams 已提交
3901
	if (!ld_moved) {
L
Linus Torvalds 已提交
3902 3903 3904 3905 3906
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3907
			spin_lock_irqsave(&busiest->lock, flags);
3908 3909 3910 3911

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
3912 3913
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
3914
				spin_unlock_irqrestore(&busiest->lock, flags);
3915 3916 3917 3918
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3919 3920 3921
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3922
				active_balance = 1;
L
Linus Torvalds 已提交
3923
			}
3924
			spin_unlock_irqrestore(&busiest->lock, flags);
3925
			if (active_balance)
L
Linus Torvalds 已提交
3926 3927 3928 3929 3930 3931
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3932
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3933
		}
3934
	} else
L
Linus Torvalds 已提交
3935 3936
		sd->nr_balance_failed = 0;

3937
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3938 3939
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3940 3941 3942 3943 3944 3945 3946 3947 3948
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3949 3950
	}

P
Peter Williams 已提交
3951
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3952
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3953 3954 3955
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3956 3957 3958 3959

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3960
	sd->nr_balance_failed = 0;
3961 3962

out_one_pinned:
L
Linus Torvalds 已提交
3963
	/* tune up the balancing interval */
3964 3965
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3966 3967
		sd->balance_interval *= 2;

3968
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3969
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3970 3971 3972 3973
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3974 3975
	if (ld_moved)
		update_shares(sd);
3976
	return ld_moved;
L
Linus Torvalds 已提交
3977 3978 3979 3980 3981 3982
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3983
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3984 3985
 * this_rq is locked.
 */
3986
static int
3987
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3988
			struct cpumask *cpus)
L
Linus Torvalds 已提交
3989 3990
{
	struct sched_group *group;
3991
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3992
	unsigned long imbalance;
P
Peter Williams 已提交
3993
	int ld_moved = 0;
N
Nick Piggin 已提交
3994
	int sd_idle = 0;
3995
	int all_pinned = 0;
3996

3997
	cpumask_setall(cpus);
N
Nick Piggin 已提交
3998

3999 4000 4001 4002
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4003
	 * portraying it as CPU_NOT_IDLE.
4004 4005 4006
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4007
		sd_idle = 1;
L
Linus Torvalds 已提交
4008

4009
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4010
redo:
4011
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4012
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4013
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4014
	if (!group) {
I
Ingo Molnar 已提交
4015
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4016
		goto out_balanced;
L
Linus Torvalds 已提交
4017 4018
	}

4019
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4020
	if (!busiest) {
I
Ingo Molnar 已提交
4021
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4022
		goto out_balanced;
L
Linus Torvalds 已提交
4023 4024
	}

N
Nick Piggin 已提交
4025 4026
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4027
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4028

P
Peter Williams 已提交
4029
	ld_moved = 0;
4030 4031 4032
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4033 4034
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4035
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4036 4037
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4038
		double_unlock_balance(this_rq, busiest);
4039

4040
		if (unlikely(all_pinned)) {
4041 4042
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4043 4044
				goto redo;
		}
4045 4046
	}

P
Peter Williams 已提交
4047
	if (!ld_moved) {
4048
		int active_balance = 0;
4049

I
Ingo Molnar 已提交
4050
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4051 4052
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4053
			return -1;
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4090
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4103 4104 4105 4106
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4107 4108
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4109
		spin_lock(&this_rq->lock);
4110

N
Nick Piggin 已提交
4111
	} else
4112
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4113

4114
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4115
	return ld_moved;
4116 4117

out_balanced:
I
Ingo Molnar 已提交
4118
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4119
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4120
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4121
		return -1;
4122
	sd->nr_balance_failed = 0;
4123

4124
	return 0;
L
Linus Torvalds 已提交
4125 4126 4127 4128 4129 4130
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4131
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4132 4133
{
	struct sched_domain *sd;
4134
	int pulled_task = 0;
I
Ingo Molnar 已提交
4135
	unsigned long next_balance = jiffies + HZ;
4136 4137 4138 4139
	cpumask_var_t tmpmask;

	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
4140 4141

	for_each_domain(this_cpu, sd) {
4142 4143 4144 4145 4146 4147
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4148
			/* If we've pulled tasks over stop searching: */
4149
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4150
							   sd, tmpmask);
4151 4152 4153 4154 4155 4156

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4157
	}
I
Ingo Molnar 已提交
4158
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4159 4160 4161 4162 4163
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4164
	}
4165
	free_cpumask_var(tmpmask);
L
Linus Torvalds 已提交
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4176
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4177
{
4178
	int target_cpu = busiest_rq->push_cpu;
4179 4180
	struct sched_domain *sd;
	struct rq *target_rq;
4181

4182
	/* Is there any task to move? */
4183 4184 4185 4186
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4187 4188

	/*
4189
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4190
	 * we need to fix it. Originally reported by
4191
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4192
	 */
4193
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4194

4195 4196
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4197 4198
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4199 4200

	/* Search for an sd spanning us and the target CPU. */
4201
	for_each_domain(target_cpu, sd) {
4202
		if ((sd->flags & SD_LOAD_BALANCE) &&
4203
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4204
				break;
4205
	}
4206

4207
	if (likely(sd)) {
4208
		schedstat_inc(sd, alb_count);
4209

P
Peter Williams 已提交
4210 4211
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4212 4213 4214 4215
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4216
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4217 4218
}

4219 4220 4221
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4222
	cpumask_var_t cpu_mask;
4223 4224 4225 4226
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4227
/*
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4238
 *
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4254 4255 4256 4257 4258 4259 4260 4261
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4262 4263
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4264

4265 4266 4267
			return 0;
		}

4268 4269
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4270
		/* time for ilb owner also to sleep */
4271
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
4284
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4285 4286
			return 0;

4287
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4300 4301 4302 4303 4304
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4305
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4306
{
4307 4308
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4309 4310
	unsigned long interval;
	struct sched_domain *sd;
4311
	/* Earliest time when we have to do rebalance again */
4312
	unsigned long next_balance = jiffies + 60*HZ;
4313
	int update_next_balance = 0;
4314
	int need_serialize;
4315 4316 4317 4318 4319
	cpumask_var_t tmp;

	/* Fails alloc?  Rebalancing probably not a priority right now. */
	if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
4320

4321
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4322 4323 4324 4325
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4326
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4327 4328 4329 4330 4331 4332
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4333 4334 4335
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4336
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4337

4338
		if (need_serialize) {
4339 4340 4341 4342
			if (!spin_trylock(&balancing))
				goto out;
		}

4343
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4344
			if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
4345 4346
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4347 4348 4349
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4350
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4351
			}
4352
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4353
		}
4354
		if (need_serialize)
4355 4356
			spin_unlock(&balancing);
out:
4357
		if (time_after(next_balance, sd->last_balance + interval)) {
4358
			next_balance = sd->last_balance + interval;
4359 4360
			update_next_balance = 1;
		}
4361 4362 4363 4364 4365 4366 4367 4368

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4369
	}
4370 4371 4372 4373 4374 4375 4376 4377

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4378 4379

	free_cpumask_var(tmp);
4380 4381 4382 4383 4384 4385 4386 4387 4388
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4389 4390 4391 4392
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4393

I
Ingo Molnar 已提交
4394
	rebalance_domains(this_cpu, idle);
4395 4396 4397 4398 4399 4400 4401

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4402 4403
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4404 4405 4406
		struct rq *rq;
		int balance_cpu;

4407 4408 4409 4410
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4411 4412 4413 4414 4415 4416 4417 4418
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4419
			rebalance_domains(balance_cpu, CPU_IDLE);
4420 4421

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4422 4423
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4424 4425 4426 4427 4428
		}
	}
#endif
}

4429 4430 4431 4432 4433
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4434 4435 4436 4437 4438 4439 4440
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4441
static inline void trigger_load_balance(struct rq *rq, int cpu)
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4453
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
4466
			int ilb = cpumask_first(nohz.cpu_mask);
4467

4468
			if (ilb < nr_cpu_ids)
4469 4470 4471 4472 4473 4474 4475 4476 4477
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4478
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4479 4480 4481 4482 4483 4484 4485 4486 4487
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4488
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4489 4490
		return;
#endif
4491 4492 4493
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4494
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4495
}
I
Ingo Molnar 已提交
4496 4497 4498

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4499 4500 4501
/*
 * on UP we do not need to balance between CPUs:
 */
4502
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4503 4504
{
}
I
Ingo Molnar 已提交
4505

L
Linus Torvalds 已提交
4506 4507 4508 4509 4510 4511 4512
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4513 4514
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4515
 */
4516
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4517 4518
{
	unsigned long flags;
4519
	struct rq *rq;
4520
	u64 ns = 0;
4521

4522
	rq = task_rq_lock(p, &flags);
4523

4524
	if (task_current(rq, p)) {
4525 4526
		u64 delta_exec;

I
Ingo Molnar 已提交
4527 4528
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4529
		if ((s64)delta_exec > 0)
4530
			ns = delta_exec;
4531
	}
4532

4533
	task_rq_unlock(rq, &flags);
4534

L
Linus Torvalds 已提交
4535 4536 4537 4538 4539 4540 4541
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4542
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4543
 */
4544 4545
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4546 4547 4548 4549
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4550
	/* Add user time to process. */
L
Linus Torvalds 已提交
4551
	p->utime = cputime_add(p->utime, cputime);
4552
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4553
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4554 4555 4556 4557 4558 4559 4560

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4561 4562
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4563 4564
}

4565 4566 4567 4568
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4569
 * @cputime_scaled: cputime scaled by cpu frequency
4570
 */
4571 4572
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4573 4574 4575 4576 4577 4578
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4579
	/* Add guest time to process. */
4580
	p->utime = cputime_add(p->utime, cputime);
4581
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4582
	account_group_user_time(p, cputime);
4583 4584
	p->gtime = cputime_add(p->gtime, cputime);

4585
	/* Add guest time to cpustat. */
4586 4587 4588 4589
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
4590 4591 4592 4593 4594
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
4595
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4596 4597
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
4598
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4599 4600 4601 4602
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4603
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4604
		account_guest_time(p, cputime, cputime_scaled);
4605 4606
		return;
	}
4607

4608
	/* Add system time to process. */
L
Linus Torvalds 已提交
4609
	p->stime = cputime_add(p->stime, cputime);
4610
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4611
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4612 4613 4614 4615 4616 4617 4618 4619

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
4620 4621
		cpustat->system = cputime64_add(cpustat->system, tmp);

L
Linus Torvalds 已提交
4622 4623 4624 4625
	/* Account for system time used */
	acct_update_integrals(p);
}

4626
/*
L
Linus Torvalds 已提交
4627 4628
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
4629
 */
4630
void account_steal_time(cputime_t cputime)
4631
{
4632 4633 4634 4635
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4636 4637
}

L
Linus Torvalds 已提交
4638
/*
4639 4640
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
4641
 */
4642
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
4643 4644
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4645
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
4646
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4647

4648 4649 4650 4651
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
4652 4653
}

4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
	else if (p != rq->idle)
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
4693 4694
}

4695 4696
#endif

4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4767
	struct task_struct *curr = rq->curr;
4768 4769

	sched_clock_tick();
I
Ingo Molnar 已提交
4770 4771

	spin_lock(&rq->lock);
4772
	update_rq_clock(rq);
4773
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4774
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4775
	spin_unlock(&rq->lock);
4776

4777
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4778 4779
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4780
#endif
L
Linus Torvalds 已提交
4781 4782
}

4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4795

4796
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4797
{
4798
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4799 4800 4801
	/*
	 * Underflow?
	 */
4802 4803
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4804
#endif
L
Linus Torvalds 已提交
4805
	preempt_count() += val;
4806
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4807 4808 4809
	/*
	 * Spinlock count overflowing soon?
	 */
4810 4811
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4812 4813 4814
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4815 4816 4817
}
EXPORT_SYMBOL(add_preempt_count);

4818
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4819
{
4820
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4821 4822 4823
	/*
	 * Underflow?
	 */
4824
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4825
		return;
L
Linus Torvalds 已提交
4826 4827 4828
	/*
	 * Is the spinlock portion underflowing?
	 */
4829 4830 4831
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4832
#endif
4833

4834 4835
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4836 4837 4838 4839 4840 4841 4842
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4843
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4844
 */
I
Ingo Molnar 已提交
4845
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4846
{
4847 4848 4849 4850 4851
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4852
	debug_show_held_locks(prev);
4853
	print_modules();
I
Ingo Molnar 已提交
4854 4855
	if (irqs_disabled())
		print_irqtrace_events(prev);
4856 4857 4858 4859 4860

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4861
}
L
Linus Torvalds 已提交
4862

I
Ingo Molnar 已提交
4863 4864 4865 4866 4867
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4868
	/*
I
Ingo Molnar 已提交
4869
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4870 4871 4872
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4873
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4874 4875
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4876 4877
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4878
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4879 4880
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4881 4882
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4883 4884
	}
#endif
I
Ingo Molnar 已提交
4885 4886
}

M
Mike Galbraith 已提交
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
4909 4910 4911 4912
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4913
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
4914
{
4915
	const struct sched_class *class;
I
Ingo Molnar 已提交
4916
	struct task_struct *p;
L
Linus Torvalds 已提交
4917 4918

	/*
I
Ingo Molnar 已提交
4919 4920
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4921
	 */
I
Ingo Molnar 已提交
4922
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4923
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4924 4925
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4926 4927
	}

I
Ingo Molnar 已提交
4928 4929
	class = sched_class_highest;
	for ( ; ; ) {
4930
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4931 4932 4933 4934 4935 4936 4937 4938 4939
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4940

I
Ingo Molnar 已提交
4941 4942 4943 4944 4945 4946
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4947
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4948
	struct rq *rq;
4949
	int cpu;
I
Ingo Molnar 已提交
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4963

4964
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4965
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4966

4967
	spin_lock_irq(&rq->lock);
4968
	update_rq_clock(rq);
4969
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4970 4971

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4972
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4973
			prev->state = TASK_RUNNING;
4974
		else
4975
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4976
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4977 4978
	}

4979 4980 4981 4982
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4983

I
Ingo Molnar 已提交
4984
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4985 4986
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
4987
	put_prev_task(rq, prev);
4988
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
4989 4990

	if (likely(prev != next)) {
4991 4992
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4993 4994 4995 4996
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4997
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4998 4999 5000 5001 5002 5003
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5004 5005 5006
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
5007
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5008
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5009

L
Linus Torvalds 已提交
5010 5011 5012 5013 5014 5015 5016 5017
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
5018
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5019
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5020 5021 5022 5023 5024
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5025

L
Linus Torvalds 已提交
5026 5027
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5028
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5029
	 */
N
Nick Piggin 已提交
5030
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5031 5032
		return;

5033 5034 5035 5036
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5037

5038 5039 5040 5041 5042
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5043
	} while (need_resched());
L
Linus Torvalds 已提交
5044 5045 5046 5047
}
EXPORT_SYMBOL(preempt_schedule);

/*
5048
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5049 5050 5051 5052 5053 5054 5055
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5056

5057
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5058 5059
	BUG_ON(ti->preempt_count || !irqs_disabled());

5060 5061 5062 5063 5064 5065
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5066

5067 5068 5069 5070 5071
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5072
	} while (need_resched());
L
Linus Torvalds 已提交
5073 5074 5075 5076
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
5077 5078
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
5079
{
5080
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
5081 5082 5083 5084
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5085 5086
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5087 5088 5089
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5090
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5091 5092
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5093 5094
void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
5095
{
5096
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5097

5098
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5099 5100
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
5101
		if (curr->func(curr, mode, sync, key) &&
5102
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5103 5104 5105 5106 5107 5108 5109 5110 5111
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5112
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
5113
 */
5114
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5115
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5128
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5129 5130 5131 5132 5133
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
5134
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
5146
void
I
Ingo Molnar 已提交
5147
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5164 5165 5166 5167 5168 5169 5170 5171 5172
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
5173
void complete(struct completion *x)
L
Linus Torvalds 已提交
5174 5175 5176 5177 5178
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5179
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5180 5181 5182 5183
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5184 5185 5186 5187 5188 5189
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
5190
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5191 5192 5193 5194 5195
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5196
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5197 5198 5199 5200
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5201 5202
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5203 5204 5205 5206 5207 5208 5209
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5210
			if (signal_pending_state(state, current)) {
5211 5212
				timeout = -ERESTARTSYS;
				break;
5213 5214
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5215 5216 5217
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5218
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5219
		__remove_wait_queue(&x->wait, &wait);
5220 5221
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5222 5223
	}
	x->done--;
5224
	return timeout ?: 1;
L
Linus Torvalds 已提交
5225 5226
}

5227 5228
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5229 5230 5231 5232
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5233
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5234
	spin_unlock_irq(&x->wait.lock);
5235 5236
	return timeout;
}
L
Linus Torvalds 已提交
5237

5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5248
void __sched wait_for_completion(struct completion *x)
5249 5250
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5251
}
5252
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5253

5254 5255 5256 5257 5258 5259 5260 5261 5262
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5263
unsigned long __sched
5264
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5265
{
5266
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5267
}
5268
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5269

5270 5271 5272 5273 5274 5275 5276
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5277
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5278
{
5279 5280 5281 5282
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5283
}
5284
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5285

5286 5287 5288 5289 5290 5291 5292 5293
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5294
unsigned long __sched
5295 5296
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5297
{
5298
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5299
}
5300
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5301

5302 5303 5304 5305 5306 5307 5308
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5309 5310 5311 5312 5313 5314 5315 5316 5317
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5364 5365
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5366
{
I
Ingo Molnar 已提交
5367 5368 5369 5370
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5371

5372
	__set_current_state(state);
L
Linus Torvalds 已提交
5373

5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5388 5389 5390
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5391
long __sched
I
Ingo Molnar 已提交
5392
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5393
{
5394
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5395 5396 5397
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5398
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5399
{
5400
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5401 5402 5403
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5404
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5405
{
5406
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5407 5408 5409
}
EXPORT_SYMBOL(sleep_on_timeout);

5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5422
void rt_mutex_setprio(struct task_struct *p, int prio)
5423 5424
{
	unsigned long flags;
5425
	int oldprio, on_rq, running;
5426
	struct rq *rq;
5427
	const struct sched_class *prev_class = p->sched_class;
5428 5429 5430 5431

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5432
	update_rq_clock(rq);
5433

5434
	oldprio = p->prio;
I
Ingo Molnar 已提交
5435
	on_rq = p->se.on_rq;
5436
	running = task_current(rq, p);
5437
	if (on_rq)
5438
		dequeue_task(rq, p, 0);
5439 5440
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5441 5442 5443 5444 5445 5446

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5447 5448
	p->prio = prio;

5449 5450
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5451
	if (on_rq) {
5452
		enqueue_task(rq, p, 0);
5453 5454

		check_class_changed(rq, p, prev_class, oldprio, running);
5455 5456 5457 5458 5459 5460
	}
	task_rq_unlock(rq, &flags);
}

#endif

5461
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5462
{
I
Ingo Molnar 已提交
5463
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5464
	unsigned long flags;
5465
	struct rq *rq;
L
Linus Torvalds 已提交
5466 5467 5468 5469 5470 5471 5472 5473

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5474
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5475 5476 5477 5478
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5479
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5480
	 */
5481
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5482 5483 5484
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5485
	on_rq = p->se.on_rq;
5486
	if (on_rq)
5487
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5488 5489

	p->static_prio = NICE_TO_PRIO(nice);
5490
	set_load_weight(p);
5491 5492 5493
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5494

I
Ingo Molnar 已提交
5495
	if (on_rq) {
5496
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5497
		/*
5498 5499
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5500
		 */
5501
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5502 5503 5504 5505 5506 5507 5508
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5509 5510 5511 5512 5513
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5514
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5515
{
5516 5517
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5518

M
Matt Mackall 已提交
5519 5520 5521 5522
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5523 5524 5525 5526 5527 5528 5529 5530 5531
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
5532
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
5533
{
5534
	long nice, retval;
L
Linus Torvalds 已提交
5535 5536 5537 5538 5539 5540

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5541 5542
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5543 5544 5545
	if (increment > 40)
		increment = 40;

5546
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
5547 5548 5549 5550 5551
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5552 5553 5554
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5573
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5574 5575 5576 5577 5578 5579 5580 5581
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5582
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5583 5584 5585
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5586
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5601
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5602 5603 5604 5605 5606 5607 5608 5609
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5610
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5611
{
5612
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5613 5614 5615
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5616 5617
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5618
{
I
Ingo Molnar 已提交
5619
	BUG_ON(p->se.on_rq);
5620

L
Linus Torvalds 已提交
5621
	p->policy = policy;
I
Ingo Molnar 已提交
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5634
	p->rt_priority = prio;
5635 5636 5637
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5638
	set_load_weight(p);
L
Linus Torvalds 已提交
5639 5640
}

5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

5657 5658
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5659
{
5660
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5661
	unsigned long flags;
5662
	const struct sched_class *prev_class = p->sched_class;
5663
	struct rq *rq;
L
Linus Torvalds 已提交
5664

5665 5666
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5667 5668 5669 5670 5671
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5672 5673
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5674
		return -EINVAL;
L
Linus Torvalds 已提交
5675 5676
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5677 5678
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5679 5680
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5681
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5682
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5683
		return -EINVAL;
5684
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5685 5686
		return -EINVAL;

5687 5688 5689
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5690
	if (user && !capable(CAP_SYS_NICE)) {
5691
		if (rt_policy(policy)) {
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5708 5709 5710 5711 5712 5713
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5714

5715
		/* can't change other user's priorities */
5716
		if (!check_same_owner(p))
5717 5718
			return -EPERM;
	}
L
Linus Torvalds 已提交
5719

5720
	if (user) {
5721
#ifdef CONFIG_RT_GROUP_SCHED
5722 5723 5724 5725
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5726 5727
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5728
			return -EPERM;
5729 5730
#endif

5731 5732 5733 5734 5735
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5736 5737 5738 5739 5740
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5741 5742 5743 5744
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5745
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5746 5747 5748
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5749 5750
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5751 5752
		goto recheck;
	}
I
Ingo Molnar 已提交
5753
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5754
	on_rq = p->se.on_rq;
5755
	running = task_current(rq, p);
5756
	if (on_rq)
5757
		deactivate_task(rq, p, 0);
5758 5759
	if (running)
		p->sched_class->put_prev_task(rq, p);
5760

L
Linus Torvalds 已提交
5761
	oldprio = p->prio;
I
Ingo Molnar 已提交
5762
	__setscheduler(rq, p, policy, param->sched_priority);
5763

5764 5765
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5766 5767
	if (on_rq) {
		activate_task(rq, p, 0);
5768 5769

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5770
	}
5771 5772 5773
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5774 5775
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5776 5777
	return 0;
}
5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5792 5793
EXPORT_SYMBOL_GPL(sched_setscheduler);

5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5811 5812
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5813 5814 5815
{
	struct sched_param lparam;
	struct task_struct *p;
5816
	int retval;
L
Linus Torvalds 已提交
5817 5818 5819 5820 5821

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5822 5823 5824

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5825
	p = find_process_by_pid(pid);
5826 5827 5828
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5829

L
Linus Torvalds 已提交
5830 5831 5832 5833 5834 5835 5836 5837 5838
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
5839 5840
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
5841
{
5842 5843 5844 5845
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5846 5847 5848 5849 5850 5851 5852 5853
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
5854
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5855 5856 5857 5858 5859 5860 5861 5862
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5863
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5864
{
5865
	struct task_struct *p;
5866
	int retval;
L
Linus Torvalds 已提交
5867 5868

	if (pid < 0)
5869
		return -EINVAL;
L
Linus Torvalds 已提交
5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5888
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5889 5890
{
	struct sched_param lp;
5891
	struct task_struct *p;
5892
	int retval;
L
Linus Torvalds 已提交
5893 5894

	if (!param || pid < 0)
5895
		return -EINVAL;
L
Linus Torvalds 已提交
5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5922
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5923
{
5924
	cpumask_var_t cpus_allowed, new_mask;
5925 5926
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5927

5928
	get_online_cpus();
L
Linus Torvalds 已提交
5929 5930 5931 5932 5933
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5934
		put_online_cpus();
L
Linus Torvalds 已提交
5935 5936 5937 5938 5939
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5940
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5941 5942 5943 5944 5945
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

5946 5947 5948 5949 5950 5951 5952 5953
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5954
	retval = -EPERM;
5955
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
5956 5957
		goto out_unlock;

5958 5959 5960 5961
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5962 5963
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
5964
 again:
5965
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5966

P
Paul Menage 已提交
5967
	if (!retval) {
5968 5969
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5970 5971 5972 5973 5974
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5975
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5976 5977 5978
			goto again;
		}
	}
L
Linus Torvalds 已提交
5979
out_unlock:
5980 5981 5982 5983
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5984
	put_task_struct(p);
5985
	put_online_cpus();
L
Linus Torvalds 已提交
5986 5987 5988 5989
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5990
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5991
{
5992 5993 5994 5995 5996
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5997 5998 5999 6000 6001 6002 6003 6004 6005
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6006 6007
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6008
{
6009
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6010 6011
	int retval;

6012 6013
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6014

6015 6016 6017 6018 6019
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6020 6021
}

6022
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6023
{
6024
	struct task_struct *p;
L
Linus Torvalds 已提交
6025 6026
	int retval;

6027
	get_online_cpus();
L
Linus Torvalds 已提交
6028 6029 6030 6031 6032 6033 6034
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6035 6036 6037 6038
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6039
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6040 6041 6042

out_unlock:
	read_unlock(&tasklist_lock);
6043
	put_online_cpus();
L
Linus Torvalds 已提交
6044

6045
	return retval;
L
Linus Torvalds 已提交
6046 6047 6048 6049 6050 6051 6052 6053
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6054 6055
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6056 6057
{
	int ret;
6058
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6059

6060
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6061 6062
		return -EINVAL;

6063 6064
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6065

6066 6067 6068 6069 6070 6071 6072 6073
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6074

6075
	return ret;
L
Linus Torvalds 已提交
6076 6077 6078 6079 6080
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6081 6082
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6083
 */
6084
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6085
{
6086
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6087

6088
	schedstat_inc(rq, yld_count);
6089
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6090 6091 6092 6093 6094 6095

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6096
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6097 6098 6099 6100 6101 6102 6103 6104
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
6105
static void __cond_resched(void)
L
Linus Torvalds 已提交
6106
{
6107 6108 6109
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
6110 6111 6112 6113 6114
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
6115 6116 6117 6118 6119 6120 6121
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

6122
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6123
{
6124 6125
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
6126 6127 6128 6129 6130
		__cond_resched();
		return 1;
	}
	return 0;
}
6131
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6132 6133 6134 6135 6136

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6137
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6138 6139 6140
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
6141
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6142
{
N
Nick Piggin 已提交
6143
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
6144 6145
	int ret = 0;

N
Nick Piggin 已提交
6146
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6147
		spin_unlock(lock);
N
Nick Piggin 已提交
6148 6149 6150 6151
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6152
		ret = 1;
L
Linus Torvalds 已提交
6153 6154
		spin_lock(lock);
	}
J
Jan Kara 已提交
6155
	return ret;
L
Linus Torvalds 已提交
6156 6157 6158 6159 6160 6161 6162
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

6163
	if (need_resched() && system_state == SYSTEM_RUNNING) {
6164
		local_bh_enable();
L
Linus Torvalds 已提交
6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
6176
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6177 6178 6179 6180 6181 6182 6183 6184 6185 6186
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6187
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6188 6189 6190 6191 6192 6193 6194
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6195
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6196

6197
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6198 6199 6200
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
6201
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6202 6203 6204 6205 6206
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6207
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6208 6209
	long ret;

6210
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6211 6212 6213
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
6214
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6225
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6226 6227 6228 6229 6230 6231 6232 6233 6234
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6235
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6236
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6250
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6251 6252 6253 6254 6255 6256 6257 6258 6259
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6260
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6261
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6275
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6276
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6277
{
6278
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6279
	unsigned int time_slice;
6280
	int retval;
L
Linus Torvalds 已提交
6281 6282 6283
	struct timespec t;

	if (pid < 0)
6284
		return -EINVAL;
L
Linus Torvalds 已提交
6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6296 6297 6298 6299 6300 6301
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6302
		time_slice = DEF_TIMESLICE;
6303
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6304 6305 6306 6307 6308
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6309 6310
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6311 6312
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6313
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6314
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6315 6316
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6317

L
Linus Torvalds 已提交
6318 6319 6320 6321 6322
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6323
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6324

6325
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6326 6327
{
	unsigned long free = 0;
6328
	unsigned state;
L
Linus Torvalds 已提交
6329 6330

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6331
	printk(KERN_INFO "%-13.13s %c", p->comm,
6332
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6333
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6334
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6335
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6336
	else
I
Ingo Molnar 已提交
6337
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6338 6339
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6340
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6341
	else
I
Ingo Molnar 已提交
6342
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6343 6344
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6345
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6346
#endif
6347
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
6348
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
6349

6350
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6351 6352
}

I
Ingo Molnar 已提交
6353
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6354
{
6355
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6356

6357 6358 6359
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6360
#else
6361 6362
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6363 6364 6365 6366 6367 6368 6369 6370
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6371
		if (!state_filter || (p->state & state_filter))
6372
			sched_show_task(p);
L
Linus Torvalds 已提交
6373 6374
	} while_each_thread(g, p);

6375 6376
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6377 6378 6379
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6380
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6381 6382 6383 6384 6385
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6386 6387
}

I
Ingo Molnar 已提交
6388 6389
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6390
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6391 6392
}

6393 6394 6395 6396 6397 6398 6399 6400
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6401
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6402
{
6403
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6404 6405
	unsigned long flags;

6406 6407
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6408 6409 6410
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6411
	idle->prio = idle->normal_prio = MAX_PRIO;
6412
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6413
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6414 6415

	rq->curr = rq->idle = idle;
6416 6417 6418
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6419 6420 6421
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6422 6423 6424
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6425
	task_thread_info(idle)->preempt_count = 0;
6426
#endif
I
Ingo Molnar 已提交
6427 6428 6429 6430
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6431
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6432 6433 6434 6435 6436 6437 6438
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6439
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6440
 */
6441
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6442

I
Ingo Molnar 已提交
6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6466 6467

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6468 6469
}

L
Linus Torvalds 已提交
6470 6471 6472 6473
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6474
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6493
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6494 6495
 * call is not atomic; no spinlocks may be held.
 */
6496
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6497
{
6498
	struct migration_req req;
L
Linus Torvalds 已提交
6499
	unsigned long flags;
6500
	struct rq *rq;
6501
	int ret = 0;
L
Linus Torvalds 已提交
6502 6503

	rq = task_rq_lock(p, &flags);
6504
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6505 6506 6507 6508
		ret = -EINVAL;
		goto out;
	}

6509
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6510
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6511 6512 6513 6514
		ret = -EINVAL;
		goto out;
	}

6515
	if (p->sched_class->set_cpus_allowed)
6516
		p->sched_class->set_cpus_allowed(p, new_mask);
6517
	else {
6518 6519
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6520 6521
	}

L
Linus Torvalds 已提交
6522
	/* Can the task run on the task's current CPU? If so, we're done */
6523
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6524 6525
		goto out;

R
Rusty Russell 已提交
6526
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6527 6528 6529 6530 6531 6532 6533 6534 6535
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6536

L
Linus Torvalds 已提交
6537 6538
	return ret;
}
6539
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6540 6541

/*
I
Ingo Molnar 已提交
6542
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6543 6544 6545 6546 6547 6548
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6549 6550
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6551
 */
6552
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6553
{
6554
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6555
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6556

6557
	if (unlikely(!cpu_active(dest_cpu)))
6558
		return ret;
L
Linus Torvalds 已提交
6559 6560 6561 6562 6563 6564 6565

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6566
		goto done;
L
Linus Torvalds 已提交
6567
	/* Affinity changed (again). */
6568
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6569
		goto fail;
L
Linus Torvalds 已提交
6570

I
Ingo Molnar 已提交
6571
	on_rq = p->se.on_rq;
6572
	if (on_rq)
6573
		deactivate_task(rq_src, p, 0);
6574

L
Linus Torvalds 已提交
6575
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6576 6577
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6578
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6579
	}
L
Linus Torvalds 已提交
6580
done:
6581
	ret = 1;
L
Linus Torvalds 已提交
6582
fail:
L
Linus Torvalds 已提交
6583
	double_rq_unlock(rq_src, rq_dest);
6584
	return ret;
L
Linus Torvalds 已提交
6585 6586 6587 6588 6589 6590 6591
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6592
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6593 6594
{
	int cpu = (long)data;
6595
	struct rq *rq;
L
Linus Torvalds 已提交
6596 6597 6598 6599 6600 6601

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6602
		struct migration_req *req;
L
Linus Torvalds 已提交
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6625
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6626 6627
		list_del_init(head->next);

N
Nick Piggin 已提交
6628 6629 6630
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6660
/*
6661
 * Figure out where task on dead CPU should go, use force if necessary.
6662
 */
6663
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6664
{
6665
	int dest_cpu;
6666
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
6683

6684 6685 6686 6687 6688 6689 6690 6691 6692
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
6693
		}
6694 6695 6696 6697 6698 6699
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
6700 6701 6702 6703 6704 6705 6706 6707 6708
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6709
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6710
{
R
Rusty Russell 已提交
6711
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6725
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6726

6727
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6728

6729 6730
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6731 6732
			continue;

6733 6734 6735
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6736

6737
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6738 6739
}

I
Ingo Molnar 已提交
6740 6741
/*
 * Schedules idle task to be the next runnable task on current CPU.
6742 6743
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6744 6745 6746
 */
void sched_idle_next(void)
{
6747
	int this_cpu = smp_processor_id();
6748
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6749 6750 6751 6752
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6753
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6754

6755 6756 6757
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6758 6759 6760
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6761
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6762

6763 6764
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6765 6766 6767 6768

	spin_unlock_irqrestore(&rq->lock, flags);
}

6769 6770
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6784
/* called under rq->lock with disabled interrupts */
6785
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6786
{
6787
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6788 6789

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6790
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6791 6792

	/* Cannot have done final schedule yet: would have vanished. */
6793
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6794

6795
	get_task_struct(p);
L
Linus Torvalds 已提交
6796 6797 6798

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6799
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6800 6801
	 * fine.
	 */
6802
	spin_unlock_irq(&rq->lock);
6803
	move_task_off_dead_cpu(dead_cpu, p);
6804
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6805

6806
	put_task_struct(p);
L
Linus Torvalds 已提交
6807 6808 6809 6810 6811
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6812
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6813
	struct task_struct *next;
6814

I
Ingo Molnar 已提交
6815 6816 6817
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6818
		update_rq_clock(rq);
6819
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
6820 6821
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6822
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6823
		migrate_dead(dead_cpu, next);
6824

L
Linus Torvalds 已提交
6825 6826 6827 6828
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6829 6830 6831
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6832 6833
	{
		.procname	= "sched_domain",
6834
		.mode		= 0555,
6835
	},
I
Ingo Molnar 已提交
6836
	{0, },
6837 6838 6839
};

static struct ctl_table sd_ctl_root[] = {
6840
	{
6841
		.ctl_name	= CTL_KERN,
6842
		.procname	= "kernel",
6843
		.mode		= 0555,
6844 6845
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6846
	{0, },
6847 6848 6849 6850 6851
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6852
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6853 6854 6855 6856

	return entry;
}

6857 6858
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6859
	struct ctl_table *entry;
6860

6861 6862 6863
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6864
	 * will always be set. In the lowest directory the names are
6865 6866 6867
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6868 6869
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6870 6871 6872
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6873 6874 6875 6876 6877

	kfree(*tablep);
	*tablep = NULL;
}

6878
static void
6879
set_table_entry(struct ctl_table *entry,
6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6893
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6894

6895 6896 6897
	if (table == NULL)
		return NULL;

6898
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6899
		sizeof(long), 0644, proc_doulongvec_minmax);
6900
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6901
		sizeof(long), 0644, proc_doulongvec_minmax);
6902
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6903
		sizeof(int), 0644, proc_dointvec_minmax);
6904
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6905
		sizeof(int), 0644, proc_dointvec_minmax);
6906
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6907
		sizeof(int), 0644, proc_dointvec_minmax);
6908
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6909
		sizeof(int), 0644, proc_dointvec_minmax);
6910
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6911
		sizeof(int), 0644, proc_dointvec_minmax);
6912
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6913
		sizeof(int), 0644, proc_dointvec_minmax);
6914
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6915
		sizeof(int), 0644, proc_dointvec_minmax);
6916
	set_table_entry(&table[9], "cache_nice_tries",
6917 6918
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6919
	set_table_entry(&table[10], "flags", &sd->flags,
6920
		sizeof(int), 0644, proc_dointvec_minmax);
6921 6922 6923
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6924 6925 6926 6927

	return table;
}

6928
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6929 6930 6931 6932 6933 6934 6935 6936 6937
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6938 6939
	if (table == NULL)
		return NULL;
6940 6941 6942 6943 6944

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6945
		entry->mode = 0555;
6946 6947 6948 6949 6950 6951 6952 6953
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6954
static void register_sched_domain_sysctl(void)
6955 6956 6957 6958 6959
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6960 6961 6962
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6963 6964 6965
	if (entry == NULL)
		return;

6966
	for_each_online_cpu(i) {
6967 6968
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6969
		entry->mode = 0555;
6970
		entry->child = sd_alloc_ctl_cpu_table(i);
6971
		entry++;
6972
	}
6973 6974

	WARN_ON(sd_sysctl_header);
6975 6976
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6977

6978
/* may be called multiple times per register */
6979 6980
static void unregister_sched_domain_sysctl(void)
{
6981 6982
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6983
	sd_sysctl_header = NULL;
6984 6985
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6986
}
6987
#else
6988 6989 6990 6991
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6992 6993 6994 6995
{
}
#endif

6996 6997 6998 6999 7000
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7001
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7021
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7022 7023 7024 7025
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7026 7027 7028 7029
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7030 7031
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7032 7033
{
	struct task_struct *p;
7034
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7035
	unsigned long flags;
7036
	struct rq *rq;
L
Linus Torvalds 已提交
7037 7038

	switch (action) {
7039

L
Linus Torvalds 已提交
7040
	case CPU_UP_PREPARE:
7041
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7042
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7043 7044 7045 7046 7047
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7048
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7049 7050 7051
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
7052

L
Linus Torvalds 已提交
7053
	case CPU_ONLINE:
7054
	case CPU_ONLINE_FROZEN:
7055
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7056
		wake_up_process(cpu_rq(cpu)->migration_thread);
7057 7058 7059 7060 7061

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7062
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7063 7064

			set_rq_online(rq);
7065 7066
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7067
		break;
7068

L
Linus Torvalds 已提交
7069 7070
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7071
	case CPU_UP_CANCELED_FROZEN:
7072 7073
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7074
		/* Unbind it from offline cpu so it can run. Fall thru. */
7075
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7076
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7077 7078 7079
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7080

L
Linus Torvalds 已提交
7081
	case CPU_DEAD:
7082
	case CPU_DEAD_FROZEN:
7083
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7084 7085 7086 7087 7088
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7089
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7090
		update_rq_clock(rq);
7091
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7092
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7093 7094
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7095
		migrate_dead_tasks(cpu);
7096
		spin_unlock_irq(&rq->lock);
7097
		cpuset_unlock();
L
Linus Torvalds 已提交
7098 7099 7100
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
7101 7102 7103 7104 7105
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7106 7107
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7108 7109
			struct migration_req *req;

L
Linus Torvalds 已提交
7110
			req = list_entry(rq->migration_queue.next,
7111
					 struct migration_req, list);
L
Linus Torvalds 已提交
7112
			list_del_init(&req->list);
B
Brian King 已提交
7113
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7114
			complete(&req->done);
B
Brian King 已提交
7115
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7116 7117 7118
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7119

7120 7121
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7122 7123 7124 7125
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7126
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7127
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7128 7129 7130
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7131 7132 7133 7134 7135 7136 7137 7138
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
7139
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7140 7141 7142 7143
	.notifier_call = migration_call,
	.priority = 10
};

7144
static int __init migration_init(void)
L
Linus Torvalds 已提交
7145 7146
{
	void *cpu = (void *)(long)smp_processor_id();
7147
	int err;
7148 7149

	/* Start one for the boot CPU: */
7150 7151
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7152 7153
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7154 7155

	return err;
L
Linus Torvalds 已提交
7156
}
7157
early_initcall(migration_init);
L
Linus Torvalds 已提交
7158 7159 7160
#endif

#ifdef CONFIG_SMP
7161

7162
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7163

7164
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7165
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7166
{
I
Ingo Molnar 已提交
7167
	struct sched_group *group = sd->groups;
7168
	char str[256];
L
Linus Torvalds 已提交
7169

R
Rusty Russell 已提交
7170
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7171
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7172 7173 7174 7175 7176 7177 7178 7179 7180

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7181 7182
	}

7183
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7184

7185
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7186 7187 7188
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7189
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7190 7191 7192
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7193

I
Ingo Molnar 已提交
7194
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7195
	do {
I
Ingo Molnar 已提交
7196 7197 7198
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7199 7200 7201
			break;
		}

I
Ingo Molnar 已提交
7202 7203 7204 7205 7206 7207
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7208

7209
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7210 7211 7212 7213
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7214

7215
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7216 7217 7218 7219
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7220

7221
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7222

R
Rusty Russell 已提交
7223
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
I
Ingo Molnar 已提交
7224
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
7225

I
Ingo Molnar 已提交
7226 7227 7228
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7229

7230
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7231
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7232

7233 7234
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7235 7236 7237 7238
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7239

I
Ingo Molnar 已提交
7240 7241
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7242
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7243
	int level = 0;
L
Linus Torvalds 已提交
7244

I
Ingo Molnar 已提交
7245 7246 7247 7248
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7249

I
Ingo Molnar 已提交
7250 7251
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7252
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7253 7254 7255 7256
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7257
	for (;;) {
7258
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7259
			break;
L
Linus Torvalds 已提交
7260 7261
		level++;
		sd = sd->parent;
7262
		if (!sd)
I
Ingo Molnar 已提交
7263 7264
			break;
	}
7265
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7266
}
7267
#else /* !CONFIG_SCHED_DEBUG */
7268
# define sched_domain_debug(sd, cpu) do { } while (0)
7269
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7270

7271
static int sd_degenerate(struct sched_domain *sd)
7272
{
7273
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7274 7275 7276 7277 7278 7279
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7280 7281 7282
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7296 7297
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7298 7299 7300 7301 7302 7303
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7304
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7316 7317 7318
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7319 7320
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7321 7322 7323 7324 7325 7326 7327
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7328 7329
static void free_rootdomain(struct root_domain *rd)
{
7330 7331
	cpupri_cleanup(&rd->cpupri);

7332 7333 7334 7335 7336 7337
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7338 7339
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7340
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7341 7342 7343 7344 7345
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7346
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7347

7348
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7349
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7350

7351
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7352

I
Ingo Molnar 已提交
7353 7354 7355 7356 7357 7358 7359
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7360 7361 7362 7363 7364
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7365 7366
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7367
		set_rq_online(rq);
G
Gregory Haskins 已提交
7368 7369

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7370 7371 7372

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7373 7374
}

L
Li Zefan 已提交
7375
static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7376 7377 7378
{
	memset(rd, 0, sizeof(*rd));

7379 7380 7381 7382
	if (bootmem) {
		alloc_bootmem_cpumask_var(&def_root_domain.span);
		alloc_bootmem_cpumask_var(&def_root_domain.online);
		alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7383
		cpupri_init(&rd->cpupri, true);
7384 7385 7386 7387
		return 0;
	}

	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7388
		goto out;
7389 7390 7391 7392
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
		goto free_span;
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_online;
7393

7394 7395
	if (cpupri_init(&rd->cpupri, false) != 0)
		goto free_rto_mask;
7396
	return 0;
7397

7398 7399
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7400 7401 7402 7403
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7404
out:
7405
	return -ENOMEM;
G
Gregory Haskins 已提交
7406 7407 7408 7409
}

static void init_defrootdomain(void)
{
7410 7411
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7412 7413 7414
	atomic_set(&def_root_domain.refcount, 1);
}

7415
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7416 7417 7418 7419 7420 7421 7422
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7423 7424 7425 7426
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7427 7428 7429 7430

	return rd;
}

L
Linus Torvalds 已提交
7431
/*
I
Ingo Molnar 已提交
7432
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7433 7434
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7435 7436
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7437
{
7438
	struct rq *rq = cpu_rq(cpu);
7439 7440 7441
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7442
	for (tmp = sd; tmp; ) {
7443 7444 7445
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7446

7447
		if (sd_parent_degenerate(tmp, parent)) {
7448
			tmp->parent = parent->parent;
7449 7450
			if (parent->parent)
				parent->parent->child = tmp;
7451 7452
		} else
			tmp = tmp->parent;
7453 7454
	}

7455
	if (sd && sd_degenerate(sd)) {
7456
		sd = sd->parent;
7457 7458 7459
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7460 7461 7462

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7463
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7464
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7465 7466 7467
}

/* cpus with isolated domains */
7468
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7469 7470 7471 7472

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7473
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7474 7475 7476
	return 1;
}

I
Ingo Molnar 已提交
7477
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7478 7479

/*
7480 7481
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7482 7483
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7484 7485 7486 7487 7488
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7489
static void
7490 7491 7492
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7493
					struct sched_group **sg,
7494 7495
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7496 7497 7498 7499
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7500
	cpumask_clear(covered);
7501

7502
	for_each_cpu(i, span) {
7503
		struct sched_group *sg;
7504
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7505 7506
		int j;

7507
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7508 7509
			continue;

7510
		cpumask_clear(sched_group_cpus(sg));
7511
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7512

7513
		for_each_cpu(j, span) {
7514
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7515 7516
				continue;

7517
			cpumask_set_cpu(j, covered);
7518
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7519 7520 7521 7522 7523 7524 7525 7526 7527 7528
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7529
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7530

7531
#ifdef CONFIG_NUMA
7532

7533 7534 7535 7536 7537
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7538
 * Find the next node to include in a given scheduling domain. Simply
7539 7540 7541 7542
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7543
static int find_next_best_node(int node, nodemask_t *used_nodes)
7544 7545 7546 7547 7548
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7549
	for (i = 0; i < nr_node_ids; i++) {
7550
		/* Start at @node */
7551
		n = (node + i) % nr_node_ids;
7552 7553 7554 7555 7556

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7557
		if (node_isset(n, *used_nodes))
7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7569
	node_set(best_node, *used_nodes);
7570 7571 7572 7573 7574 7575
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7576
 * @span: resulting cpumask
7577
 *
I
Ingo Molnar 已提交
7578
 * Given a node, construct a good cpumask for its sched_domain to span. It
7579 7580 7581
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7582
static void sched_domain_node_span(int node, struct cpumask *span)
7583
{
7584
	nodemask_t used_nodes;
7585
	int i;
7586

7587
	cpumask_clear(span);
7588
	nodes_clear(used_nodes);
7589

7590
	cpumask_or(span, span, cpumask_of_node(node));
7591
	node_set(node, used_nodes);
7592 7593

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7594
		int next_node = find_next_best_node(node, &used_nodes);
7595

7596
		cpumask_or(span, span, cpumask_of_node(next_node));
7597 7598
	}
}
7599
#endif /* CONFIG_NUMA */
7600

7601
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7602

7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
 * for nr_cpu_ids < CONFIG_NR_CPUS.
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

7618
/*
7619
 * SMT sched-domains:
7620
 */
L
Linus Torvalds 已提交
7621
#ifdef CONFIG_SCHED_SMT
7622 7623
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7624

I
Ingo Molnar 已提交
7625
static int
7626 7627
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
7628
{
7629
	if (sg)
7630
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
7631 7632
	return cpu;
}
7633
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7634

7635 7636 7637
/*
 * multi-core sched-domains:
 */
7638
#ifdef CONFIG_SCHED_MC
7639 7640
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7641
#endif /* CONFIG_SCHED_MC */
7642 7643

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7644
static int
7645 7646
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
7647
{
7648
	int group;
7649

7650 7651
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
7652
	if (sg)
7653
		*sg = &per_cpu(sched_group_core, group).sg;
7654
	return group;
7655 7656
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7657
static int
7658 7659
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
7660
{
7661
	if (sg)
7662
		*sg = &per_cpu(sched_group_core, cpu).sg;
7663 7664 7665 7666
	return cpu;
}
#endif

7667 7668
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7669

I
Ingo Molnar 已提交
7670
static int
7671 7672
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
7673
{
7674
	int group;
7675
#ifdef CONFIG_SCHED_MC
7676
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7677
	group = cpumask_first(mask);
7678
#elif defined(CONFIG_SCHED_SMT)
7679 7680
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
7681
#else
7682
	group = cpu;
L
Linus Torvalds 已提交
7683
#endif
7684
	if (sg)
7685
		*sg = &per_cpu(sched_group_phys, group).sg;
7686
	return group;
L
Linus Torvalds 已提交
7687 7688 7689 7690
}

#ifdef CONFIG_NUMA
/*
7691 7692 7693
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7694
 */
7695
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7696
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7697

7698
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7699
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7700

7701 7702 7703
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
7704
{
7705 7706
	int group;

7707
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7708
	group = cpumask_first(nodemask);
7709 7710

	if (sg)
7711
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7712
	return group;
L
Linus Torvalds 已提交
7713
}
7714

7715 7716 7717 7718 7719 7720 7721
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7722
	do {
7723
		for_each_cpu(j, sched_group_cpus(sg)) {
7724
			struct sched_domain *sd;
7725

7726
			sd = &per_cpu(phys_domains, j).sd;
7727
			if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7728 7729 7730 7731 7732 7733
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7734

7735 7736 7737 7738
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7739
}
7740
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7741

7742
#ifdef CONFIG_NUMA
7743
/* Free memory allocated for various sched_group structures */
7744 7745
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7746
{
7747
	int cpu, i;
7748

7749
	for_each_cpu(cpu, cpu_map) {
7750 7751 7752 7753 7754 7755
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7756
		for (i = 0; i < nr_node_ids; i++) {
7757 7758
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7759
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7760
			if (cpumask_empty(nodemask))
7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7777
#else /* !CONFIG_NUMA */
7778 7779
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7780 7781
{
}
7782
#endif /* CONFIG_NUMA */
7783

7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

7805
	if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7806 7807 7808 7809
		return;

	child = sd->child;

7810 7811
	sd->groups->__cpu_power = 0;

7812 7813 7814 7815 7816 7817 7818 7819 7820 7821
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7822
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7823 7824 7825 7826 7827 7828 7829 7830
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7831
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7832 7833 7834 7835
		group = group->next;
	} while (group != child->groups);
}

7836 7837 7838 7839 7840
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7841 7842 7843 7844 7845 7846
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7847
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7848

7849 7850 7851 7852 7853
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7854
	sd->level = SD_LV_##type;				\
7855
	SD_INIT_NAME(sd, type);					\
7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

7870 7871 7872 7873
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7874 7875 7876 7877 7878 7879
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7905
/*
7906 7907
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7908
 */
7909
static int __build_sched_domains(const struct cpumask *cpu_map,
7910
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7911
{
7912
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
7913
	struct root_domain *rd;
7914 7915
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
7916
#ifdef CONFIG_NUMA
7917
	cpumask_var_t domainspan, covered, notcovered;
7918
	struct sched_group **sched_group_nodes = NULL;
7919
	int sd_allnodes = 0;
7920

7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
7941 7942 7943
	/*
	 * Allocate the per-node list of sched groups
	 */
7944
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7945
				    GFP_KERNEL);
7946 7947
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7948
		goto free_tmpmask;
7949 7950
	}
#endif
L
Linus Torvalds 已提交
7951

7952
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7953 7954
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7955
		goto free_sched_groups;
G
Gregory Haskins 已提交
7956 7957
	}

7958
#ifdef CONFIG_NUMA
7959
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7960 7961
#endif

L
Linus Torvalds 已提交
7962
	/*
7963
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7964
	 */
7965
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7966 7967
		struct sched_domain *sd = NULL, *p;

7968
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
7969 7970

#ifdef CONFIG_NUMA
7971 7972
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7973
			sd = &per_cpu(allnodes_domains, i).sd;
7974
			SD_INIT(sd, ALLNODES);
7975
			set_domain_attribute(sd, attr);
7976
			cpumask_copy(sched_domain_span(sd), cpu_map);
7977
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7978
			p = sd;
7979
			sd_allnodes = 1;
7980 7981 7982
		} else
			p = NULL;

7983
		sd = &per_cpu(node_domains, i).sd;
7984
		SD_INIT(sd, NODE);
7985
		set_domain_attribute(sd, attr);
7986
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7987
		sd->parent = p;
7988 7989
		if (p)
			p->child = sd;
7990 7991
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7992 7993 7994
#endif

		p = sd;
7995
		sd = &per_cpu(phys_domains, i).sd;
7996
		SD_INIT(sd, CPU);
7997
		set_domain_attribute(sd, attr);
7998
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
7999
		sd->parent = p;
8000 8001
		if (p)
			p->child = sd;
8002
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8003

8004 8005
#ifdef CONFIG_SCHED_MC
		p = sd;
8006
		sd = &per_cpu(core_domains, i).sd;
8007
		SD_INIT(sd, MC);
8008
		set_domain_attribute(sd, attr);
8009 8010
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
8011
		sd->parent = p;
8012
		p->child = sd;
8013
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8014 8015
#endif

L
Linus Torvalds 已提交
8016 8017
#ifdef CONFIG_SCHED_SMT
		p = sd;
8018
		sd = &per_cpu(cpu_domains, i).sd;
8019
		SD_INIT(sd, SIBLING);
8020
		set_domain_attribute(sd, attr);
8021 8022
		cpumask_and(sched_domain_span(sd),
			    &per_cpu(cpu_sibling_map, i), cpu_map);
L
Linus Torvalds 已提交
8023
		sd->parent = p;
8024
		p->child = sd;
8025
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8026 8027 8028 8029 8030
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
8031
	for_each_cpu(i, cpu_map) {
8032 8033 8034
		cpumask_and(this_sibling_map,
			    &per_cpu(cpu_sibling_map, i), cpu_map);
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
8035 8036
			continue;

I
Ingo Molnar 已提交
8037
		init_sched_build_groups(this_sibling_map, cpu_map,
8038 8039
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8040 8041 8042
	}
#endif

8043 8044
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
8045
	for_each_cpu(i, cpu_map) {
8046
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8047
		if (i != cpumask_first(this_core_map))
8048
			continue;
8049

I
Ingo Molnar 已提交
8050
		init_sched_build_groups(this_core_map, cpu_map,
8051 8052
					&cpu_to_core_group,
					send_covered, tmpmask);
8053 8054 8055
	}
#endif

L
Linus Torvalds 已提交
8056
	/* Set up physical groups */
8057
	for (i = 0; i < nr_node_ids; i++) {
8058
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8059
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
8060 8061
			continue;

8062 8063 8064
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8065 8066 8067 8068
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
8069 8070 8071 8072 8073
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
8074

8075
	for (i = 0; i < nr_node_ids; i++) {
8076 8077 8078 8079
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

8080
		cpumask_clear(covered);
8081
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8082
		if (cpumask_empty(nodemask)) {
8083
			sched_group_nodes[i] = NULL;
8084
			continue;
8085
		}
8086

8087
		sched_domain_node_span(i, domainspan);
8088
		cpumask_and(domainspan, domainspan, cpu_map);
8089

8090 8091
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
8092 8093 8094 8095 8096
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
8097
		sched_group_nodes[i] = sg;
8098
		for_each_cpu(j, nodemask) {
8099
			struct sched_domain *sd;
I
Ingo Molnar 已提交
8100

8101
			sd = &per_cpu(node_domains, j).sd;
8102 8103
			sd->groups = sg;
		}
8104
		sg->__cpu_power = 0;
8105
		cpumask_copy(sched_group_cpus(sg), nodemask);
8106
		sg->next = sg;
8107
		cpumask_or(covered, covered, nodemask);
8108 8109
		prev = sg;

8110 8111
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
8112

8113 8114 8115 8116
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
8117 8118
				break;

8119
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8120
			if (cpumask_empty(tmpmask))
8121 8122
				continue;

8123 8124
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
8125
					  GFP_KERNEL, i);
8126 8127 8128
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
8129
				goto error;
8130
			}
8131
			sg->__cpu_power = 0;
8132
			cpumask_copy(sched_group_cpus(sg), tmpmask);
8133
			sg->next = prev->next;
8134
			cpumask_or(covered, covered, tmpmask);
8135 8136 8137 8138
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
8139 8140 8141
#endif

	/* Calculate CPU power for physical packages and nodes */
8142
#ifdef CONFIG_SCHED_SMT
8143
	for_each_cpu(i, cpu_map) {
8144
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
8145

8146
		init_sched_groups_power(i, sd);
8147
	}
L
Linus Torvalds 已提交
8148
#endif
8149
#ifdef CONFIG_SCHED_MC
8150
	for_each_cpu(i, cpu_map) {
8151
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
8152

8153
		init_sched_groups_power(i, sd);
8154 8155
	}
#endif
8156

8157
	for_each_cpu(i, cpu_map) {
8158
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
8159

8160
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8161 8162
	}

8163
#ifdef CONFIG_NUMA
8164
	for (i = 0; i < nr_node_ids; i++)
8165
		init_numa_sched_groups_power(sched_group_nodes[i]);
8166

8167 8168
	if (sd_allnodes) {
		struct sched_group *sg;
8169

8170
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8171
								tmpmask);
8172 8173
		init_numa_sched_groups_power(sg);
	}
8174 8175
#endif

L
Linus Torvalds 已提交
8176
	/* Attach the domains */
8177
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8178 8179
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
8180
		sd = &per_cpu(cpu_domains, i).sd;
8181
#elif defined(CONFIG_SCHED_MC)
8182
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8183
#else
8184
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8185
#endif
G
Gregory Haskins 已提交
8186
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
8187
	}
8188

8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
8217

8218
#ifdef CONFIG_NUMA
8219
error:
8220
	free_sched_groups(cpu_map, tmpmask);
8221
	free_rootdomain(rd);
8222
	goto free_tmpmask;
8223
#endif
L
Linus Torvalds 已提交
8224
}
P
Paul Jackson 已提交
8225

8226
static int build_sched_domains(const struct cpumask *cpu_map)
8227 8228 8229 8230
{
	return __build_sched_domains(cpu_map, NULL);
}

8231
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8232
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8233 8234
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8235 8236 8237

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8238 8239
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8240
 */
8241
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8242

8243 8244 8245 8246 8247 8248
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8249
{
8250
	return 0;
8251 8252
}

8253
/*
I
Ingo Molnar 已提交
8254
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8255 8256
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8257
 */
8258
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8259
{
8260 8261
	int err;

8262
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8263
	ndoms_cur = 1;
8264
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8265
	if (!doms_cur)
8266
		doms_cur = fallback_doms;
8267
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8268
	dattr_cur = NULL;
8269
	err = build_sched_domains(doms_cur);
8270
	register_sched_domain_sysctl();
8271 8272

	return err;
8273 8274
}

8275 8276
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8277
{
8278
	free_sched_groups(cpu_map, tmpmask);
8279
}
L
Linus Torvalds 已提交
8280

8281 8282 8283 8284
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8285
static void detach_destroy_domains(const struct cpumask *cpu_map)
8286
{
8287 8288
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8289 8290
	int i;

8291
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8292
		cpu_attach_domain(NULL, &def_root_domain, i);
8293
	synchronize_sched();
8294
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8295 8296
}

8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8313 8314
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8315
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8316 8317 8318
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8319
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8320 8321 8322
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8323 8324 8325
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8326 8327
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8328 8329 8330 8331
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8332
 *
8333
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8334 8335
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8336
 *
P
Paul Jackson 已提交
8337 8338
 * Call with hotplug lock held
 */
8339 8340
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8341
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8342
{
8343
	int i, j, n;
8344
	int new_topology;
P
Paul Jackson 已提交
8345

8346
	mutex_lock(&sched_domains_mutex);
8347

8348 8349 8350
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8351 8352 8353
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8354
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8355 8356 8357

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8358
		for (j = 0; j < n && !new_topology; j++) {
8359
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8360
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8361 8362 8363 8364 8365 8366 8367 8368
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8369 8370
	if (doms_new == NULL) {
		ndoms_cur = 0;
8371
		doms_new = fallback_doms;
8372
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8373
		WARN_ON_ONCE(dattr_new);
8374 8375
	}

P
Paul Jackson 已提交
8376 8377
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
8378
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
8379
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
8380
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
8381 8382 8383
				goto match2;
		}
		/* no match - add a new doms_new */
8384 8385
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
8386 8387 8388 8389 8390
match2:
		;
	}

	/* Remember the new sched domains */
8391
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
8392
		kfree(doms_cur);
8393
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
8394
	doms_cur = doms_new;
8395
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
8396
	ndoms_cur = ndoms_new;
8397 8398

	register_sched_domain_sysctl();
8399

8400
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
8401 8402
}

8403
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8404
static void arch_reinit_sched_domains(void)
8405
{
8406
	get_online_cpus();
8407 8408 8409 8410

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8411
	rebuild_sched_domains();
8412
	put_online_cpus();
8413 8414 8415 8416
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8417
	unsigned int level = 0;
8418

8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8430 8431 8432
		return -EINVAL;

	if (smt)
8433
		sched_smt_power_savings = level;
8434
	else
8435
		sched_mc_power_savings = level;
8436

8437
	arch_reinit_sched_domains();
8438

8439
	return count;
8440 8441 8442
}

#ifdef CONFIG_SCHED_MC
8443 8444
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8445 8446 8447
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8448
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8449
					    const char *buf, size_t count)
8450 8451 8452
{
	return sched_power_savings_store(buf, count, 0);
}
8453 8454 8455
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8456 8457 8458
#endif

#ifdef CONFIG_SCHED_SMT
8459 8460
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8461 8462 8463
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8464
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8465
					     const char *buf, size_t count)
8466 8467 8468
{
	return sched_power_savings_store(buf, count, 1);
}
8469 8470
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8471 8472 8473
		   sched_smt_power_savings_store);
#endif

8474
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8490
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8491

8492
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8493
/*
8494 8495
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8496 8497 8498
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8499 8500 8501 8502 8503 8504
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8505
		partition_sched_domains(1, NULL, NULL);
8506 8507 8508 8509 8510 8511 8512 8513 8514 8515
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8516
{
P
Peter Zijlstra 已提交
8517 8518
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8519 8520
	switch (action) {
	case CPU_DOWN_PREPARE:
8521
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8522
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8523 8524 8525
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8526
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8527
	case CPU_ONLINE:
8528
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8529
		enable_runtime(cpu_rq(cpu));
8530 8531
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8532 8533 8534 8535 8536 8537 8538
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8539 8540 8541
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8542

8543 8544 8545 8546 8547
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8548
	get_online_cpus();
8549
	mutex_lock(&sched_domains_mutex);
8550 8551 8552 8553
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8554
	mutex_unlock(&sched_domains_mutex);
8555
	put_online_cpus();
8556 8557

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8558 8559
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8560 8561 8562 8563 8564
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8565
	init_hrtick();
8566 8567

	/* Move init over to a non-isolated CPU */
8568
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8569
		BUG();
I
Ingo Molnar 已提交
8570
	sched_init_granularity();
8571
	free_cpumask_var(non_isolated_cpus);
8572 8573

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8574
	init_sched_rt_class();
L
Linus Torvalds 已提交
8575 8576 8577 8578
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8579
	sched_init_granularity();
L
Linus Torvalds 已提交
8580 8581 8582 8583 8584 8585 8586 8587 8588 8589
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8590
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8591 8592
{
	cfs_rq->tasks_timeline = RB_ROOT;
8593
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8594 8595 8596
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8597
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8598 8599
}

P
Peter Zijlstra 已提交
8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8613
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8614
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
8615
#ifdef CONFIG_SMP
8616
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
8617 8618
#endif
#endif
P
Peter Zijlstra 已提交
8619 8620 8621
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
8622
	plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
8623 8624 8625 8626
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8627 8628
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8629

8630
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8631
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8632 8633
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8634 8635
}

P
Peter Zijlstra 已提交
8636
#ifdef CONFIG_FAIR_GROUP_SCHED
8637 8638 8639
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8640
{
8641
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8642 8643 8644 8645 8646 8647 8648
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8649 8650 8651 8652
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8653 8654 8655 8656 8657
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8658 8659
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8660
	se->load.inv_weight = 0;
8661
	se->parent = parent;
P
Peter Zijlstra 已提交
8662
}
8663
#endif
P
Peter Zijlstra 已提交
8664

8665
#ifdef CONFIG_RT_GROUP_SCHED
8666 8667 8668
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8669
{
8670 8671
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8672 8673 8674 8675
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8676
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8677 8678 8679 8680
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8681 8682 8683
	if (!rt_se)
		return;

8684 8685 8686 8687 8688
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8689
	rt_se->my_q = rt_rq;
8690
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8691 8692 8693 8694
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8695 8696
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8697
	int i, j;
8698 8699 8700 8701 8702 8703 8704
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8705 8706 8707
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8708 8709 8710 8711 8712 8713
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8714
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8715 8716 8717 8718 8719 8720 8721

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8722 8723 8724 8725 8726 8727 8728

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8729 8730
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8731 8732 8733 8734 8735
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8736 8737 8738 8739 8740 8741 8742 8743
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8744 8745
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8746
	}
I
Ingo Molnar 已提交
8747

G
Gregory Haskins 已提交
8748 8749 8750 8751
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8752 8753 8754 8755 8756 8757
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8758 8759 8760
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8761 8762
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8763

8764
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8765
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8766 8767 8768 8769 8770 8771
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8772 8773
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8774

8775
	for_each_possible_cpu(i) {
8776
		struct rq *rq;
L
Linus Torvalds 已提交
8777 8778 8779

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8780
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8781
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8782
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8783
#ifdef CONFIG_FAIR_GROUP_SCHED
8784
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8785
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8806
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8807
#elif defined CONFIG_USER_SCHED
8808 8809
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8821
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8822
				&per_cpu(init_cfs_rq, i),
8823 8824
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8825

8826
#endif
D
Dhaval Giani 已提交
8827 8828 8829
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8830
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8831
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8832
#ifdef CONFIG_CGROUP_SCHED
8833
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8834
#elif defined CONFIG_USER_SCHED
8835
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8836
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8837
				&per_cpu(init_rt_rq, i),
8838 8839
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8840
#endif
I
Ingo Molnar 已提交
8841
#endif
L
Linus Torvalds 已提交
8842

I
Ingo Molnar 已提交
8843 8844
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8845
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8846
		rq->sd = NULL;
G
Gregory Haskins 已提交
8847
		rq->rd = NULL;
L
Linus Torvalds 已提交
8848
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8849
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8850
		rq->push_cpu = 0;
8851
		rq->cpu = i;
8852
		rq->online = 0;
L
Linus Torvalds 已提交
8853 8854
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8855
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8856
#endif
P
Peter Zijlstra 已提交
8857
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8858 8859 8860
		atomic_set(&rq->nr_iowait, 0);
	}

8861
	set_load_weight(&init_task);
8862

8863 8864 8865 8866
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8867
#ifdef CONFIG_SMP
8868
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8869 8870
#endif

8871 8872 8873 8874
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8888 8889 8890 8891
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8892

8893 8894
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
	alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8895
#ifdef CONFIG_SMP
8896 8897 8898
#ifdef CONFIG_NO_HZ
	alloc_bootmem_cpumask_var(&nohz.cpu_mask);
#endif
8899
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
8900
#endif /* SMP */
8901

8902
	scheduler_running = 1;
L
Linus Torvalds 已提交
8903 8904 8905 8906 8907
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8908
#ifdef in_atomic
L
Linus Torvalds 已提交
8909 8910
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8930 8931 8932 8933 8934 8935
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8936 8937 8938
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8939

8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8951 8952
void normalize_rt_tasks(void)
{
8953
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8954
	unsigned long flags;
8955
	struct rq *rq;
L
Linus Torvalds 已提交
8956

8957
	read_lock_irqsave(&tasklist_lock, flags);
8958
	do_each_thread(g, p) {
8959 8960 8961 8962 8963 8964
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8965 8966
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8967 8968 8969
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8970
#endif
I
Ingo Molnar 已提交
8971 8972 8973 8974 8975 8976 8977 8978

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8979
			continue;
I
Ingo Molnar 已提交
8980
		}
L
Linus Torvalds 已提交
8981

8982
		spin_lock(&p->pi_lock);
8983
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8984

8985
		normalize_task(rq, p);
8986

8987
		__task_rq_unlock(rq);
8988
		spin_unlock(&p->pi_lock);
8989 8990
	} while_each_thread(g, p);

8991
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8992 8993 8994
}

#endif /* CONFIG_MAGIC_SYSRQ */
8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9013
struct task_struct *curr_task(int cpu)
9014 9015 9016 9017 9018 9019 9020 9021 9022 9023
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9024 9025
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9026 9027 9028 9029 9030 9031 9032
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9033
void set_curr_task(int cpu, struct task_struct *p)
9034 9035 9036 9037 9038
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9039

9040 9041
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9056 9057
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9058 9059
{
	struct cfs_rq *cfs_rq;
9060
	struct sched_entity *se;
9061
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9062 9063
	int i;

9064
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9065 9066
	if (!tg->cfs_rq)
		goto err;
9067
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9068 9069
	if (!tg->se)
		goto err;
9070 9071

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9072 9073

	for_each_possible_cpu(i) {
9074
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9075

9076 9077
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9078 9079 9080
		if (!cfs_rq)
			goto err;

9081 9082
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9083 9084 9085
		if (!se)
			goto err;

9086
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9105
#else /* !CONFG_FAIR_GROUP_SCHED */
9106 9107 9108 9109
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9110 9111
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9123
#endif /* CONFIG_FAIR_GROUP_SCHED */
9124 9125

#ifdef CONFIG_RT_GROUP_SCHED
9126 9127 9128 9129
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9130 9131
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9143 9144
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9145 9146
{
	struct rt_rq *rt_rq;
9147
	struct sched_rt_entity *rt_se;
9148 9149 9150
	struct rq *rq;
	int i;

9151
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9152 9153
	if (!tg->rt_rq)
		goto err;
9154
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9155 9156 9157
	if (!tg->rt_se)
		goto err;

9158 9159
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9160 9161 9162 9163

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9164 9165
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9166 9167
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9168

9169 9170
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9171 9172
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9173

9174
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9175 9176
	}

9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9193
#else /* !CONFIG_RT_GROUP_SCHED */
9194 9195 9196 9197
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9198 9199
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9211
#endif /* CONFIG_RT_GROUP_SCHED */
9212

9213
#ifdef CONFIG_GROUP_SCHED
9214 9215 9216 9217 9218 9219 9220 9221
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9222
struct task_group *sched_create_group(struct task_group *parent)
9223 9224 9225 9226 9227 9228 9229 9230 9231
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9232
	if (!alloc_fair_sched_group(tg, parent))
9233 9234
		goto err;

9235
	if (!alloc_rt_sched_group(tg, parent))
9236 9237
		goto err;

9238
	spin_lock_irqsave(&task_group_lock, flags);
9239
	for_each_possible_cpu(i) {
9240 9241
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9242
	}
P
Peter Zijlstra 已提交
9243
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9244 9245 9246 9247 9248

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9249
	list_add_rcu(&tg->siblings, &parent->children);
9250
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9251

9252
	return tg;
S
Srivatsa Vaddagiri 已提交
9253 9254

err:
P
Peter Zijlstra 已提交
9255
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9256 9257 9258
	return ERR_PTR(-ENOMEM);
}

9259
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9260
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9261 9262
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9263
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9264 9265
}

9266
/* Destroy runqueue etc associated with a task group */
9267
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9268
{
9269
	unsigned long flags;
9270
	int i;
S
Srivatsa Vaddagiri 已提交
9271

9272
	spin_lock_irqsave(&task_group_lock, flags);
9273
	for_each_possible_cpu(i) {
9274 9275
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9276
	}
P
Peter Zijlstra 已提交
9277
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9278
	list_del_rcu(&tg->siblings);
9279
	spin_unlock_irqrestore(&task_group_lock, flags);
9280 9281

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9282
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9283 9284
}

9285
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9286 9287 9288
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9289 9290
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9291 9292 9293 9294 9295 9296 9297 9298 9299
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9300
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9301 9302
	on_rq = tsk->se.on_rq;

9303
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9304
		dequeue_task(rq, tsk, 0);
9305 9306
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9307

P
Peter Zijlstra 已提交
9308
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9309

P
Peter Zijlstra 已提交
9310 9311 9312 9313 9314
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9315 9316 9317
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9318
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9319 9320 9321

	task_rq_unlock(rq, &flags);
}
9322
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9323

9324
#ifdef CONFIG_FAIR_GROUP_SCHED
9325
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9326 9327 9328 9329 9330
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9331
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9332 9333 9334
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9335
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9336

9337
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9338
		enqueue_entity(cfs_rq, se, 0);
9339
}
9340

9341 9342 9343 9344 9345 9346 9347 9348 9349
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9350 9351
}

9352 9353
static DEFINE_MUTEX(shares_mutex);

9354
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9355 9356
{
	int i;
9357
	unsigned long flags;
9358

9359 9360 9361 9362 9363 9364
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

9365 9366
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
9367 9368
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
9369

9370
	mutex_lock(&shares_mutex);
9371
	if (tg->shares == shares)
9372
		goto done;
S
Srivatsa Vaddagiri 已提交
9373

9374
	spin_lock_irqsave(&task_group_lock, flags);
9375 9376
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9377
	list_del_rcu(&tg->siblings);
9378
	spin_unlock_irqrestore(&task_group_lock, flags);
9379 9380 9381 9382 9383 9384 9385 9386

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
9387
	tg->shares = shares;
9388 9389 9390 9391 9392
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9393
		set_se_shares(tg->se[i], shares);
9394
	}
S
Srivatsa Vaddagiri 已提交
9395

9396 9397 9398 9399
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
9400
	spin_lock_irqsave(&task_group_lock, flags);
9401 9402
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9403
	list_add_rcu(&tg->siblings, &tg->parent->children);
9404
	spin_unlock_irqrestore(&task_group_lock, flags);
9405
done:
9406
	mutex_unlock(&shares_mutex);
9407
	return 0;
S
Srivatsa Vaddagiri 已提交
9408 9409
}

9410 9411 9412 9413
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9414
#endif
9415

9416
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9417
/*
P
Peter Zijlstra 已提交
9418
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9419
 */
P
Peter Zijlstra 已提交
9420 9421 9422 9423 9424
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9425
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9426

P
Peter Zijlstra 已提交
9427
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9428 9429
}

P
Peter Zijlstra 已提交
9430 9431
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9432
{
P
Peter Zijlstra 已提交
9433
	struct task_struct *g, *p;
9434

P
Peter Zijlstra 已提交
9435 9436 9437 9438
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9439

P
Peter Zijlstra 已提交
9440 9441
	return 0;
}
9442

P
Peter Zijlstra 已提交
9443 9444 9445 9446 9447
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9448

P
Peter Zijlstra 已提交
9449 9450 9451 9452 9453 9454
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9455

P
Peter Zijlstra 已提交
9456 9457
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9458

P
Peter Zijlstra 已提交
9459 9460 9461
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9462 9463
	}

9464 9465 9466 9467 9468 9469 9470
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

9471 9472 9473 9474 9475
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9476

9477 9478 9479
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9480 9481
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9482

P
Peter Zijlstra 已提交
9483
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9484

9485 9486 9487 9488 9489
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9490

9491 9492 9493
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9494 9495 9496
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9497

P
Peter Zijlstra 已提交
9498 9499 9500 9501
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9502

P
Peter Zijlstra 已提交
9503
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9504
	}
P
Peter Zijlstra 已提交
9505

P
Peter Zijlstra 已提交
9506 9507 9508 9509
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
9510 9511
}

P
Peter Zijlstra 已提交
9512
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9513
{
P
Peter Zijlstra 已提交
9514 9515 9516 9517 9518 9519 9520
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
9521 9522
}

9523 9524
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
9525
{
P
Peter Zijlstra 已提交
9526
	int i, err = 0;
P
Peter Zijlstra 已提交
9527 9528

	mutex_lock(&rt_constraints_mutex);
9529
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
9530 9531
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
9532
		goto unlock;
P
Peter Zijlstra 已提交
9533 9534

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9535 9536
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
9537 9538 9539 9540 9541 9542 9543 9544 9545

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
9546
 unlock:
9547
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
9548 9549 9550
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
9551 9552
}

9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
9565 9566 9567 9568
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

9569
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9570 9571
		return -1;

9572
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9573 9574 9575
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9576 9577 9578 9579 9580 9581 9582 9583

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9584 9585 9586
	if (rt_period == 0)
		return -EINVAL;

9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9601
	u64 runtime, period;
9602 9603
	int ret = 0;

9604 9605 9606
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9607 9608 9609 9610 9611 9612 9613 9614
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9615

9616
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9617
	read_lock(&tasklist_lock);
9618
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9619
	read_unlock(&tasklist_lock);
9620 9621 9622 9623
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9624 9625 9626 9627 9628 9629 9630 9631 9632 9633

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

9634
#else /* !CONFIG_RT_GROUP_SCHED */
9635 9636
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9637 9638 9639
	unsigned long flags;
	int i;

9640 9641 9642
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9643 9644 9645 9646 9647 9648 9649 9650 9651 9652
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9653 9654
	return 0;
}
9655
#endif /* CONFIG_RT_GROUP_SCHED */
9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9686

9687
#ifdef CONFIG_CGROUP_SCHED
9688 9689

/* return corresponding task_group object of a cgroup */
9690
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9691
{
9692 9693
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9694 9695 9696
}

static struct cgroup_subsys_state *
9697
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9698
{
9699
	struct task_group *tg, *parent;
9700

9701
	if (!cgrp->parent) {
9702 9703 9704 9705
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9706 9707
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9708 9709 9710 9711 9712 9713
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9714 9715
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9716
{
9717
	struct task_group *tg = cgroup_tg(cgrp);
9718 9719 9720 9721

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9722 9723 9724
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9725
{
9726
#ifdef CONFIG_RT_GROUP_SCHED
9727
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9728 9729
		return -EINVAL;
#else
9730 9731 9732
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9733
#endif
9734 9735 9736 9737 9738

	return 0;
}

static void
9739
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9740 9741 9742 9743 9744
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9745
#ifdef CONFIG_FAIR_GROUP_SCHED
9746
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9747
				u64 shareval)
9748
{
9749
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9750 9751
}

9752
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9753
{
9754
	struct task_group *tg = cgroup_tg(cgrp);
9755 9756 9757

	return (u64) tg->shares;
}
9758
#endif /* CONFIG_FAIR_GROUP_SCHED */
9759

9760
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9761
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9762
				s64 val)
P
Peter Zijlstra 已提交
9763
{
9764
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9765 9766
}

9767
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9768
{
9769
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9770
}
9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9782
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9783

9784
static struct cftype cpu_files[] = {
9785
#ifdef CONFIG_FAIR_GROUP_SCHED
9786 9787
	{
		.name = "shares",
9788 9789
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9790
	},
9791 9792
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9793
	{
P
Peter Zijlstra 已提交
9794
		.name = "rt_runtime_us",
9795 9796
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9797
	},
9798 9799
	{
		.name = "rt_period_us",
9800 9801
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9802
	},
9803
#endif
9804 9805 9806 9807
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9808
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9809 9810 9811
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9812 9813 9814 9815 9816 9817 9818
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9819 9820 9821
	.early_init	= 1,
};

9822
#endif	/* CONFIG_CGROUP_SCHED */
9823 9824 9825 9826 9827 9828 9829 9830 9831 9832

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9833
/* track cpu usage of a group of tasks and its child groups */
9834 9835 9836 9837
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
9838
	struct cpuacct *parent;
9839 9840 9841 9842 9843
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9844
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9845
{
9846
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9859
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

9872 9873 9874
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9875 9876 9877 9878
	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9879
static void
9880
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9881
{
9882
	struct cpuacct *ca = cgroup_ca(cgrp);
9883 9884 9885 9886 9887

	free_percpu(ca->cpuusage);
	kfree(ca);
}

9888 9889
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
9890
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
9909
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

9923
/* return total cpu usage (in nanoseconds) of a group */
9924
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9925
{
9926
	struct cpuacct *ca = cgroup_ca(cgrp);
9927 9928 9929
	u64 totalcpuusage = 0;
	int i;

9930 9931
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9932 9933 9934 9935

	return totalcpuusage;
}

9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9948 9949
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9950 9951 9952 9953 9954

out:
	return err;
}

9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9970 9971 9972
static struct cftype files[] = {
	{
		.name = "usage",
9973 9974
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9975
	},
9976 9977 9978 9979 9980
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},

9981 9982
};

9983
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9984
{
9985
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9986 9987 9988 9989 9990 9991 9992 9993 9994 9995
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9996
	int cpu;
9997

L
Li Zefan 已提交
9998
	if (unlikely(!cpuacct_subsys.active))
9999 10000
		return;

10001
	cpu = task_cpu(tsk);
10002 10003
	ca = task_ca(tsk);

10004
	for (; ca; ca = ca->parent) {
10005
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017
		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */