sched.c 258.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_counter.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/reciprocal_div.h>
68
#include <linux/unistd.h>
J
Jens Axboe 已提交
69
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
70
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
71
#include <linux/tick.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79 80
#include "sched_cpupri.h"

81
#define CREATE_TRACE_POINTS
82
#include <trace/events/sched.h>
83

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

123
#ifdef CONFIG_SMP
124 125 126

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

147 148
static inline int rt_policy(int policy)
{
149
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 151 152 153 154 155 156 157 158
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
159
/*
I
Ingo Molnar 已提交
160
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
161
 */
I
Ingo Molnar 已提交
162 163 164 165 166
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

167
struct rt_bandwidth {
I
Ingo Molnar 已提交
168 169 170 171 172
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
206 207
	spin_lock_init(&rt_b->rt_runtime_lock);

208 209 210 211 212
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

213 214 215
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
216 217 218 219 220 221
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

222
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 224 225 226 227 228 229
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
230 231 232
		unsigned long delta;
		ktime_t soft, hard;

233 234 235 236 237
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
238 239 240 241 242

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243
				HRTIMER_MODE_ABS_PINNED, 0);
244 245 246 247 248 249 250 251 252 253 254
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

255 256 257 258 259 260
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

261
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
262

263 264
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
265 266
struct cfs_rq;

P
Peter Zijlstra 已提交
267 268
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
269
/* task group related information */
270
struct task_group {
271
#ifdef CONFIG_CGROUP_SCHED
272 273
	struct cgroup_subsys_state css;
#endif
274

275 276 277 278
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

279
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
280 281 282 283 284
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
285 286 287 288 289 290
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

291
	struct rt_bandwidth rt_bandwidth;
292
#endif
293

294
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
295
	struct list_head list;
P
Peter Zijlstra 已提交
296 297 298 299

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
300 301
};

D
Dhaval Giani 已提交
302
#ifdef CONFIG_USER_SCHED
303

304 305 306 307 308 309
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

310 311 312 313 314 315 316
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

317
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
318 319 320 321
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322
#endif /* CONFIG_FAIR_GROUP_SCHED */
323 324 325 326

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
328
#else /* !CONFIG_USER_SCHED */
329
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
330
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
331

332
/* task_group_lock serializes add/remove of task groups and also changes to
333 334
 * a task group's cpu shares.
 */
335
static DEFINE_SPINLOCK(task_group_lock);
336

337 338 339 340 341 342 343
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

344 345 346
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
347
#else /* !CONFIG_USER_SCHED */
348
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
349
#endif /* CONFIG_USER_SCHED */
350

351
/*
352 353 354 355
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
356 357 358
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
359
#define MIN_SHARES	2
360
#define MAX_SHARES	(1UL << 18)
361

362 363 364
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
365
/* Default task group.
I
Ingo Molnar 已提交
366
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
367
 */
368
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
369 370

/* return group to which a task belongs */
371
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
372
{
373
	struct task_group *tg;
374

375
#ifdef CONFIG_USER_SCHED
376 377 378
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
379
#elif defined(CONFIG_CGROUP_SCHED)
380 381
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
382
#else
I
Ingo Molnar 已提交
383
	tg = &init_task_group;
384
#endif
385
	return tg;
S
Srivatsa Vaddagiri 已提交
386 387 388
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
389
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
390
{
391
#ifdef CONFIG_FAIR_GROUP_SCHED
392 393
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
394
#endif
P
Peter Zijlstra 已提交
395

396
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
397 398
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
399
#endif
S
Srivatsa Vaddagiri 已提交
400 401 402 403
}

#else

404 405 406 407 408 409 410
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
411
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 413 414 415
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
416

417
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
418

I
Ingo Molnar 已提交
419 420 421 422 423 424
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
425
	u64 min_vruntime;
I
Ingo Molnar 已提交
426 427 428

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
429 430 431 432 433 434

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
435 436
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
437
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
438

P
Peter Zijlstra 已提交
439
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
440

441
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
442 443
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
444 445
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
446 447 448 449 450 451
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
452 453
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
454 455 456

#ifdef CONFIG_SMP
	/*
457
	 * the part of load.weight contributed by tasks
458
	 */
459
	unsigned long task_weight;
460

461 462 463 464 465 466 467
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
468

469 470 471 472
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
473 474 475 476 477

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
478
#endif
I
Ingo Molnar 已提交
479 480
#endif
};
L
Linus Torvalds 已提交
481

I
Ingo Molnar 已提交
482 483 484
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
485
	unsigned long rt_nr_running;
486
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 488
	struct {
		int curr; /* highest queued rt task prio */
489
#ifdef CONFIG_SMP
490
		int next; /* next highest */
491
#endif
492
	} highest_prio;
P
Peter Zijlstra 已提交
493
#endif
P
Peter Zijlstra 已提交
494
#ifdef CONFIG_SMP
495
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
496
	int overloaded;
497
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
498
#endif
P
Peter Zijlstra 已提交
499
	int rt_throttled;
P
Peter Zijlstra 已提交
500
	u64 rt_time;
P
Peter Zijlstra 已提交
501
	u64 rt_runtime;
I
Ingo Molnar 已提交
502
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
503
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
504

505
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
506 507
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
508 509 510 511 512
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
513 514
};

G
Gregory Haskins 已提交
515 516 517 518
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
519 520
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
521 522 523 524 525 526
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
527 528
	cpumask_var_t span;
	cpumask_var_t online;
529

I
Ingo Molnar 已提交
530
	/*
531 532 533
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
534
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
535
	atomic_t rto_count;
536 537 538
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
539 540 541 542 543 544 545 546
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
547 548
};

549 550 551 552
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
553 554 555 556
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
557 558 559 560 561 562 563
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
564
struct rq {
565 566
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
567 568 569 570 571 572

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
573 574
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
575
#ifdef CONFIG_NO_HZ
576
	unsigned long last_tick_seen;
577 578
	unsigned char in_nohz_recently;
#endif
579 580
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
581 582
	unsigned long nr_load_updates;
	u64 nr_switches;
583
	u64 nr_migrations_in;
I
Ingo Molnar 已提交
584 585

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
586 587
	struct rt_rq rt;

I
Ingo Molnar 已提交
588
#ifdef CONFIG_FAIR_GROUP_SCHED
589 590
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
591 592
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
593
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
594 595 596 597 598 599 600 601 602 603
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

604
	struct task_struct *curr, *idle;
605
	unsigned long next_balance;
L
Linus Torvalds 已提交
606
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
607

608
	u64 clock;
I
Ingo Molnar 已提交
609

L
Linus Torvalds 已提交
610 611 612
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
613
	struct root_domain *rd;
L
Linus Torvalds 已提交
614 615
	struct sched_domain *sd;

616
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
617 618 619
	/* For active balancing */
	int active_balance;
	int push_cpu;
620 621
	/* cpu of this runqueue: */
	int cpu;
622
	int online;
L
Linus Torvalds 已提交
623

624
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
625

626
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
627 628 629
	struct list_head migration_queue;
#endif

630 631 632 633
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
634
#ifdef CONFIG_SCHED_HRTICK
635 636 637 638
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
639 640 641
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
642 643 644
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
645 646
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
647 648

	/* sys_sched_yield() stats */
649
	unsigned int yld_count;
L
Linus Torvalds 已提交
650 651

	/* schedule() stats */
652 653 654
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
655 656

	/* try_to_wake_up() stats */
657 658
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
659 660

	/* BKL stats */
661
	unsigned int bkl_count;
L
Linus Torvalds 已提交
662 663 664
#endif
};

665
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
666

667
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
668
{
669
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
670 671
}

672 673 674 675 676 677 678 679 680
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
681 682
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
683
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
684 685 686 687
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
688 689
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
690 691 692 693 694 695

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
696
inline void update_rq_clock(struct rq *rq)
697 698 699 700
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
701 702 703 704 705 706 707 708 709
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
728 729 730
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
731 732 733 734

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
735
enum {
P
Peter Zijlstra 已提交
736
#include "sched_features.h"
I
Ingo Molnar 已提交
737 738
};

P
Peter Zijlstra 已提交
739 740 741 742 743
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
744
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
745 746 747 748 749 750 751 752 753
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

754
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
755 756 757 758 759 760
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
761
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
762 763 764 765
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
766 767 768
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
769
	}
L
Li Zefan 已提交
770
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
771

L
Li Zefan 已提交
772
	return 0;
P
Peter Zijlstra 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
792
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
817 818 819 820 821
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
822
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
823 824 825 826 827
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
842

843 844 845 846 847 848
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
849 850
/*
 * ratelimit for updating the group shares.
851
 * default: 0.25ms
P
Peter Zijlstra 已提交
852
 */
853
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
854

855 856 857 858 859 860 861
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
862
/*
P
Peter Zijlstra 已提交
863
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
864 865
 * default: 1s
 */
P
Peter Zijlstra 已提交
866
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
867

868 869
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
870 871 872 873 874
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
875

876 877 878 879 880 881 882
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
883
	if (sysctl_sched_rt_runtime < 0)
884 885 886 887
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
888

L
Linus Torvalds 已提交
889
#ifndef prepare_arch_switch
890 891 892 893 894 895
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

896 897 898 899 900
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

901
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
902
static inline int task_running(struct rq *rq, struct task_struct *p)
903
{
904
	return task_current(rq, p);
905 906
}

907
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
908 909 910
{
}

911
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
912
{
913 914 915 916
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
917 918 919 920 921 922 923
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

924 925 926 927
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
928
static inline int task_running(struct rq *rq, struct task_struct *p)
929 930 931 932
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
933
	return task_current(rq, p);
934 935 936
#endif
}

937
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

954
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
955 956 957 958 959 960 961 962 963 964 965 966
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
967
#endif
968 969
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
970

971 972 973 974
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
975
static inline struct rq *__task_rq_lock(struct task_struct *p)
976 977
	__acquires(rq->lock)
{
978 979 980 981 982
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
983 984 985 986
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
987 988
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
989
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
990 991
 * explicitly disabling preemption.
 */
992
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
993 994
	__acquires(rq->lock)
{
995
	struct rq *rq;
L
Linus Torvalds 已提交
996

997 998 999 1000 1001 1002
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1003 1004 1005 1006
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

1007 1008 1009 1010 1011 1012 1013 1014
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1015
static void __task_rq_unlock(struct rq *rq)
1016 1017 1018 1019 1020
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1021
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1022 1023 1024 1025 1026 1027
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1028
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1029
 */
A
Alexey Dobriyan 已提交
1030
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1031 1032
	__acquires(rq->lock)
{
1033
	struct rq *rq;
L
Linus Torvalds 已提交
1034 1035 1036 1037 1038 1039 1040 1041

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1063
	if (!cpu_active(cpu_of(rq)))
1064
		return 0;
P
Peter Zijlstra 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1085
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1086 1087 1088 1089 1090 1091
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1092
#ifdef CONFIG_SMP
1093 1094 1095 1096
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1097
{
1098
	struct rq *rq = arg;
1099

1100 1101 1102 1103
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1104 1105
}

1106 1107 1108 1109 1110 1111
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1112
{
1113 1114
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1115

1116
	hrtimer_set_expires(timer, time);
1117 1118 1119 1120

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1121
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1122 1123
		rq->hrtick_csd_pending = 1;
	}
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1138
		hrtick_clear(cpu_rq(cpu));
1139 1140 1141 1142 1143 1144
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1145
static __init void init_hrtick(void)
1146 1147 1148
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1149 1150 1151 1152 1153 1154 1155 1156
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1157
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1158
			HRTIMER_MODE_REL_PINNED, 0);
1159
}
1160

A
Andrew Morton 已提交
1161
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1162 1163
{
}
1164
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1165

1166
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1167
{
1168 1169
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1170

1171 1172 1173 1174
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1175

1176 1177
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1178
}
A
Andrew Morton 已提交
1179
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1180 1181 1182 1183 1184 1185 1186 1187
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1188 1189 1190
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1191
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1192

I
Ingo Molnar 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1206
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1207 1208 1209 1210 1211
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1212
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1213 1214
		return;

1215
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1271
	set_tsk_need_resched(rq->idle);
1272 1273 1274 1275 1276 1277

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1278
#endif /* CONFIG_NO_HZ */
1279

1280
#else /* !CONFIG_SMP */
1281
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1282 1283
{
	assert_spin_locked(&task_rq(p)->lock);
1284
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1285
}
1286
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1287

1288 1289 1290 1291 1292 1293 1294 1295
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1296 1297 1298
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1299
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1300

1301 1302 1303
/*
 * delta *= weight / lw
 */
1304
static unsigned long
1305 1306 1307 1308 1309
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1310 1311 1312 1313 1314 1315 1316
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1317 1318 1319 1320 1321

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1322
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1323
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1324 1325
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1326
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327

1328
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 1330
}

1331
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 1333
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1334
	lw->inv_weight = 0;
1335 1336
}

1337
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 1339
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1340
	lw->inv_weight = 0;
1341 1342
}

1343 1344 1345 1346
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1347
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 1349 1350 1351
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1352 1353
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 1364 1365
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1366 1367
 */
static const int prio_to_weight[40] = {
1368 1369 1370 1371 1372 1373 1374 1375
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1376 1377
};

1378 1379 1380 1381 1382 1383 1384
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1385
static const u32 prio_to_wmult[40] = {
1386 1387 1388 1389 1390 1391 1392 1393
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1394
};
1395

I
Ingo Molnar 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1421

1422 1423 1424 1425 1426 1427 1428 1429
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1430 1431
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1432 1433
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1434 1435
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1436 1437
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1438 1439
#endif

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1450
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1451
typedef int (*tg_visitor)(struct task_group *, void *);
1452 1453 1454 1455 1456

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1457
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1458 1459
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1460
	int ret;
1461 1462 1463 1464

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1465 1466 1467
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1468 1469 1470 1471 1472 1473 1474
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1475 1476 1477
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1478 1479 1480 1481 1482

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1483
out_unlock:
1484
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1485 1486

	return ret;
1487 1488
}

P
Peter Zijlstra 已提交
1489 1490 1491
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1492
}
P
Peter Zijlstra 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1503
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1504

1505 1506
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1507 1508
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1509 1510 1511 1512 1513

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1514 1515 1516 1517 1518 1519 1520

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1521 1522
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1523
{
1524 1525 1526
	unsigned long shares;
	unsigned long rq_weight;

1527
	if (!tg->se[cpu])
1528 1529
		return;

1530
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1531

1532 1533 1534 1535 1536 1537
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1538
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1539
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1540

1541 1542 1543 1544
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1545

1546
		spin_lock_irqsave(&rq->lock, flags);
1547
		tg->cfs_rq[cpu]->shares = shares;
1548

1549 1550 1551
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1552
}
1553 1554

/*
1555 1556 1557
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1558
 */
P
Peter Zijlstra 已提交
1559
static int tg_shares_up(struct task_group *tg, void *data)
1560
{
1561
	unsigned long weight, rq_weight = 0;
1562
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1563
	struct sched_domain *sd = data;
1564
	int i;
1565

1566
	for_each_cpu(i, sched_domain_span(sd)) {
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1578
		shares += tg->cfs_rq[i]->shares;
1579 1580
	}

1581 1582 1583 1584 1585
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1586

1587
	for_each_cpu(i, sched_domain_span(sd))
1588
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1589 1590

	return 0;
1591 1592 1593
}

/*
1594 1595 1596
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1597
 */
P
Peter Zijlstra 已提交
1598
static int tg_load_down(struct task_group *tg, void *data)
1599
{
1600
	unsigned long load;
P
Peter Zijlstra 已提交
1601
	long cpu = (long)data;
1602

1603 1604 1605 1606 1607 1608 1609
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1610

1611
	tg->cfs_rq[cpu]->h_load = load;
1612

P
Peter Zijlstra 已提交
1613
	return 0;
1614 1615
}

1616
static void update_shares(struct sched_domain *sd)
1617
{
P
Peter Zijlstra 已提交
1618 1619 1620 1621 1622
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1623
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1624
	}
1625 1626
}

1627 1628 1629 1630 1631 1632 1633
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1634
static void update_h_load(long cpu)
1635
{
P
Peter Zijlstra 已提交
1636
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1637 1638 1639 1640
}

#else

1641
static inline void update_shares(struct sched_domain *sd)
1642 1643 1644
{
}

1645 1646 1647 1648
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1649 1650
#endif

1651 1652
#ifdef CONFIG_PREEMPT

1653
/*
1654 1655 1656 1657 1658 1659
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1660
 */
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1715 1716 1717 1718 1719 1720
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1721 1722
#endif

V
Vegard Nossum 已提交
1723
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1724 1725
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1726
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1727 1728 1729
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1730
#endif
1731

1732 1733
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1734 1735
#include "sched_stats.h"
#include "sched_idletask.c"
1736 1737
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1738 1739 1740 1741 1742
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1743 1744
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1745

1746
static void inc_nr_running(struct rq *rq)
1747 1748 1749 1750
{
	rq->nr_running++;
}

1751
static void dec_nr_running(struct rq *rq)
1752 1753 1754 1755
{
	rq->nr_running--;
}

1756 1757 1758
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1759 1760 1761 1762
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1763

I
Ingo Molnar 已提交
1764 1765 1766 1767 1768 1769 1770 1771
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1772

I
Ingo Molnar 已提交
1773 1774
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1775 1776
}

1777 1778 1779 1780 1781 1782
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1783
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1784
{
P
Peter Zijlstra 已提交
1785 1786 1787
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1788
	sched_info_queued(p);
1789
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1790
	p->se.on_rq = 1;
1791 1792
}

1793
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1794
{
P
Peter Zijlstra 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1804 1805
	}

1806
	sched_info_dequeued(p);
1807
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1808
	p->se.on_rq = 0;
1809 1810
}

1811
/*
I
Ingo Molnar 已提交
1812
 * __normal_prio - return the priority that is based on the static prio
1813 1814 1815
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1816
	return p->static_prio;
1817 1818
}

1819 1820 1821 1822 1823 1824 1825
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1826
static inline int normal_prio(struct task_struct *p)
1827 1828 1829
{
	int prio;

1830
	if (task_has_rt_policy(p))
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1844
static int effective_prio(struct task_struct *p)
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1857
/*
I
Ingo Molnar 已提交
1858
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1859
 */
I
Ingo Molnar 已提交
1860
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1861
{
1862
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1863
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1864

1865
	enqueue_task(rq, p, wakeup);
1866
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1867 1868 1869 1870 1871
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1872
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1873
{
1874
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1875 1876
		rq->nr_uninterruptible++;

1877
	dequeue_task(rq, p, sleep);
1878
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1879 1880 1881 1882 1883 1884
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1885
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1886 1887 1888 1889
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1890 1891
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1892
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1893
#ifdef CONFIG_SMP
1894 1895 1896 1897 1898 1899
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1900 1901
	task_thread_info(p)->cpu = cpu;
#endif
1902 1903
}

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1916
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1917

1918 1919 1920 1921 1922 1923
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1924 1925 1926
/*
 * Is this task likely cache-hot:
 */
1927
static int
1928 1929 1930 1931
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1932 1933 1934
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1935 1936 1937
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1938 1939
		return 1;

1940 1941 1942
	if (p->sched_class != &fair_sched_class)
		return 0;

1943 1944 1945 1946 1947
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1948 1949 1950 1951 1952 1953
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1954
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1955
{
I
Ingo Molnar 已提交
1956 1957
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1958 1959
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1960
	u64 clock_offset;
I
Ingo Molnar 已提交
1961 1962

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1963

1964
	trace_sched_migrate_task(p, new_cpu);
1965

I
Ingo Molnar 已提交
1966 1967 1968
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1969 1970 1971 1972
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1973
#endif
1974
	if (old_cpu != new_cpu) {
1975
		p->se.nr_migrations++;
1976
		new_rq->nr_migrations_in++;
1977
#ifdef CONFIG_SCHEDSTATS
1978 1979
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
1980
#endif
1981 1982
		perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
				     1, 1, NULL, 0);
1983
	}
1984 1985
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1986 1987

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1988 1989
}

1990
struct migration_req {
L
Linus Torvalds 已提交
1991 1992
	struct list_head list;

1993
	struct task_struct *task;
L
Linus Torvalds 已提交
1994 1995 1996
	int dest_cpu;

	struct completion done;
1997
};
L
Linus Torvalds 已提交
1998 1999 2000 2001 2002

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2003
static int
2004
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2005
{
2006
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2007 2008 2009 2010 2011

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2012
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2013 2014 2015 2016 2017 2018 2019 2020
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2021

L
Linus Torvalds 已提交
2022 2023 2024
	return 1;
}

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2068 2069 2070
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2071 2072 2073 2074 2075 2076 2077
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2078 2079 2080 2081 2082 2083
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2084
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2085 2086
{
	unsigned long flags;
I
Ingo Molnar 已提交
2087
	int running, on_rq;
R
Roland McGrath 已提交
2088
	unsigned long ncsw;
2089
	struct rq *rq;
L
Linus Torvalds 已提交
2090

2091 2092 2093 2094 2095 2096 2097 2098
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2099

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2111 2112 2113
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2114
			cpu_relax();
R
Roland McGrath 已提交
2115
		}
2116

2117 2118 2119 2120 2121 2122
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2123
		trace_sched_wait_task(rq, p);
2124 2125
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2126
		ncsw = 0;
2127
		if (!match_state || p->state == match_state)
2128
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2129
		task_rq_unlock(rq, &flags);
2130

R
Roland McGrath 已提交
2131 2132 2133 2134 2135 2136
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2147

2148 2149 2150 2151 2152
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2153
		 * So if it was still runnable (but just not actively
2154 2155 2156 2157 2158 2159 2160
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2161

2162 2163 2164 2165 2166 2167 2168
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2169 2170

	return ncsw;
L
Linus Torvalds 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2186
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2196
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
2197 2198

/*
2199 2200
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2201 2202 2203 2204
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2205
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2206
{
2207
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2208
	unsigned long total = weighted_cpuload(cpu);
2209

2210
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2211
		return total;
2212

I
Ingo Molnar 已提交
2213
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2214 2215 2216
}

/*
2217 2218
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2219
 */
A
Alexey Dobriyan 已提交
2220
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2221
{
2222
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2223
	unsigned long total = weighted_cpuload(cpu);
2224

2225
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2226
		return total;
2227

I
Ingo Molnar 已提交
2228
	return max(rq->cpu_load[type-1], total);
2229 2230
}

N
Nick Piggin 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2248
		/* Skip over this group if it has no CPUs allowed */
2249 2250
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2251
			continue;
2252

2253 2254
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2255 2256 2257 2258

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2259
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2270 2271
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2272 2273 2274 2275 2276 2277 2278 2279

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2280
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2281 2282 2283 2284 2285 2286 2287

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2288
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2289
 */
I
Ingo Molnar 已提交
2290
static int
2291
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2292 2293 2294 2295 2296
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2297
	/* Traverse only the allowed CPUs */
2298
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2299
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2325

2326
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2327 2328 2329
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2330 2331
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2332 2333
		if (tmp->flags & flag)
			sd = tmp;
2334
	}
N
Nick Piggin 已提交
2335

2336 2337 2338
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2339 2340
	while (sd) {
		struct sched_group *group;
2341 2342 2343 2344 2345 2346
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2347 2348

		group = find_idlest_group(sd, t, cpu);
2349 2350 2351 2352
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2353

2354
		new_cpu = find_idlest_cpu(group, t, cpu);
2355 2356 2357 2358 2359
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2360

2361
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2362
		cpu = new_cpu;
2363
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2364 2365
		sd = NULL;
		for_each_domain(cpu, tmp) {
2366
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2378

T
Thomas Gleixner 已提交
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2414
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2415
{
2416
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2417 2418
	unsigned long flags;
	long old_state;
2419
	struct rq *rq;
L
Linus Torvalds 已提交
2420

2421 2422 2423
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2424
#ifdef CONFIG_SMP
2425
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2426 2427 2428 2429 2430 2431
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2432
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2433 2434 2435 2436 2437 2438 2439
				update_shares(sd);
				break;
			}
		}
	}
#endif

2440
	smp_wmb();
L
Linus Torvalds 已提交
2441
	rq = task_rq_lock(p, &flags);
2442
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2443 2444 2445 2446
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2447
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2448 2449 2450
		goto out_running;

	cpu = task_cpu(p);
2451
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2452 2453 2454 2455 2456 2457
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2458 2459 2460
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2461 2462 2463 2464 2465 2466
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2467
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2468 2469 2470 2471 2472 2473
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2474 2475 2476 2477 2478 2479 2480
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2481
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2482 2483 2484 2485 2486
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2487
#endif /* CONFIG_SCHEDSTATS */
2488

L
Linus Torvalds 已提交
2489 2490
out_activate:
#endif /* CONFIG_SMP */
2491 2492 2493 2494 2495 2496 2497 2498 2499
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2500
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2501 2502
	success = 1;

P
Peter Zijlstra 已提交
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2519
out_running:
2520
	trace_sched_wakeup(rq, p, success);
2521
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2522

L
Linus Torvalds 已提交
2523
	p->state = TASK_RUNNING;
2524 2525 2526 2527
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2528 2529 2530 2531 2532 2533
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2545
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2546
{
2547
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2548 2549 2550
}
EXPORT_SYMBOL(wake_up_process);

2551
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2552 2553 2554 2555 2556 2557 2558
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2559 2560 2561 2562 2563 2564 2565
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2566
	p->se.prev_sum_exec_runtime	= 0;
2567
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2568 2569
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2570 2571
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2572 2573 2574

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2575 2576 2577 2578 2579 2580
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2581
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2582
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2583
#endif
N
Nick Piggin 已提交
2584

P
Peter Zijlstra 已提交
2585
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2586
	p->se.on_rq = 0;
2587
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2588

2589 2590 2591 2592
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2593 2594 2595 2596 2597 2598 2599
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2614
	set_task_cpu(p, cpu);
2615 2616 2617 2618 2619

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2620 2621
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2622

2623
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2624
	if (likely(sched_info_on()))
2625
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2626
#endif
2627
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2628 2629
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2630
#ifdef CONFIG_PREEMPT
2631
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2632
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2633
#endif
2634 2635
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2636
	put_cpu();
L
Linus Torvalds 已提交
2637 2638 2639 2640 2641 2642 2643 2644 2645
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2646
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2647 2648
{
	unsigned long flags;
I
Ingo Molnar 已提交
2649
	struct rq *rq;
L
Linus Torvalds 已提交
2650 2651

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2652
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2653
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2654 2655 2656

	p->prio = effective_prio(p);

2657
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2658
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2659 2660
	} else {
		/*
I
Ingo Molnar 已提交
2661 2662
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2663
		 */
2664
		p->sched_class->task_new(rq, p);
2665
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2666
	}
2667
	trace_sched_wakeup_new(rq, p, 1);
2668
	check_preempt_curr(rq, p, 0);
2669 2670 2671 2672
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2673
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2674 2675
}

2676 2677 2678
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2679
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2680
 * @notifier: notifier struct to register
2681 2682 2683 2684 2685 2686 2687 2688 2689
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2690
 * @notifier: notifier struct to unregister
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2720
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2732
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2733

2734 2735 2736
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2737
 * @prev: the current task that is being switched out
2738 2739 2740 2741 2742 2743 2744 2745 2746
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2747 2748 2749
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2750
{
2751
	fire_sched_out_preempt_notifiers(prev, next);
2752 2753 2754 2755
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2756 2757
/**
 * finish_task_switch - clean up after a task-switch
2758
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2759 2760
 * @prev: the thread we just switched away from.
 *
2761 2762 2763 2764
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2765 2766
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2767
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2768 2769 2770
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2771
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2772 2773 2774
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2775
	long prev_state;
2776 2777 2778 2779 2780 2781
#ifdef CONFIG_SMP
	int post_schedule = 0;

	if (current->sched_class->needs_post_schedule)
		post_schedule = current->sched_class->needs_post_schedule(rq);
#endif
L
Linus Torvalds 已提交
2782 2783 2784 2785 2786

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2787
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2788 2789
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2790
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2791 2792 2793 2794 2795
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2796
	prev_state = prev->state;
2797
	finish_arch_switch(prev);
T
Thomas Gleixner 已提交
2798
	perf_counter_task_sched_in(current, cpu_of(rq));
2799
	finish_lock_switch(rq, prev);
2800
#ifdef CONFIG_SMP
2801
	if (post_schedule)
2802 2803
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2804

2805
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2806 2807
	if (mm)
		mmdrop(mm);
2808
	if (unlikely(prev_state == TASK_DEAD)) {
2809 2810 2811
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2812
		 */
2813
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2814
		put_task_struct(prev);
2815
	}
L
Linus Torvalds 已提交
2816 2817 2818 2819 2820 2821
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2822
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2823 2824
	__releases(rq->lock)
{
2825 2826
	struct rq *rq = this_rq();

2827 2828 2829 2830 2831
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2832
	if (current->set_child_tid)
2833
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2834 2835 2836 2837 2838 2839
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2840
static inline void
2841
context_switch(struct rq *rq, struct task_struct *prev,
2842
	       struct task_struct *next)
L
Linus Torvalds 已提交
2843
{
I
Ingo Molnar 已提交
2844
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2845

2846
	prepare_task_switch(rq, prev, next);
2847
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2848 2849
	mm = next->mm;
	oldmm = prev->active_mm;
2850 2851 2852 2853 2854
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2855
	arch_start_context_switch(prev);
2856

I
Ingo Molnar 已提交
2857
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2858 2859 2860 2861 2862 2863
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2864
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2865 2866 2867
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2868 2869 2870 2871 2872 2873 2874
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2875
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2876
#endif
L
Linus Torvalds 已提交
2877 2878 2879 2880

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2881 2882 2883 2884 2885 2886 2887
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2911
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2926 2927
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2928

2929
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2930 2931 2932 2933 2934 2935 2936 2937 2938
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2939
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2940 2941 2942 2943 2944
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2945 2946 2947 2948 2949 2950
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

2966 2967
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2968
{
2969 2970 2971 2972
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2973

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
2985

2986 2987
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
2988

2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3011 3012
}

3013 3014 3015 3016 3017 3018 3019 3020 3021
/*
 * Externally visible per-cpu scheduler statistics:
 * cpu_nr_migrations(cpu) - number of migrations into that cpu
 */
u64 cpu_nr_migrations(int cpu)
{
	return cpu_rq(cpu)->nr_migrations_in;
}

3022
/*
I
Ingo Molnar 已提交
3023 3024
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3025
 */
I
Ingo Molnar 已提交
3026
static void update_cpu_load(struct rq *this_rq)
3027
{
3028
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3041 3042 3043 3044 3045 3046 3047
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3048 3049
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3050 3051 3052 3053 3054

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3055 3056
}

I
Ingo Molnar 已提交
3057 3058
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3059 3060 3061 3062 3063 3064
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3065
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3066 3067 3068
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3069
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3070 3071 3072 3073
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3074
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3075
			spin_lock(&rq1->lock);
3076
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3077 3078
		} else {
			spin_lock(&rq2->lock);
3079
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3080 3081
		}
	}
3082 3083
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3084 3085 3086 3087 3088 3089 3090 3091
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3092
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3106
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3107 3108
 * the cpu_allowed mask is restored.
 */
3109
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3110
{
3111
	struct migration_req req;
L
Linus Torvalds 已提交
3112
	unsigned long flags;
3113
	struct rq *rq;
L
Linus Torvalds 已提交
3114 3115

	rq = task_rq_lock(p, &flags);
3116
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3117
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3118 3119 3120 3121 3122 3123
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3124

L
Linus Torvalds 已提交
3125 3126 3127 3128 3129
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3130

L
Linus Torvalds 已提交
3131 3132 3133 3134 3135 3136 3137
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3138 3139
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3140 3141 3142 3143
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
3144
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
3145
	put_cpu();
N
Nick Piggin 已提交
3146 3147
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3148 3149 3150 3151 3152 3153
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3154 3155
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3156
{
3157
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3158
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3159
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3160 3161 3162 3163
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3164
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3165 3166 3167 3168 3169
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3170
static
3171
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3172
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3173
		     int *all_pinned)
L
Linus Torvalds 已提交
3174
{
3175
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3176 3177 3178 3179 3180 3181
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3182
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3183
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3184
		return 0;
3185
	}
3186 3187
	*all_pinned = 0;

3188 3189
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3190
		return 0;
3191
	}
L
Linus Torvalds 已提交
3192

3193 3194 3195 3196 3197 3198
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3199 3200 3201
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3202
#ifdef CONFIG_SCHEDSTATS
3203
		if (tsk_cache_hot) {
3204
			schedstat_inc(sd, lb_hot_gained[idle]);
3205 3206
			schedstat_inc(p, se.nr_forced_migrations);
		}
3207 3208 3209 3210
#endif
		return 1;
	}

3211
	if (tsk_cache_hot) {
3212
		schedstat_inc(p, se.nr_failed_migrations_hot);
3213
		return 0;
3214
	}
L
Linus Torvalds 已提交
3215 3216 3217
	return 1;
}

3218 3219 3220 3221 3222
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3223
{
3224
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3225 3226
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3227

3228
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3229 3230
		goto out;

3231 3232
	pinned = 1;

L
Linus Torvalds 已提交
3233
	/*
I
Ingo Molnar 已提交
3234
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3235
	 */
I
Ingo Molnar 已提交
3236 3237
	p = iterator->start(iterator->arg);
next:
3238
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3239
		goto out;
3240 3241

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3242 3243 3244
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3245 3246
	}

I
Ingo Molnar 已提交
3247
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3248
	pulled++;
I
Ingo Molnar 已提交
3249
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3250

3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3261
	/*
3262
	 * We only want to steal up to the prescribed amount of weighted load.
3263
	 */
3264
	if (rem_load_move > 0) {
3265 3266
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3267 3268
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3269 3270 3271
	}
out:
	/*
3272
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3273 3274 3275 3276
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3277 3278 3279

	if (all_pinned)
		*all_pinned = pinned;
3280 3281

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3282 3283
}

I
Ingo Molnar 已提交
3284
/*
P
Peter Williams 已提交
3285 3286 3287
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3288 3289 3290 3291
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3292
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3293 3294 3295
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3296
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3297
	unsigned long total_load_moved = 0;
3298
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3299 3300

	do {
P
Peter Williams 已提交
3301 3302
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3303
				max_load_move - total_load_moved,
3304
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3305
		class = class->next;
3306

3307 3308 3309 3310 3311 3312
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3313 3314
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3315
#endif
P
Peter Williams 已提交
3316
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3317

P
Peter Williams 已提交
3318 3319 3320
	return total_load_moved > 0;
}

3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3357
	const struct sched_class *class;
P
Peter Williams 已提交
3358 3359

	for (class = sched_class_highest; class; class = class->next)
3360
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3361 3362 3363
			return 1;

	return 0;
I
Ingo Molnar 已提交
3364
}
3365
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3366
/*
3367 3368
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3369
 */
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3388
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3389 3390 3391 3392 3393 3394
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3395
#endif
3396
};
L
Linus Torvalds 已提交
3397

3398
/*
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3409

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3431
		load_idx = sd->busy_idx;
3432 3433 3434
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3435
		load_idx = sd->newidle_idx;
3436 3437
		break;
	default:
N
Nick Piggin 已提交
3438
		load_idx = sd->idle_idx;
3439 3440
		break;
	}
L
Linus Torvalds 已提交
3441

3442 3443
	return load_idx;
}
L
Linus Torvalds 已提交
3444 3445


3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3470

3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3484

3485 3486
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3487

3488 3489 3490 3491 3492 3493 3494
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3495

3496 3497 3498 3499 3500 3501 3502 3503
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3504

3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3518

3519 3520 3521 3522 3523 3524 3525
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
	if (sgs->sum_nr_running > sgs->group_capacity - 1)
		return;
L
Linus Torvalds 已提交
3526

3527 3528 3529 3530 3531 3532 3533
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3534

3535
/**
3536
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3537 3538 3539 3540 3541
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3542 3543 3544 3545 3546
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3547 3548 3549 3550 3551 3552 3553 3554
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3555

3556 3557 3558
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3559

3560 3561
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3562

3563 3564 3565 3566 3567 3568
	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
			group_first_cpu(sds->group_leader);
	}

	return 1;
L
Linus Torvalds 已提交
3569

3570 3571 3572 3573 3574 3575 3576
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3577

3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */


3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

	if (local_group)
		balance_cpu = group_first_cpu(group);

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3622

3623 3624
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3625

3626 3627
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3628

3629
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3630
		if (local_group) {
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3643
		}
3644

3645 3646 3647
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3648

3649 3650
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3651

3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3663

3664 3665 3666
	/* Adjust by relative CPU power of the group */
	sgs->avg_load = sg_div_cpu_power(group,
			sgs->group_load * SCHED_LOAD_SCALE);
3667

3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
	avg_load_per_task = sg_div_cpu_power(group,
			sum_avg_load_per_task * SCHED_LOAD_SCALE);

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

	sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;

}
I
Ingo Molnar 已提交
3687

3688 3689 3690 3691 3692 3693 3694 3695 3696
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3697
 */
3698 3699 3700 3701
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3702
{
3703
	struct sched_group *group = sd->groups;
3704
	struct sg_lb_stats sgs;
3705 3706
	int load_idx;

3707
	init_sd_power_savings_stats(sd, sds, idle);
3708
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3709 3710 3711 3712

	do {
		int local_group;

3713 3714
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3715
		memset(&sgs, 0, sizeof(sgs));
3716 3717
		update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3718

3719 3720
		if (local_group && balance && !(*balance))
			return;
3721

3722 3723
		sds->total_load += sgs.group_load;
		sds->total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3724 3725

		if (local_group) {
3726 3727 3728 3729 3730
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3731 3732
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3733 3734 3735 3736 3737
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3738
		}
3739

3740
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3741 3742 3743
		group = group->next;
	} while (group != sd->groups);

3744
}
L
Linus Torvalds 已提交
3745

3746 3747
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3748 3749
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3768

3769 3770 3771 3772 3773
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3774

L
Linus Torvalds 已提交
3775
	/*
3776 3777 3778
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3779
	 */
3780

3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
	pwr_now += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
	tmp = sg_div_cpu_power(sds->busiest,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->__cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		tmp = sg_div_cpu_power(sds->this,
			sds->max_load * sds->busiest->__cpu_power);
	else
		tmp = sg_div_cpu_power(sds->this,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	pwr_move += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3822 3823 3824 3825 3826
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3827
	if (sds->max_load < sds->avg_load) {
3828
		*imbalance = 0;
3829
		return fix_small_imbalance(sds, this_cpu, imbalance);
3830
	}
3831 3832

	/* Don't want to pull so many tasks that a group would go idle */
3833 3834
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3835

L
Linus Torvalds 已提交
3836
	/* How much load to actually move to equalise the imbalance */
3837 3838
	*imbalance = min(max_pull * sds->busiest->__cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->__cpu_power)
L
Linus Torvalds 已提交
3839 3840
			/ SCHED_LOAD_SCALE;

3841 3842 3843 3844 3845 3846
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3847 3848
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3849

3850
}
3851
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3852

3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3877 3878 3879 3880 3881 3882 3883
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3884

3885
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3886

3887 3888 3889 3890 3891 3892 3893
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
3904 3905
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
3906

3907 3908
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
3909

3910
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
3911 3912
		goto out_balanced;

3913
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
3914

3915 3916 3917 3918
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
3919 3920
		goto out_balanced;

3921 3922 3923 3924
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
3925

L
Linus Torvalds 已提交
3926 3927 3928 3929 3930 3931 3932 3933
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3934
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3935 3936
	 * appear as very large values with unsigned longs.
	 */
3937
	if (sds.max_load <= sds.busiest_load_per_task)
3938 3939
		goto out_balanced;

3940 3941
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
3942
	return sds.busiest;
L
Linus Torvalds 已提交
3943 3944

out_balanced:
3945 3946 3947 3948 3949 3950
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
3951
ret:
L
Linus Torvalds 已提交
3952 3953 3954 3955 3956 3957 3958
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3959
static struct rq *
I
Ingo Molnar 已提交
3960
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3961
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3962
{
3963
	struct rq *busiest = NULL, *rq;
3964
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3965 3966
	int i;

3967
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3968
		unsigned long wl;
3969

3970
		if (!cpumask_test_cpu(i, cpus))
3971 3972
			continue;

3973
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3974
		wl = weighted_cpuload(i);
3975

I
Ingo Molnar 已提交
3976
		if (rq->nr_running == 1 && wl > imbalance)
3977
			continue;
L
Linus Torvalds 已提交
3978

I
Ingo Molnar 已提交
3979 3980
		if (wl > max_load) {
			max_load = wl;
3981
			busiest = rq;
L
Linus Torvalds 已提交
3982 3983 3984 3985 3986 3987
		}
	}

	return busiest;
}

3988 3989 3990 3991 3992 3993
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

3994 3995 3996
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
3997 3998 3999 4000
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4001
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4002
			struct sched_domain *sd, enum cpu_idle_type idle,
4003
			int *balance)
L
Linus Torvalds 已提交
4004
{
P
Peter Williams 已提交
4005
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4006 4007
	struct sched_group *group;
	unsigned long imbalance;
4008
	struct rq *busiest;
4009
	unsigned long flags;
4010
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4011

4012
	cpumask_setall(cpus);
4013

4014 4015 4016
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4017
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4018
	 * portraying it as CPU_NOT_IDLE.
4019
	 */
I
Ingo Molnar 已提交
4020
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4021
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4022
		sd_idle = 1;
L
Linus Torvalds 已提交
4023

4024
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4025

4026
redo:
4027
	update_shares(sd);
4028
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4029
				   cpus, balance);
4030

4031
	if (*balance == 0)
4032 4033
		goto out_balanced;

L
Linus Torvalds 已提交
4034 4035 4036 4037 4038
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4039
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4040 4041 4042 4043 4044
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4045
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4046 4047 4048

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4049
	ld_moved = 0;
L
Linus Torvalds 已提交
4050 4051 4052 4053
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4054
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4055 4056
		 * correctly treated as an imbalance.
		 */
4057
		local_irq_save(flags);
N
Nick Piggin 已提交
4058
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4059
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4060
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4061
		double_rq_unlock(this_rq, busiest);
4062
		local_irq_restore(flags);
4063

4064 4065 4066
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4067
		if (ld_moved && this_cpu != smp_processor_id())
4068 4069
			resched_cpu(this_cpu);

4070
		/* All tasks on this runqueue were pinned by CPU affinity */
4071
		if (unlikely(all_pinned)) {
4072 4073
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4074
				goto redo;
4075
			goto out_balanced;
4076
		}
L
Linus Torvalds 已提交
4077
	}
4078

P
Peter Williams 已提交
4079
	if (!ld_moved) {
L
Linus Torvalds 已提交
4080 4081 4082 4083 4084
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4085
			spin_lock_irqsave(&busiest->lock, flags);
4086 4087 4088 4089

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4090 4091
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4092
				spin_unlock_irqrestore(&busiest->lock, flags);
4093 4094 4095 4096
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4097 4098 4099
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4100
				active_balance = 1;
L
Linus Torvalds 已提交
4101
			}
4102
			spin_unlock_irqrestore(&busiest->lock, flags);
4103
			if (active_balance)
L
Linus Torvalds 已提交
4104 4105 4106 4107 4108 4109
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4110
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4111
		}
4112
	} else
L
Linus Torvalds 已提交
4113 4114
		sd->nr_balance_failed = 0;

4115
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4116 4117
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4118 4119 4120 4121 4122 4123 4124 4125 4126
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4127 4128
	}

P
Peter Williams 已提交
4129
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4130
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4131 4132 4133
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4134 4135 4136 4137

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4138
	sd->nr_balance_failed = 0;
4139 4140

out_one_pinned:
L
Linus Torvalds 已提交
4141
	/* tune up the balancing interval */
4142 4143
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4144 4145
		sd->balance_interval *= 2;

4146
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4147
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4148 4149 4150 4151
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4152 4153
	if (ld_moved)
		update_shares(sd);
4154
	return ld_moved;
L
Linus Torvalds 已提交
4155 4156 4157 4158 4159 4160
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4161
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4162 4163
 * this_rq is locked.
 */
4164
static int
4165
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4166 4167
{
	struct sched_group *group;
4168
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4169
	unsigned long imbalance;
P
Peter Williams 已提交
4170
	int ld_moved = 0;
N
Nick Piggin 已提交
4171
	int sd_idle = 0;
4172
	int all_pinned = 0;
4173
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4174

4175
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4176

4177 4178 4179 4180
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4181
	 * portraying it as CPU_NOT_IDLE.
4182 4183 4184
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4185
		sd_idle = 1;
L
Linus Torvalds 已提交
4186

4187
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4188
redo:
4189
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4190
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4191
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4192
	if (!group) {
I
Ingo Molnar 已提交
4193
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4194
		goto out_balanced;
L
Linus Torvalds 已提交
4195 4196
	}

4197
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4198
	if (!busiest) {
I
Ingo Molnar 已提交
4199
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4200
		goto out_balanced;
L
Linus Torvalds 已提交
4201 4202
	}

N
Nick Piggin 已提交
4203 4204
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4205
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4206

P
Peter Williams 已提交
4207
	ld_moved = 0;
4208 4209 4210
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4211 4212
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4213
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4214 4215
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4216
		double_unlock_balance(this_rq, busiest);
4217

4218
		if (unlikely(all_pinned)) {
4219 4220
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4221 4222
				goto redo;
		}
4223 4224
	}

P
Peter Williams 已提交
4225
	if (!ld_moved) {
4226
		int active_balance = 0;
4227

I
Ingo Molnar 已提交
4228
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4229 4230
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4231
			return -1;
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4268
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4281 4282 4283 4284
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4285 4286
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4287
		spin_lock(&this_rq->lock);
4288

N
Nick Piggin 已提交
4289
	} else
4290
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4291

4292
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4293
	return ld_moved;
4294 4295

out_balanced:
I
Ingo Molnar 已提交
4296
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4297
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4298
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4299
		return -1;
4300
	sd->nr_balance_failed = 0;
4301

4302
	return 0;
L
Linus Torvalds 已提交
4303 4304 4305 4306 4307 4308
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4309
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4310 4311
{
	struct sched_domain *sd;
4312
	int pulled_task = 0;
I
Ingo Molnar 已提交
4313
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4314 4315

	for_each_domain(this_cpu, sd) {
4316 4317 4318 4319 4320 4321
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4322
			/* If we've pulled tasks over stop searching: */
4323
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4324
							   sd);
4325 4326 4327 4328 4329 4330

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4331
	}
I
Ingo Molnar 已提交
4332
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4333 4334 4335 4336 4337
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4338
	}
L
Linus Torvalds 已提交
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4349
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4350
{
4351
	int target_cpu = busiest_rq->push_cpu;
4352 4353
	struct sched_domain *sd;
	struct rq *target_rq;
4354

4355
	/* Is there any task to move? */
4356 4357 4358 4359
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4360 4361

	/*
4362
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4363
	 * we need to fix it. Originally reported by
4364
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4365
	 */
4366
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4367

4368 4369
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4370 4371
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4372 4373

	/* Search for an sd spanning us and the target CPU. */
4374
	for_each_domain(target_cpu, sd) {
4375
		if ((sd->flags & SD_LOAD_BALANCE) &&
4376
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4377
				break;
4378
	}
4379

4380
	if (likely(sd)) {
4381
		schedstat_inc(sd, alb_count);
4382

P
Peter Williams 已提交
4383 4384
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4385 4386 4387 4388
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4389
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4390 4391
}

4392 4393 4394
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4395
	cpumask_var_t cpu_mask;
4396
	cpumask_var_t ilb_grp_nohz_mask;
4397 4398 4399 4400
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4401 4402 4403 4404 4405
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4517
	return cpumask_first(nohz.cpu_mask);
4518 4519 4520
}
#endif

4521
/*
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4532
 *
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4548 4549 4550 4551 4552 4553 4554 4555
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4556 4557
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4558

4559 4560 4561
			return 0;
		}

4562 4563
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4564
		/* time for ilb owner also to sleep */
4565
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4566 4567 4568 4569 4570 4571 4572 4573 4574
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4591
			return 1;
4592
		}
4593
	} else {
4594
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4595 4596
			return 0;

4597
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4610 4611 4612 4613 4614
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4615
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4616
{
4617 4618
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4619 4620
	unsigned long interval;
	struct sched_domain *sd;
4621
	/* Earliest time when we have to do rebalance again */
4622
	unsigned long next_balance = jiffies + 60*HZ;
4623
	int update_next_balance = 0;
4624
	int need_serialize;
L
Linus Torvalds 已提交
4625

4626
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4627 4628 4629 4630
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4631
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4632 4633 4634 4635 4636 4637
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4638 4639 4640
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4641
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4642

4643
		if (need_serialize) {
4644 4645 4646 4647
			if (!spin_trylock(&balancing))
				goto out;
		}

4648
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4649
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4650 4651
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4652 4653 4654
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4655
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4656
			}
4657
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4658
		}
4659
		if (need_serialize)
4660 4661
			spin_unlock(&balancing);
out:
4662
		if (time_after(next_balance, sd->last_balance + interval)) {
4663
			next_balance = sd->last_balance + interval;
4664 4665
			update_next_balance = 1;
		}
4666 4667 4668 4669 4670 4671 4672 4673

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4674
	}
4675 4676 4677 4678 4679 4680 4681 4682

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4683 4684 4685 4686 4687 4688 4689 4690 4691
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4692 4693 4694 4695
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4696

I
Ingo Molnar 已提交
4697
	rebalance_domains(this_cpu, idle);
4698 4699 4700 4701 4702 4703 4704

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4705 4706
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4707 4708 4709
		struct rq *rq;
		int balance_cpu;

4710 4711 4712 4713
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4714 4715 4716 4717 4718 4719 4720 4721
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4722
			rebalance_domains(balance_cpu, CPU_IDLE);
4723 4724

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4725 4726
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4727 4728 4729 4730 4731
		}
	}
#endif
}

4732 4733 4734 4735 4736
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4737 4738 4739 4740 4741 4742 4743
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4744
static inline void trigger_load_balance(struct rq *rq, int cpu)
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4756
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4757 4758 4759 4760
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4761
			int ilb = find_new_ilb(cpu);
4762

4763
			if (ilb < nr_cpu_ids)
4764 4765 4766 4767 4768 4769 4770 4771 4772
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4773
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4774 4775 4776 4777 4778 4779 4780 4781 4782
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4783
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4784 4785
		return;
#endif
4786 4787 4788
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4789
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4790
}
I
Ingo Molnar 已提交
4791 4792 4793

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4794 4795 4796
/*
 * on UP we do not need to balance between CPUs:
 */
4797
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4798 4799
{
}
I
Ingo Molnar 已提交
4800

L
Linus Torvalds 已提交
4801 4802 4803 4804 4805 4806 4807
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4808
 * Return any ns on the sched_clock that have not yet been accounted in
4809
 * @p in case that task is currently running.
4810 4811
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4812
 */
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4827
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4828 4829
{
	unsigned long flags;
4830
	struct rq *rq;
4831
	u64 ns = 0;
4832

4833
	rq = task_rq_lock(p, &flags);
4834 4835
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4836

4837 4838
	return ns;
}
4839

4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4857

4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4877
	task_rq_unlock(rq, &flags);
4878

L
Linus Torvalds 已提交
4879 4880 4881 4882 4883 4884 4885
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4886
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4887
 */
4888 4889
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4890 4891 4892 4893
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4894
	/* Add user time to process. */
L
Linus Torvalds 已提交
4895
	p->utime = cputime_add(p->utime, cputime);
4896
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4897
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4898 4899 4900 4901 4902 4903 4904

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4905 4906

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4907 4908
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4909 4910
}

4911 4912 4913 4914
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4915
 * @cputime_scaled: cputime scaled by cpu frequency
4916
 */
4917 4918
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4919 4920 4921 4922 4923 4924
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4925
	/* Add guest time to process. */
4926
	p->utime = cputime_add(p->utime, cputime);
4927
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4928
	account_group_user_time(p, cputime);
4929 4930
	p->gtime = cputime_add(p->gtime, cputime);

4931
	/* Add guest time to cpustat. */
4932 4933 4934 4935
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
4936 4937 4938 4939 4940
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
4941
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4942 4943
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
4944
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4945 4946 4947 4948
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4949
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4950
		account_guest_time(p, cputime, cputime_scaled);
4951 4952
		return;
	}
4953

4954
	/* Add system time to process. */
L
Linus Torvalds 已提交
4955
	p->stime = cputime_add(p->stime, cputime);
4956
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4957
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4958 4959 4960 4961 4962 4963 4964 4965

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
4966 4967
		cpustat->system = cputime64_add(cpustat->system, tmp);

4968 4969
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
4970 4971 4972 4973
	/* Account for system time used */
	acct_update_integrals(p);
}

4974
/*
L
Linus Torvalds 已提交
4975 4976
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
4977
 */
4978
void account_steal_time(cputime_t cputime)
4979
{
4980 4981 4982 4983
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4984 4985
}

L
Linus Torvalds 已提交
4986
/*
4987 4988
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
4989
 */
4990
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
4991 4992
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4993
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
4994
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4995

4996 4997 4998 4999
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5000 5001
}

5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
5017
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5041 5042
}

5043 5044
#endif

5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5115
	struct task_struct *curr = rq->curr;
5116 5117

	sched_clock_tick();
I
Ingo Molnar 已提交
5118 5119

	spin_lock(&rq->lock);
5120
	update_rq_clock(rq);
5121
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5122
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5123
	spin_unlock(&rq->lock);
5124

5125 5126
	perf_counter_task_tick(curr, cpu);

5127
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5128 5129
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5130
#endif
L
Linus Torvalds 已提交
5131 5132
}

5133
notrace unsigned long get_parent_ip(unsigned long addr)
5134 5135 5136 5137 5138 5139 5140 5141
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5142

5143 5144 5145
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5146
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5147
{
5148
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5149 5150 5151
	/*
	 * Underflow?
	 */
5152 5153
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5154
#endif
L
Linus Torvalds 已提交
5155
	preempt_count() += val;
5156
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5157 5158 5159
	/*
	 * Spinlock count overflowing soon?
	 */
5160 5161
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5162 5163 5164
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5165 5166 5167
}
EXPORT_SYMBOL(add_preempt_count);

5168
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5169
{
5170
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5171 5172 5173
	/*
	 * Underflow?
	 */
5174
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5175
		return;
L
Linus Torvalds 已提交
5176 5177 5178
	/*
	 * Is the spinlock portion underflowing?
	 */
5179 5180 5181
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5182
#endif
5183

5184 5185
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5186 5187 5188 5189 5190 5191 5192
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5193
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5194
 */
I
Ingo Molnar 已提交
5195
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5196
{
5197 5198 5199 5200 5201
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5202
	debug_show_held_locks(prev);
5203
	print_modules();
I
Ingo Molnar 已提交
5204 5205
	if (irqs_disabled())
		print_irqtrace_events(prev);
5206 5207 5208 5209 5210

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5211
}
L
Linus Torvalds 已提交
5212

I
Ingo Molnar 已提交
5213 5214 5215 5216 5217
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5218
	/*
I
Ingo Molnar 已提交
5219
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5220 5221 5222
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5223
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5224 5225
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5226 5227
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5228
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5229 5230
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5231 5232
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5233 5234
	}
#endif
I
Ingo Molnar 已提交
5235 5236
}

M
Mike Galbraith 已提交
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
5259 5260 5261 5262
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5263
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5264
{
5265
	const struct sched_class *class;
I
Ingo Molnar 已提交
5266
	struct task_struct *p;
L
Linus Torvalds 已提交
5267 5268

	/*
I
Ingo Molnar 已提交
5269 5270
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5271
	 */
I
Ingo Molnar 已提交
5272
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5273
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5274 5275
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5276 5277
	}

I
Ingo Molnar 已提交
5278 5279
	class = sched_class_highest;
	for ( ; ; ) {
5280
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5281 5282 5283 5284 5285 5286 5287 5288 5289
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5290

I
Ingo Molnar 已提交
5291 5292 5293
/*
 * schedule() is the main scheduler function.
 */
5294
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5295 5296
{
	struct task_struct *prev, *next;
5297
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5298
	struct rq *rq;
5299
	int cpu;
I
Ingo Molnar 已提交
5300

5301 5302
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5313

5314
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5315
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5316

5317
	spin_lock_irq(&rq->lock);
5318
	update_rq_clock(rq);
5319
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5320 5321

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5322
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5323
			prev->state = TASK_RUNNING;
5324
		else
5325
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5326
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5327 5328
	}

5329 5330 5331 5332
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
5333

I
Ingo Molnar 已提交
5334
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5335 5336
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5337
	put_prev_task(rq, prev);
5338
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5339 5340

	if (likely(prev != next)) {
5341
		sched_info_switch(prev, next);
5342
		perf_counter_task_sched_out(prev, next, cpu);
5343

L
Linus Torvalds 已提交
5344 5345 5346 5347
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5348
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5349 5350 5351 5352 5353 5354
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5355 5356 5357
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
5358
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5359
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5360

L
Linus Torvalds 已提交
5361
	preempt_enable_no_resched();
5362
	if (need_resched())
L
Linus Torvalds 已提交
5363 5364 5365 5366
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5428 5429
#ifdef CONFIG_PREEMPT
/*
5430
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5431
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5432 5433 5434 5435 5436
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5437

L
Linus Torvalds 已提交
5438 5439
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5440
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5441
	 */
N
Nick Piggin 已提交
5442
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5443 5444
		return;

5445 5446 5447 5448
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5449

5450 5451 5452 5453 5454
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5455
	} while (need_resched());
L
Linus Torvalds 已提交
5456 5457 5458 5459
}
EXPORT_SYMBOL(preempt_schedule);

/*
5460
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5461 5462 5463 5464 5465 5466 5467
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5468

5469
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5470 5471
	BUG_ON(ti->preempt_count || !irqs_disabled());

5472 5473 5474 5475 5476 5477
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5478

5479 5480 5481 5482 5483
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5484
	} while (need_resched());
L
Linus Torvalds 已提交
5485 5486 5487 5488
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
5489 5490
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
5491
{
5492
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
5493 5494 5495 5496
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5497 5498
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5499 5500 5501
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5502
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5503 5504
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5505
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5506
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
5507
{
5508
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5509

5510
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5511 5512
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
5513
		if (curr->func(curr, mode, sync, key) &&
5514
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5515 5516 5517 5518 5519 5520 5521 5522 5523
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5524
 * @key: is directly passed to the wakeup function
5525 5526 5527
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5528
 */
5529
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5530
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5543
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5544 5545 5546 5547
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5548 5549 5550 5551 5552
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5553
/**
5554
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5555 5556 5557
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5558
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5559 5560 5561 5562 5563 5564 5565
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5566 5567 5568
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5569
 */
5570 5571
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
5583
	__wake_up_common(q, mode, nr_exclusive, sync, key);
L
Linus Torvalds 已提交
5584 5585
	spin_unlock_irqrestore(&q->lock, flags);
}
5586 5587 5588 5589 5590 5591 5592 5593 5594
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5595 5596
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5597 5598 5599 5600 5601 5602 5603 5604
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5605 5606 5607
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5608
 */
5609
void complete(struct completion *x)
L
Linus Torvalds 已提交
5610 5611 5612 5613 5614
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5615
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5616 5617 5618 5619
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5620 5621 5622 5623 5624
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5625 5626 5627
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5628
 */
5629
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5630 5631 5632 5633 5634
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5635
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5636 5637 5638 5639
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5640 5641
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5642 5643 5644 5645 5646 5647 5648
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5649
			if (signal_pending_state(state, current)) {
5650 5651
				timeout = -ERESTARTSYS;
				break;
5652 5653
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5654 5655 5656
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5657
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5658
		__remove_wait_queue(&x->wait, &wait);
5659 5660
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5661 5662
	}
	x->done--;
5663
	return timeout ?: 1;
L
Linus Torvalds 已提交
5664 5665
}

5666 5667
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5668 5669 5670 5671
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5672
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5673
	spin_unlock_irq(&x->wait.lock);
5674 5675
	return timeout;
}
L
Linus Torvalds 已提交
5676

5677 5678 5679 5680 5681 5682 5683 5684 5685 5686
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5687
void __sched wait_for_completion(struct completion *x)
5688 5689
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5690
}
5691
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5692

5693 5694 5695 5696 5697 5698 5699 5700 5701
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5702
unsigned long __sched
5703
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5704
{
5705
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5706
}
5707
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5708

5709 5710 5711 5712 5713 5714 5715
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5716
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5717
{
5718 5719 5720 5721
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5722
}
5723
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5724

5725 5726 5727 5728 5729 5730 5731 5732
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5733
unsigned long __sched
5734 5735
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5736
{
5737
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5738
}
5739
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5740

5741 5742 5743 5744 5745 5746 5747
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5748 5749 5750 5751 5752 5753 5754 5755 5756
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5803 5804
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5805
{
I
Ingo Molnar 已提交
5806 5807 5808 5809
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5810

5811
	__set_current_state(state);
L
Linus Torvalds 已提交
5812

5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5827 5828 5829
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5830
long __sched
I
Ingo Molnar 已提交
5831
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5832
{
5833
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5834 5835 5836
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5837
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5838
{
5839
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5840 5841 5842
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5843
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5844
{
5845
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5846 5847 5848
}
EXPORT_SYMBOL(sleep_on_timeout);

5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5861
void rt_mutex_setprio(struct task_struct *p, int prio)
5862 5863
{
	unsigned long flags;
5864
	int oldprio, on_rq, running;
5865
	struct rq *rq;
5866
	const struct sched_class *prev_class = p->sched_class;
5867 5868 5869 5870

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5871
	update_rq_clock(rq);
5872

5873
	oldprio = p->prio;
I
Ingo Molnar 已提交
5874
	on_rq = p->se.on_rq;
5875
	running = task_current(rq, p);
5876
	if (on_rq)
5877
		dequeue_task(rq, p, 0);
5878 5879
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5880 5881 5882 5883 5884 5885

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5886 5887
	p->prio = prio;

5888 5889
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5890
	if (on_rq) {
5891
		enqueue_task(rq, p, 0);
5892 5893

		check_class_changed(rq, p, prev_class, oldprio, running);
5894 5895 5896 5897 5898 5899
	}
	task_rq_unlock(rq, &flags);
}

#endif

5900
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5901
{
I
Ingo Molnar 已提交
5902
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5903
	unsigned long flags;
5904
	struct rq *rq;
L
Linus Torvalds 已提交
5905 5906 5907 5908 5909 5910 5911 5912

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5913
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5914 5915 5916 5917
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5918
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5919
	 */
5920
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5921 5922 5923
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5924
	on_rq = p->se.on_rq;
5925
	if (on_rq)
5926
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5927 5928

	p->static_prio = NICE_TO_PRIO(nice);
5929
	set_load_weight(p);
5930 5931 5932
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5933

I
Ingo Molnar 已提交
5934
	if (on_rq) {
5935
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5936
		/*
5937 5938
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5939
		 */
5940
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5941 5942 5943 5944 5945 5946 5947
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5948 5949 5950 5951 5952
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5953
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5954
{
5955 5956
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5957

M
Matt Mackall 已提交
5958 5959 5960 5961
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5962 5963 5964 5965 5966 5967 5968 5969 5970
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
5971
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
5972
{
5973
	long nice, retval;
L
Linus Torvalds 已提交
5974 5975 5976 5977 5978 5979

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5980 5981
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5982 5983 5984
	if (increment > 40)
		increment = 40;

5985
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
5986 5987 5988 5989 5990
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5991 5992 5993
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6012
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6013 6014 6015 6016 6017 6018 6019 6020
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6021
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6022 6023 6024
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6025
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6040
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6041 6042 6043 6044 6045 6046 6047 6048
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6049
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6050
{
6051
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6052 6053 6054
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6055 6056
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6057
{
I
Ingo Molnar 已提交
6058
	BUG_ON(p->se.on_rq);
6059

L
Linus Torvalds 已提交
6060
	p->policy = policy;
I
Ingo Molnar 已提交
6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
6073
	p->rt_priority = prio;
6074 6075 6076
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6077
	set_load_weight(p);
L
Linus Torvalds 已提交
6078 6079
}

6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6096 6097
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6098
{
6099
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6100
	unsigned long flags;
6101
	const struct sched_class *prev_class = p->sched_class;
6102
	struct rq *rq;
L
Linus Torvalds 已提交
6103

6104 6105
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6106 6107 6108 6109 6110
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
6111 6112
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
6113
		return -EINVAL;
L
Linus Torvalds 已提交
6114 6115
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6116 6117
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6118 6119
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6120
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6121
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6122
		return -EINVAL;
6123
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6124 6125
		return -EINVAL;

6126 6127 6128
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6129
	if (user && !capable(CAP_SYS_NICE)) {
6130
		if (rt_policy(policy)) {
6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6147 6148 6149 6150 6151 6152
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6153

6154
		/* can't change other user's priorities */
6155
		if (!check_same_owner(p))
6156 6157
			return -EPERM;
	}
L
Linus Torvalds 已提交
6158

6159
	if (user) {
6160
#ifdef CONFIG_RT_GROUP_SCHED
6161 6162 6163 6164
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6165 6166
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6167
			return -EPERM;
6168 6169
#endif

6170 6171 6172 6173 6174
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6175 6176 6177 6178 6179
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6180 6181 6182 6183
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6184
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6185 6186 6187
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6188 6189
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6190 6191
		goto recheck;
	}
I
Ingo Molnar 已提交
6192
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6193
	on_rq = p->se.on_rq;
6194
	running = task_current(rq, p);
6195
	if (on_rq)
6196
		deactivate_task(rq, p, 0);
6197 6198
	if (running)
		p->sched_class->put_prev_task(rq, p);
6199

L
Linus Torvalds 已提交
6200
	oldprio = p->prio;
I
Ingo Molnar 已提交
6201
	__setscheduler(rq, p, policy, param->sched_priority);
6202

6203 6204
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6205 6206
	if (on_rq) {
		activate_task(rq, p, 0);
6207 6208

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6209
	}
6210 6211 6212
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6213 6214
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6215 6216
	return 0;
}
6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6231 6232
EXPORT_SYMBOL_GPL(sched_setscheduler);

6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6250 6251
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6252 6253 6254
{
	struct sched_param lparam;
	struct task_struct *p;
6255
	int retval;
L
Linus Torvalds 已提交
6256 6257 6258 6259 6260

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6261 6262 6263

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6264
	p = find_process_by_pid(pid);
6265 6266 6267
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6268

L
Linus Torvalds 已提交
6269 6270 6271 6272 6273 6274 6275 6276 6277
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6278 6279
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6280
{
6281 6282 6283 6284
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6285 6286 6287 6288 6289 6290 6291 6292
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6293
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6294 6295 6296 6297 6298 6299 6300 6301
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6302
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6303
{
6304
	struct task_struct *p;
6305
	int retval;
L
Linus Torvalds 已提交
6306 6307

	if (pid < 0)
6308
		return -EINVAL;
L
Linus Torvalds 已提交
6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6327
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6328 6329
{
	struct sched_param lp;
6330
	struct task_struct *p;
6331
	int retval;
L
Linus Torvalds 已提交
6332 6333

	if (!param || pid < 0)
6334
		return -EINVAL;
L
Linus Torvalds 已提交
6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6361
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6362
{
6363
	cpumask_var_t cpus_allowed, new_mask;
6364 6365
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6366

6367
	get_online_cpus();
L
Linus Torvalds 已提交
6368 6369 6370 6371 6372
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6373
		put_online_cpus();
L
Linus Torvalds 已提交
6374 6375 6376 6377 6378
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6379
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6380 6381 6382 6383 6384
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6385 6386 6387 6388 6389 6390 6391 6392
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6393
	retval = -EPERM;
6394
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6395 6396
		goto out_unlock;

6397 6398 6399 6400
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6401 6402
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6403
 again:
6404
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6405

P
Paul Menage 已提交
6406
	if (!retval) {
6407 6408
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6409 6410 6411 6412 6413
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6414
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6415 6416 6417
			goto again;
		}
	}
L
Linus Torvalds 已提交
6418
out_unlock:
6419 6420 6421 6422
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6423
	put_task_struct(p);
6424
	put_online_cpus();
L
Linus Torvalds 已提交
6425 6426 6427 6428
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6429
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6430
{
6431 6432 6433 6434 6435
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6436 6437 6438 6439 6440 6441 6442 6443 6444
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6445 6446
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6447
{
6448
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6449 6450
	int retval;

6451 6452
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6453

6454 6455 6456 6457 6458
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6459 6460
}

6461
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6462
{
6463
	struct task_struct *p;
L
Linus Torvalds 已提交
6464 6465
	int retval;

6466
	get_online_cpus();
L
Linus Torvalds 已提交
6467 6468 6469 6470 6471 6472 6473
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6474 6475 6476 6477
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6478
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6479 6480 6481

out_unlock:
	read_unlock(&tasklist_lock);
6482
	put_online_cpus();
L
Linus Torvalds 已提交
6483

6484
	return retval;
L
Linus Torvalds 已提交
6485 6486 6487 6488 6489 6490 6491 6492
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6493 6494
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6495 6496
{
	int ret;
6497
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6498

6499
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6500 6501
		return -EINVAL;

6502 6503
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6504

6505 6506 6507 6508 6509 6510 6511 6512
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6513

6514
	return ret;
L
Linus Torvalds 已提交
6515 6516 6517 6518 6519
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6520 6521
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6522
 */
6523
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6524
{
6525
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6526

6527
	schedstat_inc(rq, yld_count);
6528
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6529 6530 6531 6532 6533 6534

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6535
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6536 6537 6538 6539 6540 6541 6542 6543
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
6544
static void __cond_resched(void)
L
Linus Torvalds 已提交
6545
{
6546 6547 6548
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
6549 6550 6551 6552 6553
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
6554 6555 6556 6557 6558 6559 6560
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

6561
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6562
{
6563 6564
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
6565 6566 6567 6568 6569
		__cond_resched();
		return 1;
	}
	return 0;
}
6570
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6571 6572 6573 6574 6575

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6576
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6577 6578 6579
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
6580
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6581
{
N
Nick Piggin 已提交
6582
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
6583 6584
	int ret = 0;

N
Nick Piggin 已提交
6585
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6586
		spin_unlock(lock);
N
Nick Piggin 已提交
6587 6588 6589 6590
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6591
		ret = 1;
L
Linus Torvalds 已提交
6592 6593
		spin_lock(lock);
	}
J
Jan Kara 已提交
6594
	return ret;
L
Linus Torvalds 已提交
6595 6596 6597 6598 6599 6600 6601
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

6602
	if (need_resched() && system_state == SYSTEM_RUNNING) {
6603
		local_bh_enable();
L
Linus Torvalds 已提交
6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
6615
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6616 6617 6618 6619 6620 6621 6622 6623 6624 6625
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6626
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6627 6628 6629 6630 6631 6632 6633
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6634
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6635

6636
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6637 6638 6639
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
6640
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6641 6642 6643 6644 6645
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6646
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6647 6648
	long ret;

6649
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6650 6651 6652
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
6653
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6654 6655 6656 6657 6658 6659 6660 6661 6662 6663
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6664
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6665 6666 6667 6668 6669 6670 6671 6672 6673
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6674
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6675
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6689
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6690 6691 6692 6693 6694 6695 6696 6697 6698
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6699
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6700
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6714
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6715
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6716
{
6717
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6718
	unsigned int time_slice;
6719
	int retval;
L
Linus Torvalds 已提交
6720 6721 6722
	struct timespec t;

	if (pid < 0)
6723
		return -EINVAL;
L
Linus Torvalds 已提交
6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6735 6736 6737 6738 6739 6740
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6741
		time_slice = DEF_TIMESLICE;
6742
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6743 6744 6745 6746 6747
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6748 6749
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6750 6751
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6752
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6753
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6754 6755
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6756

L
Linus Torvalds 已提交
6757 6758 6759 6760 6761
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6762
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6763

6764
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6765 6766
{
	unsigned long free = 0;
6767
	unsigned state;
L
Linus Torvalds 已提交
6768 6769

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6770
	printk(KERN_INFO "%-13.13s %c", p->comm,
6771
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6772
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6773
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6774
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6775
	else
I
Ingo Molnar 已提交
6776
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6777 6778
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6779
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6780
	else
I
Ingo Molnar 已提交
6781
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6782 6783
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6784
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6785
#endif
6786 6787 6788
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6789

6790
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6791 6792
}

I
Ingo Molnar 已提交
6793
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6794
{
6795
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6796

6797 6798 6799
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6800
#else
6801 6802
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6803 6804 6805 6806 6807 6808 6809 6810
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6811
		if (!state_filter || (p->state & state_filter))
6812
			sched_show_task(p);
L
Linus Torvalds 已提交
6813 6814
	} while_each_thread(g, p);

6815 6816
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6817 6818 6819
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6820
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6821 6822 6823 6824 6825
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6826 6827
}

I
Ingo Molnar 已提交
6828 6829
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6830
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6831 6832
}

6833 6834 6835 6836 6837 6838 6839 6840
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6841
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6842
{
6843
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6844 6845
	unsigned long flags;

6846 6847
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6848 6849 6850
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6851
	idle->prio = idle->normal_prio = MAX_PRIO;
6852
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6853
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6854 6855

	rq->curr = rq->idle = idle;
6856 6857 6858
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6859 6860 6861
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6862 6863 6864
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6865
	task_thread_info(idle)->preempt_count = 0;
6866
#endif
I
Ingo Molnar 已提交
6867 6868 6869 6870
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6871
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6872 6873 6874 6875 6876 6877 6878
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6879
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6880
 */
6881
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6882

I
Ingo Molnar 已提交
6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6906 6907

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6908 6909
}

L
Linus Torvalds 已提交
6910 6911 6912 6913
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6914
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6933
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6934 6935
 * call is not atomic; no spinlocks may be held.
 */
6936
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6937
{
6938
	struct migration_req req;
L
Linus Torvalds 已提交
6939
	unsigned long flags;
6940
	struct rq *rq;
6941
	int ret = 0;
L
Linus Torvalds 已提交
6942 6943

	rq = task_rq_lock(p, &flags);
6944
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6945 6946 6947 6948
		ret = -EINVAL;
		goto out;
	}

6949
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6950
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6951 6952 6953 6954
		ret = -EINVAL;
		goto out;
	}

6955
	if (p->sched_class->set_cpus_allowed)
6956
		p->sched_class->set_cpus_allowed(p, new_mask);
6957
	else {
6958 6959
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6960 6961
	}

L
Linus Torvalds 已提交
6962
	/* Can the task run on the task's current CPU? If so, we're done */
6963
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6964 6965
		goto out;

R
Rusty Russell 已提交
6966
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6967 6968 6969 6970 6971 6972 6973 6974 6975
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6976

L
Linus Torvalds 已提交
6977 6978
	return ret;
}
6979
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6980 6981

/*
I
Ingo Molnar 已提交
6982
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6983 6984 6985 6986 6987 6988
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6989 6990
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6991
 */
6992
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6993
{
6994
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6995
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6996

6997
	if (unlikely(!cpu_active(dest_cpu)))
6998
		return ret;
L
Linus Torvalds 已提交
6999 7000 7001 7002 7003 7004 7005

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7006
		goto done;
L
Linus Torvalds 已提交
7007
	/* Affinity changed (again). */
7008
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7009
		goto fail;
L
Linus Torvalds 已提交
7010

I
Ingo Molnar 已提交
7011
	on_rq = p->se.on_rq;
7012
	if (on_rq)
7013
		deactivate_task(rq_src, p, 0);
7014

L
Linus Torvalds 已提交
7015
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7016 7017
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7018
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7019
	}
L
Linus Torvalds 已提交
7020
done:
7021
	ret = 1;
L
Linus Torvalds 已提交
7022
fail:
L
Linus Torvalds 已提交
7023
	double_rq_unlock(rq_src, rq_dest);
7024
	return ret;
L
Linus Torvalds 已提交
7025 7026 7027 7028 7029 7030 7031
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7032
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7033 7034
{
	int cpu = (long)data;
7035
	struct rq *rq;
L
Linus Torvalds 已提交
7036 7037 7038 7039 7040 7041

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7042
		struct migration_req *req;
L
Linus Torvalds 已提交
7043 7044 7045 7046 7047 7048
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7049
			break;
L
Linus Torvalds 已提交
7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7065
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7066 7067
		list_del_init(head->next);

N
Nick Piggin 已提交
7068 7069 7070
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
7071 7072 7073 7074 7075 7076 7077 7078 7079

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7091
/*
7092
 * Figure out where task on dead CPU should go, use force if necessary.
7093
 */
7094
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7095
{
7096
	int dest_cpu;
7097
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7114

7115 7116 7117 7118 7119 7120 7121 7122 7123
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7124
		}
7125 7126 7127 7128 7129 7130
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7131 7132 7133 7134 7135 7136 7137 7138 7139
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7140
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7141
{
R
Rusty Russell 已提交
7142
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7156
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7157

7158
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7159

7160 7161
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7162 7163
			continue;

7164 7165 7166
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7167

7168
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7169 7170
}

I
Ingo Molnar 已提交
7171 7172
/*
 * Schedules idle task to be the next runnable task on current CPU.
7173 7174
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7175 7176 7177
 */
void sched_idle_next(void)
{
7178
	int this_cpu = smp_processor_id();
7179
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7180 7181 7182 7183
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7184
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7185

7186 7187 7188
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7189 7190 7191
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7192
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7193

7194 7195
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7196 7197 7198 7199

	spin_unlock_irqrestore(&rq->lock, flags);
}

7200 7201
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7215
/* called under rq->lock with disabled interrupts */
7216
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7217
{
7218
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7219 7220

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7221
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7222 7223

	/* Cannot have done final schedule yet: would have vanished. */
7224
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7225

7226
	get_task_struct(p);
L
Linus Torvalds 已提交
7227 7228 7229

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7230
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7231 7232
	 * fine.
	 */
7233
	spin_unlock_irq(&rq->lock);
7234
	move_task_off_dead_cpu(dead_cpu, p);
7235
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7236

7237
	put_task_struct(p);
L
Linus Torvalds 已提交
7238 7239 7240 7241 7242
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7243
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7244
	struct task_struct *next;
7245

I
Ingo Molnar 已提交
7246 7247 7248
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7249
		update_rq_clock(rq);
7250
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7251 7252
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7253
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7254
		migrate_dead(dead_cpu, next);
7255

L
Linus Torvalds 已提交
7256 7257
	}
}
7258 7259 7260 7261 7262 7263 7264 7265

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
}
L
Linus Torvalds 已提交
7266 7267
#endif /* CONFIG_HOTPLUG_CPU */

7268 7269 7270
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7271 7272
	{
		.procname	= "sched_domain",
7273
		.mode		= 0555,
7274
	},
I
Ingo Molnar 已提交
7275
	{0, },
7276 7277 7278
};

static struct ctl_table sd_ctl_root[] = {
7279
	{
7280
		.ctl_name	= CTL_KERN,
7281
		.procname	= "kernel",
7282
		.mode		= 0555,
7283 7284
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7285
	{0, },
7286 7287 7288 7289 7290
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7291
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7292 7293 7294 7295

	return entry;
}

7296 7297
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7298
	struct ctl_table *entry;
7299

7300 7301 7302
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7303
	 * will always be set. In the lowest directory the names are
7304 7305 7306
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7307 7308
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7309 7310 7311
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7312 7313 7314 7315 7316

	kfree(*tablep);
	*tablep = NULL;
}

7317
static void
7318
set_table_entry(struct ctl_table *entry,
7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7332
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7333

7334 7335 7336
	if (table == NULL)
		return NULL;

7337
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7338
		sizeof(long), 0644, proc_doulongvec_minmax);
7339
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7340
		sizeof(long), 0644, proc_doulongvec_minmax);
7341
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7342
		sizeof(int), 0644, proc_dointvec_minmax);
7343
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7344
		sizeof(int), 0644, proc_dointvec_minmax);
7345
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7346
		sizeof(int), 0644, proc_dointvec_minmax);
7347
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7348
		sizeof(int), 0644, proc_dointvec_minmax);
7349
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7350
		sizeof(int), 0644, proc_dointvec_minmax);
7351
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7352
		sizeof(int), 0644, proc_dointvec_minmax);
7353
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7354
		sizeof(int), 0644, proc_dointvec_minmax);
7355
	set_table_entry(&table[9], "cache_nice_tries",
7356 7357
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7358
	set_table_entry(&table[10], "flags", &sd->flags,
7359
		sizeof(int), 0644, proc_dointvec_minmax);
7360 7361 7362
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7363 7364 7365 7366

	return table;
}

7367
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7368 7369 7370 7371 7372 7373 7374 7375 7376
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7377 7378
	if (table == NULL)
		return NULL;
7379 7380 7381 7382 7383

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7384
		entry->mode = 0555;
7385 7386 7387 7388 7389 7390 7391 7392
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7393
static void register_sched_domain_sysctl(void)
7394 7395 7396 7397 7398
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7399 7400 7401
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7402 7403 7404
	if (entry == NULL)
		return;

7405
	for_each_online_cpu(i) {
7406 7407
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7408
		entry->mode = 0555;
7409
		entry->child = sd_alloc_ctl_cpu_table(i);
7410
		entry++;
7411
	}
7412 7413

	WARN_ON(sd_sysctl_header);
7414 7415
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7416

7417
/* may be called multiple times per register */
7418 7419
static void unregister_sched_domain_sysctl(void)
{
7420 7421
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7422
	sd_sysctl_header = NULL;
7423 7424
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7425
}
7426
#else
7427 7428 7429 7430
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7431 7432 7433 7434
{
}
#endif

7435 7436 7437 7438 7439
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7440
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7460
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7461 7462 7463 7464
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7465 7466 7467 7468
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7469 7470
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7471 7472
{
	struct task_struct *p;
7473
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7474
	unsigned long flags;
7475
	struct rq *rq;
L
Linus Torvalds 已提交
7476 7477

	switch (action) {
7478

L
Linus Torvalds 已提交
7479
	case CPU_UP_PREPARE:
7480
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7481
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7482 7483 7484 7485 7486
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7487
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7488
		task_rq_unlock(rq, &flags);
7489
		get_task_struct(p);
L
Linus Torvalds 已提交
7490 7491
		cpu_rq(cpu)->migration_thread = p;
		break;
7492

L
Linus Torvalds 已提交
7493
	case CPU_ONLINE:
7494
	case CPU_ONLINE_FROZEN:
7495
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7496
		wake_up_process(cpu_rq(cpu)->migration_thread);
7497 7498 7499 7500

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
7501 7502
		rq->calc_load_update = calc_load_update;
		rq->calc_load_active = 0;
7503
		if (rq->rd) {
7504
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7505 7506

			set_rq_online(rq);
7507 7508
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7509
		break;
7510

L
Linus Torvalds 已提交
7511 7512
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7513
	case CPU_UP_CANCELED_FROZEN:
7514 7515
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7516
		/* Unbind it from offline cpu so it can run. Fall thru. */
7517
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7518
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7519
		kthread_stop(cpu_rq(cpu)->migration_thread);
7520
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7521 7522
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7523

L
Linus Torvalds 已提交
7524
	case CPU_DEAD:
7525
	case CPU_DEAD_FROZEN:
7526
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7527 7528 7529
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7530
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7531 7532
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7533
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7534
		update_rq_clock(rq);
7535
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7536
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7537 7538
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7539
		migrate_dead_tasks(cpu);
7540
		spin_unlock_irq(&rq->lock);
7541
		cpuset_unlock();
L
Linus Torvalds 已提交
7542 7543
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7544
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7545 7546 7547 7548 7549
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7550 7551
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7552 7553
			struct migration_req *req;

L
Linus Torvalds 已提交
7554
			req = list_entry(rq->migration_queue.next,
7555
					 struct migration_req, list);
L
Linus Torvalds 已提交
7556
			list_del_init(&req->list);
B
Brian King 已提交
7557
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7558
			complete(&req->done);
B
Brian King 已提交
7559
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7560 7561 7562
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7563

7564 7565
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7566 7567 7568 7569
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7570
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7571
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7572 7573 7574
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7575 7576 7577 7578 7579
#endif
	}
	return NOTIFY_OK;
}

7580 7581 7582 7583
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
 * the notifier in the perf_counter subsystem, though.
L
Linus Torvalds 已提交
7584
 */
7585
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7586 7587 7588 7589
	.notifier_call = migration_call,
	.priority = 10
};

7590
static int __init migration_init(void)
L
Linus Torvalds 已提交
7591 7592
{
	void *cpu = (void *)(long)smp_processor_id();
7593
	int err;
7594 7595

	/* Start one for the boot CPU: */
7596 7597
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7598 7599
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7600 7601

	return err;
L
Linus Torvalds 已提交
7602
}
7603
early_initcall(migration_init);
L
Linus Torvalds 已提交
7604 7605 7606
#endif

#ifdef CONFIG_SMP
7607

7608
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7609

7610
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7611
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7612
{
I
Ingo Molnar 已提交
7613
	struct sched_group *group = sd->groups;
7614
	char str[256];
L
Linus Torvalds 已提交
7615

R
Rusty Russell 已提交
7616
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7617
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7618 7619 7620 7621 7622 7623 7624 7625 7626

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7627 7628
	}

7629
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7630

7631
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7632 7633 7634
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7635
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7636 7637 7638
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7639

I
Ingo Molnar 已提交
7640
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7641
	do {
I
Ingo Molnar 已提交
7642 7643 7644
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7645 7646 7647
			break;
		}

I
Ingo Molnar 已提交
7648 7649 7650 7651 7652 7653
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7654

7655
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7656 7657 7658 7659
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7660

7661
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7662 7663 7664 7665
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7666

7667
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7668

R
Rusty Russell 已提交
7669
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7670 7671 7672 7673 7674 7675

		printk(KERN_CONT " %s", str);
		if (group->__cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (__cpu_power = %d)",
				group->__cpu_power);
		}
L
Linus Torvalds 已提交
7676

I
Ingo Molnar 已提交
7677 7678 7679
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7680

7681
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7682
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7683

7684 7685
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7686 7687 7688 7689
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7690

I
Ingo Molnar 已提交
7691 7692
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7693
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7694
	int level = 0;
L
Linus Torvalds 已提交
7695

I
Ingo Molnar 已提交
7696 7697 7698 7699
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7700

I
Ingo Molnar 已提交
7701 7702
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7703
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7704 7705 7706 7707
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7708
	for (;;) {
7709
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7710
			break;
L
Linus Torvalds 已提交
7711 7712
		level++;
		sd = sd->parent;
7713
		if (!sd)
I
Ingo Molnar 已提交
7714 7715
			break;
	}
7716
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7717
}
7718
#else /* !CONFIG_SCHED_DEBUG */
7719
# define sched_domain_debug(sd, cpu) do { } while (0)
7720
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7721

7722
static int sd_degenerate(struct sched_domain *sd)
7723
{
7724
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7725 7726 7727 7728 7729 7730
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7731 7732 7733
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7747 7748
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7749 7750 7751 7752 7753 7754
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7755
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7767 7768 7769
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7770 7771
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7772 7773 7774 7775 7776 7777 7778
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7779 7780
static void free_rootdomain(struct root_domain *rd)
{
7781 7782
	cpupri_cleanup(&rd->cpupri);

7783 7784 7785 7786 7787 7788
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7789 7790
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7791
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7792 7793 7794 7795 7796
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7797
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7798

7799
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7800
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7801

7802
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7803

I
Ingo Molnar 已提交
7804 7805 7806 7807 7808 7809 7810
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7811 7812 7813 7814 7815
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7816 7817
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7818
		set_rq_online(rq);
G
Gregory Haskins 已提交
7819 7820

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7821 7822 7823

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7824 7825
}

L
Li Zefan 已提交
7826
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7827
{
7828 7829
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
7830 7831
	memset(rd, 0, sizeof(*rd));

7832 7833
	if (bootmem)
		gfp = GFP_NOWAIT;
7834

7835
	if (!alloc_cpumask_var(&rd->span, gfp))
7836
		goto out;
7837
	if (!alloc_cpumask_var(&rd->online, gfp))
7838
		goto free_span;
7839
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7840
		goto free_online;
7841

P
Pekka Enberg 已提交
7842
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
7843
		goto free_rto_mask;
7844
	return 0;
7845

7846 7847
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7848 7849 7850 7851
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7852
out:
7853
	return -ENOMEM;
G
Gregory Haskins 已提交
7854 7855 7856 7857
}

static void init_defrootdomain(void)
{
7858 7859
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7860 7861 7862
	atomic_set(&def_root_domain.refcount, 1);
}

7863
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7864 7865 7866 7867 7868 7869 7870
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7871 7872 7873 7874
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7875 7876 7877 7878

	return rd;
}

L
Linus Torvalds 已提交
7879
/*
I
Ingo Molnar 已提交
7880
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7881 7882
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7883 7884
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7885
{
7886
	struct rq *rq = cpu_rq(cpu);
7887 7888 7889
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7890
	for (tmp = sd; tmp; ) {
7891 7892 7893
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7894

7895
		if (sd_parent_degenerate(tmp, parent)) {
7896
			tmp->parent = parent->parent;
7897 7898
			if (parent->parent)
				parent->parent->child = tmp;
7899 7900
		} else
			tmp = tmp->parent;
7901 7902
	}

7903
	if (sd && sd_degenerate(sd)) {
7904
		sd = sd->parent;
7905 7906 7907
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7908 7909 7910

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7911
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7912
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7913 7914 7915
}

/* cpus with isolated domains */
7916
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7917 7918 7919 7920

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7921
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7922 7923 7924
	return 1;
}

I
Ingo Molnar 已提交
7925
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7926 7927

/*
7928 7929
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7930 7931
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7932 7933 7934 7935 7936
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7937
static void
7938 7939 7940
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7941
					struct sched_group **sg,
7942 7943
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7944 7945 7946 7947
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7948
	cpumask_clear(covered);
7949

7950
	for_each_cpu(i, span) {
7951
		struct sched_group *sg;
7952
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7953 7954
		int j;

7955
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7956 7957
			continue;

7958
		cpumask_clear(sched_group_cpus(sg));
7959
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7960

7961
		for_each_cpu(j, span) {
7962
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7963 7964
				continue;

7965
			cpumask_set_cpu(j, covered);
7966
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7967 7968 7969 7970 7971 7972 7973 7974 7975 7976
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7977
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7978

7979
#ifdef CONFIG_NUMA
7980

7981 7982 7983 7984 7985
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7986
 * Find the next node to include in a given scheduling domain. Simply
7987 7988 7989 7990
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7991
static int find_next_best_node(int node, nodemask_t *used_nodes)
7992 7993 7994 7995 7996
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7997
	for (i = 0; i < nr_node_ids; i++) {
7998
		/* Start at @node */
7999
		n = (node + i) % nr_node_ids;
8000 8001 8002 8003 8004

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8005
		if (node_isset(n, *used_nodes))
8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8017
	node_set(best_node, *used_nodes);
8018 8019 8020 8021 8022 8023
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8024
 * @span: resulting cpumask
8025
 *
I
Ingo Molnar 已提交
8026
 * Given a node, construct a good cpumask for its sched_domain to span. It
8027 8028 8029
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8030
static void sched_domain_node_span(int node, struct cpumask *span)
8031
{
8032
	nodemask_t used_nodes;
8033
	int i;
8034

8035
	cpumask_clear(span);
8036
	nodes_clear(used_nodes);
8037

8038
	cpumask_or(span, span, cpumask_of_node(node));
8039
	node_set(node, used_nodes);
8040 8041

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8042
		int next_node = find_next_best_node(node, &used_nodes);
8043

8044
		cpumask_or(span, span, cpumask_of_node(next_node));
8045 8046
	}
}
8047
#endif /* CONFIG_NUMA */
8048

8049
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8050

8051 8052
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8053 8054 8055
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8067
/*
8068
 * SMT sched-domains:
8069
 */
L
Linus Torvalds 已提交
8070
#ifdef CONFIG_SCHED_SMT
8071 8072
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8073

I
Ingo Molnar 已提交
8074
static int
8075 8076
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8077
{
8078
	if (sg)
8079
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8080 8081
	return cpu;
}
8082
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8083

8084 8085 8086
/*
 * multi-core sched-domains:
 */
8087
#ifdef CONFIG_SCHED_MC
8088 8089
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8090
#endif /* CONFIG_SCHED_MC */
8091 8092

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8093
static int
8094 8095
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8096
{
8097
	int group;
8098

8099
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8100
	group = cpumask_first(mask);
8101
	if (sg)
8102
		*sg = &per_cpu(sched_group_core, group).sg;
8103
	return group;
8104 8105
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8106
static int
8107 8108
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8109
{
8110
	if (sg)
8111
		*sg = &per_cpu(sched_group_core, cpu).sg;
8112 8113 8114 8115
	return cpu;
}
#endif

8116 8117
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8118

I
Ingo Molnar 已提交
8119
static int
8120 8121
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8122
{
8123
	int group;
8124
#ifdef CONFIG_SCHED_MC
8125
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8126
	group = cpumask_first(mask);
8127
#elif defined(CONFIG_SCHED_SMT)
8128
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8129
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8130
#else
8131
	group = cpu;
L
Linus Torvalds 已提交
8132
#endif
8133
	if (sg)
8134
		*sg = &per_cpu(sched_group_phys, group).sg;
8135
	return group;
L
Linus Torvalds 已提交
8136 8137 8138 8139
}

#ifdef CONFIG_NUMA
/*
8140 8141 8142
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8143
 */
8144
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8145
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8146

8147
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8148
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8149

8150 8151 8152
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8153
{
8154 8155
	int group;

8156
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8157
	group = cpumask_first(nodemask);
8158 8159

	if (sg)
8160
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8161
	return group;
L
Linus Torvalds 已提交
8162
}
8163

8164 8165 8166 8167 8168 8169 8170
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8171
	do {
8172
		for_each_cpu(j, sched_group_cpus(sg)) {
8173
			struct sched_domain *sd;
8174

8175
			sd = &per_cpu(phys_domains, j).sd;
8176
			if (j != group_first_cpu(sd->groups)) {
8177 8178 8179 8180 8181 8182
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8183

8184 8185 8186 8187
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
8188
}
8189
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8190

8191
#ifdef CONFIG_NUMA
8192
/* Free memory allocated for various sched_group structures */
8193 8194
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8195
{
8196
	int cpu, i;
8197

8198
	for_each_cpu(cpu, cpu_map) {
8199 8200 8201 8202 8203 8204
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8205
		for (i = 0; i < nr_node_ids; i++) {
8206 8207
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8208
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8209
			if (cpumask_empty(nodemask))
8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8226
#else /* !CONFIG_NUMA */
8227 8228
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8229 8230
{
}
8231
#endif /* CONFIG_NUMA */
8232

8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

8254
	if (cpu != group_first_cpu(sd->groups))
8255 8256 8257 8258
		return;

	child = sd->child;

8259 8260
	sd->groups->__cpu_power = 0;

8261 8262 8263 8264 8265 8266 8267 8268 8269 8270
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8271
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8272 8273 8274 8275 8276 8277 8278 8279
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
8280
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
8281 8282 8283 8284
		group = group->next;
	} while (group != child->groups);
}

8285 8286 8287 8288 8289
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8290 8291 8292 8293 8294 8295
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8296
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8297

8298 8299 8300 8301 8302
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8303
	sd->level = SD_LV_##type;				\
8304
	SD_INIT_NAME(sd, type);					\
8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8319 8320 8321 8322
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8323 8324 8325 8326 8327 8328
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
8354
/*
8355 8356
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
8357
 */
8358
static int __build_sched_domains(const struct cpumask *cpu_map,
8359
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
8360
{
8361
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
8362
	struct root_domain *rd;
8363 8364
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
8365
#ifdef CONFIG_NUMA
8366
	cpumask_var_t domainspan, covered, notcovered;
8367
	struct sched_group **sched_group_nodes = NULL;
8368
	int sd_allnodes = 0;
8369

8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
8390 8391 8392
	/*
	 * Allocate the per-node list of sched groups
	 */
8393
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
8394
				    GFP_KERNEL);
8395 8396
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8397
		goto free_tmpmask;
8398 8399
	}
#endif
L
Linus Torvalds 已提交
8400

8401
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
8402 8403
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
8404
		goto free_sched_groups;
G
Gregory Haskins 已提交
8405 8406
	}

8407
#ifdef CONFIG_NUMA
8408
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8409 8410
#endif

L
Linus Torvalds 已提交
8411
	/*
8412
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8413
	 */
8414
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8415 8416
		struct sched_domain *sd = NULL, *p;

8417
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
8418 8419

#ifdef CONFIG_NUMA
8420 8421
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8422
			sd = &per_cpu(allnodes_domains, i).sd;
8423
			SD_INIT(sd, ALLNODES);
8424
			set_domain_attribute(sd, attr);
8425
			cpumask_copy(sched_domain_span(sd), cpu_map);
8426
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8427
			p = sd;
8428
			sd_allnodes = 1;
8429 8430 8431
		} else
			p = NULL;

8432
		sd = &per_cpu(node_domains, i).sd;
8433
		SD_INIT(sd, NODE);
8434
		set_domain_attribute(sd, attr);
8435
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8436
		sd->parent = p;
8437 8438
		if (p)
			p->child = sd;
8439 8440
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8441 8442 8443
#endif

		p = sd;
8444
		sd = &per_cpu(phys_domains, i).sd;
8445
		SD_INIT(sd, CPU);
8446
		set_domain_attribute(sd, attr);
8447
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
8448
		sd->parent = p;
8449 8450
		if (p)
			p->child = sd;
8451
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8452

8453 8454
#ifdef CONFIG_SCHED_MC
		p = sd;
8455
		sd = &per_cpu(core_domains, i).sd;
8456
		SD_INIT(sd, MC);
8457
		set_domain_attribute(sd, attr);
8458 8459
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
8460
		sd->parent = p;
8461
		p->child = sd;
8462
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8463 8464
#endif

L
Linus Torvalds 已提交
8465 8466
#ifdef CONFIG_SCHED_SMT
		p = sd;
8467
		sd = &per_cpu(cpu_domains, i).sd;
8468
		SD_INIT(sd, SIBLING);
8469
		set_domain_attribute(sd, attr);
8470
		cpumask_and(sched_domain_span(sd),
8471
			    topology_thread_cpumask(i), cpu_map);
L
Linus Torvalds 已提交
8472
		sd->parent = p;
8473
		p->child = sd;
8474
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8475 8476 8477 8478 8479
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
8480
	for_each_cpu(i, cpu_map) {
8481
		cpumask_and(this_sibling_map,
8482
			    topology_thread_cpumask(i), cpu_map);
8483
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
8484 8485
			continue;

I
Ingo Molnar 已提交
8486
		init_sched_build_groups(this_sibling_map, cpu_map,
8487 8488
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8489 8490 8491
	}
#endif

8492 8493
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
8494
	for_each_cpu(i, cpu_map) {
8495
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8496
		if (i != cpumask_first(this_core_map))
8497
			continue;
8498

I
Ingo Molnar 已提交
8499
		init_sched_build_groups(this_core_map, cpu_map,
8500 8501
					&cpu_to_core_group,
					send_covered, tmpmask);
8502 8503 8504
	}
#endif

L
Linus Torvalds 已提交
8505
	/* Set up physical groups */
8506
	for (i = 0; i < nr_node_ids; i++) {
8507
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8508
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
8509 8510
			continue;

8511 8512 8513
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8514 8515 8516 8517
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
8518 8519 8520 8521 8522
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
8523

8524
	for (i = 0; i < nr_node_ids; i++) {
8525 8526 8527 8528
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

8529
		cpumask_clear(covered);
8530
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8531
		if (cpumask_empty(nodemask)) {
8532
			sched_group_nodes[i] = NULL;
8533
			continue;
8534
		}
8535

8536
		sched_domain_node_span(i, domainspan);
8537
		cpumask_and(domainspan, domainspan, cpu_map);
8538

8539 8540
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
8541 8542 8543 8544 8545
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
8546
		sched_group_nodes[i] = sg;
8547
		for_each_cpu(j, nodemask) {
8548
			struct sched_domain *sd;
I
Ingo Molnar 已提交
8549

8550
			sd = &per_cpu(node_domains, j).sd;
8551 8552
			sd->groups = sg;
		}
8553
		sg->__cpu_power = 0;
8554
		cpumask_copy(sched_group_cpus(sg), nodemask);
8555
		sg->next = sg;
8556
		cpumask_or(covered, covered, nodemask);
8557 8558
		prev = sg;

8559 8560
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
8561

8562 8563 8564 8565
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
8566 8567
				break;

8568
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8569
			if (cpumask_empty(tmpmask))
8570 8571
				continue;

8572 8573
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
8574
					  GFP_KERNEL, i);
8575 8576 8577
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
8578
				goto error;
8579
			}
8580
			sg->__cpu_power = 0;
8581
			cpumask_copy(sched_group_cpus(sg), tmpmask);
8582
			sg->next = prev->next;
8583
			cpumask_or(covered, covered, tmpmask);
8584 8585 8586 8587
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
8588 8589 8590
#endif

	/* Calculate CPU power for physical packages and nodes */
8591
#ifdef CONFIG_SCHED_SMT
8592
	for_each_cpu(i, cpu_map) {
8593
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
8594

8595
		init_sched_groups_power(i, sd);
8596
	}
L
Linus Torvalds 已提交
8597
#endif
8598
#ifdef CONFIG_SCHED_MC
8599
	for_each_cpu(i, cpu_map) {
8600
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
8601

8602
		init_sched_groups_power(i, sd);
8603 8604
	}
#endif
8605

8606
	for_each_cpu(i, cpu_map) {
8607
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
8608

8609
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8610 8611
	}

8612
#ifdef CONFIG_NUMA
8613
	for (i = 0; i < nr_node_ids; i++)
8614
		init_numa_sched_groups_power(sched_group_nodes[i]);
8615

8616 8617
	if (sd_allnodes) {
		struct sched_group *sg;
8618

8619
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8620
								tmpmask);
8621 8622
		init_numa_sched_groups_power(sg);
	}
8623 8624
#endif

L
Linus Torvalds 已提交
8625
	/* Attach the domains */
8626
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8627 8628
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
8629
		sd = &per_cpu(cpu_domains, i).sd;
8630
#elif defined(CONFIG_SCHED_MC)
8631
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8632
#else
8633
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8634
#endif
G
Gregory Haskins 已提交
8635
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
8636
	}
8637

8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
8666

8667
#ifdef CONFIG_NUMA
8668
error:
8669
	free_sched_groups(cpu_map, tmpmask);
8670
	free_rootdomain(rd);
8671
	goto free_tmpmask;
8672
#endif
L
Linus Torvalds 已提交
8673
}
P
Paul Jackson 已提交
8674

8675
static int build_sched_domains(const struct cpumask *cpu_map)
8676 8677 8678 8679
{
	return __build_sched_domains(cpu_map, NULL);
}

8680
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8681
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8682 8683
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8684 8685 8686

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8687 8688
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8689
 */
8690
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8691

8692 8693 8694 8695 8696 8697
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8698
{
8699
	return 0;
8700 8701
}

8702
/*
I
Ingo Molnar 已提交
8703
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8704 8705
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8706
 */
8707
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8708
{
8709 8710
	int err;

8711
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8712
	ndoms_cur = 1;
8713
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8714
	if (!doms_cur)
8715
		doms_cur = fallback_doms;
8716
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8717
	dattr_cur = NULL;
8718
	err = build_sched_domains(doms_cur);
8719
	register_sched_domain_sysctl();
8720 8721

	return err;
8722 8723
}

8724 8725
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8726
{
8727
	free_sched_groups(cpu_map, tmpmask);
8728
}
L
Linus Torvalds 已提交
8729

8730 8731 8732 8733
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8734
static void detach_destroy_domains(const struct cpumask *cpu_map)
8735
{
8736 8737
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8738 8739
	int i;

8740
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8741
		cpu_attach_domain(NULL, &def_root_domain, i);
8742
	synchronize_sched();
8743
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8744 8745
}

8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8762 8763
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8764
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8765 8766 8767
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8768
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8769 8770 8771
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8772 8773 8774
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8775 8776
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8777 8778 8779 8780
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8781
 *
8782
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8783 8784
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8785
 *
P
Paul Jackson 已提交
8786 8787
 * Call with hotplug lock held
 */
8788 8789
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8790
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8791
{
8792
	int i, j, n;
8793
	int new_topology;
P
Paul Jackson 已提交
8794

8795
	mutex_lock(&sched_domains_mutex);
8796

8797 8798 8799
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8800 8801 8802
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8803
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8804 8805 8806

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8807
		for (j = 0; j < n && !new_topology; j++) {
8808
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8809
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8810 8811 8812 8813 8814 8815 8816 8817
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8818 8819
	if (doms_new == NULL) {
		ndoms_cur = 0;
8820
		doms_new = fallback_doms;
8821
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8822
		WARN_ON_ONCE(dattr_new);
8823 8824
	}

P
Paul Jackson 已提交
8825 8826
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
8827
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
8828
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
8829
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
8830 8831 8832
				goto match2;
		}
		/* no match - add a new doms_new */
8833 8834
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
8835 8836 8837 8838 8839
match2:
		;
	}

	/* Remember the new sched domains */
8840
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
8841
		kfree(doms_cur);
8842
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
8843
	doms_cur = doms_new;
8844
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
8845
	ndoms_cur = ndoms_new;
8846 8847

	register_sched_domain_sysctl();
8848

8849
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
8850 8851
}

8852
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8853
static void arch_reinit_sched_domains(void)
8854
{
8855
	get_online_cpus();
8856 8857 8858 8859

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8860
	rebuild_sched_domains();
8861
	put_online_cpus();
8862 8863 8864 8865
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8866
	unsigned int level = 0;
8867

8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8879 8880 8881
		return -EINVAL;

	if (smt)
8882
		sched_smt_power_savings = level;
8883
	else
8884
		sched_mc_power_savings = level;
8885

8886
	arch_reinit_sched_domains();
8887

8888
	return count;
8889 8890 8891
}

#ifdef CONFIG_SCHED_MC
8892 8893
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8894 8895 8896
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8897
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8898
					    const char *buf, size_t count)
8899 8900 8901
{
	return sched_power_savings_store(buf, count, 0);
}
8902 8903 8904
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8905 8906 8907
#endif

#ifdef CONFIG_SCHED_SMT
8908 8909
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8910 8911 8912
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8913
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8914
					     const char *buf, size_t count)
8915 8916 8917
{
	return sched_power_savings_store(buf, count, 1);
}
8918 8919
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8920 8921 8922
		   sched_smt_power_savings_store);
#endif

8923
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8939
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8940

8941
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8942
/*
8943 8944
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8945 8946 8947
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8948 8949 8950 8951 8952 8953
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8954
		partition_sched_domains(1, NULL, NULL);
8955 8956 8957 8958 8959 8960 8961 8962 8963 8964
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8965
{
P
Peter Zijlstra 已提交
8966 8967
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8968 8969
	switch (action) {
	case CPU_DOWN_PREPARE:
8970
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8971
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8972 8973 8974
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8975
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8976
	case CPU_ONLINE:
8977
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8978
		enable_runtime(cpu_rq(cpu));
8979 8980
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8981 8982 8983 8984 8985 8986 8987
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8988 8989 8990
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8991

8992 8993 8994 8995 8996
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8997
	get_online_cpus();
8998
	mutex_lock(&sched_domains_mutex);
8999 9000 9001 9002
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9003
	mutex_unlock(&sched_domains_mutex);
9004
	put_online_cpus();
9005 9006

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9007 9008
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9009 9010 9011 9012 9013
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9014
	init_hrtick();
9015 9016

	/* Move init over to a non-isolated CPU */
9017
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9018
		BUG();
I
Ingo Molnar 已提交
9019
	sched_init_granularity();
9020
	free_cpumask_var(non_isolated_cpus);
9021 9022

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9023
	init_sched_rt_class();
L
Linus Torvalds 已提交
9024 9025 9026 9027
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9028
	sched_init_granularity();
L
Linus Torvalds 已提交
9029 9030 9031
}
#endif /* CONFIG_SMP */

9032 9033
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9034 9035 9036 9037 9038 9039 9040
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9041
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9042 9043
{
	cfs_rq->tasks_timeline = RB_ROOT;
9044
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9045 9046 9047
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9048
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9049 9050
}

P
Peter Zijlstra 已提交
9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9064
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9065
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9066
#ifdef CONFIG_SMP
9067
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9068 9069
#endif
#endif
P
Peter Zijlstra 已提交
9070 9071 9072
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9073
	plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9074 9075 9076 9077
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9078 9079
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9080

9081
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9082
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9083 9084
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9085 9086
}

P
Peter Zijlstra 已提交
9087
#ifdef CONFIG_FAIR_GROUP_SCHED
9088 9089 9090
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9091
{
9092
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9093 9094 9095 9096 9097 9098 9099
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9100 9101 9102 9103
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9104 9105 9106 9107 9108
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9109 9110
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9111
	se->load.inv_weight = 0;
9112
	se->parent = parent;
P
Peter Zijlstra 已提交
9113
}
9114
#endif
P
Peter Zijlstra 已提交
9115

9116
#ifdef CONFIG_RT_GROUP_SCHED
9117 9118 9119
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9120
{
9121 9122
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9123 9124 9125 9126
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9127
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9128 9129 9130 9131
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9132 9133 9134
	if (!rt_se)
		return;

9135 9136 9137 9138 9139
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9140
	rt_se->my_q = rt_rq;
9141
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9142 9143 9144 9145
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9146 9147
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9148
	int i, j;
9149 9150 9151 9152 9153 9154 9155
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9156 9157 9158
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9159 9160
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9161
	alloc_size += num_possible_cpus() * cpumask_size();
9162 9163 9164 9165 9166 9167
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
9168
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9169 9170 9171 9172 9173 9174 9175

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9176 9177 9178 9179 9180 9181 9182

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9183 9184
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9185 9186 9187 9188 9189
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9190 9191 9192 9193 9194 9195 9196 9197
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9198 9199
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9200 9201 9202 9203 9204 9205
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9206
	}
I
Ingo Molnar 已提交
9207

G
Gregory Haskins 已提交
9208 9209 9210 9211
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9212 9213 9214 9215 9216 9217
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9218 9219 9220
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9221 9222
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9223

9224
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9225
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9226 9227 9228 9229 9230 9231
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9232 9233
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9234

9235
	for_each_possible_cpu(i) {
9236
		struct rq *rq;
L
Linus Torvalds 已提交
9237 9238 9239

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9240
		rq->nr_running = 0;
9241 9242
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9243
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9244
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9245
#ifdef CONFIG_FAIR_GROUP_SCHED
9246
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9247
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9263
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9264 9265 9266 9267
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9268
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9269
#elif defined CONFIG_USER_SCHED
9270 9271
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9283
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
9284
				&per_cpu(init_cfs_rq, i),
9285 9286
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9287

9288
#endif
D
Dhaval Giani 已提交
9289 9290 9291
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9292
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9293
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9294
#ifdef CONFIG_CGROUP_SCHED
9295
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9296
#elif defined CONFIG_USER_SCHED
9297
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9298
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9299
				&per_cpu(init_rt_rq, i),
9300 9301
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9302
#endif
I
Ingo Molnar 已提交
9303
#endif
L
Linus Torvalds 已提交
9304

I
Ingo Molnar 已提交
9305 9306
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9307
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9308
		rq->sd = NULL;
G
Gregory Haskins 已提交
9309
		rq->rd = NULL;
L
Linus Torvalds 已提交
9310
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9311
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9312
		rq->push_cpu = 0;
9313
		rq->cpu = i;
9314
		rq->online = 0;
L
Linus Torvalds 已提交
9315 9316
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9317
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9318
#endif
P
Peter Zijlstra 已提交
9319
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9320 9321 9322
		atomic_set(&rq->nr_iowait, 0);
	}

9323
	set_load_weight(&init_task);
9324

9325 9326 9327 9328
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9329
#ifdef CONFIG_SMP
9330
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9331 9332
#endif

9333 9334 9335 9336
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9350 9351 9352

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9353 9354 9355 9356
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9357

9358
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9359
	alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9360
#ifdef CONFIG_SMP
9361
#ifdef CONFIG_NO_HZ
9362 9363
	alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9364
#endif
9365
	alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9366
#endif /* SMP */
9367

9368 9369
	perf_counter_init();

9370
	scheduler_running = 1;
L
Linus Torvalds 已提交
9371 9372 9373 9374 9375
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
9376
#ifdef in_atomic
L
Linus Torvalds 已提交
9377 9378
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9398 9399 9400 9401 9402 9403
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9404 9405 9406
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9407

9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9419 9420
void normalize_rt_tasks(void)
{
9421
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9422
	unsigned long flags;
9423
	struct rq *rq;
L
Linus Torvalds 已提交
9424

9425
	read_lock_irqsave(&tasklist_lock, flags);
9426
	do_each_thread(g, p) {
9427 9428 9429 9430 9431 9432
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9433 9434
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9435 9436 9437
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9438
#endif
I
Ingo Molnar 已提交
9439 9440 9441 9442 9443 9444 9445 9446

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9447
			continue;
I
Ingo Molnar 已提交
9448
		}
L
Linus Torvalds 已提交
9449

9450
		spin_lock(&p->pi_lock);
9451
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9452

9453
		normalize_task(rq, p);
9454

9455
		__task_rq_unlock(rq);
9456
		spin_unlock(&p->pi_lock);
9457 9458
	} while_each_thread(g, p);

9459
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9460 9461 9462
}

#endif /* CONFIG_MAGIC_SYSRQ */
9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9481
struct task_struct *curr_task(int cpu)
9482 9483 9484 9485 9486 9487 9488 9489 9490 9491
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9492 9493
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9494 9495 9496 9497 9498 9499 9500
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9501
void set_curr_task(int cpu, struct task_struct *p)
9502 9503 9504 9505 9506
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9507

9508 9509
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9524 9525
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9526 9527
{
	struct cfs_rq *cfs_rq;
9528
	struct sched_entity *se;
9529
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9530 9531
	int i;

9532
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9533 9534
	if (!tg->cfs_rq)
		goto err;
9535
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9536 9537
	if (!tg->se)
		goto err;
9538 9539

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9540 9541

	for_each_possible_cpu(i) {
9542
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9543

9544 9545
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9546 9547 9548
		if (!cfs_rq)
			goto err;

9549 9550
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9551 9552 9553
		if (!se)
			goto err;

9554
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9573
#else /* !CONFG_FAIR_GROUP_SCHED */
9574 9575 9576 9577
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9578 9579
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9591
#endif /* CONFIG_FAIR_GROUP_SCHED */
9592 9593

#ifdef CONFIG_RT_GROUP_SCHED
9594 9595 9596 9597
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9598 9599
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9611 9612
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9613 9614
{
	struct rt_rq *rt_rq;
9615
	struct sched_rt_entity *rt_se;
9616 9617 9618
	struct rq *rq;
	int i;

9619
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9620 9621
	if (!tg->rt_rq)
		goto err;
9622
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9623 9624 9625
	if (!tg->rt_se)
		goto err;

9626 9627
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9628 9629 9630 9631

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9632 9633
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9634 9635
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9636

9637 9638
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9639 9640
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9641

9642
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9643 9644
	}

9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9661
#else /* !CONFIG_RT_GROUP_SCHED */
9662 9663 9664 9665
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9666 9667
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9679
#endif /* CONFIG_RT_GROUP_SCHED */
9680

9681
#ifdef CONFIG_GROUP_SCHED
9682 9683 9684 9685 9686 9687 9688 9689
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9690
struct task_group *sched_create_group(struct task_group *parent)
9691 9692 9693 9694 9695 9696 9697 9698 9699
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9700
	if (!alloc_fair_sched_group(tg, parent))
9701 9702
		goto err;

9703
	if (!alloc_rt_sched_group(tg, parent))
9704 9705
		goto err;

9706
	spin_lock_irqsave(&task_group_lock, flags);
9707
	for_each_possible_cpu(i) {
9708 9709
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9710
	}
P
Peter Zijlstra 已提交
9711
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9712 9713 9714 9715 9716

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9717
	list_add_rcu(&tg->siblings, &parent->children);
9718
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9719

9720
	return tg;
S
Srivatsa Vaddagiri 已提交
9721 9722

err:
P
Peter Zijlstra 已提交
9723
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9724 9725 9726
	return ERR_PTR(-ENOMEM);
}

9727
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9728
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9729 9730
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9731
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9732 9733
}

9734
/* Destroy runqueue etc associated with a task group */
9735
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9736
{
9737
	unsigned long flags;
9738
	int i;
S
Srivatsa Vaddagiri 已提交
9739

9740
	spin_lock_irqsave(&task_group_lock, flags);
9741
	for_each_possible_cpu(i) {
9742 9743
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9744
	}
P
Peter Zijlstra 已提交
9745
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9746
	list_del_rcu(&tg->siblings);
9747
	spin_unlock_irqrestore(&task_group_lock, flags);
9748 9749

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9750
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9751 9752
}

9753
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9754 9755 9756
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9757 9758
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9759 9760 9761 9762 9763 9764 9765 9766 9767
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9768
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9769 9770
	on_rq = tsk->se.on_rq;

9771
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9772
		dequeue_task(rq, tsk, 0);
9773 9774
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9775

P
Peter Zijlstra 已提交
9776
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9777

P
Peter Zijlstra 已提交
9778 9779 9780 9781 9782
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9783 9784 9785
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9786
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9787 9788 9789

	task_rq_unlock(rq, &flags);
}
9790
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9791

9792
#ifdef CONFIG_FAIR_GROUP_SCHED
9793
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9794 9795 9796 9797 9798
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9799
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9800 9801 9802
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9803
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9804

9805
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9806
		enqueue_entity(cfs_rq, se, 0);
9807
}
9808

9809 9810 9811 9812 9813 9814 9815 9816 9817
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9818 9819
}

9820 9821
static DEFINE_MUTEX(shares_mutex);

9822
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9823 9824
{
	int i;
9825
	unsigned long flags;
9826

9827 9828 9829 9830 9831 9832
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

9833 9834
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
9835 9836
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
9837

9838
	mutex_lock(&shares_mutex);
9839
	if (tg->shares == shares)
9840
		goto done;
S
Srivatsa Vaddagiri 已提交
9841

9842
	spin_lock_irqsave(&task_group_lock, flags);
9843 9844
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9845
	list_del_rcu(&tg->siblings);
9846
	spin_unlock_irqrestore(&task_group_lock, flags);
9847 9848 9849 9850 9851 9852 9853 9854

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
9855
	tg->shares = shares;
9856 9857 9858 9859 9860
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9861
		set_se_shares(tg->se[i], shares);
9862
	}
S
Srivatsa Vaddagiri 已提交
9863

9864 9865 9866 9867
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
9868
	spin_lock_irqsave(&task_group_lock, flags);
9869 9870
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9871
	list_add_rcu(&tg->siblings, &tg->parent->children);
9872
	spin_unlock_irqrestore(&task_group_lock, flags);
9873
done:
9874
	mutex_unlock(&shares_mutex);
9875
	return 0;
S
Srivatsa Vaddagiri 已提交
9876 9877
}

9878 9879 9880 9881
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9882
#endif
9883

9884
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9885
/*
P
Peter Zijlstra 已提交
9886
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9887
 */
P
Peter Zijlstra 已提交
9888 9889 9890 9891 9892
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9893
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9894

P
Peter Zijlstra 已提交
9895
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9896 9897
}

P
Peter Zijlstra 已提交
9898 9899
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9900
{
P
Peter Zijlstra 已提交
9901
	struct task_struct *g, *p;
9902

P
Peter Zijlstra 已提交
9903 9904 9905 9906
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9907

P
Peter Zijlstra 已提交
9908 9909
	return 0;
}
9910

P
Peter Zijlstra 已提交
9911 9912 9913 9914 9915
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9916

P
Peter Zijlstra 已提交
9917 9918 9919 9920 9921 9922
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9923

P
Peter Zijlstra 已提交
9924 9925
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9926

P
Peter Zijlstra 已提交
9927 9928 9929
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9930 9931
	}

9932 9933 9934 9935 9936 9937 9938
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

9939 9940 9941 9942 9943
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9944

9945 9946 9947
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9948 9949
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9950

P
Peter Zijlstra 已提交
9951
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9952

9953 9954 9955 9956 9957
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9958

9959 9960 9961
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9962 9963 9964
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9965

P
Peter Zijlstra 已提交
9966 9967 9968 9969
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9970

P
Peter Zijlstra 已提交
9971
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9972
	}
P
Peter Zijlstra 已提交
9973

P
Peter Zijlstra 已提交
9974 9975 9976 9977
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
9978 9979
}

P
Peter Zijlstra 已提交
9980
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9981
{
P
Peter Zijlstra 已提交
9982 9983 9984 9985 9986 9987 9988
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
9989 9990
}

9991 9992
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
9993
{
P
Peter Zijlstra 已提交
9994
	int i, err = 0;
P
Peter Zijlstra 已提交
9995 9996

	mutex_lock(&rt_constraints_mutex);
9997
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
9998 9999
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10000
		goto unlock;
P
Peter Zijlstra 已提交
10001 10002

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10003 10004
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10005 10006 10007 10008 10009 10010 10011 10012 10013

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10014
 unlock:
10015
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10016 10017 10018
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10019 10020
}

10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10033 10034 10035 10036
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10037
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10038 10039
		return -1;

10040
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10041 10042 10043
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10044 10045 10046 10047 10048 10049 10050 10051

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10052 10053 10054
	if (rt_period == 0)
		return -EINVAL;

10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10069
	u64 runtime, period;
10070 10071
	int ret = 0;

10072 10073 10074
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10075 10076 10077 10078 10079 10080 10081 10082
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10083

10084
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10085
	read_lock(&tasklist_lock);
10086
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10087
	read_unlock(&tasklist_lock);
10088 10089 10090 10091
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10092 10093 10094 10095 10096 10097 10098 10099 10100 10101

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10102
#else /* !CONFIG_RT_GROUP_SCHED */
10103 10104
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10105 10106 10107
	unsigned long flags;
	int i;

10108 10109 10110
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10111 10112 10113 10114 10115 10116 10117
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10118 10119 10120 10121 10122 10123 10124 10125 10126 10127
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10128 10129
	return 0;
}
10130
#endif /* CONFIG_RT_GROUP_SCHED */
10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10161

10162
#ifdef CONFIG_CGROUP_SCHED
10163 10164

/* return corresponding task_group object of a cgroup */
10165
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10166
{
10167 10168
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10169 10170 10171
}

static struct cgroup_subsys_state *
10172
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10173
{
10174
	struct task_group *tg, *parent;
10175

10176
	if (!cgrp->parent) {
10177 10178 10179 10180
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10181 10182
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10183 10184 10185 10186 10187 10188
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10189 10190
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10191
{
10192
	struct task_group *tg = cgroup_tg(cgrp);
10193 10194 10195 10196

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10197 10198 10199
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
10200
{
10201
#ifdef CONFIG_RT_GROUP_SCHED
10202
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10203 10204
		return -EINVAL;
#else
10205 10206 10207
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10208
#endif
10209 10210 10211 10212 10213

	return 0;
}

static void
10214
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10215 10216 10217 10218 10219
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

10220
#ifdef CONFIG_FAIR_GROUP_SCHED
10221
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10222
				u64 shareval)
10223
{
10224
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10225 10226
}

10227
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10228
{
10229
	struct task_group *tg = cgroup_tg(cgrp);
10230 10231 10232

	return (u64) tg->shares;
}
10233
#endif /* CONFIG_FAIR_GROUP_SCHED */
10234

10235
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10236
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10237
				s64 val)
P
Peter Zijlstra 已提交
10238
{
10239
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10240 10241
}

10242
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10243
{
10244
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10245
}
10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10257
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10258

10259
static struct cftype cpu_files[] = {
10260
#ifdef CONFIG_FAIR_GROUP_SCHED
10261 10262
	{
		.name = "shares",
10263 10264
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10265
	},
10266 10267
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10268
	{
P
Peter Zijlstra 已提交
10269
		.name = "rt_runtime_us",
10270 10271
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10272
	},
10273 10274
	{
		.name = "rt_period_us",
10275 10276
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10277
	},
10278
#endif
10279 10280 10281 10282
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10283
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10284 10285 10286
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10287 10288 10289 10290 10291 10292 10293
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10294 10295 10296
	.early_init	= 1,
};

10297
#endif	/* CONFIG_CGROUP_SCHED */
10298 10299 10300 10301 10302 10303 10304 10305 10306 10307

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10308
/* track cpu usage of a group of tasks and its child groups */
10309 10310 10311 10312
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10313
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10314
	struct cpuacct *parent;
10315 10316 10317 10318 10319
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10320
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10321
{
10322
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10335
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10336 10337
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10338
	int i;
10339 10340

	if (!ca)
10341
		goto out;
10342 10343

	ca->cpuusage = alloc_percpu(u64);
10344 10345 10346 10347 10348 10349
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10350

10351 10352 10353
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10354
	return &ca->css;
10355 10356 10357 10358 10359 10360 10361 10362 10363

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10364 10365 10366
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10367
static void
10368
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10369
{
10370
	struct cpuacct *ca = cgroup_ca(cgrp);
10371
	int i;
10372

10373 10374
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10375 10376 10377 10378
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10379 10380
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10381
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10400
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10414
/* return total cpu usage (in nanoseconds) of a group */
10415
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10416
{
10417
	struct cpuacct *ca = cgroup_ca(cgrp);
10418 10419 10420
	u64 totalcpuusage = 0;
	int i;

10421 10422
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10423 10424 10425 10426

	return totalcpuusage;
}

10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10439 10440
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10441 10442 10443 10444 10445

out:
	return err;
}

10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10480 10481 10482
static struct cftype files[] = {
	{
		.name = "usage",
10483 10484
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10485
	},
10486 10487 10488 10489
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10490 10491 10492 10493
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10494 10495
};

10496
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10497
{
10498
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10499 10500 10501 10502 10503 10504 10505 10506 10507 10508
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10509
	int cpu;
10510

L
Li Zefan 已提交
10511
	if (unlikely(!cpuacct_subsys.active))
10512 10513
		return;

10514
	cpu = task_cpu(tsk);
10515 10516 10517

	rcu_read_lock();

10518 10519
	ca = task_ca(tsk);

10520
	for (; ca; ca = ca->parent) {
10521
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10522 10523
		*cpuusage += cputime;
	}
10524 10525

	rcu_read_unlock();
10526 10527
}

10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10549 10550 10551 10552 10553 10554 10555 10556
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */