sched.c 169.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
J
Jens Axboe 已提交
64
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
65

66
#include <asm/tlb.h>
L
Linus Torvalds 已提交
67

68 69 70 71 72 73 74 75 76 77
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
D
Dmitry Adamushko 已提交
99
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (1000000000 / HZ))
L
Linus Torvalds 已提交
100 101
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
108
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
109 110 111
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

134 135 136 137 138 139 140 141 142 143 144 145
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
146
/*
I
Ingo Molnar 已提交
147
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
148
 */
I
Ingo Molnar 已提交
149 150 151 152 153
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
154 155 156 157 158
#ifdef CONFIG_FAIR_GROUP_SCHED

struct cfs_rq;

/* task group related information */
159
struct task_group {
S
Srivatsa Vaddagiri 已提交
160 161 162 163 164
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
165 166
	/* spinlock to serialize modification to shares */
	spinlock_t lock;
S
Srivatsa Vaddagiri 已提交
167 168 169 170 171 172 173
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

174 175
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
176 177

/* Default task group.
I
Ingo Molnar 已提交
178
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
179
 */
180
struct task_group init_task_group = {
I
Ingo Molnar 已提交
181 182 183
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
184

185
#ifdef CONFIG_FAIR_USER_SCHED
I
Ingo Molnar 已提交
186
# define INIT_TASK_GRP_LOAD	2*NICE_0_LOAD
187
#else
I
Ingo Molnar 已提交
188
# define INIT_TASK_GRP_LOAD	NICE_0_LOAD
189 190
#endif

191
static int init_task_group_load = INIT_TASK_GRP_LOAD;
S
Srivatsa Vaddagiri 已提交
192 193

/* return group to which a task belongs */
194
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
195
{
196
	struct task_group *tg;
197

198 199 200
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
#else
201
	tg  = &init_task_group;
202
#endif
203 204

	return tg;
S
Srivatsa Vaddagiri 已提交
205 206 207 208 209
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_cfs_rq(struct task_struct *p)
{
210 211
	p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
	p->se.parent = task_group(p)->se[task_cpu(p)];
S
Srivatsa Vaddagiri 已提交
212 213 214 215 216 217 218 219
}

#else

static inline void set_task_cfs_rq(struct task_struct *p) { }

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
220 221 222 223 224 225
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
226
	u64 min_vruntime;
I
Ingo Molnar 已提交
227 228 229 230 231 232 233 234

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
235 236 237

	unsigned long nr_spread_over;

238
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
239 240 241 242 243 244 245 246 247 248
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
249
	struct task_group *tg;    /* group that "owns" this runqueue */
250
	struct rcu_head rcu;
I
Ingo Molnar 已提交
251 252
#endif
};
L
Linus Torvalds 已提交
253

I
Ingo Molnar 已提交
254 255 256 257 258 259 260
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
261 262 263 264 265 266 267
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
268
struct rq {
I
Ingo Molnar 已提交
269
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
270 271 272 273 274 275

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
276 277
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
278
	unsigned char idle_at_tick;
279 280 281
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
282
	struct load_weight load;	/* capture load from *all* tasks on this cpu */
I
Ingo Molnar 已提交
283 284 285 286 287 288
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
289
#endif
I
Ingo Molnar 已提交
290
	struct rt_rq  rt;
L
Linus Torvalds 已提交
291 292 293 294 295 296 297 298 299

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

300
	struct task_struct *curr, *idle;
301
	unsigned long next_balance;
L
Linus Torvalds 已提交
302
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
303 304 305 306 307

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
308 309
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
310
	u64 tick_timestamp;
I
Ingo Molnar 已提交
311

L
Linus Torvalds 已提交
312 313 314 315 316 317 318 319
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
320
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
321

322
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
323 324 325 326 327 328 329 330 331 332 333
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
334
	unsigned long yld_count;
L
Linus Torvalds 已提交
335 336 337

	/* schedule() stats */
	unsigned long sched_switch;
338
	unsigned long sched_count;
L
Linus Torvalds 已提交
339 340 341
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
342
	unsigned long ttwu_count;
L
Linus Torvalds 已提交
343
	unsigned long ttwu_local;
I
Ingo Molnar 已提交
344 345

	/* BKL stats */
346
	unsigned long bkl_count;
L
Linus Torvalds 已提交
347
#endif
348
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
349 350
};

351
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
352
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
353

I
Ingo Molnar 已提交
354 355 356 357 358
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

359 360 361 362 363 364 365 366 367
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
368
/*
I
Ingo Molnar 已提交
369 370
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
371
 */
I
Ingo Molnar 已提交
372
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
373 374 375 376 377 378
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
379 380 381
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
382 383 384 385 386 387 388 389 390 391
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
392 393 394 395 396
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
397 398 399 400 401 402 403 404 405 406
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
407
}
I
Ingo Molnar 已提交
408

I
Ingo Molnar 已提交
409 410 411 412
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
413 414
}

N
Nick Piggin 已提交
415 416
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
417
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
418 419 420 421
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
422 423
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
424 425 426 427 428 429

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
443 444
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_START_DEBIT		= 2,
445
	SCHED_FEAT_TREE_AVG             = 4,
446
	SCHED_FEAT_APPROX_AVG           = 8,
447
	SCHED_FEAT_WAKEUP_PREEMPT	= 16,
448
	SCHED_FEAT_PREEMPT_RESTRICT	= 32,
I
Ingo Molnar 已提交
449 450 451 452
};

const_debug unsigned int sysctl_sched_features =
		SCHED_FEAT_NEW_FAIR_SLEEPERS	*1 |
P
Peter Zijlstra 已提交
453
		SCHED_FEAT_START_DEBIT		*1 |
454
		SCHED_FEAT_TREE_AVG		*0 |
455
		SCHED_FEAT_APPROX_AVG		*0 |
456 457
		SCHED_FEAT_WAKEUP_PREEMPT	*1 |
		SCHED_FEAT_PREEMPT_RESTRICT	*1;
I
Ingo Molnar 已提交
458 459 460

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

461 462 463 464 465 466 467 468
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
469
	struct rq *rq;
470

471
	local_irq_save(flags);
I
Ingo Molnar 已提交
472 473 474
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
475
	local_irq_restore(flags);
476 477 478

	return now;
}
P
Paul E. McKenney 已提交
479
EXPORT_SYMBOL_GPL(cpu_clock);
480

L
Linus Torvalds 已提交
481
#ifndef prepare_arch_switch
482 483 484 485 486 487 488
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
489
static inline int task_running(struct rq *rq, struct task_struct *p)
490 491 492 493
{
	return rq->curr == p;
}

494
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
495 496 497
{
}

498
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
499
{
500 501 502 503
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
504 505 506 507 508 509 510
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

511 512 513 514
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
515
static inline int task_running(struct rq *rq, struct task_struct *p)
516 517 518 519 520 521 522 523
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

524
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

541
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
542 543 544 545 546 547 548 549 550 551 552 553
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
554
#endif
555 556
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
557

558 559 560 561
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
562
static inline struct rq *__task_rq_lock(struct task_struct *p)
563 564
	__acquires(rq->lock)
{
565 566 567 568 569
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
570 571 572 573
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
574 575 576 577 578
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
579
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
580 581
	__acquires(rq->lock)
{
582
	struct rq *rq;
L
Linus Torvalds 已提交
583

584 585 586 587 588 589
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
590 591 592 593
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
594
static void __task_rq_unlock(struct rq *rq)
595 596 597 598 599
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

600
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
601 602 603 604 605 606
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
607
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
608
 */
A
Alexey Dobriyan 已提交
609
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
610 611
	__acquires(rq->lock)
{
612
	struct rq *rq;
L
Linus Torvalds 已提交
613 614 615 616 617 618 619 620

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

621
/*
622
 * We are going deep-idle (irqs are disabled):
623
 */
624
void sched_clock_idle_sleep_event(void)
625
{
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
642

643 644 645 646 647 648 649 650 651 652 653
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
654
}
655
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
656

I
Ingo Molnar 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

709 710 711 712 713 714 715 716
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
717 718 719
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
720
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
721

722
static unsigned long
723 724 725 726 727 728
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
729
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
730 731 732 733 734

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
735
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
736
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
737 738
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
739
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
740

741
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
742 743 744 745 746 747 748 749
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

750
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
751 752 753 754
{
	lw->weight += inc;
}

755
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
756 757 758 759
{
	lw->weight -= dec;
}

760 761 762 763 764 765 766 767 768
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
769 770 771 772 773 774 775 776 777 778 779
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
780 781 782
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
783 784
 */
static const int prio_to_weight[40] = {
785 786 787 788 789 790 791 792
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
793 794
};

795 796 797 798 799 800 801
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
802
static const u32 prio_to_wmult[40] = {
803 804 805 806 807 808 809 810
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
811
};
812

I
Ingo Molnar 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
830
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
831 832 833

#include "sched_stats.h"
#include "sched_idletask.c"
834 835
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
836 837 838 839 840 841
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

842 843 844 845
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
846
 * total load (rq->load.weight) on the runqueue, while
847 848 849 850 851 852 853
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
854
 * This function is called /before/ updating rq->load
855 856
 * and when switching tasks.
 */
857
static inline void inc_load(struct rq *rq, const struct task_struct *p)
858
{
859
	update_load_add(&rq->load, p->se.load.weight);
860 861
}

862
static inline void dec_load(struct rq *rq, const struct task_struct *p)
863
{
864
	update_load_sub(&rq->load, p->se.load.weight);
865 866
}

867
static void inc_nr_running(struct task_struct *p, struct rq *rq)
868 869
{
	rq->nr_running++;
870
	inc_load(rq, p);
871 872
}

873
static void dec_nr_running(struct task_struct *p, struct rq *rq)
874 875
{
	rq->nr_running--;
876
	dec_load(rq, p);
877 878
}

879 880 881
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
882 883 884 885
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
886

I
Ingo Molnar 已提交
887 888 889 890 891 892 893 894
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
895

I
Ingo Molnar 已提交
896 897
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
898 899
}

900
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
901
{
I
Ingo Molnar 已提交
902
	sched_info_queued(p);
903
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
904
	p->se.on_rq = 1;
905 906
}

907
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
908
{
909
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
910
	p->se.on_rq = 0;
911 912
}

913
/*
I
Ingo Molnar 已提交
914
 * __normal_prio - return the priority that is based on the static prio
915 916 917
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
918
	return p->static_prio;
919 920
}

921 922 923 924 925 926 927
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
928
static inline int normal_prio(struct task_struct *p)
929 930 931
{
	int prio;

932
	if (task_has_rt_policy(p))
933 934 935 936 937 938 939 940 941 942 943 944 945
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
946
static int effective_prio(struct task_struct *p)
947 948 949 950 951 952 953 954 955 956 957 958
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
959
/*
I
Ingo Molnar 已提交
960
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
961
 */
I
Ingo Molnar 已提交
962
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
963
{
I
Ingo Molnar 已提交
964 965
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
966

967
	enqueue_task(rq, p, wakeup);
968
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
969 970 971 972 973
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
974
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
975
{
I
Ingo Molnar 已提交
976 977 978
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

979
	dequeue_task(rq, p, sleep);
980
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
981 982 983 984 985 986
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
987
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
988 989 990 991
{
	return cpu_curr(task_cpu(p)) == p;
}

992 993 994
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
995
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
996 997 998 999 1000 1001 1002
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
#endif
S
Srivatsa Vaddagiri 已提交
1003
	set_task_cfs_rq(p);
1004 1005
}

L
Linus Torvalds 已提交
1006
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1019 1020 1021 1022 1023
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1024 1025 1026 1027 1028 1029
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1030
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1031
{
I
Ingo Molnar 已提交
1032 1033
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1034 1035
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1036
	u64 clock_offset;
I
Ingo Molnar 已提交
1037 1038

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1039 1040 1041 1042

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1043 1044 1045 1046
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1047 1048 1049 1050 1051
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1052
#endif
1053 1054
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1055 1056

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1057 1058
}

1059
struct migration_req {
L
Linus Torvalds 已提交
1060 1061
	struct list_head list;

1062
	struct task_struct *task;
L
Linus Torvalds 已提交
1063 1064 1065
	int dest_cpu;

	struct completion done;
1066
};
L
Linus Torvalds 已提交
1067 1068 1069 1070 1071

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1072
static int
1073
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1074
{
1075
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1076 1077 1078 1079 1080

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1081
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1082 1083 1084 1085 1086 1087 1088 1089
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1090

L
Linus Torvalds 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1103
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1104 1105
{
	unsigned long flags;
I
Ingo Molnar 已提交
1106
	int running, on_rq;
1107
	struct rq *rq;
L
Linus Torvalds 已提交
1108

1109 1110 1111 1112 1113 1114 1115 1116
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1117

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1141

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1152

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1166

1167 1168 1169 1170 1171 1172 1173
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1189
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1201 1202
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1203 1204 1205 1206
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1207
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1208
{
1209
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1210
	unsigned long total = weighted_cpuload(cpu);
1211

1212
	if (type == 0)
I
Ingo Molnar 已提交
1213
		return total;
1214

I
Ingo Molnar 已提交
1215
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1216 1217 1218
}

/*
1219 1220
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1221
 */
A
Alexey Dobriyan 已提交
1222
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1223
{
1224
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1225
	unsigned long total = weighted_cpuload(cpu);
1226

N
Nick Piggin 已提交
1227
	if (type == 0)
I
Ingo Molnar 已提交
1228
		return total;
1229

I
Ingo Molnar 已提交
1230
	return max(rq->cpu_load[type-1], total);
1231 1232 1233 1234 1235 1236 1237
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1238
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1239
	unsigned long total = weighted_cpuload(cpu);
1240 1241
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1242
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1243 1244
}

N
Nick Piggin 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1262 1263
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1264
			continue;
1265

N
Nick Piggin 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1282 1283
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1284 1285 1286 1287 1288 1289 1290 1291

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1292
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1293 1294 1295 1296 1297 1298 1299

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1300
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1301
 */
I
Ingo Molnar 已提交
1302 1303
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1304
{
1305
	cpumask_t tmp;
N
Nick Piggin 已提交
1306 1307 1308 1309
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1310 1311 1312 1313
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1314
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1340

1341
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1342 1343 1344
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1345 1346
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1347 1348
		if (tmp->flags & flag)
			sd = tmp;
1349
	}
N
Nick Piggin 已提交
1350 1351 1352 1353

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1354 1355 1356 1357 1358 1359
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1360 1361 1362

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1363 1364 1365 1366
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1367

1368
		new_cpu = find_idlest_cpu(group, t, cpu);
1369 1370 1371 1372 1373
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1374

1375
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1402
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1403 1404 1405 1406 1407
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1418 1419 1420 1421
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1422
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1423
			for_each_cpu_mask(i, tmp) {
1424 1425 1426 1427 1428
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
							se.nr_wakeups_idle);
					}
L
Linus Torvalds 已提交
1429
					return i;
1430
				}
L
Linus Torvalds 已提交
1431
			}
I
Ingo Molnar 已提交
1432
		} else {
N
Nick Piggin 已提交
1433
			break;
I
Ingo Molnar 已提交
1434
		}
L
Linus Torvalds 已提交
1435 1436 1437 1438
	}
	return cpu;
}
#else
1439
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1459
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1460
{
1461
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1462 1463
	unsigned long flags;
	long old_state;
1464
	struct rq *rq;
L
Linus Torvalds 已提交
1465
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1466
	struct sched_domain *sd, *this_sd = NULL;
1467
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1468 1469 1470 1471 1472 1473 1474 1475
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1476
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1477 1478 1479
		goto out_running;

	cpu = task_cpu(p);
1480
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1481 1482 1483 1484 1485 1486
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1487 1488
	new_cpu = cpu;

1489
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1490 1491
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1492 1493 1494 1495 1496 1497 1498 1499
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1500 1501 1502
		}
	}

N
Nick Piggin 已提交
1503
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1504 1505 1506
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1507
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1508
	 */
N
Nick Piggin 已提交
1509 1510 1511
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1512

1513 1514
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1515 1516
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1517

N
Nick Piggin 已提交
1518 1519
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1520 1521
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1522 1523
			unsigned long tl_per_task;

I
Ingo Molnar 已提交
1524 1525 1526 1527 1528 1529
			/*
			 * Attract cache-cold tasks on sync wakeups:
			 */
			if (sync && !task_hot(p, rq->clock, this_sd))
				goto out_set_cpu;

1530
			schedstat_inc(p, se.nr_wakeups_affine_attempts);
1531
			tl_per_task = cpu_avg_load_per_task(this_cpu);
1532

L
Linus Torvalds 已提交
1533
			/*
1534 1535 1536
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1537
			 */
1538
			if (sync)
I
Ingo Molnar 已提交
1539
				tl -= current->se.load.weight;
1540 1541

			if ((tl <= load &&
1542
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1543
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1544 1545 1546 1547 1548 1549
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
1550
				schedstat_inc(p, se.nr_wakeups_affine);
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
1562
				schedstat_inc(p, se.nr_wakeups_passive);
1563 1564
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1579
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1580 1581 1582 1583 1584 1585 1586 1587
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
1588 1589 1590 1591 1592 1593 1594 1595 1596
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1597
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1598
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1599
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1610
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1611 1612 1613 1614 1615 1616
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1617
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1618 1619 1620 1621 1622 1623 1624
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1625 1626 1627 1628 1629 1630 1631
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1632
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1633 1634 1635

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1636 1637 1638 1639 1640 1641
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1642
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1643
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1644
#endif
N
Nick Piggin 已提交
1645

I
Ingo Molnar 已提交
1646 1647
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1648

1649 1650 1651 1652
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1653 1654 1655 1656 1657 1658 1659
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1674
	set_task_cpu(p, cpu);
1675 1676 1677 1678 1679

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1680 1681
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1682

1683
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1684
	if (likely(sched_info_on()))
1685
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1686
#endif
1687
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1688 1689
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1690
#ifdef CONFIG_PREEMPT
1691
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1692
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1693
#endif
N
Nick Piggin 已提交
1694
	put_cpu();
L
Linus Torvalds 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1704
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1705 1706
{
	unsigned long flags;
I
Ingo Molnar 已提交
1707
	struct rq *rq;
L
Linus Torvalds 已提交
1708 1709

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1710
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1711
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1712 1713 1714

	p->prio = effective_prio(p);

1715
	if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
I
Ingo Molnar 已提交
1716
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1717 1718
	} else {
		/*
I
Ingo Molnar 已提交
1719 1720
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1721
		 */
1722
		p->sched_class->task_new(rq, p);
1723
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1724
	}
I
Ingo Molnar 已提交
1725 1726
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1727 1728
}

1729 1730 1731
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1732 1733
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1734 1735 1736 1737 1738 1739 1740 1741 1742
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1743
 * @notifier: notifier struct to unregister
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1787 1788 1789
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1790
 * @prev: the current task that is being switched out
1791 1792 1793 1794 1795 1796 1797 1798 1799
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1800 1801 1802
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1803
{
1804
	fire_sched_out_preempt_notifiers(prev, next);
1805 1806 1807 1808
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1809 1810
/**
 * finish_task_switch - clean up after a task-switch
1811
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1812 1813
 * @prev: the thread we just switched away from.
 *
1814 1815 1816 1817
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1818 1819 1820 1821 1822 1823
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1824
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1825 1826 1827
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1828
	long prev_state;
L
Linus Torvalds 已提交
1829 1830 1831 1832 1833

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1834
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1835 1836
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1837
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1838 1839 1840 1841 1842
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1843
	prev_state = prev->state;
1844 1845
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1846
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1847 1848
	if (mm)
		mmdrop(mm);
1849
	if (unlikely(prev_state == TASK_DEAD)) {
1850 1851 1852
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1853
		 */
1854
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1855
		put_task_struct(prev);
1856
	}
L
Linus Torvalds 已提交
1857 1858 1859 1860 1861 1862
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1863
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1864 1865
	__releases(rq->lock)
{
1866 1867
	struct rq *rq = this_rq();

1868 1869 1870 1871 1872
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877 1878 1879 1880
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1881
static inline void
1882
context_switch(struct rq *rq, struct task_struct *prev,
1883
	       struct task_struct *next)
L
Linus Torvalds 已提交
1884
{
I
Ingo Molnar 已提交
1885
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1886

1887
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1888 1889
	mm = next->mm;
	oldmm = prev->active_mm;
1890 1891 1892 1893 1894 1895 1896
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1897
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1898 1899 1900 1901 1902 1903
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1904
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1905 1906 1907
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1908 1909 1910 1911 1912 1913 1914
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1915
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1916
#endif
L
Linus Torvalds 已提交
1917 1918 1919 1920

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1921 1922 1923 1924 1925 1926 1927
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1951
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1966 1967
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1968

1969
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1979
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1980 1981 1982 1983 1984
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2000
/*
I
Ingo Molnar 已提交
2001 2002
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2003
 */
I
Ingo Molnar 已提交
2004
static void update_cpu_load(struct rq *this_rq)
2005
{
2006
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2019 2020 2021 2022 2023 2024 2025
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2026 2027
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2028 2029
}

I
Ingo Molnar 已提交
2030 2031
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2032 2033 2034 2035 2036 2037
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2038
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2039 2040 2041
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2042
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2043 2044 2045 2046
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2047
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2048 2049 2050 2051 2052 2053 2054
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2055 2056
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2057 2058 2059 2060 2061 2062 2063 2064
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2065
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2079
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2080 2081 2082 2083
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2084 2085 2086 2087 2088
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2089
	if (unlikely(!spin_trylock(&busiest->lock))) {
2090
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2105
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2106
{
2107
	struct migration_req req;
L
Linus Torvalds 已提交
2108
	unsigned long flags;
2109
	struct rq *rq;
L
Linus Torvalds 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2120

L
Linus Torvalds 已提交
2121 2122 2123 2124 2125
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2126

L
Linus Torvalds 已提交
2127 2128 2129 2130 2131 2132 2133
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2134 2135
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2136 2137 2138 2139
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2140
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2141
	put_cpu();
N
Nick Piggin 已提交
2142 2143
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2144 2145 2146 2147 2148 2149
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2150 2151
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2152
{
2153
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2154
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2155
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2156 2157 2158 2159
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2160
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2161 2162 2163 2164 2165
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2166
static
2167
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2168
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2169
		     int *all_pinned)
L
Linus Torvalds 已提交
2170 2171 2172 2173 2174 2175 2176
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2177 2178
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2179
		return 0;
2180
	}
2181 2182
	*all_pinned = 0;

2183 2184
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2185
		return 0;
2186
	}
L
Linus Torvalds 已提交
2187

2188 2189 2190 2191 2192 2193
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2194 2195
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2196
#ifdef CONFIG_SCHEDSTATS
2197
		if (task_hot(p, rq->clock, sd)) {
2198
			schedstat_inc(sd, lb_hot_gained[idle]);
2199 2200
			schedstat_inc(p, se.nr_forced_migrations);
		}
2201 2202 2203 2204
#endif
		return 1;
	}

2205 2206
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2207
		return 0;
2208
	}
L
Linus Torvalds 已提交
2209 2210 2211
	return 1;
}

I
Ingo Molnar 已提交
2212
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2213
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2214
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2215
		      int *all_pinned, unsigned long *load_moved,
2216
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2217
{
I
Ingo Molnar 已提交
2218 2219 2220
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2221

2222
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2223 2224
		goto out;

2225 2226
	pinned = 1;

L
Linus Torvalds 已提交
2227
	/*
I
Ingo Molnar 已提交
2228
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2229
	 */
I
Ingo Molnar 已提交
2230 2231 2232
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2233
		goto out;
2234 2235 2236 2237 2238
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2239 2240
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2241
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2242 2243 2244
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2245 2246
	}

I
Ingo Molnar 已提交
2247
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2248
	pulled++;
I
Ingo Molnar 已提交
2249
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2250

2251 2252 2253 2254 2255
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2256 2257
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2258 2259
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2260 2261 2262 2263 2264 2265 2266 2267
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2268 2269 2270

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2271
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2272 2273 2274
	return pulled;
}

I
Ingo Molnar 已提交
2275
/*
P
Peter Williams 已提交
2276 2277 2278
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2279 2280 2281 2282
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2283
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2284 2285 2286
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2287
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2288
	unsigned long total_load_moved = 0;
2289
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2290 2291

	do {
P
Peter Williams 已提交
2292 2293 2294
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2295
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2296
		class = class->next;
P
Peter Williams 已提交
2297
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2298

P
Peter Williams 已提交
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2312
	const struct sched_class *class;
2313
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2314 2315 2316

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2317 2318
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2319 2320 2321
			return 1;

	return 0;
I
Ingo Molnar 已提交
2322 2323
}

L
Linus Torvalds 已提交
2324 2325
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2326 2327
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2328 2329 2330
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2331 2332
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2333 2334 2335
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2336
	unsigned long max_pull;
2337 2338
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2339
	int load_idx;
2340 2341 2342 2343 2344 2345
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2346 2347

	max_load = this_load = total_load = total_pwr = 0;
2348 2349
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2350
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2351
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2352
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2353 2354 2355
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2356 2357

	do {
2358
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2359 2360
		int local_group;
		int i;
2361
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2362
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2363 2364 2365

		local_group = cpu_isset(this_cpu, group->cpumask);

2366 2367 2368
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2369
		/* Tally up the load of all CPUs in the group */
2370
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2371 2372

		for_each_cpu_mask(i, group->cpumask) {
2373 2374 2375 2376 2377 2378
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2379

2380
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2381 2382
				*sd_idle = 0;

L
Linus Torvalds 已提交
2383
			/* Bias balancing toward cpus of our domain */
2384 2385 2386 2387 2388 2389
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2390
				load = target_load(i, load_idx);
2391
			} else
N
Nick Piggin 已提交
2392
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2393 2394

			avg_load += load;
2395
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2396
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2397 2398
		}

2399 2400 2401
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2402 2403
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2404
		 */
2405 2406
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2407 2408 2409 2410
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2411
		total_load += avg_load;
2412
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2413 2414

		/* Adjust by relative CPU power of the group */
2415 2416
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2417

2418
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2419

L
Linus Torvalds 已提交
2420 2421 2422
		if (local_group) {
			this_load = avg_load;
			this = group;
2423 2424 2425
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2426
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2427 2428
			max_load = avg_load;
			busiest = group;
2429 2430
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2431
		}
2432 2433 2434 2435 2436 2437

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2438 2439 2440
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2441 2442 2443 2444 2445 2446 2447 2448 2449

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2450
		/*
2451 2452
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2453 2454
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2455
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2456
			goto group_next;
2457

I
Ingo Molnar 已提交
2458
		/*
2459
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2460 2461 2462 2463 2464
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2465 2466
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2467 2468
			group_min = group;
			min_nr_running = sum_nr_running;
2469 2470
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2471
		}
2472

I
Ingo Molnar 已提交
2473
		/*
2474
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2486
		}
2487 2488
group_next:
#endif
L
Linus Torvalds 已提交
2489 2490 2491
		group = group->next;
	} while (group != sd->groups);

2492
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2493 2494 2495 2496 2497 2498 2499 2500
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2501
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2525 2526

	/* Don't want to pull so many tasks that a group would go idle */
2527
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2528

L
Linus Torvalds 已提交
2529
	/* How much load to actually move to equalise the imbalance */
2530 2531
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2532 2533
			/ SCHED_LOAD_SCALE;

2534 2535 2536 2537 2538 2539
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2540
	if (*imbalance < busiest_load_per_task) {
2541
		unsigned long tmp, pwr_now, pwr_move;
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2553

I
Ingo Molnar 已提交
2554 2555
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2556
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2557 2558 2559 2560 2561 2562 2563 2564 2565
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2566 2567 2568 2569
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2570 2571 2572
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2573 2574
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2575
		if (max_load > tmp)
2576
			pwr_move += busiest->__cpu_power *
2577
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2578 2579

		/* Amount of load we'd add */
2580
		if (max_load * busiest->__cpu_power <
2581
				busiest_load_per_task * SCHED_LOAD_SCALE)
2582 2583
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2584
		else
2585 2586 2587 2588
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2589 2590 2591
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2592 2593
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2594 2595 2596 2597 2598
	}

	return busiest;

out_balanced:
2599
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2600
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2601
		goto ret;
L
Linus Torvalds 已提交
2602

2603 2604 2605 2606 2607
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2608
ret:
L
Linus Torvalds 已提交
2609 2610 2611 2612 2613 2614 2615
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2616
static struct rq *
I
Ingo Molnar 已提交
2617
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2618
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2619
{
2620
	struct rq *busiest = NULL, *rq;
2621
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2622 2623 2624
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2625
		unsigned long wl;
2626 2627 2628 2629

		if (!cpu_isset(i, *cpus))
			continue;

2630
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2631
		wl = weighted_cpuload(i);
2632

I
Ingo Molnar 已提交
2633
		if (rq->nr_running == 1 && wl > imbalance)
2634
			continue;
L
Linus Torvalds 已提交
2635

I
Ingo Molnar 已提交
2636 2637
		if (wl > max_load) {
			max_load = wl;
2638
			busiest = rq;
L
Linus Torvalds 已提交
2639 2640 2641 2642 2643 2644
		}
	}

	return busiest;
}

2645 2646 2647 2648 2649 2650
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2651 2652 2653 2654
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2655
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2656
			struct sched_domain *sd, enum cpu_idle_type idle,
2657
			int *balance)
L
Linus Torvalds 已提交
2658
{
P
Peter Williams 已提交
2659
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2660 2661
	struct sched_group *group;
	unsigned long imbalance;
2662
	struct rq *busiest;
2663
	cpumask_t cpus = CPU_MASK_ALL;
2664
	unsigned long flags;
N
Nick Piggin 已提交
2665

2666 2667 2668
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2669
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2670
	 * portraying it as CPU_NOT_IDLE.
2671
	 */
I
Ingo Molnar 已提交
2672
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2673
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2674
		sd_idle = 1;
L
Linus Torvalds 已提交
2675

2676
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2677

2678 2679
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2680 2681
				   &cpus, balance);

2682
	if (*balance == 0)
2683 2684
		goto out_balanced;

L
Linus Torvalds 已提交
2685 2686 2687 2688 2689
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2690
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2691 2692 2693 2694 2695
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2696
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2697 2698 2699

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2700
	ld_moved = 0;
L
Linus Torvalds 已提交
2701 2702 2703 2704
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2705
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2706 2707
		 * correctly treated as an imbalance.
		 */
2708
		local_irq_save(flags);
N
Nick Piggin 已提交
2709
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2710
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2711
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2712
		double_rq_unlock(this_rq, busiest);
2713
		local_irq_restore(flags);
2714

2715 2716 2717
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2718
		if (ld_moved && this_cpu != smp_processor_id())
2719 2720
			resched_cpu(this_cpu);

2721
		/* All tasks on this runqueue were pinned by CPU affinity */
2722 2723 2724 2725
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2726
			goto out_balanced;
2727
		}
L
Linus Torvalds 已提交
2728
	}
2729

P
Peter Williams 已提交
2730
	if (!ld_moved) {
L
Linus Torvalds 已提交
2731 2732 2733 2734 2735
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2736
			spin_lock_irqsave(&busiest->lock, flags);
2737 2738 2739 2740 2741

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2742
				spin_unlock_irqrestore(&busiest->lock, flags);
2743 2744 2745 2746
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2747 2748 2749
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2750
				active_balance = 1;
L
Linus Torvalds 已提交
2751
			}
2752
			spin_unlock_irqrestore(&busiest->lock, flags);
2753
			if (active_balance)
L
Linus Torvalds 已提交
2754 2755 2756 2757 2758 2759
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2760
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2761
		}
2762
	} else
L
Linus Torvalds 已提交
2763 2764
		sd->nr_balance_failed = 0;

2765
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2766 2767
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2768 2769 2770 2771 2772 2773 2774 2775 2776
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2777 2778
	}

P
Peter Williams 已提交
2779
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2780
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2781
		return -1;
P
Peter Williams 已提交
2782
	return ld_moved;
L
Linus Torvalds 已提交
2783 2784 2785 2786

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2787
	sd->nr_balance_failed = 0;
2788 2789

out_one_pinned:
L
Linus Torvalds 已提交
2790
	/* tune up the balancing interval */
2791 2792
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2793 2794
		sd->balance_interval *= 2;

2795
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2796
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2797
		return -1;
L
Linus Torvalds 已提交
2798 2799 2800 2801 2802 2803 2804
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2805
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2806 2807
 * this_rq is locked.
 */
2808
static int
2809
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2810 2811
{
	struct sched_group *group;
2812
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2813
	unsigned long imbalance;
P
Peter Williams 已提交
2814
	int ld_moved = 0;
N
Nick Piggin 已提交
2815
	int sd_idle = 0;
2816
	int all_pinned = 0;
2817
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2818

2819 2820 2821 2822
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2823
	 * portraying it as CPU_NOT_IDLE.
2824 2825 2826
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2827
		sd_idle = 1;
L
Linus Torvalds 已提交
2828

2829
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2830
redo:
I
Ingo Molnar 已提交
2831
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2832
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2833
	if (!group) {
I
Ingo Molnar 已提交
2834
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2835
		goto out_balanced;
L
Linus Torvalds 已提交
2836 2837
	}

I
Ingo Molnar 已提交
2838
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2839
				&cpus);
N
Nick Piggin 已提交
2840
	if (!busiest) {
I
Ingo Molnar 已提交
2841
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2842
		goto out_balanced;
L
Linus Torvalds 已提交
2843 2844
	}

N
Nick Piggin 已提交
2845 2846
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2847
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2848

P
Peter Williams 已提交
2849
	ld_moved = 0;
2850 2851 2852
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2853 2854
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2855
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2856 2857
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2858
		spin_unlock(&busiest->lock);
2859

2860
		if (unlikely(all_pinned)) {
2861 2862 2863 2864
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2865 2866
	}

P
Peter Williams 已提交
2867
	if (!ld_moved) {
I
Ingo Molnar 已提交
2868
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2869 2870
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2871 2872
			return -1;
	} else
2873
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2874

P
Peter Williams 已提交
2875
	return ld_moved;
2876 2877

out_balanced:
I
Ingo Molnar 已提交
2878
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2879
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2880
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2881
		return -1;
2882
	sd->nr_balance_failed = 0;
2883

2884
	return 0;
L
Linus Torvalds 已提交
2885 2886 2887 2888 2889 2890
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2891
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2892 2893
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2894 2895
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2896 2897

	for_each_domain(this_cpu, sd) {
2898 2899 2900 2901 2902 2903
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2904
			/* If we've pulled tasks over stop searching: */
2905
			pulled_task = load_balance_newidle(this_cpu,
2906 2907 2908 2909 2910 2911 2912
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2913
	}
I
Ingo Molnar 已提交
2914
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2915 2916 2917 2918 2919
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2920
	}
L
Linus Torvalds 已提交
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2931
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2932
{
2933
	int target_cpu = busiest_rq->push_cpu;
2934 2935
	struct sched_domain *sd;
	struct rq *target_rq;
2936

2937
	/* Is there any task to move? */
2938 2939 2940 2941
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2942 2943

	/*
2944 2945 2946
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2947
	 */
2948
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2949

2950 2951
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2952 2953
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2954 2955

	/* Search for an sd spanning us and the target CPU. */
2956
	for_each_domain(target_cpu, sd) {
2957
		if ((sd->flags & SD_LOAD_BALANCE) &&
2958
		    cpu_isset(busiest_cpu, sd->span))
2959
				break;
2960
	}
2961

2962
	if (likely(sd)) {
2963
		schedstat_inc(sd, alb_count);
2964

P
Peter Williams 已提交
2965 2966
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2967 2968 2969 2970
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2971
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2972 2973
}

2974 2975 2976 2977 2978 2979 2980 2981 2982
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2983
/*
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2994
 *
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3051 3052 3053 3054 3055
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3056
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3057
{
3058 3059
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3060 3061
	unsigned long interval;
	struct sched_domain *sd;
3062
	/* Earliest time when we have to do rebalance again */
3063
	unsigned long next_balance = jiffies + 60*HZ;
3064
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3065

3066
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3067 3068 3069 3070
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3071
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3072 3073 3074 3075 3076 3077
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3078 3079 3080
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3081

3082 3083 3084 3085 3086
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3087
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3088
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3089 3090
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3091 3092 3093
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3094
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3095
			}
3096
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3097
		}
3098 3099 3100
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3101
		if (time_after(next_balance, sd->last_balance + interval)) {
3102
			next_balance = sd->last_balance + interval;
3103 3104
			update_next_balance = 1;
		}
3105 3106 3107 3108 3109 3110 3111 3112

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3113
	}
3114 3115 3116 3117 3118 3119 3120 3121

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3122 3123 3124 3125 3126 3127 3128 3129 3130
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3131 3132 3133 3134
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3135

I
Ingo Molnar 已提交
3136
	rebalance_domains(this_cpu, idle);
3137 3138 3139 3140 3141 3142 3143

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3144 3145
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3146 3147 3148 3149
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3150
		cpu_clear(this_cpu, cpus);
3151 3152 3153 3154 3155 3156 3157 3158 3159
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3160
			rebalance_domains(balance_cpu, CPU_IDLE);
3161 3162

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3163 3164
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3177
static inline void trigger_load_balance(struct rq *rq, int cpu)
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3229
}
I
Ingo Molnar 已提交
3230 3231 3232

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3233 3234 3235
/*
 * on UP we do not need to balance between CPUs:
 */
3236
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3237 3238
{
}
I
Ingo Molnar 已提交
3239 3240 3241 3242 3243 3244

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3245
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3246 3247 3248 3249 3250 3251
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3252 3253 3254 3255 3256 3257 3258
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3259 3260
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3261
 */
3262
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3263 3264
{
	unsigned long flags;
3265 3266
	u64 ns, delta_exec;
	struct rq *rq;
3267

3268 3269 3270
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3271 3272
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3273 3274 3275 3276
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3277

L
Linus Torvalds 已提交
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
void account_guest_time(struct task_struct *p, cputime_t cputime)
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3331
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3332 3333
	cputime64_t tmp;

3334 3335 3336 3337 3338 3339
	if (p->flags & PF_VCPU) {
		account_guest_time(p, cputime);
		p->flags &= ~PF_VCPU;
		return;
	}

L
Linus Torvalds 已提交
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3367
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3390
	struct task_struct *curr = rq->curr;
3391
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3392 3393

	spin_lock(&rq->lock);
3394
	__update_rq_clock(rq);
3395 3396 3397 3398 3399 3400
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3401
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3402 3403 3404
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3405

3406
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3407 3408
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3409
#endif
L
Linus Torvalds 已提交
3410 3411 3412 3413 3414 3415 3416 3417 3418
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3419 3420
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3421 3422 3423 3424
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3425 3426
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3427 3428 3429 3430 3431 3432 3433 3434
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3435 3436
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3437 3438 3439
	/*
	 * Is the spinlock portion underflowing?
	 */
3440 3441 3442 3443
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3444 3445 3446 3447 3448 3449 3450
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3451
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3452
 */
I
Ingo Molnar 已提交
3453
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3454
{
I
Ingo Molnar 已提交
3455 3456 3457 3458 3459 3460 3461
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3462

I
Ingo Molnar 已提交
3463 3464 3465 3466 3467
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3468 3469 3470 3471 3472
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3473 3474 3475
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3476 3477
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3478
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3479 3480
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3481 3482
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3483 3484
	}
#endif
I
Ingo Molnar 已提交
3485 3486 3487 3488 3489 3490
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3491
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3492
{
3493
	const struct sched_class *class;
I
Ingo Molnar 已提交
3494
	struct task_struct *p;
L
Linus Torvalds 已提交
3495 3496

	/*
I
Ingo Molnar 已提交
3497 3498
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3499
	 */
I
Ingo Molnar 已提交
3500
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3501
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3502 3503
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3504 3505
	}

I
Ingo Molnar 已提交
3506 3507
	class = sched_class_highest;
	for ( ; ; ) {
3508
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3509 3510 3511 3512 3513 3514 3515 3516 3517
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3518

I
Ingo Molnar 已提交
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3541

3542 3543 3544 3545
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3546
	__update_rq_clock(rq);
3547 3548
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3549 3550 3551

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3552
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3553
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3554
		} else {
3555
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3556
		}
I
Ingo Molnar 已提交
3557
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3558 3559
	}

I
Ingo Molnar 已提交
3560
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3561 3562
		idle_balance(cpu, rq);

3563
	prev->sched_class->put_prev_task(rq, prev);
3564
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3565 3566

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3567

L
Linus Torvalds 已提交
3568 3569 3570 3571 3572
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3573
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3574 3575 3576
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3577 3578 3579
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3580
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3581
	}
L
Linus Torvalds 已提交
3582 3583 3584 3585 3586 3587 3588 3589
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3590
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3605
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3606 3607
		return;

3608 3609 3610 3611 3612 3613 3614 3615
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3616
#ifdef CONFIG_PREEMPT_BKL
3617 3618
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3619
#endif
3620
		schedule();
L
Linus Torvalds 已提交
3621
#ifdef CONFIG_PREEMPT_BKL
3622
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3623
#endif
3624
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3625

3626 3627 3628 3629 3630 3631
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3632 3633 3634 3635
}
EXPORT_SYMBOL(preempt_schedule);

/*
3636
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3648
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3649 3650
	BUG_ON(ti->preempt_count || !irqs_disabled());

3651 3652 3653 3654 3655 3656 3657 3658
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3659
#ifdef CONFIG_PREEMPT_BKL
3660 3661
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3662
#endif
3663 3664 3665
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3666
#ifdef CONFIG_PREEMPT_BKL
3667
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3668
#endif
3669
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3670

3671 3672 3673 3674 3675 3676
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3677 3678 3679 3680
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3681 3682
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3683
{
3684
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3700
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3701

3702
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3703 3704
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3705
		if (curr->func(curr, mode, sync, key) &&
3706
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3707 3708 3709 3710 3711 3712 3713 3714 3715
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3716
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3717 3718
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3719
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3738
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3750 3751
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3792 3793
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3794 3795 3796 3797 3798 3799 3800
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3801 3802 3803 3804 3805 3806
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3807 3808 3809 3810 3811
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3812
				return timeout;
L
Linus Torvalds 已提交
3813 3814 3815 3816 3817 3818 3819 3820
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3821 3822
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3823 3824 3825 3826
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3827
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3828
	spin_unlock_irq(&x->wait.lock);
3829 3830
	return timeout;
}
L
Linus Torvalds 已提交
3831

3832 3833 3834
void fastcall __sched wait_for_completion(struct completion *x)
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3835
}
3836
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3837 3838

unsigned long fastcall __sched
3839
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3840
{
3841
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3842
}
3843
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3844

3845
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3846
{
3847
	return wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3848
}
3849
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3850

3851 3852 3853
unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3854
{
3855
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3856
}
3857
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3858

3859 3860
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3861
{
I
Ingo Molnar 已提交
3862 3863 3864 3865
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3866

3867
	__set_current_state(state);
L
Linus Torvalds 已提交
3868

3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3883 3884 3885
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3886
long __sched
I
Ingo Molnar 已提交
3887
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3888
{
3889
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3890 3891 3892
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3893
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3894
{
3895
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3896 3897 3898
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3899
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3900
{
3901
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3902 3903 3904
}
EXPORT_SYMBOL(sleep_on_timeout);

3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3917
void rt_mutex_setprio(struct task_struct *p, int prio)
3918 3919
{
	unsigned long flags;
3920
	int oldprio, on_rq, running;
3921
	struct rq *rq;
3922 3923 3924 3925

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3926
	update_rq_clock(rq);
3927

3928
	oldprio = p->prio;
I
Ingo Molnar 已提交
3929
	on_rq = p->se.on_rq;
3930 3931
	running = task_running(rq, p);
	if (on_rq) {
3932
		dequeue_task(rq, p, 0);
3933 3934 3935
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
3936 3937 3938 3939 3940 3941

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3942 3943
	p->prio = prio;

I
Ingo Molnar 已提交
3944
	if (on_rq) {
3945 3946
		if (running)
			p->sched_class->set_curr_task(rq);
3947
		enqueue_task(rq, p, 0);
3948 3949
		/*
		 * Reschedule if we are currently running on this runqueue and
3950 3951
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3952
		 */
3953
		if (running) {
3954 3955
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3956 3957 3958
		} else {
			check_preempt_curr(rq, p);
		}
3959 3960 3961 3962 3963 3964
	}
	task_rq_unlock(rq, &flags);
}

#endif

3965
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3966
{
I
Ingo Molnar 已提交
3967
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3968
	unsigned long flags;
3969
	struct rq *rq;
L
Linus Torvalds 已提交
3970 3971 3972 3973 3974 3975 3976 3977

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3978
	update_rq_clock(rq);
L
Linus Torvalds 已提交
3979 3980 3981 3982
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3983
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3984
	 */
3985
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3986 3987 3988
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3989 3990
	on_rq = p->se.on_rq;
	if (on_rq) {
3991
		dequeue_task(rq, p, 0);
3992
		dec_load(rq, p);
3993
	}
L
Linus Torvalds 已提交
3994 3995

	p->static_prio = NICE_TO_PRIO(nice);
3996
	set_load_weight(p);
3997 3998 3999
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4000

I
Ingo Molnar 已提交
4001
	if (on_rq) {
4002
		enqueue_task(rq, p, 0);
4003
		inc_load(rq, p);
L
Linus Torvalds 已提交
4004
		/*
4005 4006
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4007
		 */
4008
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4009 4010 4011 4012 4013 4014 4015
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4016 4017 4018 4019 4020
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4021
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4022
{
4023 4024
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4025

M
Matt Mackall 已提交
4026 4027 4028 4029
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4041
	long nice, retval;
L
Linus Torvalds 已提交
4042 4043 4044 4045 4046 4047

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4048 4049
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4050 4051 4052 4053 4054 4055 4056 4057 4058
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4059 4060 4061
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4080
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4081 4082 4083 4084 4085 4086 4087 4088
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4089
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4108
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4109 4110 4111 4112 4113 4114 4115 4116
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4117
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4118 4119 4120 4121 4122
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4123 4124
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4125
{
I
Ingo Molnar 已提交
4126
	BUG_ON(p->se.on_rq);
4127

L
Linus Torvalds 已提交
4128
	p->policy = policy;
I
Ingo Molnar 已提交
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4141
	p->rt_priority = prio;
4142 4143 4144
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4145
	set_load_weight(p);
L
Linus Torvalds 已提交
4146 4147 4148
}

/**
4149
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4150 4151 4152
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4153
 *
4154
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4155
 */
I
Ingo Molnar 已提交
4156 4157
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4158
{
4159
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4160
	unsigned long flags;
4161
	struct rq *rq;
L
Linus Torvalds 已提交
4162

4163 4164
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4165 4166 4167 4168 4169
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4170 4171
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4172
		return -EINVAL;
L
Linus Torvalds 已提交
4173 4174
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4175 4176
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4177 4178
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4179
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4180
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4181
		return -EINVAL;
4182
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4183 4184
		return -EINVAL;

4185 4186 4187 4188
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4189
		if (rt_policy(policy)) {
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4206 4207 4208 4209 4210 4211
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4212

4213 4214 4215 4216 4217
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4218 4219 4220 4221

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4222 4223 4224 4225 4226
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4227 4228 4229 4230
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4231
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4232 4233 4234
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4235 4236
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4237 4238
		goto recheck;
	}
I
Ingo Molnar 已提交
4239
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4240
	on_rq = p->se.on_rq;
4241 4242
	running = task_running(rq, p);
	if (on_rq) {
4243
		deactivate_task(rq, p, 0);
4244 4245 4246
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4247

L
Linus Torvalds 已提交
4248
	oldprio = p->prio;
I
Ingo Molnar 已提交
4249
	__setscheduler(rq, p, policy, param->sched_priority);
4250

I
Ingo Molnar 已提交
4251
	if (on_rq) {
4252 4253
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4254
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4255 4256
		/*
		 * Reschedule if we are currently running on this runqueue and
4257 4258
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4259
		 */
4260
		if (running) {
4261 4262
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4263 4264 4265
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4266
	}
4267 4268 4269
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4270 4271
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4272 4273 4274 4275
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4276 4277
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4278 4279 4280
{
	struct sched_param lparam;
	struct task_struct *p;
4281
	int retval;
L
Linus Torvalds 已提交
4282 4283 4284 4285 4286

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4287 4288 4289

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4290
	p = find_process_by_pid(pid);
4291 4292 4293
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4294

L
Linus Torvalds 已提交
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4307 4308 4309 4310
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4330
	struct task_struct *p;
4331
	int retval;
L
Linus Torvalds 已提交
4332 4333

	if (pid < 0)
4334
		return -EINVAL;
L
Linus Torvalds 已提交
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4356
	struct task_struct *p;
4357
	int retval;
L
Linus Torvalds 已提交
4358 4359

	if (!param || pid < 0)
4360
		return -EINVAL;
L
Linus Torvalds 已提交
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4390 4391
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4392

4393
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4394 4395 4396 4397 4398
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4399
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4416 4417 4418 4419
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4420 4421 4422 4423 4424 4425
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4426
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4467
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4468 4469 4470
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4471
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4472 4473
EXPORT_SYMBOL(cpu_online_map);

4474
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4475
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4476 4477 4478 4479
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4480
	struct task_struct *p;
L
Linus Torvalds 已提交
4481 4482
	int retval;

4483
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4484 4485 4486 4487 4488 4489 4490
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4491 4492 4493 4494
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4495
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4496 4497 4498

out_unlock:
	read_unlock(&tasklist_lock);
4499
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4500

4501
	return retval;
L
Linus Torvalds 已提交
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4532 4533
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4534 4535 4536
 */
asmlinkage long sys_sched_yield(void)
{
4537
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4538

4539
	schedstat_inc(rq, yld_count);
4540
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4541 4542 4543 4544 4545 4546

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4547
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4548 4549 4550 4551 4552 4553 4554 4555
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4556
static void __cond_resched(void)
L
Linus Torvalds 已提交
4557
{
4558 4559 4560
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4561 4562 4563 4564 4565
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4566 4567 4568 4569 4570 4571 4572 4573 4574
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4575 4576
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4592
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4593
{
J
Jan Kara 已提交
4594 4595
	int ret = 0;

L
Linus Torvalds 已提交
4596 4597 4598
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4599
		ret = 1;
L
Linus Torvalds 已提交
4600 4601
		spin_lock(lock);
	}
4602
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4603
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4604 4605 4606
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4607
		ret = 1;
L
Linus Torvalds 已提交
4608 4609
		spin_lock(lock);
	}
J
Jan Kara 已提交
4610
	return ret;
L
Linus Torvalds 已提交
4611 4612 4613 4614 4615 4616 4617
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4618
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4619
		local_bh_enable();
L
Linus Torvalds 已提交
4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4631
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4650
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4651

4652
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4653 4654 4655
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4656
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4657 4658 4659 4660 4661
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4662
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4663 4664
	long ret;

4665
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4666 4667 4668
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4669
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4690
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4691
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4715
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4716
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4733
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4734
	unsigned int time_slice;
4735
	int retval;
L
Linus Torvalds 已提交
4736 4737 4738
	struct timespec t;

	if (pid < 0)
4739
		return -EINVAL;
L
Linus Torvalds 已提交
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

D
Dmitry Adamushko 已提交
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
	if (p->policy == SCHED_FIFO)
		time_slice = 0;
	else if (p->policy == SCHED_RR)
		time_slice = DEF_TIMESLICE;
	else {
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
		time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4764
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4765
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4766 4767
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4768

L
Linus Torvalds 已提交
4769 4770 4771 4772 4773
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4774
static const char stat_nam[] = "RSDTtZX";
4775 4776

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4777 4778
{
	unsigned long free = 0;
4779
	unsigned state;
L
Linus Torvalds 已提交
4780 4781

	state = p->state ? __ffs(p->state) + 1 : 0;
4782 4783
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4784
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4785
	if (state == TASK_RUNNING)
4786
		printk(" running  ");
L
Linus Torvalds 已提交
4787
	else
4788
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4789 4790
#else
	if (state == TASK_RUNNING)
4791
		printk("  running task    ");
L
Linus Torvalds 已提交
4792 4793 4794 4795 4796
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4797
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4798 4799
		while (!*n)
			n++;
4800
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4801 4802
	}
#endif
4803
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4804 4805 4806 4807 4808

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4809
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4810
{
4811
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4812

4813 4814 4815
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4816
#else
4817 4818
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4819 4820 4821 4822 4823 4824 4825 4826
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4827
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4828
			show_task(p);
L
Linus Torvalds 已提交
4829 4830
	} while_each_thread(g, p);

4831 4832
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4833 4834 4835
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4836
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4837 4838 4839 4840 4841
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4842 4843
}

I
Ingo Molnar 已提交
4844 4845
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4846
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4847 4848
}

4849 4850 4851 4852 4853 4854 4855 4856
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4857
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4858
{
4859
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4860 4861
	unsigned long flags;

I
Ingo Molnar 已提交
4862 4863 4864
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4865
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4866
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4867
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4868 4869 4870

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4871 4872 4873
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4874 4875 4876 4877
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4878
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4879
#else
A
Al Viro 已提交
4880
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4881
#endif
I
Ingo Molnar 已提交
4882 4883 4884 4885
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4901
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4923
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4924
{
4925
	struct migration_req req;
L
Linus Torvalds 已提交
4926
	unsigned long flags;
4927
	struct rq *rq;
4928
	int ret = 0;
L
Linus Torvalds 已提交
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4951

L
Linus Torvalds 已提交
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4964 4965
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4966
 */
4967
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4968
{
4969
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4970
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4971 4972

	if (unlikely(cpu_is_offline(dest_cpu)))
4973
		return ret;
L
Linus Torvalds 已提交
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4986
	on_rq = p->se.on_rq;
4987
	if (on_rq)
4988
		deactivate_task(rq_src, p, 0);
4989

L
Linus Torvalds 已提交
4990
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4991 4992 4993
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4994
	}
4995
	ret = 1;
L
Linus Torvalds 已提交
4996 4997
out:
	double_rq_unlock(rq_src, rq_dest);
4998
	return ret;
L
Linus Torvalds 已提交
4999 5000 5001 5002 5003 5004 5005
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5006
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5007 5008
{
	int cpu = (long)data;
5009
	struct rq *rq;
L
Linus Torvalds 已提交
5010 5011 5012 5013 5014 5015

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5016
		struct migration_req *req;
L
Linus Torvalds 已提交
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5039
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5040 5041
		list_del_init(head->next);

N
Nick Piggin 已提交
5042 5043 5044
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5074 5075 5076 5077
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5078
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5079
{
5080
	unsigned long flags;
L
Linus Torvalds 已提交
5081
	cpumask_t mask;
5082 5083
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5084

5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
			rq = task_rq_lock(p, &flags);
			cpus_setall(p->cpus_allowed);
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5101

5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
			if (p->mm && printk_ratelimit())
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
				       p->pid, p->comm, dead_cpu);
		}
5112
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5113 5114 5115 5116 5117 5118 5119 5120 5121
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5122
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5123
{
5124
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5138
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5139

5140
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5141

5142 5143
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5144 5145
			continue;

5146 5147 5148
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5149

5150
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5151 5152
}

A
Alexey Dobriyan 已提交
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
/*
 * activate_idle_task - move idle task to the _front_ of runqueue.
 */
static void activate_idle_task(struct task_struct *p, struct rq *rq)
{
	update_rq_clock(rq);

	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;

	enqueue_task(rq, p, 0);
	inc_nr_running(p, rq);
}

I
Ingo Molnar 已提交
5167 5168
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5169
 * It does so by boosting its priority to highest possible and adding it to
5170
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5171 5172 5173
 */
void sched_idle_next(void)
{
5174
	int this_cpu = smp_processor_id();
5175
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5176 5177 5178 5179
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5180
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5181

5182 5183 5184
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5185 5186 5187
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5188
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5189 5190

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5191
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5192 5193 5194 5195

	spin_unlock_irqrestore(&rq->lock, flags);
}

5196 5197
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5211
/* called under rq->lock with disabled interrupts */
5212
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5213
{
5214
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5215 5216

	/* Must be exiting, otherwise would be on tasklist. */
5217
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5218 5219

	/* Cannot have done final schedule yet: would have vanished. */
5220
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5221

5222
	get_task_struct(p);
L
Linus Torvalds 已提交
5223 5224 5225 5226 5227 5228

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
	 */
5229
	spin_unlock_irq(&rq->lock);
5230
	move_task_off_dead_cpu(dead_cpu, p);
5231
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5232

5233
	put_task_struct(p);
L
Linus Torvalds 已提交
5234 5235 5236 5237 5238
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5239
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5240
	struct task_struct *next;
5241

I
Ingo Molnar 已提交
5242 5243 5244
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5245
		update_rq_clock(rq);
5246
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5247 5248 5249
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5250

L
Linus Torvalds 已提交
5251 5252 5253 5254
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5255 5256 5257
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5258 5259
	{
		.procname	= "sched_domain",
5260
		.mode		= 0555,
5261
	},
5262 5263 5264 5265
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5266
	{
5267
		.ctl_name	= CTL_KERN,
5268
		.procname	= "kernel",
5269
		.mode		= 0555,
5270 5271
		.child		= sd_ctl_dir,
	},
5272 5273 5274 5275 5276 5277
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5278
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5279 5280 5281 5282

	return entry;
}

5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
	struct ctl_table *entry = *tablep;

	for (entry = *tablep; entry->procname; entry++)
		if (entry->child)
			sd_free_ctl_entry(&entry->child);

	kfree(*tablep);
	*tablep = NULL;
}

5295
static void
5296
set_table_entry(struct ctl_table *entry,
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5310
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5311

5312 5313 5314
	if (table == NULL)
		return NULL;

5315
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5316
		sizeof(long), 0644, proc_doulongvec_minmax);
5317
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5318
		sizeof(long), 0644, proc_doulongvec_minmax);
5319
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5320
		sizeof(int), 0644, proc_dointvec_minmax);
5321
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5322
		sizeof(int), 0644, proc_dointvec_minmax);
5323
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5324
		sizeof(int), 0644, proc_dointvec_minmax);
5325
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5326
		sizeof(int), 0644, proc_dointvec_minmax);
5327
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5328
		sizeof(int), 0644, proc_dointvec_minmax);
5329
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5330
		sizeof(int), 0644, proc_dointvec_minmax);
5331
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5332
		sizeof(int), 0644, proc_dointvec_minmax);
5333
	set_table_entry(&table[9], "cache_nice_tries",
5334 5335
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5336
	set_table_entry(&table[10], "flags", &sd->flags,
5337
		sizeof(int), 0644, proc_dointvec_minmax);
5338
	/* &table[11] is terminator */
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5353 5354
	if (table == NULL)
		return NULL;
5355 5356 5357 5358 5359

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5360
		entry->mode = 0555;
5361 5362 5363 5364 5365 5366 5367 5368
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5369
static void register_sched_domain_sysctl(void)
5370 5371 5372 5373 5374
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5375 5376 5377
	if (entry == NULL)
		return;

5378 5379
	sd_ctl_dir[0].child = entry;

5380
	for_each_online_cpu(i) {
5381 5382
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5383
		entry->mode = 0555;
5384
		entry->child = sd_alloc_ctl_cpu_table(i);
5385
		entry++;
5386 5387 5388
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5389 5390 5391 5392 5393 5394 5395

static void unregister_sched_domain_sysctl(void)
{
	unregister_sysctl_table(sd_sysctl_header);
	sd_sysctl_header = NULL;
	sd_free_ctl_entry(&sd_ctl_dir[0].child);
}
5396
#else
5397 5398 5399 5400
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5401 5402 5403 5404
{
}
#endif

L
Linus Torvalds 已提交
5405 5406 5407 5408
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5409 5410
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5411 5412
{
	struct task_struct *p;
5413
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5414
	unsigned long flags;
5415
	struct rq *rq;
L
Linus Torvalds 已提交
5416 5417

	switch (action) {
5418 5419 5420 5421
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5422
	case CPU_UP_PREPARE:
5423
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5424
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5425 5426 5427 5428 5429
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5430
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5431 5432 5433
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5434

L
Linus Torvalds 已提交
5435
	case CPU_ONLINE:
5436
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5437 5438 5439
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5440

L
Linus Torvalds 已提交
5441 5442
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5443
	case CPU_UP_CANCELED_FROZEN:
5444 5445
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5446
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5447 5448
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5449 5450 5451
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5452

L
Linus Torvalds 已提交
5453
	case CPU_DEAD:
5454
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5455 5456 5457 5458 5459 5460
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5461
		update_rq_clock(rq);
5462
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5463
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5464 5465
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5466 5467 5468 5469 5470 5471
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5472
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5473 5474 5475
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5476 5477
			struct migration_req *req;

L
Linus Torvalds 已提交
5478
			req = list_entry(rq->migration_queue.next,
5479
					 struct migration_req, list);
L
Linus Torvalds 已提交
5480 5481 5482 5483 5484 5485
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5486 5487 5488
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5489 5490 5491 5492 5493 5494 5495
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5496
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5497 5498 5499 5500 5501 5502 5503
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5504
	int err;
5505 5506

	/* Start one for the boot CPU: */
5507 5508
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5509 5510
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5511

L
Linus Torvalds 已提交
5512 5513 5514 5515 5516
	return 0;
}
#endif

#ifdef CONFIG_SMP
5517 5518 5519 5520 5521

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5522
#ifdef CONFIG_SCHED_DEBUG
L
Linus Torvalds 已提交
5523 5524 5525 5526
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5527 5528 5529 5530 5531
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5551 5552
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5553 5554 5555 5556 5557 5558
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5559 5560
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5561
		if (!cpu_isset(cpu, group->cpumask))
5562 5563
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5576
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5577
				printk("\n");
5578 5579
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
5580
				break;
L
Linus Torvalds 已提交
5581 5582 5583 5584 5585
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
5586
				break;
L
Linus Torvalds 已提交
5587 5588 5589 5590 5591
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
5592
				break;
L
Linus Torvalds 已提交
5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5605 5606
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5607 5608 5609

		level++;
		sd = sd->parent;
5610 5611
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5612

5613 5614 5615
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5616 5617 5618 5619

	} while (sd);
}
#else
5620
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5621 5622
#endif

5623
static int sd_degenerate(struct sched_domain *sd)
5624 5625 5626 5627 5628 5629 5630 5631
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5632 5633 5634
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5648 5649
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5668 5669 5670
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5671 5672 5673 5674 5675 5676 5677
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5678 5679 5680 5681
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5682
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5683
{
5684
	struct rq *rq = cpu_rq(cpu);
5685 5686 5687 5688 5689 5690 5691
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5692
		if (sd_parent_degenerate(tmp, parent)) {
5693
			tmp->parent = parent->parent;
5694 5695 5696
			if (parent->parent)
				parent->parent->child = tmp;
		}
5697 5698
	}

5699
	if (sd && sd_degenerate(sd)) {
5700
		sd = sd->parent;
5701 5702 5703
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5704 5705 5706

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5707
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5708 5709 5710
}

/* cpus with isolated domains */
5711
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5726
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5727 5728

/*
5729 5730 5731 5732
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5733 5734 5735 5736 5737
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5738
static void
5739 5740 5741
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5742 5743 5744 5745 5746 5747
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5748 5749
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5750 5751 5752 5753 5754 5755
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5756
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5757 5758

		for_each_cpu_mask(j, span) {
5759
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5774
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5775

5776
#ifdef CONFIG_NUMA
5777

5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5830 5831
	cpumask_t span, nodemask;
	int i;
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5842

5843 5844 5845 5846 5847 5848 5849 5850
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5851
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5852

5853
/*
5854
 * SMT sched-domains:
5855
 */
L
Linus Torvalds 已提交
5856 5857
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5858
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5859

5860 5861
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5862
{
5863 5864
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5865 5866 5867 5868
	return cpu;
}
#endif

5869 5870 5871
/*
 * multi-core sched-domains:
 */
5872 5873
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5874
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5875 5876 5877
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5878 5879
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5880
{
5881
	int group;
5882
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5883
	cpus_and(mask, mask, *cpu_map);
5884 5885 5886 5887
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5888 5889
}
#elif defined(CONFIG_SCHED_MC)
5890 5891
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5892
{
5893 5894
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5895 5896 5897 5898
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5899
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5900
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5901

5902 5903
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5904
{
5905
	int group;
5906
#ifdef CONFIG_SCHED_MC
5907
	cpumask_t mask = cpu_coregroup_map(cpu);
5908
	cpus_and(mask, mask, *cpu_map);
5909
	group = first_cpu(mask);
5910
#elif defined(CONFIG_SCHED_SMT)
5911
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5912
	cpus_and(mask, mask, *cpu_map);
5913
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5914
#else
5915
	group = cpu;
L
Linus Torvalds 已提交
5916
#endif
5917 5918 5919
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5920 5921 5922 5923
}

#ifdef CONFIG_NUMA
/*
5924 5925 5926
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5927
 */
5928
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5929
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5930

5931
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5932
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5933

5934 5935
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5936
{
5937 5938 5939 5940 5941 5942 5943 5944 5945
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5946
}
5947

5948 5949 5950 5951 5952 5953 5954
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
5955 5956 5957
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
5958

5959 5960 5961 5962 5963 5964 5965 5966
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
5967

5968 5969 5970 5971
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
5972
}
L
Linus Torvalds 已提交
5973 5974
#endif

5975
#ifdef CONFIG_NUMA
5976 5977 5978
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5979
	int cpu, i;
5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6010 6011 6012 6013 6014
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6015

6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6042 6043
	sd->groups->__cpu_power = 0;

6044 6045 6046 6047 6048 6049 6050 6051 6052 6053
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6054
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6055 6056 6057 6058 6059 6060 6061 6062
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6063
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6064 6065 6066 6067
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6068
/*
6069 6070
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6071
 */
6072
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6073 6074
{
	int i;
6075 6076
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6077
	int sd_allnodes = 0;
6078 6079 6080 6081

	/*
	 * Allocate the per-node list of sched groups
	 */
6082
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6083
					   GFP_KERNEL);
6084 6085
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6086
		return -ENOMEM;
6087 6088 6089
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6090 6091

	/*
6092
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6093
	 */
6094
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6095 6096 6097
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6098
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6099 6100

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6101 6102
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6103 6104 6105
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6106
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6107
			p = sd;
6108
			sd_allnodes = 1;
6109 6110 6111
		} else
			p = NULL;

L
Linus Torvalds 已提交
6112 6113
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6114 6115
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6116 6117
		if (p)
			p->child = sd;
6118
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6119 6120 6121 6122 6123 6124 6125
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6126 6127
		if (p)
			p->child = sd;
6128
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6129

6130 6131 6132 6133 6134 6135 6136
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6137
		p->child = sd;
6138
		cpu_to_core_group(i, cpu_map, &sd->groups);
6139 6140
#endif

L
Linus Torvalds 已提交
6141 6142 6143 6144
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6145
		sd->span = per_cpu(cpu_sibling_map, i);
6146
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6147
		sd->parent = p;
6148
		p->child = sd;
6149
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6150 6151 6152 6153 6154
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6155
	for_each_cpu_mask(i, *cpu_map) {
6156
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6157
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6158 6159 6160
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6161 6162
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6163 6164 6165
	}
#endif

6166 6167 6168 6169 6170 6171 6172
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6173 6174
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6175 6176 6177
	}
#endif

L
Linus Torvalds 已提交
6178 6179 6180 6181
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6182
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6183 6184 6185
		if (cpus_empty(nodemask))
			continue;

6186
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6187 6188 6189 6190
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6191
	if (sd_allnodes)
I
Ingo Molnar 已提交
6192 6193
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6194 6195 6196 6197 6198 6199 6200 6201 6202 6203

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6204 6205
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6206
			continue;
6207
		}
6208 6209 6210 6211

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6212
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6213 6214 6215 6216 6217
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6218 6219 6220
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6221

6222 6223 6224
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6225
		sg->__cpu_power = 0;
6226
		sg->cpumask = nodemask;
6227
		sg->next = sg;
6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6246 6247
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6248 6249 6250
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6251
				goto error;
6252
			}
6253
			sg->__cpu_power = 0;
6254
			sg->cpumask = tmp;
6255
			sg->next = prev->next;
6256 6257 6258 6259 6260
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6261 6262 6263
#endif

	/* Calculate CPU power for physical packages and nodes */
6264
#ifdef CONFIG_SCHED_SMT
6265
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6266 6267
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6268
		init_sched_groups_power(i, sd);
6269
	}
L
Linus Torvalds 已提交
6270
#endif
6271
#ifdef CONFIG_SCHED_MC
6272
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6273 6274
		struct sched_domain *sd = &per_cpu(core_domains, i);

6275
		init_sched_groups_power(i, sd);
6276 6277
	}
#endif
6278

6279
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6280 6281
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6282
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6283 6284
	}

6285
#ifdef CONFIG_NUMA
6286 6287
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6288

6289 6290
	if (sd_allnodes) {
		struct sched_group *sg;
6291

6292
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6293 6294
		init_numa_sched_groups_power(sg);
	}
6295 6296
#endif

L
Linus Torvalds 已提交
6297
	/* Attach the domains */
6298
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6299 6300 6301
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6302 6303
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6304 6305 6306 6307 6308
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6309 6310 6311

	return 0;

6312
#ifdef CONFIG_NUMA
6313 6314 6315
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6316
#endif
L
Linus Torvalds 已提交
6317
}
6318 6319 6320
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6321
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6322 6323
{
	cpumask_t cpu_default_map;
6324
	int err;
L
Linus Torvalds 已提交
6325

6326 6327 6328 6329 6330 6331 6332
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6333 6334
	err = build_sched_domains(&cpu_default_map);

6335 6336
	register_sched_domain_sysctl();

6337
	return err;
6338 6339 6340
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6341
{
6342
	free_sched_groups(cpu_map);
6343
}
L
Linus Torvalds 已提交
6344

6345 6346 6347 6348
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6349
static void detach_destroy_domains(const cpumask_t *cpu_map)
6350 6351 6352
{
	int i;

6353 6354
	unregister_sched_domain_sysctl();

6355 6356 6357 6358 6359 6360
	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

6361
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6362
static int arch_reinit_sched_domains(void)
6363 6364 6365
{
	int err;

6366
	mutex_lock(&sched_hotcpu_mutex);
6367 6368
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6369
	mutex_unlock(&sched_hotcpu_mutex);
6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6396 6397
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6398 6399 6400
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6401 6402
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6403 6404 6405 6406 6407 6408 6409
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6410 6411
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6412 6413 6414
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6435 6436
#endif

L
Linus Torvalds 已提交
6437 6438 6439
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6440
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6441 6442 6443 6444 6445 6446 6447
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6448
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6449
	case CPU_DOWN_PREPARE:
6450
	case CPU_DOWN_PREPARE_FROZEN:
6451
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6452 6453 6454
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6455
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6456
	case CPU_DOWN_FAILED:
6457
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6458
	case CPU_ONLINE:
6459
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6460
	case CPU_DEAD:
6461
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6462 6463 6464 6465 6466 6467 6468 6469 6470
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6471
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6472 6473 6474 6475 6476 6477

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6478 6479
	cpumask_t non_isolated_cpus;

6480
	mutex_lock(&sched_hotcpu_mutex);
6481
	arch_init_sched_domains(&cpu_online_map);
6482
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6483 6484
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6485
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6486 6487
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6488 6489 6490 6491

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6503

L
Linus Torvalds 已提交
6504 6505 6506 6507 6508
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6509
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6510 6511 6512 6513 6514
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6515
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6516 6517
}

L
Linus Torvalds 已提交
6518 6519
void __init sched_init(void)
{
6520
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6521 6522
	int i, j;

6523
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6524
		struct rt_prio_array *array;
6525
		struct rq *rq;
L
Linus Torvalds 已提交
6526 6527 6528

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6529
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6530
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6531 6532 6533 6534
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6535 6536 6537 6538 6539 6540 6541
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6542
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6543
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6544 6545
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6546 6547 6548
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6549
			se->load.weight = init_task_group_load;
6550
			se->load.inv_weight =
6551
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6552 6553
			se->parent = NULL;
		}
6554
		init_task_group.shares = init_task_group_load;
6555
		spin_lock_init(&init_task_group.lock);
I
Ingo Molnar 已提交
6556
#endif
L
Linus Torvalds 已提交
6557

I
Ingo Molnar 已提交
6558 6559
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6560
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6561
		rq->sd = NULL;
L
Linus Torvalds 已提交
6562
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6563
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6564
		rq->push_cpu = 0;
6565
		rq->cpu = i;
L
Linus Torvalds 已提交
6566 6567 6568 6569 6570
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6571 6572 6573 6574
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6575
		}
6576
		highest_cpu = i;
I
Ingo Molnar 已提交
6577 6578
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6579 6580
	}

6581
	set_load_weight(&init_task);
6582

6583 6584 6585 6586
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6587
#ifdef CONFIG_SMP
6588
	nr_cpu_ids = highest_cpu + 1;
6589 6590 6591
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6592 6593 6594 6595
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6609 6610 6611 6612
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6613 6614 6615 6616 6617
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6618
#ifdef in_atomic
L
Linus Torvalds 已提交
6619 6620 6621 6622 6623 6624 6625
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6626
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6627 6628 6629
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6630
		debug_show_held_locks(current);
6631 6632
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6633 6634 6635 6636 6637 6638 6639 6640
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
6655 6656
void normalize_rt_tasks(void)
{
6657
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6658
	unsigned long flags;
6659
	struct rq *rq;
L
Linus Torvalds 已提交
6660 6661

	read_lock_irq(&tasklist_lock);
6662
	do_each_thread(g, p) {
6663 6664 6665 6666 6667 6668
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6669 6670
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6671 6672 6673
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6674
#endif
I
Ingo Molnar 已提交
6675 6676 6677 6678 6679 6680 6681 6682 6683
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6684
			continue;
I
Ingo Molnar 已提交
6685
		}
L
Linus Torvalds 已提交
6686

6687 6688
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6689

6690
		normalize_task(rq, p);
6691

6692 6693
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6694 6695
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6696 6697 6698 6699
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6718
struct task_struct *curr_task(int cpu)
6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6738
void set_curr_task(int cpu, struct task_struct *p)
6739 6740 6741 6742 6743
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6744 6745 6746 6747

#ifdef CONFIG_FAIR_GROUP_SCHED

/* allocate runqueue etc for a new task group */
6748
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
6749
{
6750
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6751 6752
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
6753
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
6754 6755 6756 6757 6758 6759
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6760
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6761 6762
	if (!tg->cfs_rq)
		goto err;
6763
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6764 6765 6766 6767
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
6768
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

6795 6796 6797 6798 6799
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
S
Srivatsa Vaddagiri 已提交
6800

6801
	tg->shares = NICE_0_LOAD;
6802
	spin_lock_init(&tg->lock);
S
Srivatsa Vaddagiri 已提交
6803

6804
	return tg;
S
Srivatsa Vaddagiri 已提交
6805 6806 6807

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6808
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
6809
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
6810
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
6811 6812
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
6813 6814 6815
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
6816 6817 6818 6819

	return ERR_PTR(-ENOMEM);
}

6820 6821
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6822
{
6823
	struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6824
	struct task_group *tg = cfs_rq->tg;
S
Srivatsa Vaddagiri 已提交
6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

6842
/* Destroy runqueue etc associated with a task group */
6843
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6844
{
6845 6846
	struct cfs_rq *cfs_rq;
	int i;
S
Srivatsa Vaddagiri 已提交
6847

6848 6849 6850 6851 6852 6853 6854 6855 6856
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

	cfs_rq = tg->cfs_rq[0];

	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&cfs_rq->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
6857 6858
}

6859
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
6860 6861 6862
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
6863 6864
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	if (tsk->sched_class != &fair_sched_class)
		goto done;

	update_rq_clock(rq);

	running = task_running(rq, tsk);
	on_rq = tsk->se.on_rq;

6880
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
6881
		dequeue_task(rq, tsk, 0);
6882 6883 6884
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
6885 6886 6887

	set_task_cfs_rq(tsk);

6888 6889 6890
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
6891
		enqueue_task(rq, tsk, 0);
6892
	}
S
Srivatsa Vaddagiri 已提交
6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918

done:
	task_rq_unlock(rq, &flags);
}

static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

	spin_lock_irq(&rq->lock);

	on_rq = se->on_rq;
	if (on_rq)
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

	if (on_rq)
		enqueue_entity(cfs_rq, se, 0);

	spin_unlock_irq(&rq->lock);
}

6919
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
6920 6921 6922
{
	int i;

6923
	spin_lock(&tg->lock);
6924
	if (tg->shares == shares)
6925
		goto done;
S
Srivatsa Vaddagiri 已提交
6926

6927
	tg->shares = shares;
S
Srivatsa Vaddagiri 已提交
6928
	for_each_possible_cpu(i)
6929
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
6930

6931 6932
done:
	spin_unlock(&tg->lock);
6933
	return 0;
S
Srivatsa Vaddagiri 已提交
6934 6935
}

6936 6937 6938 6939 6940
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
6941
#endif	/* CONFIG_FAIR_GROUP_SCHED */