i915_gem.c 135.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/oom.h>
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43
static __must_check int
44 45
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
46 47 48
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

49 50 51 52 53 54
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

55
static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
56
					     struct shrink_control *sc);
57
static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
58
					    struct shrink_control *sc);
59 60 61
static int i915_gem_shrinker_oom(struct notifier_block *nb,
				 unsigned long event,
				 void *ptr);
62
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
63

64 65 66 67 68 69
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

70 71 72 73 74 75 76 77
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

78 79 80 81 82 83 84 85
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
86
	obj->fence_dirty = false;
87 88 89
	obj->fence_reg = I915_FENCE_REG_NONE;
}

90 91 92 93
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
94
	spin_lock(&dev_priv->mm.object_stat_lock);
95 96
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
97
	spin_unlock(&dev_priv->mm.object_stat_lock);
98 99 100 101 102
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
103
	spin_lock(&dev_priv->mm.object_stat_lock);
104 105
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
106
	spin_unlock(&dev_priv->mm.object_stat_lock);
107 108
}

109
static int
110
i915_gem_wait_for_error(struct i915_gpu_error *error)
111 112 113
{
	int ret;

114 115
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
116
	if (EXIT_COND)
117 118
		return 0;

119 120 121 122 123
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
124 125 126
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
127 128 129 130
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
131
		return ret;
132
	}
133
#undef EXIT_COND
134

135
	return 0;
136 137
}

138
int i915_mutex_lock_interruptible(struct drm_device *dev)
139
{
140
	struct drm_i915_private *dev_priv = dev->dev_private;
141 142
	int ret;

143
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
144 145 146 147 148 149 150
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

151
	WARN_ON(i915_verify_lists(dev));
152 153
	return 0;
}
154

155 156
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
157
			    struct drm_file *file)
158
{
159
	struct drm_i915_private *dev_priv = dev->dev_private;
160
	struct drm_i915_gem_get_aperture *args = data;
161 162
	struct drm_i915_gem_object *obj;
	size_t pinned;
163

164
	pinned = 0;
165
	mutex_lock(&dev->struct_mutex);
166
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
167
		if (i915_gem_obj_is_pinned(obj))
168
			pinned += i915_gem_obj_ggtt_size(obj);
169
	mutex_unlock(&dev->struct_mutex);
170

171
	args->aper_size = dev_priv->gtt.base.total;
172
	args->aper_available_size = args->aper_size - pinned;
173

174 175 176
	return 0;
}

177 178
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
179
{
180 181 182 183 184
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
185

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
220

221 222 223 224 225 226 227 228 229 230 231 232 233 234
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
235

236 237 238 239 240 241 242 243 244 245 246 247 248
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
249
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
250
		char *vaddr = obj->phys_handle->vaddr;
251 252 253
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
254 255 256 257 258 259 260 261 262 263 264 265 266 267
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
268
				mark_page_accessed(page);
269
			page_cache_release(page);
270 271
			vaddr += PAGE_SIZE;
		}
272
		obj->dirty = 0;
273 274
	}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
308 309 310 311 312 313 314
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
315
	int ret;
316 317 318 319 320 321 322 323 324 325 326 327 328 329

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

330 331 332 333
	ret = drop_pages(obj);
	if (ret)
		return ret;

334 335 336 337 338 339
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
340 341 342
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
343 344 345 346 347 348 349 350 351 352
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
353 354 355 356 357 358 359 360
	int ret;

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}

376
	drm_clflush_virt_range(vaddr, args->size);
377 378 379 380
	i915_gem_chipset_flush(dev);
	return 0;
}

381 382 383
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
384
	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
385 386 387 388 389 390 391 392
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	kmem_cache_free(dev_priv->slab, obj);
}

393 394 395 396 397
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
398
{
399
	struct drm_i915_gem_object *obj;
400 401
	int ret;
	u32 handle;
402

403
	size = roundup(size, PAGE_SIZE);
404 405
	if (size == 0)
		return -EINVAL;
406 407

	/* Allocate the new object */
408
	obj = i915_gem_alloc_object(dev, size);
409 410 411
	if (obj == NULL)
		return -ENOMEM;

412
	ret = drm_gem_handle_create(file, &obj->base, &handle);
413
	/* drop reference from allocate - handle holds it now */
414 415 416
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
417

418
	*handle_p = handle;
419 420 421
	return 0;
}

422 423 424 425 426 427
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
428
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
429 430
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
431
			       args->size, &args->handle);
432 433 434 435 436 437 438 439 440 441
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
442

443
	return i915_gem_create(file, dev,
444
			       args->size, &args->handle);
445 446
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

473
static inline int
474 475
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
524 525

		i915_gem_object_retire(obj);
526 527 528 529 530 531 532 533 534 535 536
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

537 538 539
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
540
static int
541 542 543 544 545 546 547
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

548
	if (unlikely(page_do_bit17_swizzling))
549 550 551 552 553 554 555 556 557 558 559
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

560
	return ret ? -EFAULT : 0;
561 562
}

563 564 565 566
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
567
	if (unlikely(swizzled)) {
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

585 586 587 588 589 590 591 592 593 594 595 596
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
597 598 599
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
600 601 602 603 604 605 606 607 608 609 610

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

611
	return ret ? - EFAULT : 0;
612 613
}

614
static int
615 616 617 618
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
619
{
620
	char __user *user_data;
621
	ssize_t remain;
622
	loff_t offset;
623
	int shmem_page_offset, page_length, ret = 0;
624
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
625
	int prefaulted = 0;
626
	int needs_clflush = 0;
627
	struct sg_page_iter sg_iter;
628

V
Ville Syrjälä 已提交
629
	user_data = to_user_ptr(args->data_ptr);
630 631
	remain = args->size;

632
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
633

634
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
635 636 637
	if (ret)
		return ret;

638
	offset = args->offset;
639

640 641
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
642
		struct page *page = sg_page_iter_page(&sg_iter);
643 644 645 646

		if (remain <= 0)
			break;

647 648 649 650 651
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
652
		shmem_page_offset = offset_in_page(offset);
653 654 655 656
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

657 658 659
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

660 661 662 663 664
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
665 666 667

		mutex_unlock(&dev->struct_mutex);

668
		if (likely(!i915.prefault_disable) && !prefaulted) {
669
			ret = fault_in_multipages_writeable(user_data, remain);
670 671 672 673 674 675 676
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
677

678 679 680
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
681

682
		mutex_lock(&dev->struct_mutex);
683 684

		if (ret)
685 686
			goto out;

687
next_page:
688
		remain -= page_length;
689
		user_data += page_length;
690 691 692
		offset += page_length;
	}

693
out:
694 695
	i915_gem_object_unpin_pages(obj);

696 697 698
	return ret;
}

699 700 701 702 703 704 705
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
706
		     struct drm_file *file)
707 708
{
	struct drm_i915_gem_pread *args = data;
709
	struct drm_i915_gem_object *obj;
710
	int ret = 0;
711

712 713 714 715
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
716
		       to_user_ptr(args->data_ptr),
717 718 719
		       args->size))
		return -EFAULT;

720
	ret = i915_mutex_lock_interruptible(dev);
721
	if (ret)
722
		return ret;
723

724
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
725
	if (&obj->base == NULL) {
726 727
		ret = -ENOENT;
		goto unlock;
728
	}
729

730
	/* Bounds check source.  */
731 732
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
733
		ret = -EINVAL;
734
		goto out;
C
Chris Wilson 已提交
735 736
	}

737 738 739 740 741 742 743 744
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
745 746
	trace_i915_gem_object_pread(obj, args->offset, args->size);

747
	ret = i915_gem_shmem_pread(dev, obj, args, file);
748

749
out:
750
	drm_gem_object_unreference(&obj->base);
751
unlock:
752
	mutex_unlock(&dev->struct_mutex);
753
	return ret;
754 755
}

756 757
/* This is the fast write path which cannot handle
 * page faults in the source data
758
 */
759 760 761 762 763 764

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
765
{
766 767
	void __iomem *vaddr_atomic;
	void *vaddr;
768
	unsigned long unwritten;
769

P
Peter Zijlstra 已提交
770
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
771 772 773
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
774
						      user_data, length);
P
Peter Zijlstra 已提交
775
	io_mapping_unmap_atomic(vaddr_atomic);
776
	return unwritten;
777 778
}

779 780 781 782
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
783
static int
784 785
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
786
			 struct drm_i915_gem_pwrite *args,
787
			 struct drm_file *file)
788
{
789
	struct drm_i915_private *dev_priv = dev->dev_private;
790
	ssize_t remain;
791
	loff_t offset, page_base;
792
	char __user *user_data;
D
Daniel Vetter 已提交
793 794
	int page_offset, page_length, ret;

795
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
796 797 798 799 800 801 802 803 804 805
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
806

V
Ville Syrjälä 已提交
807
	user_data = to_user_ptr(args->data_ptr);
808 809
	remain = args->size;

810
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
811 812 813 814

	while (remain > 0) {
		/* Operation in this page
		 *
815 816 817
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
818
		 */
819 820
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
821 822 823 824 825
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
826 827
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
828
		 */
B
Ben Widawsky 已提交
829
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
830 831 832 833
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
834

835 836 837
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
838 839
	}

D
Daniel Vetter 已提交
840
out_unpin:
B
Ben Widawsky 已提交
841
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
842
out:
843
	return ret;
844 845
}

846 847 848 849
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
850
static int
851 852 853 854 855
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
856
{
857
	char *vaddr;
858
	int ret;
859

860
	if (unlikely(page_do_bit17_swizzling))
861
		return -EINVAL;
862

863 864 865 866
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
867 868
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
869 870 871 872
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
873

874
	return ret ? -EFAULT : 0;
875 876
}

877 878
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
879
static int
880 881 882 883 884
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
885
{
886 887
	char *vaddr;
	int ret;
888

889
	vaddr = kmap(page);
890
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
891 892 893
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
894 895
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
896 897
						user_data,
						page_length);
898 899 900 901 902
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
903 904 905
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
906
	kunmap(page);
907

908
	return ret ? -EFAULT : 0;
909 910 911
}

static int
912 913 914 915
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
916 917
{
	ssize_t remain;
918 919
	loff_t offset;
	char __user *user_data;
920
	int shmem_page_offset, page_length, ret = 0;
921
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
922
	int hit_slowpath = 0;
923 924
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
925
	struct sg_page_iter sg_iter;
926

V
Ville Syrjälä 已提交
927
	user_data = to_user_ptr(args->data_ptr);
928 929
	remain = args->size;

930
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
931

932 933 934 935 936
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
937
		needs_clflush_after = cpu_write_needs_clflush(obj);
938 939 940
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
941 942

		i915_gem_object_retire(obj);
943
	}
944 945 946 947 948
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
949

950 951 952 953 954 955
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

956
	offset = args->offset;
957
	obj->dirty = 1;
958

959 960
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
961
		struct page *page = sg_page_iter_page(&sg_iter);
962
		int partial_cacheline_write;
963

964 965 966
		if (remain <= 0)
			break;

967 968 969 970 971
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
972
		shmem_page_offset = offset_in_page(offset);
973 974 975 976 977

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

978 979 980 981 982 983 984
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

985 986 987
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

988 989 990 991 992 993
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
994 995 996

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
997 998 999 1000
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1001

1002
		mutex_lock(&dev->struct_mutex);
1003 1004

		if (ret)
1005 1006
			goto out;

1007
next_page:
1008
		remain -= page_length;
1009
		user_data += page_length;
1010
		offset += page_length;
1011 1012
	}

1013
out:
1014 1015
	i915_gem_object_unpin_pages(obj);

1016
	if (hit_slowpath) {
1017 1018 1019 1020 1021 1022 1023
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1024 1025
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1026
		}
1027
	}
1028

1029
	if (needs_clflush_after)
1030
		i915_gem_chipset_flush(dev);
1031

1032
	return ret;
1033 1034 1035 1036 1037 1038 1039 1040 1041
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042
		      struct drm_file *file)
1043
{
1044
	struct drm_i915_private *dev_priv = dev->dev_private;
1045
	struct drm_i915_gem_pwrite *args = data;
1046
	struct drm_i915_gem_object *obj;
1047 1048 1049 1050 1051 1052
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1053
		       to_user_ptr(args->data_ptr),
1054 1055 1056
		       args->size))
		return -EFAULT;

1057
	if (likely(!i915.prefault_disable)) {
1058 1059 1060 1061 1062
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1063

1064 1065
	intel_runtime_pm_get(dev_priv);

1066
	ret = i915_mutex_lock_interruptible(dev);
1067
	if (ret)
1068
		goto put_rpm;
1069

1070
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071
	if (&obj->base == NULL) {
1072 1073
		ret = -ENOENT;
		goto unlock;
1074
	}
1075

1076
	/* Bounds check destination. */
1077 1078
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1079
		ret = -EINVAL;
1080
		goto out;
C
Chris Wilson 已提交
1081 1082
	}

1083 1084 1085 1086 1087 1088 1089 1090
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1091 1092
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1093
	ret = -EFAULT;
1094 1095 1096 1097 1098 1099
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1100 1101 1102
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1103
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1104 1105 1106
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1107
	}
1108

1109 1110 1111 1112 1113 1114
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1115

1116
out:
1117
	drm_gem_object_unreference(&obj->base);
1118
unlock:
1119
	mutex_unlock(&dev->struct_mutex);
1120 1121 1122
put_rpm:
	intel_runtime_pm_put(dev_priv);

1123 1124 1125
	return ret;
}

1126
int
1127
i915_gem_check_wedge(struct i915_gpu_error *error,
1128 1129
		     bool interruptible)
{
1130
	if (i915_reset_in_progress(error)) {
1131 1132 1133 1134 1135
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1136 1137
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1138 1139
			return -EIO;

1140 1141 1142 1143 1144 1145 1146
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1147 1148 1149 1150 1151 1152
	}

	return 0;
}

/*
1153
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1154
 */
1155
int
1156
i915_gem_check_olr(struct drm_i915_gem_request *req)
1157 1158 1159
{
	int ret;

1160
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1161 1162

	ret = 0;
1163
	if (req == req->ring->outstanding_lazy_request)
1164
		ret = i915_add_request(req->ring);
1165 1166 1167 1168

	return ret;
}

1169 1170 1171 1172 1173 1174
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1175
		       struct intel_engine_cs *ring)
1176 1177 1178 1179
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1180 1181 1182 1183 1184 1185 1186 1187
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
{
	if (file_priv == NULL)
		return true;

	return !atomic_xchg(&file_priv->rps_wait_boost, true);
}

1188
/**
1189 1190 1191
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1192 1193 1194
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1195 1196 1197 1198 1199 1200 1201
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1202
 * Returns 0 if the request was found within the alloted time. Else returns the
1203 1204
 * errno with remaining time filled in timeout argument.
 */
1205
int __i915_wait_request(struct drm_i915_gem_request *req,
1206
			unsigned reset_counter,
1207
			bool interruptible,
1208
			s64 *timeout,
1209
			struct drm_i915_file_private *file_priv)
1210
{
1211
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1212
	struct drm_device *dev = ring->dev;
1213
	struct drm_i915_private *dev_priv = dev->dev_private;
1214 1215
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1216
	DEFINE_WAIT(wait);
1217
	unsigned long timeout_expire;
1218
	s64 before, now;
1219 1220
	int ret;

1221
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1222

1223
	if (i915_gem_request_completed(req, true))
1224 1225
		return 0;

1226 1227
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1228

1229
	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1230 1231 1232 1233 1234 1235 1236
		gen6_rps_boost(dev_priv);
		if (file_priv)
			mod_delayed_work(dev_priv->wq,
					 &file_priv->mm.idle_work,
					 msecs_to_jiffies(100));
	}

1237
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1238 1239
		return -ENODEV;

1240
	/* Record current time in case interrupted by signal, or wedged */
1241
	trace_i915_gem_request_wait_begin(req);
1242
	before = ktime_get_raw_ns();
1243 1244
	for (;;) {
		struct timer_list timer;
1245

1246 1247
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1248

1249 1250
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1251 1252 1253 1254 1255 1256 1257 1258
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1259

1260
		if (i915_gem_request_completed(req, false)) {
1261 1262 1263
			ret = 0;
			break;
		}
1264

1265 1266 1267 1268 1269
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1270
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1271 1272 1273 1274 1275 1276
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1277 1278
			unsigned long expire;

1279
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1280
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1281 1282 1283
			mod_timer(&timer, expire);
		}

1284
		io_schedule();
1285 1286 1287 1288 1289 1290

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1291
	now = ktime_get_raw_ns();
1292
	trace_i915_gem_request_wait_end(req);
1293

1294 1295
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1296 1297

	finish_wait(&ring->irq_queue, &wait);
1298 1299

	if (timeout) {
1300 1301 1302
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1313 1314
	}

1315
	return ret;
1316 1317 1318
}

/**
1319
 * Waits for a request to be signaled, and cleans up the
1320 1321 1322
 * request and object lists appropriately for that event.
 */
int
1323
i915_wait_request(struct drm_i915_gem_request *req)
1324
{
1325 1326 1327
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1328
	unsigned reset_counter;
1329 1330
	int ret;

1331 1332 1333 1334 1335 1336
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1337 1338
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1339
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1340 1341 1342
	if (ret)
		return ret;

1343
	ret = i915_gem_check_olr(req);
1344 1345 1346
	if (ret)
		return ret;

1347
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1348
	i915_gem_request_reference(req);
1349 1350
	ret = __i915_wait_request(req, reset_counter,
				  interruptible, NULL, NULL);
1351 1352
	i915_gem_request_unreference(req);
	return ret;
1353 1354
}

1355
static int
1356
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1357
{
1358 1359
	if (!obj->active)
		return 0;
1360 1361 1362 1363

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
1364 1365
	 * Note that the last_write_req is always the earlier of
	 * the two (read/write) requests, so if we haved successfully waited,
1366 1367
	 * we know we have passed the last write.
	 */
1368
	i915_gem_request_assign(&obj->last_write_req, NULL);
1369 1370 1371 1372

	return 0;
}

1373 1374 1375 1376 1377 1378 1379 1380
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1381
	struct drm_i915_gem_request *req;
1382 1383
	int ret;

1384 1385
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1386 1387
		return 0;

1388
	ret = i915_wait_request(req);
1389 1390 1391
	if (ret)
		return ret;

1392
	return i915_gem_object_wait_rendering__tail(obj);
1393 1394
}

1395 1396 1397 1398 1399
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1400
					    struct drm_i915_file_private *file_priv,
1401 1402
					    bool readonly)
{
1403
	struct drm_i915_gem_request *req;
1404 1405
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1406
	unsigned reset_counter;
1407 1408 1409 1410 1411
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1412 1413
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1414 1415
		return 0;

1416
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1417 1418 1419
	if (ret)
		return ret;

1420
	ret = i915_gem_check_olr(req);
1421 1422 1423
	if (ret)
		return ret;

1424
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1425
	i915_gem_request_reference(req);
1426
	mutex_unlock(&dev->struct_mutex);
1427
	ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1428
	mutex_lock(&dev->struct_mutex);
1429
	i915_gem_request_unreference(req);
1430 1431
	if (ret)
		return ret;
1432

1433
	return i915_gem_object_wait_rendering__tail(obj);
1434 1435
}

1436
/**
1437 1438
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1439 1440 1441
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1442
			  struct drm_file *file)
1443 1444
{
	struct drm_i915_gem_set_domain *args = data;
1445
	struct drm_i915_gem_object *obj;
1446 1447
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1448 1449
	int ret;

1450
	/* Only handle setting domains to types used by the CPU. */
1451
	if (write_domain & I915_GEM_GPU_DOMAINS)
1452 1453
		return -EINVAL;

1454
	if (read_domains & I915_GEM_GPU_DOMAINS)
1455 1456 1457 1458 1459 1460 1461 1462
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1463
	ret = i915_mutex_lock_interruptible(dev);
1464
	if (ret)
1465
		return ret;
1466

1467
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1468
	if (&obj->base == NULL) {
1469 1470
		ret = -ENOENT;
		goto unlock;
1471
	}
1472

1473 1474 1475 1476
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1477 1478 1479
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1480 1481 1482
	if (ret)
		goto unref;

1483
	if (read_domains & I915_GEM_DOMAIN_GTT)
1484
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1485
	else
1486
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1487

1488
unref:
1489
	drm_gem_object_unreference(&obj->base);
1490
unlock:
1491 1492 1493 1494 1495 1496 1497 1498 1499
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1500
			 struct drm_file *file)
1501 1502
{
	struct drm_i915_gem_sw_finish *args = data;
1503
	struct drm_i915_gem_object *obj;
1504 1505
	int ret = 0;

1506
	ret = i915_mutex_lock_interruptible(dev);
1507
	if (ret)
1508
		return ret;
1509

1510
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1511
	if (&obj->base == NULL) {
1512 1513
		ret = -ENOENT;
		goto unlock;
1514 1515 1516
	}

	/* Pinned buffers may be scanout, so flush the cache */
1517
	if (obj->pin_display)
1518
		i915_gem_object_flush_cpu_write_domain(obj);
1519

1520
	drm_gem_object_unreference(&obj->base);
1521
unlock:
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1542 1543 1544
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1545
		    struct drm_file *file)
1546 1547 1548 1549 1550
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1551 1552 1553 1554 1555 1556
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1557
	obj = drm_gem_object_lookup(dev, file, args->handle);
1558
	if (obj == NULL)
1559
		return -ENOENT;
1560

1561 1562 1563 1564 1565 1566 1567 1568
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1569
	addr = vm_mmap(obj->filp, 0, args->size,
1570 1571
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1585
	drm_gem_object_unreference_unlocked(obj);
1586 1587 1588 1589 1590 1591 1592 1593
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1612 1613
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1614
	struct drm_i915_private *dev_priv = dev->dev_private;
1615 1616 1617
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1618
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1619

1620 1621
	intel_runtime_pm_get(dev_priv);

1622 1623 1624 1625
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1626 1627 1628
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1629

C
Chris Wilson 已提交
1630 1631
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1632 1633 1634 1635 1636 1637 1638 1639 1640
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1641 1642
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1643
		ret = -EFAULT;
1644 1645 1646
		goto unlock;
	}

1647
	/* Now bind it into the GTT if needed */
1648
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1649 1650
	if (ret)
		goto unlock;
1651

1652 1653 1654
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1655

1656
	ret = i915_gem_object_get_fence(obj);
1657
	if (ret)
1658
		goto unpin;
1659

1660
	/* Finally, remap it using the new GTT offset */
1661 1662
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
1663

1664
	if (!obj->fault_mappable) {
1665 1666 1667
		unsigned long size = min_t(unsigned long,
					   vma->vm_end - vma->vm_start,
					   obj->base.size);
1668 1669
		int i;

1670
		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
			ret = vm_insert_pfn(vma,
					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}

		obj->fault_mappable = true;
	} else
		ret = vm_insert_pfn(vma,
				    (unsigned long)vmf->virtual_address,
				    pfn + page_offset);
1683
unpin:
B
Ben Widawsky 已提交
1684
	i915_gem_object_ggtt_unpin(obj);
1685
unlock:
1686
	mutex_unlock(&dev->struct_mutex);
1687
out:
1688
	switch (ret) {
1689
	case -EIO:
1690 1691 1692 1693 1694 1695 1696
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1697 1698 1699
			ret = VM_FAULT_SIGBUS;
			break;
		}
1700
	case -EAGAIN:
D
Daniel Vetter 已提交
1701 1702 1703 1704
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1705
		 */
1706 1707
	case 0:
	case -ERESTARTSYS:
1708
	case -EINTR:
1709 1710 1711 1712 1713
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1714 1715
		ret = VM_FAULT_NOPAGE;
		break;
1716
	case -ENOMEM:
1717 1718
		ret = VM_FAULT_OOM;
		break;
1719
	case -ENOSPC:
1720
	case -EFAULT:
1721 1722
		ret = VM_FAULT_SIGBUS;
		break;
1723
	default:
1724
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1725 1726
		ret = VM_FAULT_SIGBUS;
		break;
1727
	}
1728 1729 1730

	intel_runtime_pm_put(dev_priv);
	return ret;
1731 1732
}

1733 1734 1735 1736
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1737
 * Preserve the reservation of the mmapping with the DRM core code, but
1738 1739 1740 1741 1742 1743 1744 1745 1746
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1747
void
1748
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1749
{
1750 1751
	if (!obj->fault_mappable)
		return;
1752

1753 1754
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1755
	obj->fault_mappable = false;
1756 1757
}

1758 1759 1760 1761 1762 1763 1764 1765 1766
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1767
uint32_t
1768
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1769
{
1770
	uint32_t gtt_size;
1771 1772

	if (INTEL_INFO(dev)->gen >= 4 ||
1773 1774
	    tiling_mode == I915_TILING_NONE)
		return size;
1775 1776 1777

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1778
		gtt_size = 1024*1024;
1779
	else
1780
		gtt_size = 512*1024;
1781

1782 1783
	while (gtt_size < size)
		gtt_size <<= 1;
1784

1785
	return gtt_size;
1786 1787
}

1788 1789 1790 1791 1792
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1793
 * potential fence register mapping.
1794
 */
1795 1796 1797
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1798 1799 1800 1801 1802
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1803
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1804
	    tiling_mode == I915_TILING_NONE)
1805 1806
		return 4096;

1807 1808 1809 1810
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1811
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1812 1813
}

1814 1815 1816 1817 1818
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1819
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1820 1821
		return 0;

1822 1823
	dev_priv->mm.shrinker_no_lock_stealing = true;

1824 1825
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1826
		goto out;
1827 1828 1829 1830 1831 1832 1833 1834

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1835 1836 1837 1838 1839
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1840 1841
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1842
		goto out;
1843 1844

	i915_gem_shrink_all(dev_priv);
1845 1846 1847 1848 1849
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1850 1851 1852 1853 1854 1855 1856
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1857
int
1858 1859
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1860
		  uint32_t handle,
1861
		  uint64_t *offset)
1862
{
1863
	struct drm_i915_private *dev_priv = dev->dev_private;
1864
	struct drm_i915_gem_object *obj;
1865 1866
	int ret;

1867
	ret = i915_mutex_lock_interruptible(dev);
1868
	if (ret)
1869
		return ret;
1870

1871
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1872
	if (&obj->base == NULL) {
1873 1874 1875
		ret = -ENOENT;
		goto unlock;
	}
1876

B
Ben Widawsky 已提交
1877
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1878
		ret = -E2BIG;
1879
		goto out;
1880 1881
	}

1882
	if (obj->madv != I915_MADV_WILLNEED) {
1883
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1884
		ret = -EFAULT;
1885
		goto out;
1886 1887
	}

1888 1889 1890
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1891

1892
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1893

1894
out:
1895
	drm_gem_object_unreference(&obj->base);
1896
unlock:
1897
	mutex_unlock(&dev->struct_mutex);
1898
	return ret;
1899 1900
}

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1922
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1923 1924
}

1925 1926 1927 1928 1929 1930
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
}

D
Daniel Vetter 已提交
1931 1932 1933
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1934
{
1935
	i915_gem_object_free_mmap_offset(obj);
1936

1937 1938
	if (obj->base.filp == NULL)
		return;
1939

D
Daniel Vetter 已提交
1940 1941 1942 1943 1944
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1945
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1946 1947
	obj->madv = __I915_MADV_PURGED;
}
1948

1949 1950 1951
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1952
{
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1967 1968
}

1969
static void
1970
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1971
{
1972 1973
	struct sg_page_iter sg_iter;
	int ret;
1974

1975
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1976

C
Chris Wilson 已提交
1977 1978 1979 1980 1981 1982
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
1983
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
1984 1985 1986
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1987
	if (i915_gem_object_needs_bit17_swizzle(obj))
1988 1989
		i915_gem_object_save_bit_17_swizzle(obj);

1990 1991
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1992

1993
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1994
		struct page *page = sg_page_iter_page(&sg_iter);
1995

1996
		if (obj->dirty)
1997
			set_page_dirty(page);
1998

1999
		if (obj->madv == I915_MADV_WILLNEED)
2000
			mark_page_accessed(page);
2001

2002
		page_cache_release(page);
2003
	}
2004
	obj->dirty = 0;
2005

2006 2007
	sg_free_table(obj->pages);
	kfree(obj->pages);
2008
}
C
Chris Wilson 已提交
2009

2010
int
2011 2012 2013 2014
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2015
	if (obj->pages == NULL)
2016 2017
		return 0;

2018 2019 2020
	if (obj->pages_pin_count)
		return -EBUSY;

2021
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2022

2023 2024 2025
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2026
	list_del(&obj->global_list);
2027

2028
	ops->put_pages(obj);
2029
	obj->pages = NULL;
2030

2031
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2032 2033 2034 2035

	return 0;
}

2036 2037 2038
unsigned long
i915_gem_shrink(struct drm_i915_private *dev_priv,
		long target, unsigned flags)
C
Chris Wilson 已提交
2039
{
2040 2041 2042 2043 2044 2045 2046 2047
	const struct {
		struct list_head *list;
		unsigned int bit;
	} phases[] = {
		{ &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
		{ &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
		{ NULL, 0 },
	}, *phase;
2048
	unsigned long count = 0;
C
Chris Wilson 已提交
2049

2050
	/*
2051
	 * As we may completely rewrite the (un)bound list whilst unbinding
2052 2053 2054
	 * (due to retiring requests) we have to strictly process only
	 * one element of the list at the time, and recheck the list
	 * on every iteration.
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	 *
	 * In particular, we must hold a reference whilst removing the
	 * object as we may end up waiting for and/or retiring the objects.
	 * This might release the final reference (held by the active list)
	 * and result in the object being freed from under us. This is
	 * similar to the precautions the eviction code must take whilst
	 * removing objects.
	 *
	 * Also note that although these lists do not hold a reference to
	 * the object we can safely grab one here: The final object
	 * unreferencing and the bound_list are both protected by the
	 * dev->struct_mutex and so we won't ever be able to observe an
	 * object on the bound_list with a reference count equals 0.
2068
	 */
2069
	for (phase = phases; phase->list; phase++) {
2070
		struct list_head still_in_list;
2071

2072 2073
		if ((flags & phase->bit) == 0)
			continue;
2074

2075
		INIT_LIST_HEAD(&still_in_list);
2076
		while (count < target && !list_empty(phase->list)) {
2077 2078
			struct drm_i915_gem_object *obj;
			struct i915_vma *vma, *v;
2079

2080
			obj = list_first_entry(phase->list,
2081 2082
					       typeof(*obj), global_list);
			list_move_tail(&obj->global_list, &still_in_list);
2083

2084 2085
			if (flags & I915_SHRINK_PURGEABLE &&
			    !i915_gem_object_is_purgeable(obj))
2086
				continue;
2087

2088
			drm_gem_object_reference(&obj->base);
2089

2090 2091 2092
			/* For the unbound phase, this should be a no-op! */
			list_for_each_entry_safe(vma, v,
						 &obj->vma_list, vma_link)
2093 2094
				if (i915_vma_unbind(vma))
					break;
2095

2096 2097 2098 2099 2100
			if (i915_gem_object_put_pages(obj) == 0)
				count += obj->base.size >> PAGE_SHIFT;

			drm_gem_object_unreference(&obj->base);
		}
2101
		list_splice(&still_in_list, phase->list);
C
Chris Wilson 已提交
2102 2103 2104 2105 2106
	}

	return count;
}

2107
static unsigned long
C
Chris Wilson 已提交
2108 2109 2110
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	i915_gem_evict_everything(dev_priv->dev);
2111 2112
	return i915_gem_shrink(dev_priv, LONG_MAX,
			       I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
D
Daniel Vetter 已提交
2113 2114
}

2115
static int
C
Chris Wilson 已提交
2116
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2117
{
C
Chris Wilson 已提交
2118
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2119 2120
	int page_count, i;
	struct address_space *mapping;
2121 2122
	struct sg_table *st;
	struct scatterlist *sg;
2123
	struct sg_page_iter sg_iter;
2124
	struct page *page;
2125
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2126
	gfp_t gfp;
2127

C
Chris Wilson 已提交
2128 2129 2130 2131 2132 2133 2134
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2135 2136 2137 2138
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2139
	page_count = obj->base.size / PAGE_SIZE;
2140 2141
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2142
		return -ENOMEM;
2143
	}
2144

2145 2146 2147 2148 2149
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2150
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2151
	gfp = mapping_gfp_mask(mapping);
2152
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2153
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2154 2155 2156
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2157 2158
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2159 2160 2161 2162 2163
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2164 2165 2166 2167 2168 2169 2170 2171
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2172
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2173 2174 2175
			if (IS_ERR(page))
				goto err_pages;
		}
2176 2177 2178 2179 2180 2181 2182 2183
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2184 2185 2186 2187 2188 2189 2190 2191 2192
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2193 2194 2195

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2196
	}
2197 2198 2199 2200
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2201 2202
	obj->pages = st;

2203
	if (i915_gem_object_needs_bit17_swizzle(obj))
2204 2205
		i915_gem_object_do_bit_17_swizzle(obj);

2206 2207 2208 2209
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2210 2211 2212
	return 0;

err_pages:
2213 2214
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2215
		page_cache_release(sg_page_iter_page(&sg_iter));
2216 2217
	sg_free_table(st);
	kfree(st);
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2231 2232
}

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2247
	if (obj->pages)
2248 2249
		return 0;

2250
	if (obj->madv != I915_MADV_WILLNEED) {
2251
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2252
		return -EFAULT;
2253 2254
	}

2255 2256
	BUG_ON(obj->pages_pin_count);

2257 2258 2259 2260
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2261
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2262
	return 0;
2263 2264
}

B
Ben Widawsky 已提交
2265
static void
2266
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2267
			       struct intel_engine_cs *ring)
2268
{
2269 2270
	struct drm_i915_gem_request *req;
	struct intel_engine_cs *old_ring;
2271

2272
	BUG_ON(ring == NULL);
2273 2274 2275 2276 2277

	req = intel_ring_get_request(ring);
	old_ring = i915_gem_request_get_ring(obj->last_read_req);

	if (old_ring != ring && obj->last_write_req) {
2278 2279
		/* Keep the request relative to the current ring */
		i915_gem_request_assign(&obj->last_write_req, req);
2280
	}
2281 2282

	/* Add a reference if we're newly entering the active list. */
2283 2284 2285
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2286
	}
2287

2288
	list_move_tail(&obj->ring_list, &ring->active_list);
2289

2290
	i915_gem_request_assign(&obj->last_read_req, req);
2291 2292
}

B
Ben Widawsky 已提交
2293
void i915_vma_move_to_active(struct i915_vma *vma,
2294
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2295 2296 2297 2298 2299
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2300 2301
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2302
{
2303
	struct i915_vma *vma;
2304

2305
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2306
	BUG_ON(!obj->active);
2307

2308 2309 2310
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2311
	}
2312

2313 2314
	intel_fb_obj_flush(obj, true);

2315
	list_del_init(&obj->ring_list);
2316

2317 2318
	i915_gem_request_assign(&obj->last_read_req, NULL);
	i915_gem_request_assign(&obj->last_write_req, NULL);
2319 2320
	obj->base.write_domain = 0;

2321
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2322 2323 2324 2325 2326

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2327
}
2328

2329 2330 2331
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2332
	if (obj->last_read_req == NULL)
2333 2334
		return;

2335
	if (i915_gem_request_completed(obj->last_read_req, true))
2336 2337 2338
		i915_gem_object_move_to_inactive(obj);
}

2339
static int
2340
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2341
{
2342
	struct drm_i915_private *dev_priv = dev->dev_private;
2343
	struct intel_engine_cs *ring;
2344
	int ret, i, j;
2345

2346
	/* Carefully retire all requests without writing to the rings */
2347
	for_each_ring(ring, dev_priv, i) {
2348 2349 2350
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2351 2352
	}
	i915_gem_retire_requests(dev);
2353 2354

	/* Finally reset hw state */
2355
	for_each_ring(ring, dev_priv, i) {
2356
		intel_ring_init_seqno(ring, seqno);
2357

2358 2359
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2360
	}
2361

2362
	return 0;
2363 2364
}

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2391 2392
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2393
{
2394 2395 2396 2397
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2398
		int ret = i915_gem_init_seqno(dev, 0);
2399 2400
		if (ret)
			return ret;
2401

2402 2403
		dev_priv->next_seqno = 1;
	}
2404

2405
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2406
	return 0;
2407 2408
}

2409
int __i915_add_request(struct intel_engine_cs *ring,
2410
		       struct drm_file *file,
2411
		       struct drm_i915_gem_object *obj)
2412
{
2413
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2414
	struct drm_i915_gem_request *request;
2415
	struct intel_ringbuffer *ringbuf;
2416
	u32 request_start;
2417 2418
	int ret;

2419
	request = ring->outstanding_lazy_request;
2420 2421 2422 2423
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
2424
		ringbuf = request->ctx->engine[ring->id].ringbuf;
2425 2426 2427 2428
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2429 2430 2431 2432 2433 2434 2435
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2436
	if (i915.enable_execlists) {
2437
		ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2438 2439 2440 2441 2442 2443 2444
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2445

2446 2447 2448 2449 2450
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2451
	request->postfix = intel_ring_get_tail(ringbuf);
2452

2453
	if (i915.enable_execlists) {
2454
		ret = ring->emit_request(ringbuf, request);
2455 2456 2457 2458 2459 2460 2461
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
	}
2462

2463
	request->head = request_start;
2464
	request->tail = intel_ring_get_tail(ringbuf);
2465 2466 2467 2468 2469 2470 2471

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2472
	request->batch_obj = obj;
2473

2474 2475 2476 2477 2478 2479 2480 2481
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2482

2483
	request->emitted_jiffies = jiffies;
2484
	list_add_tail(&request->list, &ring->request_list);
2485
	request->file_priv = NULL;
2486

C
Chris Wilson 已提交
2487 2488 2489
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2490
		spin_lock(&file_priv->mm.lock);
2491
		request->file_priv = file_priv;
2492
		list_add_tail(&request->client_list,
2493
			      &file_priv->mm.request_list);
2494
		spin_unlock(&file_priv->mm.lock);
2495
	}
2496

2497
	trace_i915_gem_request_add(request);
2498
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2499

2500
	i915_queue_hangcheck(ring->dev);
2501

2502 2503 2504 2505 2506
	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2507

2508
	return 0;
2509 2510
}

2511 2512
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2513
{
2514
	struct drm_i915_file_private *file_priv = request->file_priv;
2515

2516 2517
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2518

2519
	spin_lock(&file_priv->mm.lock);
2520 2521
	list_del(&request->client_list);
	request->file_priv = NULL;
2522
	spin_unlock(&file_priv->mm.lock);
2523 2524
}

2525
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2526
				   const struct intel_context *ctx)
2527
{
2528
	unsigned long elapsed;
2529

2530 2531 2532
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2533 2534
		return true;

2535 2536
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2537
		if (!i915_gem_context_is_default(ctx)) {
2538
			DRM_DEBUG("context hanging too fast, banning!\n");
2539
			return true;
2540 2541 2542
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2543
			return true;
2544
		}
2545 2546 2547 2548 2549
	}

	return false;
}

2550
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2551
				  struct intel_context *ctx,
2552
				  const bool guilty)
2553
{
2554 2555 2556 2557
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2558

2559 2560 2561
	hs = &ctx->hang_stats;

	if (guilty) {
2562
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2563 2564 2565 2566
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2567 2568 2569
	}
}

2570 2571 2572 2573 2574
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

2575 2576 2577 2578 2579 2580 2581 2582 2583
	i915_gem_request_unreference(request);
}

void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2584 2585
	if (ctx) {
		if (i915.enable_execlists) {
2586
			struct intel_engine_cs *ring = req->ring;
2587

2588 2589 2590
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2591

2592 2593
		i915_gem_context_unreference(ctx);
	}
2594 2595

	kfree(req);
2596 2597
}

2598
struct drm_i915_gem_request *
2599
i915_gem_find_active_request(struct intel_engine_cs *ring)
2600
{
2601 2602 2603
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2604
		if (i915_gem_request_completed(request, false))
2605
			continue;
2606

2607
		return request;
2608
	}
2609 2610 2611 2612 2613

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2614
				       struct intel_engine_cs *ring)
2615 2616 2617 2618
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2619
	request = i915_gem_find_active_request(ring);
2620 2621 2622 2623 2624 2625

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2626
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2627 2628

	list_for_each_entry_continue(request, &ring->request_list, list)
2629
		i915_set_reset_status(dev_priv, request->ctx, false);
2630
}
2631

2632
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2633
					struct intel_engine_cs *ring)
2634
{
2635
	while (!list_empty(&ring->active_list)) {
2636
		struct drm_i915_gem_object *obj;
2637

2638 2639 2640
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2641

2642
		i915_gem_object_move_to_inactive(obj);
2643
	}
2644

2645 2646 2647 2648 2649 2650
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2651
		struct drm_i915_gem_request *submit_req;
2652 2653

		submit_req = list_first_entry(&ring->execlist_queue,
2654
				struct drm_i915_gem_request,
2655 2656 2657
				execlist_link);
		list_del(&submit_req->execlist_link);
		intel_runtime_pm_put(dev_priv);
2658 2659 2660 2661

		if (submit_req->ctx != ring->default_context)
			intel_lr_context_unpin(ring, submit_req->ctx);

2662 2663 2664 2665
		i915_gem_context_unreference(submit_req->ctx);
		kfree(submit_req);
	}

2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2682

2683 2684
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2685 2686
}

2687
void i915_gem_restore_fences(struct drm_device *dev)
2688 2689 2690 2691
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2692
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2693
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2694

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2705 2706 2707
	}
}

2708
void i915_gem_reset(struct drm_device *dev)
2709
{
2710
	struct drm_i915_private *dev_priv = dev->dev_private;
2711
	struct intel_engine_cs *ring;
2712
	int i;
2713

2714 2715 2716 2717 2718 2719 2720 2721
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2722
	for_each_ring(ring, dev_priv, i)
2723
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2724

2725 2726
	i915_gem_context_reset(dev);

2727
	i915_gem_restore_fences(dev);
2728 2729 2730 2731 2732
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2733
void
2734
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2735
{
C
Chris Wilson 已提交
2736
	if (list_empty(&ring->request_list))
2737 2738
		return;

C
Chris Wilson 已提交
2739
	WARN_ON(i915_verify_lists(ring->dev));
2740

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

2752
		if (!i915_gem_request_completed(obj->last_read_req, true))
2753 2754 2755 2756 2757 2758
			break;

		i915_gem_object_move_to_inactive(obj);
	}


2759
	while (!list_empty(&ring->request_list)) {
2760
		struct drm_i915_gem_request *request;
2761
		struct intel_ringbuffer *ringbuf;
2762

2763
		request = list_first_entry(&ring->request_list,
2764 2765 2766
					   struct drm_i915_gem_request,
					   list);

2767
		if (!i915_gem_request_completed(request, true))
2768 2769
			break;

2770
		trace_i915_gem_request_retire(request);
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782

		/* This is one of the few common intersection points
		 * between legacy ringbuffer submission and execlists:
		 * we need to tell them apart in order to find the correct
		 * ringbuffer to which the request belongs to.
		 */
		if (i915.enable_execlists) {
			struct intel_context *ctx = request->ctx;
			ringbuf = ctx->engine[ring->id].ringbuf;
		} else
			ringbuf = ring->buffer;

2783 2784 2785 2786 2787
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2788
		ringbuf->last_retired_head = request->postfix;
2789

2790
		i915_gem_free_request(request);
2791
	}
2792

2793 2794
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2795
		ring->irq_put(ring);
2796
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2797
	}
2798

C
Chris Wilson 已提交
2799
	WARN_ON(i915_verify_lists(ring->dev));
2800 2801
}

2802
bool
2803 2804
i915_gem_retire_requests(struct drm_device *dev)
{
2805
	struct drm_i915_private *dev_priv = dev->dev_private;
2806
	struct intel_engine_cs *ring;
2807
	bool idle = true;
2808
	int i;
2809

2810
	for_each_ring(ring, dev_priv, i) {
2811
		i915_gem_retire_requests_ring(ring);
2812
		idle &= list_empty(&ring->request_list);
2813 2814 2815 2816 2817 2818 2819 2820 2821
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2822 2823 2824 2825 2826 2827 2828 2829
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2830 2831
}

2832
static void
2833 2834
i915_gem_retire_work_handler(struct work_struct *work)
{
2835 2836 2837
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2838
	bool idle;
2839

2840
	/* Come back later if the device is busy... */
2841 2842 2843 2844
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2845
	}
2846
	if (!idle)
2847 2848
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2849
}
2850

2851 2852 2853 2854 2855 2856 2857
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);

	intel_mark_idle(dev_priv->dev);
2858 2859
}

2860 2861 2862 2863 2864 2865 2866 2867
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2868
	struct intel_engine_cs *ring;
2869 2870 2871
	int ret;

	if (obj->active) {
2872 2873
		ring = i915_gem_request_get_ring(obj->last_read_req);

2874
		ret = i915_gem_check_olr(obj->last_read_req);
2875 2876 2877
		if (ret)
			return ret;

2878
		i915_gem_retire_requests_ring(ring);
2879 2880 2881 2882 2883
	}

	return 0;
}

2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2909
	struct drm_i915_private *dev_priv = dev->dev_private;
2910 2911
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2912
	struct drm_i915_gem_request *req;
2913
	unsigned reset_counter;
2914 2915
	int ret = 0;

2916 2917 2918
	if (args->flags != 0)
		return -EINVAL;

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2929 2930
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2931 2932 2933
	if (ret)
		goto out;

2934 2935
	if (!obj->active || !obj->last_read_req)
		goto out;
2936

2937
	req = obj->last_read_req;
2938 2939

	/* Do this after OLR check to make sure we make forward progress polling
2940
	 * on this IOCTL with a timeout <=0 (like busy ioctl)
2941
	 */
2942
	if (args->timeout_ns <= 0) {
2943 2944 2945 2946 2947
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2948
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2949
	i915_gem_request_reference(req);
2950 2951
	mutex_unlock(&dev->struct_mutex);

2952 2953
	ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
				  file->driver_priv);
2954 2955 2956 2957
	mutex_lock(&dev->struct_mutex);
	i915_gem_request_unreference(req);
	mutex_unlock(&dev->struct_mutex);
	return ret;
2958 2959 2960 2961 2962 2963 2964

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2977 2978
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2979
		     struct intel_engine_cs *to)
2980
{
2981
	struct intel_engine_cs *from;
2982 2983 2984
	u32 seqno;
	int ret, idx;

2985 2986
	from = i915_gem_request_get_ring(obj->last_read_req);

2987 2988 2989
	if (from == NULL || to == from)
		return 0;

2990
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2991
		return i915_gem_object_wait_rendering(obj, false);
2992 2993 2994

	idx = intel_ring_sync_index(from, to);

2995
	seqno = i915_gem_request_get_seqno(obj->last_read_req);
R
Rodrigo Vivi 已提交
2996 2997
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
2998
	if (seqno <= from->semaphore.sync_seqno[idx])
2999 3000
		return 0;

3001
	ret = i915_gem_check_olr(obj->last_read_req);
3002 3003
	if (ret)
		return ret;
3004

3005
	trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
3006
	ret = to->semaphore.sync_to(to, from, seqno);
3007
	if (!ret)
3008
		/* We use last_read_req because sync_to()
3009 3010 3011
		 * might have just caused seqno wrap under
		 * the radar.
		 */
3012 3013
		from->semaphore.sync_seqno[idx] =
				i915_gem_request_get_seqno(obj->last_read_req);
3014

3015
	return ret;
3016 3017
}

3018 3019 3020 3021 3022 3023 3024
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3025 3026 3027
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3028 3029 3030
	/* Wait for any direct GTT access to complete */
	mb();

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3042
int i915_vma_unbind(struct i915_vma *vma)
3043
{
3044
	struct drm_i915_gem_object *obj = vma->obj;
3045
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3046
	int ret;
3047

3048
	if (list_empty(&vma->vma_link))
3049 3050
		return 0;

3051 3052 3053 3054
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3055

B
Ben Widawsky 已提交
3056
	if (vma->pin_count)
3057
		return -EBUSY;
3058

3059 3060
	BUG_ON(obj->pages == NULL);

3061
	ret = i915_gem_object_finish_gpu(obj);
3062
	if (ret)
3063 3064 3065 3066 3067 3068
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3069 3070
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3071
		i915_gem_object_finish_gtt(obj);
3072

3073 3074 3075 3076 3077
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3078

3079
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3080

3081 3082
	vma->unbind_vma(vma);

3083
	list_del_init(&vma->mm_list);
3084 3085 3086 3087 3088 3089 3090 3091 3092
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3093

B
Ben Widawsky 已提交
3094 3095 3096 3097
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3098
	 * no more VMAs exist. */
3099
	if (list_empty(&obj->vma_list)) {
3100 3101 3102 3103
		/* Throw away the active reference before
		 * moving to the unbound list. */
		i915_gem_object_retire(obj);

3104
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3105
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3106
	}
3107

3108 3109 3110 3111 3112 3113
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3114
	return 0;
3115 3116
}

3117
int i915_gpu_idle(struct drm_device *dev)
3118
{
3119
	struct drm_i915_private *dev_priv = dev->dev_private;
3120
	struct intel_engine_cs *ring;
3121
	int ret, i;
3122 3123

	/* Flush everything onto the inactive list. */
3124
	for_each_ring(ring, dev_priv, i) {
3125 3126 3127 3128 3129
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3130

3131
		ret = intel_ring_idle(ring);
3132 3133 3134
		if (ret)
			return ret;
	}
3135

3136
	return 0;
3137 3138
}

3139 3140
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3141
{
3142
	struct drm_i915_private *dev_priv = dev->dev_private;
3143 3144
	int fence_reg;
	int fence_pitch_shift;
3145

3146 3147 3148 3149 3150 3151 3152 3153
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3168
	if (obj) {
3169
		u32 size = i915_gem_obj_ggtt_size(obj);
3170
		uint64_t val;
3171

3172 3173 3174 3175 3176 3177 3178
		/* Adjust fence size to match tiled area */
		if (obj->tiling_mode != I915_TILING_NONE) {
			uint32_t row_size = obj->stride *
				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
			size = (size / row_size) * row_size;
		}

3179
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3180
				 0xfffff000) << 32;
3181
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3182
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3183 3184 3185
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3186

3187 3188 3189 3190 3191 3192 3193 3194 3195
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3196 3197
}

3198 3199
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3200
{
3201
	struct drm_i915_private *dev_priv = dev->dev_private;
3202
	u32 val;
3203

3204
	if (obj) {
3205
		u32 size = i915_gem_obj_ggtt_size(obj);
3206 3207
		int pitch_val;
		int tile_width;
3208

3209
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3210
		     (size & -size) != size ||
3211 3212 3213
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3214

3215 3216 3217 3218 3219 3220 3221 3222 3223
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3224
		val = i915_gem_obj_ggtt_offset(obj);
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3240 3241
}

3242 3243
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3244
{
3245
	struct drm_i915_private *dev_priv = dev->dev_private;
3246 3247
	uint32_t val;

3248
	if (obj) {
3249
		u32 size = i915_gem_obj_ggtt_size(obj);
3250
		uint32_t pitch_val;
3251

3252
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3253
		     (size & -size) != size ||
3254 3255 3256
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3257

3258 3259
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3260

3261
		val = i915_gem_obj_ggtt_offset(obj);
3262 3263 3264 3265 3266 3267 3268
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3269

3270 3271 3272 3273
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3274 3275 3276 3277 3278
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3279 3280 3281
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3282 3283 3284 3285 3286 3287 3288 3289
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3290 3291 3292 3293
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3294 3295 3296 3297 3298 3299
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3300 3301 3302 3303 3304 3305

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3306 3307
}

3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3318
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3319 3320 3321
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3322 3323

	if (enable) {
3324
		obj->fence_reg = reg;
3325 3326 3327 3328 3329 3330 3331
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3332
	obj->fence_dirty = false;
3333 3334
}

3335
static int
3336
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3337
{
3338
	if (obj->last_fenced_req) {
3339
		int ret = i915_wait_request(obj->last_fenced_req);
3340 3341
		if (ret)
			return ret;
3342

3343
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3344 3345 3346 3347 3348 3349 3350 3351
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3352
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3353
	struct drm_i915_fence_reg *fence;
3354 3355
	int ret;

3356
	ret = i915_gem_object_wait_fence(obj);
3357 3358 3359
	if (ret)
		return ret;

3360 3361
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3362

3363 3364
	fence = &dev_priv->fence_regs[obj->fence_reg];

3365 3366 3367
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3368
	i915_gem_object_fence_lost(obj);
3369
	i915_gem_object_update_fence(obj, fence, false);
3370 3371 3372 3373 3374

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3375
i915_find_fence_reg(struct drm_device *dev)
3376 3377
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3378
	struct drm_i915_fence_reg *reg, *avail;
3379
	int i;
3380 3381

	/* First try to find a free reg */
3382
	avail = NULL;
3383 3384 3385
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3386
			return reg;
3387

3388
		if (!reg->pin_count)
3389
			avail = reg;
3390 3391
	}

3392
	if (avail == NULL)
3393
		goto deadlock;
3394 3395

	/* None available, try to steal one or wait for a user to finish */
3396
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3397
		if (reg->pin_count)
3398 3399
			continue;

C
Chris Wilson 已提交
3400
		return reg;
3401 3402
	}

3403 3404 3405 3406 3407 3408
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3409 3410
}

3411
/**
3412
 * i915_gem_object_get_fence - set up fencing for an object
3413 3414 3415 3416 3417 3418 3419 3420 3421
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3422 3423
 *
 * For an untiled surface, this removes any existing fence.
3424
 */
3425
int
3426
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3427
{
3428
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3429
	struct drm_i915_private *dev_priv = dev->dev_private;
3430
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3431
	struct drm_i915_fence_reg *reg;
3432
	int ret;
3433

3434 3435 3436
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3437
	if (obj->fence_dirty) {
3438
		ret = i915_gem_object_wait_fence(obj);
3439 3440 3441
		if (ret)
			return ret;
	}
3442

3443
	/* Just update our place in the LRU if our fence is getting reused. */
3444 3445
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3446
		if (!obj->fence_dirty) {
3447 3448 3449 3450 3451
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3452 3453 3454
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3455
		reg = i915_find_fence_reg(dev);
3456 3457
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3458

3459 3460 3461
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3462
			ret = i915_gem_object_wait_fence(old);
3463 3464 3465
			if (ret)
				return ret;

3466
			i915_gem_object_fence_lost(old);
3467
		}
3468
	} else
3469 3470
		return 0;

3471 3472
	i915_gem_object_update_fence(obj, reg, enable);

3473
	return 0;
3474 3475
}

3476
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3477 3478
				     unsigned long cache_level)
{
3479
	struct drm_mm_node *gtt_space = &vma->node;
3480 3481
	struct drm_mm_node *other;

3482 3483 3484 3485 3486 3487
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3488
	 */
3489
	if (vma->vm->mm.color_adjust == NULL)
3490 3491
		return true;

3492
	if (!drm_mm_node_allocated(gtt_space))
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3509 3510 3511
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3512
static struct i915_vma *
3513 3514 3515
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
			   unsigned alignment,
3516 3517
			   uint64_t flags,
			   const struct i915_ggtt_view *view)
3518
{
3519
	struct drm_device *dev = obj->base.dev;
3520
	struct drm_i915_private *dev_priv = dev->dev_private;
3521
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3522 3523 3524
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3525
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3526
	struct i915_vma *vma;
3527
	int ret;
3528

3529 3530 3531 3532 3533
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3534
						     obj->tiling_mode, true);
3535
	unfenced_alignment =
3536
		i915_gem_get_gtt_alignment(dev,
3537 3538
					   obj->base.size,
					   obj->tiling_mode, false);
3539

3540
	if (alignment == 0)
3541
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3542
						unfenced_alignment;
3543
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3544
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3545
		return ERR_PTR(-EINVAL);
3546 3547
	}

3548
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3549

3550 3551 3552
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3553 3554
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3555
			  obj->base.size,
3556
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3557
			  end);
3558
		return ERR_PTR(-E2BIG);
3559 3560
	}

3561
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3562
	if (ret)
3563
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3564

3565 3566
	i915_gem_object_pin_pages(obj);

3567
	vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
3568
	if (IS_ERR(vma))
3569
		goto err_unpin;
B
Ben Widawsky 已提交
3570

3571
search_free:
3572
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3573
						  size, alignment,
3574 3575
						  obj->cache_level,
						  start, end,
3576 3577
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3578
	if (ret) {
3579
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3580 3581 3582
					       obj->cache_level,
					       start, end,
					       flags);
3583 3584
		if (ret == 0)
			goto search_free;
3585

3586
		goto err_free_vma;
3587
	}
3588
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3589
		ret = -EINVAL;
3590
		goto err_remove_node;
3591 3592
	}

3593
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3594
	if (ret)
3595
		goto err_remove_node;
3596

3597 3598 3599 3600 3601 3602
	trace_i915_vma_bind(vma, flags);
	ret = i915_vma_bind(vma, obj->cache_level,
			    flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
	if (ret)
		goto err_finish_gtt;

3603
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3604
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3605

3606
	return vma;
B
Ben Widawsky 已提交
3607

3608 3609
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3610
err_remove_node:
3611
	drm_mm_remove_node(&vma->node);
3612
err_free_vma:
B
Ben Widawsky 已提交
3613
	i915_gem_vma_destroy(vma);
3614
	vma = ERR_PTR(ret);
3615
err_unpin:
B
Ben Widawsky 已提交
3616
	i915_gem_object_unpin_pages(obj);
3617
	return vma;
3618 3619
}

3620
bool
3621 3622
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3623 3624 3625 3626 3627
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3628
	if (obj->pages == NULL)
3629
		return false;
3630

3631 3632 3633 3634
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3635
	if (obj->stolen || obj->phys_handle)
3636
		return false;
3637

3638 3639 3640 3641 3642 3643 3644 3645
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3646 3647
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3648
		return false;
3649
	}
3650

C
Chris Wilson 已提交
3651
	trace_i915_gem_object_clflush(obj);
3652
	drm_clflush_sg(obj->pages);
3653
	obj->cache_dirty = false;
3654 3655

	return true;
3656 3657 3658 3659
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3660
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3661
{
C
Chris Wilson 已提交
3662 3663
	uint32_t old_write_domain;

3664
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3665 3666
		return;

3667
	/* No actual flushing is required for the GTT write domain.  Writes
3668 3669
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3670 3671 3672 3673
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3674
	 */
3675 3676
	wmb();

3677 3678
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3679

3680 3681
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3682
	trace_i915_gem_object_change_domain(obj,
3683
					    obj->base.read_domains,
C
Chris Wilson 已提交
3684
					    old_write_domain);
3685 3686 3687 3688
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3689
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3690
{
C
Chris Wilson 已提交
3691
	uint32_t old_write_domain;
3692

3693
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3694 3695
		return;

3696
	if (i915_gem_clflush_object(obj, obj->pin_display))
3697 3698
		i915_gem_chipset_flush(obj->base.dev);

3699 3700
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3701

3702 3703
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3704
	trace_i915_gem_object_change_domain(obj,
3705
					    obj->base.read_domains,
C
Chris Wilson 已提交
3706
					    old_write_domain);
3707 3708
}

3709 3710 3711 3712 3713 3714
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3715
int
3716
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3717
{
C
Chris Wilson 已提交
3718
	uint32_t old_write_domain, old_read_domains;
3719
	struct i915_vma *vma;
3720
	int ret;
3721

3722 3723 3724
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3725
	ret = i915_gem_object_wait_rendering(obj, !write);
3726 3727 3728
	if (ret)
		return ret;

3729
	i915_gem_object_retire(obj);
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3743
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3744

3745 3746 3747 3748 3749 3750 3751
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3752 3753
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3754

3755 3756 3757
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3758 3759
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3760
	if (write) {
3761 3762 3763
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3764 3765
	}

3766 3767 3768
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
3769 3770 3771 3772
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3773
	/* And bump the LRU for this access */
3774 3775
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3776
		list_move_tail(&vma->mm_list,
3777
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3778

3779 3780 3781
	return 0;
}

3782 3783 3784
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3785
	struct drm_device *dev = obj->base.dev;
3786
	struct i915_vma *vma, *next;
3787 3788 3789 3790 3791
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3792
	if (i915_gem_obj_is_pinned(obj)) {
3793 3794 3795 3796
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3797
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3798
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3799
			ret = i915_vma_unbind(vma);
3800 3801 3802
			if (ret)
				return ret;
		}
3803 3804
	}

3805
	if (i915_gem_obj_bound_any(obj)) {
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3816
		if (INTEL_INFO(dev)->gen < 6) {
3817 3818 3819 3820 3821
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3822
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3823 3824 3825 3826 3827 3828
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
						    vma->bound & GLOBAL_BIND);
				if (ret)
					return ret;
			}
3829 3830
	}

3831 3832 3833 3834
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3835 3836 3837 3838 3839
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3840 3841 3842 3843 3844
	}

	return 0;
}

B
Ben Widawsky 已提交
3845 3846
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3847
{
B
Ben Widawsky 已提交
3848
	struct drm_i915_gem_caching *args = data;
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3862 3863 3864 3865 3866 3867
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3868 3869 3870 3871
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3872 3873 3874 3875
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3876 3877 3878 3879 3880 3881 3882

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3883 3884
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3885
{
B
Ben Widawsky 已提交
3886
	struct drm_i915_gem_caching *args = data;
3887 3888 3889 3890
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3891 3892
	switch (args->caching) {
	case I915_CACHING_NONE:
3893 3894
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3895
	case I915_CACHING_CACHED:
3896 3897
		level = I915_CACHE_LLC;
		break;
3898 3899 3900
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3901 3902 3903 3904
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3905 3906 3907 3908
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3923 3924
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3925 3926 3927 3928 3929 3930
	struct i915_vma *vma;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

D
Daniel Vetter 已提交
3931
	/* There are 2 sources that pin objects:
3932 3933 3934 3935
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *
	 * We can ignore reservations as we hold the struct_mutex and
D
Daniel Vetter 已提交
3936
	 * are only called outside of the reservation path.
3937
	 */
D
Daniel Vetter 已提交
3938
	return vma->pin_count;
3939 3940
}

3941
/*
3942 3943 3944
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3945 3946
 */
int
3947 3948
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3949
				     struct intel_engine_cs *pipelined)
3950
{
3951
	u32 old_read_domains, old_write_domain;
3952
	bool was_pin_display;
3953 3954
	int ret;

3955
	if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3956 3957
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3958 3959 3960
			return ret;
	}

3961 3962 3963
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3964
	was_pin_display = obj->pin_display;
3965 3966
	obj->pin_display = true;

3967 3968 3969 3970 3971 3972 3973 3974 3975
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3976 3977
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3978
	if (ret)
3979
		goto err_unpin_display;
3980

3981 3982 3983 3984
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3985
	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3986
	if (ret)
3987
		goto err_unpin_display;
3988

3989
	i915_gem_object_flush_cpu_write_domain(obj);
3990

3991
	old_write_domain = obj->base.write_domain;
3992
	old_read_domains = obj->base.read_domains;
3993 3994 3995 3996

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3997
	obj->base.write_domain = 0;
3998
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3999 4000 4001

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4002
					    old_write_domain);
4003 4004

	return 0;
4005 4006

err_unpin_display:
4007 4008
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
4009 4010 4011 4012 4013 4014
	return ret;
}

void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
{
B
Ben Widawsky 已提交
4015
	i915_gem_object_ggtt_unpin(obj);
4016
	obj->pin_display = is_pin_display(obj);
4017 4018
}

4019
int
4020
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4021
{
4022 4023
	int ret;

4024
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4025 4026
		return 0;

4027
	ret = i915_gem_object_wait_rendering(obj, false);
4028 4029 4030
	if (ret)
		return ret;

4031 4032
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4033
	return 0;
4034 4035
}

4036 4037 4038 4039 4040 4041
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4042
int
4043
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4044
{
C
Chris Wilson 已提交
4045
	uint32_t old_write_domain, old_read_domains;
4046 4047
	int ret;

4048 4049 4050
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4051
	ret = i915_gem_object_wait_rendering(obj, !write);
4052 4053 4054
	if (ret)
		return ret;

4055
	i915_gem_object_retire(obj);
4056
	i915_gem_object_flush_gtt_write_domain(obj);
4057

4058 4059
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4060

4061
	/* Flush the CPU cache if it's still invalid. */
4062
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4063
		i915_gem_clflush_object(obj, false);
4064

4065
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4066 4067 4068 4069 4070
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4071
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4072 4073 4074 4075 4076

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4077 4078
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4079
	}
4080

4081 4082 4083
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
4084 4085 4086 4087
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4088 4089 4090
	return 0;
}

4091 4092 4093
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4094 4095 4096 4097
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4098 4099 4100
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4101
static int
4102
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4103
{
4104 4105
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4106
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4107
	struct drm_i915_gem_request *request, *target = NULL;
4108
	unsigned reset_counter;
4109
	int ret;
4110

4111 4112 4113 4114 4115 4116 4117
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4118

4119
	spin_lock(&file_priv->mm.lock);
4120
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4121 4122
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4123

4124
		target = request;
4125
	}
4126
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4127 4128
	if (target)
		i915_gem_request_reference(target);
4129
	spin_unlock(&file_priv->mm.lock);
4130

4131
	if (target == NULL)
4132
		return 0;
4133

4134
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4135 4136
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4137

4138 4139 4140 4141
	mutex_lock(&dev->struct_mutex);
	i915_gem_request_unreference(target);
	mutex_unlock(&dev->struct_mutex);

4142 4143 4144
	return ret;
}

4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4164
int
4165 4166 4167 4168 4169
i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
			 struct i915_address_space *vm,
			 uint32_t alignment,
			 uint64_t flags,
			 const struct i915_ggtt_view *view)
4170
{
4171
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4172
	struct i915_vma *vma;
4173
	unsigned bound;
4174 4175
	int ret;

4176 4177 4178
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4179
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4180
		return -EINVAL;
4181

4182 4183 4184
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4185
	vma = i915_gem_obj_to_vma_view(obj, vm, view);
4186
	if (vma) {
B
Ben Widawsky 已提交
4187 4188 4189
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4190
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4191
			WARN(vma->pin_count,
4192
			     "bo is already pinned with incorrect alignment:"
4193
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4194
			     " obj->map_and_fenceable=%d\n",
4195 4196
			     i915_gem_obj_offset_view(obj, vm, view->type),
			     alignment,
4197
			     !!(flags & PIN_MAPPABLE),
4198
			     obj->map_and_fenceable);
4199
			ret = i915_vma_unbind(vma);
4200 4201
			if (ret)
				return ret;
4202 4203

			vma = NULL;
4204 4205 4206
		}
	}

4207
	bound = vma ? vma->bound : 0;
4208
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4209 4210
		vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
						 flags, view);
4211 4212
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4213
	}
J
Jesse Barnes 已提交
4214

4215 4216 4217 4218 4219
	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
		ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
		if (ret)
			return ret;
	}
4220

4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
	if ((bound ^ vma->bound) & GLOBAL_BIND) {
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

		mappable = (vma->node.start + obj->base.size <=
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;
	}

	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);

4244
	vma->pin_count++;
4245 4246
	if (flags & PIN_MAPPABLE)
		obj->pin_mappable |= true;
4247 4248 4249 4250 4251

	return 0;
}

void
B
Ben Widawsky 已提交
4252
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4253
{
B
Ben Widawsky 已提交
4254
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4255

B
Ben Widawsky 已提交
4256 4257 4258 4259 4260
	BUG_ON(!vma);
	BUG_ON(vma->pin_count == 0);
	BUG_ON(!i915_gem_obj_ggtt_bound(obj));

	if (--vma->pin_count == 0)
4261
		obj->pin_mappable = false;
4262 4263
}

4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4290 4291
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4292
		    struct drm_file *file)
4293 4294
{
	struct drm_i915_gem_busy *args = data;
4295
	struct drm_i915_gem_object *obj;
4296 4297
	int ret;

4298
	ret = i915_mutex_lock_interruptible(dev);
4299
	if (ret)
4300
		return ret;
4301

4302
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4303
	if (&obj->base == NULL) {
4304 4305
		ret = -ENOENT;
		goto unlock;
4306
	}
4307

4308 4309 4310 4311
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4312
	 */
4313
	ret = i915_gem_object_flush_active(obj);
4314

4315
	args->busy = obj->active;
4316 4317
	if (obj->last_read_req) {
		struct intel_engine_cs *ring;
4318
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4319 4320
		ring = i915_gem_request_get_ring(obj->last_read_req);
		args->busy |= intel_ring_flag(ring) << 16;
4321
	}
4322

4323
	drm_gem_object_unreference(&obj->base);
4324
unlock:
4325
	mutex_unlock(&dev->struct_mutex);
4326
	return ret;
4327 4328 4329 4330 4331 4332
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4333
	return i915_gem_ring_throttle(dev, file_priv);
4334 4335
}

4336 4337 4338 4339
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4340
	struct drm_i915_private *dev_priv = dev->dev_private;
4341
	struct drm_i915_gem_madvise *args = data;
4342
	struct drm_i915_gem_object *obj;
4343
	int ret;
4344 4345 4346 4347 4348 4349 4350 4351 4352

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4353 4354 4355 4356
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4357
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4358
	if (&obj->base == NULL) {
4359 4360
		ret = -ENOENT;
		goto unlock;
4361 4362
	}

B
Ben Widawsky 已提交
4363
	if (i915_gem_obj_is_pinned(obj)) {
4364 4365
		ret = -EINVAL;
		goto out;
4366 4367
	}

4368 4369 4370 4371 4372 4373 4374 4375 4376
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4377 4378
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4379

C
Chris Wilson 已提交
4380 4381
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4382 4383
		i915_gem_object_truncate(obj);

4384
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4385

4386
out:
4387
	drm_gem_object_unreference(&obj->base);
4388
unlock:
4389
	mutex_unlock(&dev->struct_mutex);
4390
	return ret;
4391 4392
}

4393 4394
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4395
{
4396
	INIT_LIST_HEAD(&obj->global_list);
4397
	INIT_LIST_HEAD(&obj->ring_list);
4398
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4399
	INIT_LIST_HEAD(&obj->vma_list);
4400
	INIT_LIST_HEAD(&obj->batch_pool_list);
4401

4402 4403
	obj->ops = ops;

4404 4405 4406 4407 4408 4409
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4410 4411 4412 4413 4414
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4415 4416
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4417
{
4418
	struct drm_i915_gem_object *obj;
4419
	struct address_space *mapping;
D
Daniel Vetter 已提交
4420
	gfp_t mask;
4421

4422
	obj = i915_gem_object_alloc(dev);
4423 4424
	if (obj == NULL)
		return NULL;
4425

4426
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4427
		i915_gem_object_free(obj);
4428 4429
		return NULL;
	}
4430

4431 4432 4433 4434 4435 4436 4437
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4438
	mapping = file_inode(obj->base.filp)->i_mapping;
4439
	mapping_set_gfp_mask(mapping, mask);
4440

4441
	i915_gem_object_init(obj, &i915_gem_object_ops);
4442

4443 4444
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4445

4446 4447
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4463 4464
	trace_i915_gem_object_create(obj);

4465
	return obj;
4466 4467
}

4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4492
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4493
{
4494
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4495
	struct drm_device *dev = obj->base.dev;
4496
	struct drm_i915_private *dev_priv = dev->dev_private;
4497
	struct i915_vma *vma, *next;
4498

4499 4500
	intel_runtime_pm_get(dev_priv);

4501 4502
	trace_i915_gem_object_destroy(obj);

4503
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4504 4505 4506 4507
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4508 4509
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4510

4511 4512
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4513

4514
			WARN_ON(i915_vma_unbind(vma));
4515

4516 4517
			dev_priv->mm.interruptible = was_interruptible;
		}
4518 4519
	}

B
Ben Widawsky 已提交
4520 4521 4522 4523 4524
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4525 4526
	WARN_ON(obj->frontbuffer_bits);

4527 4528 4529 4530 4531
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4532 4533
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4534
	if (discard_backing_storage(obj))
4535
		obj->madv = I915_MADV_DONTNEED;
4536
	i915_gem_object_put_pages(obj);
4537
	i915_gem_object_free_mmap_offset(obj);
4538

4539 4540
	BUG_ON(obj->pages);

4541 4542
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4543

4544 4545 4546
	if (obj->ops->release)
		obj->ops->release(obj);

4547 4548
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4549

4550
	kfree(obj->bit_17);
4551
	i915_gem_object_free(obj);
4552 4553

	intel_runtime_pm_put(dev_priv);
4554 4555
}

4556 4557 4558
struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
					  struct i915_address_space *vm,
					  const struct i915_ggtt_view *view)
4559 4560 4561
{
	struct i915_vma *vma;
	list_for_each_entry(vma, &obj->vma_list, vma_link)
4562
		if (vma->vm == vm && vma->ggtt_view.type == view->type)
4563 4564 4565 4566 4567
			return vma;

	return NULL;
}

B
Ben Widawsky 已提交
4568 4569
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4570
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4571
	WARN_ON(vma->node.allocated);
4572 4573 4574 4575 4576

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4577 4578
	vm = vma->vm;

4579 4580
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4581

4582
	list_del(&vma->vma_link);
4583

B
Ben Widawsky 已提交
4584 4585 4586
	kfree(vma);
}

4587 4588 4589 4590
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4591
	struct intel_engine_cs *ring;
4592 4593 4594
	int i;

	for_each_ring(ring, dev_priv, i)
4595
		dev_priv->gt.stop_ring(ring);
4596 4597
}

4598
int
4599
i915_gem_suspend(struct drm_device *dev)
4600
{
4601
	struct drm_i915_private *dev_priv = dev->dev_private;
4602
	int ret = 0;
4603

4604
	mutex_lock(&dev->struct_mutex);
4605
	ret = i915_gpu_idle(dev);
4606
	if (ret)
4607
		goto err;
4608

4609
	i915_gem_retire_requests(dev);
4610

4611
	/* Under UMS, be paranoid and evict. */
4612
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
C
Chris Wilson 已提交
4613
		i915_gem_evict_everything(dev);
4614

4615
	i915_gem_stop_ringbuffers(dev);
4616 4617
	mutex_unlock(&dev->struct_mutex);

4618
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4619
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4620
	flush_delayed_work(&dev_priv->mm.idle_work);
4621

4622 4623 4624 4625 4626
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4627
	return 0;
4628 4629 4630 4631

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4632 4633
}

4634
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4635
{
4636
	struct drm_device *dev = ring->dev;
4637
	struct drm_i915_private *dev_priv = dev->dev_private;
4638 4639
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4640
	int i, ret;
B
Ben Widawsky 已提交
4641

4642
	if (!HAS_L3_DPF(dev) || !remap_info)
4643
		return 0;
B
Ben Widawsky 已提交
4644

4645 4646 4647
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4648

4649 4650 4651 4652 4653
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4654
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4655 4656 4657
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4658 4659
	}

4660
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4661

4662
	return ret;
B
Ben Widawsky 已提交
4663 4664
}

4665 4666
void i915_gem_init_swizzling(struct drm_device *dev)
{
4667
	struct drm_i915_private *dev_priv = dev->dev_private;
4668

4669
	if (INTEL_INFO(dev)->gen < 5 ||
4670 4671 4672 4673 4674 4675
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4676 4677 4678
	if (IS_GEN5(dev))
		return;

4679 4680
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4681
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4682
	else if (IS_GEN7(dev))
4683
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4684 4685
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4686 4687
	else
		BUG();
4688
}
D
Daniel Vetter 已提交
4689

4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4733
int i915_gem_init_rings(struct drm_device *dev)
4734
{
4735
	struct drm_i915_private *dev_priv = dev->dev_private;
4736
	int ret;
4737

4738
	ret = intel_init_render_ring_buffer(dev);
4739
	if (ret)
4740
		return ret;
4741 4742

	if (HAS_BSD(dev)) {
4743
		ret = intel_init_bsd_ring_buffer(dev);
4744 4745
		if (ret)
			goto cleanup_render_ring;
4746
	}
4747

4748
	if (intel_enable_blt(dev)) {
4749 4750 4751 4752 4753
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4754 4755 4756 4757 4758 4759
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4760 4761 4762 4763 4764
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4765

4766
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4767
	if (ret)
4768
		goto cleanup_bsd2_ring;
4769 4770 4771

	return 0;

4772 4773
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4774 4775
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4789
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4790
	struct intel_engine_cs *ring;
4791
	int ret, i;
4792 4793 4794 4795

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
4796
	if (dev_priv->ellc_size)
4797
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4798

4799 4800 4801
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4802

4803
	if (HAS_PCH_NOP(dev)) {
4804 4805 4806 4807 4808 4809 4810 4811 4812
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4813 4814
	}

4815 4816
	i915_gem_init_swizzling(dev);

4817 4818 4819 4820 4821 4822 4823 4824
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

D
Daniel Vetter 已提交
4825 4826 4827 4828 4829
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
			return ret;
	}
4830

4831 4832 4833
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4834
	ret = i915_ppgtt_init_hw(dev);
4835
	if (ret && ret != -EIO) {
4836
		DRM_ERROR("PPGTT enable failed %d\n", ret);
4837
		i915_gem_cleanup_ringbuffer(dev);
4838 4839
	}

4840
	ret = i915_gem_context_enable(dev_priv);
4841
	if (ret && ret != -EIO) {
4842
		DRM_ERROR("Context enable failed %d\n", ret);
4843
		i915_gem_cleanup_ringbuffer(dev);
4844 4845

		return ret;
4846
	}
D
Daniel Vetter 已提交
4847

4848
	return ret;
4849 4850
}

4851 4852 4853 4854 4855
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4856 4857 4858
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4859
	mutex_lock(&dev->struct_mutex);
4860 4861 4862

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4863 4864 4865
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4866 4867 4868
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4869 4870 4871 4872 4873
	if (!i915.enable_execlists) {
		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4874 4875 4876 4877 4878
	} else {
		dev_priv->gt.do_execbuf = intel_execlists_submission;
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4879 4880
	}

4881
	ret = i915_gem_init_userptr(dev);
4882 4883
	if (ret)
		goto out_unlock;
4884

4885
	i915_gem_init_global_gtt(dev);
4886

4887
	ret = i915_gem_context_init(dev);
4888 4889
	if (ret)
		goto out_unlock;
4890

D
Daniel Vetter 已提交
4891 4892
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
4893
		goto out_unlock;
4894

4895
	ret = i915_gem_init_hw(dev);
4896 4897 4898 4899 4900 4901 4902 4903
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4904
	}
4905 4906

out_unlock:
4907
	mutex_unlock(&dev->struct_mutex);
4908

4909
	return ret;
4910 4911
}

4912 4913 4914
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4915
	struct drm_i915_private *dev_priv = dev->dev_private;
4916
	struct intel_engine_cs *ring;
4917
	int i;
4918

4919
	for_each_ring(ring, dev_priv, i)
4920
		dev_priv->gt.cleanup_ring(ring);
4921 4922
}

4923
static void
4924
init_ring_lists(struct intel_engine_cs *ring)
4925 4926 4927 4928 4929
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4930 4931
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4932
{
4933 4934
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4935 4936 4937 4938
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4939
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4940 4941
}

4942 4943 4944
void
i915_gem_load(struct drm_device *dev)
{
4945
	struct drm_i915_private *dev_priv = dev->dev_private;
4946 4947 4948 4949 4950 4951 4952
	int i;

	dev_priv->slab =
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4953

B
Ben Widawsky 已提交
4954 4955 4956
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

4957
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4958 4959
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4960
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4961 4962
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4963
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4964
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4965 4966
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4967 4968
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
4969
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4970

4971
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4972
	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4973 4974
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4975 4976
	}

4977 4978
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4979
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4980 4981
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4982

4983 4984 4985
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4986 4987 4988 4989
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4990
	/* Initialize fence registers to zero */
4991 4992
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
4993

4994
	i915_gem_detect_bit_6_swizzle(dev);
4995
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4996

4997 4998
	dev_priv->mm.interruptible = true;

4999 5000 5001 5002
	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.shrinker);
5003 5004 5005

	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
	register_oom_notifier(&dev_priv->mm.oom_notifier);
5006

5007 5008
	i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);

5009
	mutex_init(&dev_priv->fb_tracking.lock);
5010
}
5011

5012
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5013
{
5014
	struct drm_i915_file_private *file_priv = file->driver_priv;
5015

5016 5017
	cancel_delayed_work_sync(&file_priv->mm.idle_work);

5018 5019 5020 5021
	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5022
	spin_lock(&file_priv->mm.lock);
5023 5024 5025 5026 5027 5028 5029 5030 5031
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5032
	spin_unlock(&file_priv->mm.lock);
5033
}
5034

5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
static void
i915_gem_file_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_file_private *file_priv =
		container_of(work, typeof(*file_priv), mm.idle_work.work);

	atomic_set(&file_priv->rps_wait_boost, false);
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5047
	int ret;
5048 5049 5050 5051 5052 5053 5054 5055 5056

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5057
	file_priv->file = file;
5058 5059 5060 5061 5062 5063

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);
	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
			  i915_gem_file_idle_work_handler);

5064 5065 5066
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5067

5068
	return ret;
5069 5070
}

5071 5072 5073 5074 5075 5076 5077 5078 5079
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5097 5098 5099 5100 5101
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
{
	if (!mutex_is_locked(mutex))
		return false;

5102
#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5103 5104 5105 5106 5107 5108 5109
	return mutex->owner == task;
#else
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
	return false;
#endif
}

5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
{
	if (!mutex_trylock(&dev->struct_mutex)) {
		if (!mutex_is_locked_by(&dev->struct_mutex, current))
			return false;

		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
			return false;

		*unlock = false;
	} else
		*unlock = true;

	return true;
}

5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
static int num_vma_bound(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	int count = 0;

	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
			count++;

	return count;
}

5138
static unsigned long
5139
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5140
{
5141
	struct drm_i915_private *dev_priv =
5142
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5143
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
5144
	struct drm_i915_gem_object *obj;
5145
	unsigned long count;
5146
	bool unlock;
5147

5148 5149
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return 0;
5150

5151
	count = 0;
5152
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5153
		if (obj->pages_pin_count == 0)
5154
			count += obj->base.size >> PAGE_SHIFT;
5155 5156

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5157 5158
		if (!i915_gem_obj_is_pinned(obj) &&
		    obj->pages_pin_count == num_vma_bound(obj))
5159
			count += obj->base.size >> PAGE_SHIFT;
5160
	}
5161

5162 5163
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5164

5165
	return count;
5166
}
5167 5168

/* All the new VM stuff */
5169 5170 5171
unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
				       struct i915_address_space *vm,
				       enum i915_ggtt_view_type view)
5172 5173 5174 5175
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5176
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5177 5178

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5179
		if (vma->vm == vm && vma->ggtt_view.type == view)
5180 5181 5182
			return vma->node.start;

	}
5183 5184
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5185 5186 5187
	return -1;
}

5188 5189 5190
bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
			     struct i915_address_space *vm,
			     enum i915_ggtt_view_type view)
5191 5192 5193 5194
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5195 5196 5197
		if (vma->vm == vm &&
		    vma->ggtt_view.type == view &&
		    drm_mm_node_allocated(&vma->node))
5198 5199 5200 5201 5202 5203 5204
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5205
	struct i915_vma *vma;
5206

5207 5208
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5220
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5221 5222 5223 5224 5225 5226 5227 5228 5229 5230

	BUG_ON(list_empty(&o->vma_list));

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == vm)
			return vma->node.size;

	return 0;
}

5231
static unsigned long
5232
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5233 5234
{
	struct drm_i915_private *dev_priv =
5235
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5236 5237
	struct drm_device *dev = dev_priv->dev;
	unsigned long freed;
5238
	bool unlock;
5239

5240 5241
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return SHRINK_STOP;
5242

5243 5244 5245 5246 5247
	freed = i915_gem_shrink(dev_priv,
				sc->nr_to_scan,
				I915_SHRINK_BOUND |
				I915_SHRINK_UNBOUND |
				I915_SHRINK_PURGEABLE);
5248
	if (freed < sc->nr_to_scan)
5249 5250 5251 5252
		freed += i915_gem_shrink(dev_priv,
					 sc->nr_to_scan - freed,
					 I915_SHRINK_BOUND |
					 I915_SHRINK_UNBOUND);
5253 5254
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5255

5256 5257
	return freed;
}
5258

5259 5260 5261 5262 5263 5264 5265 5266
static int
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
{
	struct drm_i915_private *dev_priv =
		container_of(nb, struct drm_i915_private, mm.oom_notifier);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj;
	unsigned long timeout = msecs_to_jiffies(5000) + 1;
5267
	unsigned long pinned, bound, unbound, freed_pages;
5268 5269 5270
	bool was_interruptible;
	bool unlock;

5271
	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5272
		schedule_timeout_killable(1);
5273 5274 5275
		if (fatal_signal_pending(current))
			return NOTIFY_DONE;
	}
5276 5277 5278 5279 5280 5281 5282 5283
	if (timeout == 0) {
		pr_err("Unable to purge GPU memory due lock contention.\n");
		return NOTIFY_DONE;
	}

	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

5284
	freed_pages = i915_gem_shrink_all(dev_priv);
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314

	dev_priv->mm.interruptible = was_interruptible;

	/* Because we may be allocating inside our own driver, we cannot
	 * assert that there are no objects with pinned pages that are not
	 * being pointed to by hardware.
	 */
	unbound = bound = pinned = 0;
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		if (!obj->base.filp) /* not backed by a freeable object */
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			unbound += obj->base.size;
	}
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		if (!obj->base.filp)
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			bound += obj->base.size;
	}

	if (unlock)
		mutex_unlock(&dev->struct_mutex);

5315 5316 5317
	if (freed_pages || unbound || bound)
		pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
			freed_pages << PAGE_SHIFT, pinned);
5318 5319 5320 5321 5322
	if (unbound || bound)
		pr_err("%lu and %lu bytes still available in the "
		       "bound and unbound GPU page lists.\n",
		       bound, unbound);

5323
	*(unsigned long *)ptr += freed_pages;
5324 5325 5326
	return NOTIFY_DONE;
}

5327 5328
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
{
5329
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5330 5331
	struct i915_vma *vma;

5332 5333 5334
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (vma->vm == ggtt &&
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5335
			return vma;
5336

5337
	return NULL;
5338
}