i915_gem.c 136.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/oom.h>
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
						   bool force);
44
static __must_check int
45 46
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
47 48 49
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

50 51 52 53 54 55
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

56
static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57
					     struct shrink_control *sc);
58
static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59
					    struct shrink_control *sc);
60 61 62
static int i915_gem_shrinker_oom(struct notifier_block *nb,
				 unsigned long event,
				 void *ptr);
63
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64

65 66 67 68 69 70
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

71 72 73 74 75 76 77 78
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

79 80 81 82 83 84 85 86
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
87
	obj->fence_dirty = false;
88 89 90
	obj->fence_reg = I915_FENCE_REG_NONE;
}

91 92 93 94
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
95
	spin_lock(&dev_priv->mm.object_stat_lock);
96 97
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
98
	spin_unlock(&dev_priv->mm.object_stat_lock);
99 100 101 102 103
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
104
	spin_lock(&dev_priv->mm.object_stat_lock);
105 106
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
107
	spin_unlock(&dev_priv->mm.object_stat_lock);
108 109
}

110
static int
111
i915_gem_wait_for_error(struct i915_gpu_error *error)
112 113 114
{
	int ret;

115 116
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
117
	if (EXIT_COND)
118 119
		return 0;

120 121 122 123 124
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
125 126 127
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
128 129 130 131
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
132
		return ret;
133
	}
134
#undef EXIT_COND
135

136
	return 0;
137 138
}

139
int i915_mutex_lock_interruptible(struct drm_device *dev)
140
{
141
	struct drm_i915_private *dev_priv = dev->dev_private;
142 143
	int ret;

144
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 146 147 148 149 150 151
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

152
	WARN_ON(i915_verify_lists(dev));
153 154
	return 0;
}
155

156
static inline bool
157
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158
{
159
	return i915_gem_obj_bound_any(obj) && !obj->active;
160 161
}

162 163
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164
			    struct drm_file *file)
165
{
166
	struct drm_i915_private *dev_priv = dev->dev_private;
167
	struct drm_i915_gem_get_aperture *args = data;
168 169
	struct drm_i915_gem_object *obj;
	size_t pinned;
170

171
	pinned = 0;
172
	mutex_lock(&dev->struct_mutex);
173
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
174
		if (i915_gem_obj_is_pinned(obj))
175
			pinned += i915_gem_obj_ggtt_size(obj);
176
	mutex_unlock(&dev->struct_mutex);
177

178
	args->aper_size = dev_priv->gtt.base.total;
179
	args->aper_available_size = args->aper_size - pinned;
180

181 182 183
	return 0;
}

184 185
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
186
{
187 188 189 190 191
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
227

228 229 230 231 232 233 234 235 236 237 238 239 240 241
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
242

243 244 245 246 247 248 249 250 251 252 253 254 255
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
256
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
257
		char *vaddr = obj->phys_handle->vaddr;
258 259 260
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
261 262 263 264 265 266 267 268 269 270 271 272 273 274
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
275
				mark_page_accessed(page);
276
			page_cache_release(page);
277 278
			vaddr += PAGE_SIZE;
		}
279
		obj->dirty = 0;
280 281
	}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
315 316 317 318 319 320 321
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
322
	int ret;
323 324 325 326 327 328 329 330 331 332 333 334 335 336

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

337 338 339 340
	ret = drop_pages(obj);
	if (ret)
		return ret;

341 342 343 344 345 346
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
347 348 349
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
350 351 352 353 354 355 356 357 358 359
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
360 361 362 363 364 365 366 367
	int ret;

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}

383
	drm_clflush_virt_range(vaddr, args->size);
384 385 386 387
	i915_gem_chipset_flush(dev);
	return 0;
}

388 389 390
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
391
	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
392 393 394 395 396 397 398 399
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	kmem_cache_free(dev_priv->slab, obj);
}

400 401 402 403 404
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
405
{
406
	struct drm_i915_gem_object *obj;
407 408
	int ret;
	u32 handle;
409

410
	size = roundup(size, PAGE_SIZE);
411 412
	if (size == 0)
		return -EINVAL;
413 414

	/* Allocate the new object */
415
	obj = i915_gem_alloc_object(dev, size);
416 417 418
	if (obj == NULL)
		return -ENOMEM;

419
	ret = drm_gem_handle_create(file, &obj->base, &handle);
420
	/* drop reference from allocate - handle holds it now */
421 422 423
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
424

425
	*handle_p = handle;
426 427 428
	return 0;
}

429 430 431 432 433 434
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
435
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
436 437
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
438
			       args->size, &args->handle);
439 440 441 442 443 444 445 446 447 448
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
449

450
	return i915_gem_create(file, dev,
451
			       args->size, &args->handle);
452 453
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

480
static inline int
481 482
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
531 532

		i915_gem_object_retire(obj);
533 534 535 536 537 538 539 540 541 542 543
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

544 545 546
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
547
static int
548 549 550 551 552 553 554
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

555
	if (unlikely(page_do_bit17_swizzling))
556 557 558 559 560 561 562 563 564 565 566
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

567
	return ret ? -EFAULT : 0;
568 569
}

570 571 572 573
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
574
	if (unlikely(swizzled)) {
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

592 593 594 595 596 597 598 599 600 601 602 603
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
604 605 606
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
607 608 609 610 611 612 613 614 615 616 617

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

618
	return ret ? - EFAULT : 0;
619 620
}

621
static int
622 623 624 625
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
626
{
627
	char __user *user_data;
628
	ssize_t remain;
629
	loff_t offset;
630
	int shmem_page_offset, page_length, ret = 0;
631
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
632
	int prefaulted = 0;
633
	int needs_clflush = 0;
634
	struct sg_page_iter sg_iter;
635

V
Ville Syrjälä 已提交
636
	user_data = to_user_ptr(args->data_ptr);
637 638
	remain = args->size;

639
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
640

641
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
642 643 644
	if (ret)
		return ret;

645
	offset = args->offset;
646

647 648
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
649
		struct page *page = sg_page_iter_page(&sg_iter);
650 651 652 653

		if (remain <= 0)
			break;

654 655 656 657 658
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
659
		shmem_page_offset = offset_in_page(offset);
660 661 662 663
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

664 665 666
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

667 668 669 670 671
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
672 673 674

		mutex_unlock(&dev->struct_mutex);

675
		if (likely(!i915.prefault_disable) && !prefaulted) {
676
			ret = fault_in_multipages_writeable(user_data, remain);
677 678 679 680 681 682 683
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
684

685 686 687
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
688

689
		mutex_lock(&dev->struct_mutex);
690 691

		if (ret)
692 693
			goto out;

694
next_page:
695
		remain -= page_length;
696
		user_data += page_length;
697 698 699
		offset += page_length;
	}

700
out:
701 702
	i915_gem_object_unpin_pages(obj);

703 704 705
	return ret;
}

706 707 708 709 710 711 712
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
713
		     struct drm_file *file)
714 715
{
	struct drm_i915_gem_pread *args = data;
716
	struct drm_i915_gem_object *obj;
717
	int ret = 0;
718

719 720 721 722
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
723
		       to_user_ptr(args->data_ptr),
724 725 726
		       args->size))
		return -EFAULT;

727
	ret = i915_mutex_lock_interruptible(dev);
728
	if (ret)
729
		return ret;
730

731
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
732
	if (&obj->base == NULL) {
733 734
		ret = -ENOENT;
		goto unlock;
735
	}
736

737
	/* Bounds check source.  */
738 739
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
740
		ret = -EINVAL;
741
		goto out;
C
Chris Wilson 已提交
742 743
	}

744 745 746 747 748 749 750 751
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
752 753
	trace_i915_gem_object_pread(obj, args->offset, args->size);

754
	ret = i915_gem_shmem_pread(dev, obj, args, file);
755

756
out:
757
	drm_gem_object_unreference(&obj->base);
758
unlock:
759
	mutex_unlock(&dev->struct_mutex);
760
	return ret;
761 762
}

763 764
/* This is the fast write path which cannot handle
 * page faults in the source data
765
 */
766 767 768 769 770 771

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
772
{
773 774
	void __iomem *vaddr_atomic;
	void *vaddr;
775
	unsigned long unwritten;
776

P
Peter Zijlstra 已提交
777
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
778 779 780
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
781
						      user_data, length);
P
Peter Zijlstra 已提交
782
	io_mapping_unmap_atomic(vaddr_atomic);
783
	return unwritten;
784 785
}

786 787 788 789
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
790
static int
791 792
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
793
			 struct drm_i915_gem_pwrite *args,
794
			 struct drm_file *file)
795
{
796
	struct drm_i915_private *dev_priv = dev->dev_private;
797
	ssize_t remain;
798
	loff_t offset, page_base;
799
	char __user *user_data;
D
Daniel Vetter 已提交
800 801
	int page_offset, page_length, ret;

802
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
803 804 805 806 807 808 809 810 811 812
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
813

V
Ville Syrjälä 已提交
814
	user_data = to_user_ptr(args->data_ptr);
815 816
	remain = args->size;

817
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
818 819 820 821

	while (remain > 0) {
		/* Operation in this page
		 *
822 823 824
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
825
		 */
826 827
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
828 829 830 831 832
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
833 834
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
835
		 */
B
Ben Widawsky 已提交
836
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
837 838 839 840
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
841

842 843 844
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
845 846
	}

D
Daniel Vetter 已提交
847
out_unpin:
B
Ben Widawsky 已提交
848
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
849
out:
850
	return ret;
851 852
}

853 854 855 856
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
857
static int
858 859 860 861 862
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
863
{
864
	char *vaddr;
865
	int ret;
866

867
	if (unlikely(page_do_bit17_swizzling))
868
		return -EINVAL;
869

870 871 872 873
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
874 875
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
876 877 878 879
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
880

881
	return ret ? -EFAULT : 0;
882 883
}

884 885
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
886
static int
887 888 889 890 891
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
892
{
893 894
	char *vaddr;
	int ret;
895

896
	vaddr = kmap(page);
897
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
898 899 900
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
901 902
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
903 904
						user_data,
						page_length);
905 906 907 908 909
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
910 911 912
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
913
	kunmap(page);
914

915
	return ret ? -EFAULT : 0;
916 917 918
}

static int
919 920 921 922
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
923 924
{
	ssize_t remain;
925 926
	loff_t offset;
	char __user *user_data;
927
	int shmem_page_offset, page_length, ret = 0;
928
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
929
	int hit_slowpath = 0;
930 931
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
932
	struct sg_page_iter sg_iter;
933

V
Ville Syrjälä 已提交
934
	user_data = to_user_ptr(args->data_ptr);
935 936
	remain = args->size;

937
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
938

939 940 941 942 943
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
944
		needs_clflush_after = cpu_write_needs_clflush(obj);
945 946 947
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
948 949

		i915_gem_object_retire(obj);
950
	}
951 952 953 954 955
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
956

957 958 959 960 961 962
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

963
	offset = args->offset;
964
	obj->dirty = 1;
965

966 967
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
968
		struct page *page = sg_page_iter_page(&sg_iter);
969
		int partial_cacheline_write;
970

971 972 973
		if (remain <= 0)
			break;

974 975 976 977 978
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
979
		shmem_page_offset = offset_in_page(offset);
980 981 982 983 984

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

985 986 987 988 989 990 991
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

992 993 994
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

995 996 997 998 999 1000
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1001 1002 1003

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1004 1005 1006 1007
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1008

1009
		mutex_lock(&dev->struct_mutex);
1010 1011

		if (ret)
1012 1013
			goto out;

1014
next_page:
1015
		remain -= page_length;
1016
		user_data += page_length;
1017
		offset += page_length;
1018 1019
	}

1020
out:
1021 1022
	i915_gem_object_unpin_pages(obj);

1023
	if (hit_slowpath) {
1024 1025 1026 1027 1028 1029 1030
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1031 1032
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1033
		}
1034
	}
1035

1036
	if (needs_clflush_after)
1037
		i915_gem_chipset_flush(dev);
1038

1039
	return ret;
1040 1041 1042 1043 1044 1045 1046 1047 1048
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1049
		      struct drm_file *file)
1050
{
1051
	struct drm_i915_private *dev_priv = dev->dev_private;
1052
	struct drm_i915_gem_pwrite *args = data;
1053
	struct drm_i915_gem_object *obj;
1054 1055 1056 1057 1058 1059
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1060
		       to_user_ptr(args->data_ptr),
1061 1062 1063
		       args->size))
		return -EFAULT;

1064
	if (likely(!i915.prefault_disable)) {
1065 1066 1067 1068 1069
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1070

1071 1072
	intel_runtime_pm_get(dev_priv);

1073
	ret = i915_mutex_lock_interruptible(dev);
1074
	if (ret)
1075
		goto put_rpm;
1076

1077
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1078
	if (&obj->base == NULL) {
1079 1080
		ret = -ENOENT;
		goto unlock;
1081
	}
1082

1083
	/* Bounds check destination. */
1084 1085
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1086
		ret = -EINVAL;
1087
		goto out;
C
Chris Wilson 已提交
1088 1089
	}

1090 1091 1092 1093 1094 1095 1096 1097
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1098 1099
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1100
	ret = -EFAULT;
1101 1102 1103 1104 1105 1106
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1107 1108 1109
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1110
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1111 1112 1113
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1114
	}
1115

1116 1117 1118 1119 1120 1121
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1122

1123
out:
1124
	drm_gem_object_unreference(&obj->base);
1125
unlock:
1126
	mutex_unlock(&dev->struct_mutex);
1127 1128 1129
put_rpm:
	intel_runtime_pm_put(dev_priv);

1130 1131 1132
	return ret;
}

1133
int
1134
i915_gem_check_wedge(struct i915_gpu_error *error,
1135 1136
		     bool interruptible)
{
1137
	if (i915_reset_in_progress(error)) {
1138 1139 1140 1141 1142
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1143 1144
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1145 1146
			return -EIO;

1147 1148 1149 1150 1151 1152 1153
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1154 1155 1156 1157 1158 1159 1160 1161 1162
	}

	return 0;
}

/*
 * Compare seqno against outstanding lazy request. Emit a request if they are
 * equal.
 */
1163
int
1164
i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1165 1166 1167 1168 1169 1170
{
	int ret;

	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));

	ret = 0;
1171
	if (seqno == ring->outstanding_lazy_seqno)
1172
		ret = i915_add_request(ring, NULL);
1173 1174 1175 1176

	return ret;
}

1177 1178 1179 1180 1181 1182
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1183
		       struct intel_engine_cs *ring)
1184 1185 1186 1187
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1188 1189 1190 1191 1192 1193 1194 1195
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
{
	if (file_priv == NULL)
		return true;

	return !atomic_xchg(&file_priv->rps_wait_boost, true);
}

1196
/**
1197
 * __i915_wait_seqno - wait until execution of seqno has finished
1198 1199
 * @ring: the ring expected to report seqno
 * @seqno: duh!
1200
 * @reset_counter: reset sequence associated with the given seqno
1201 1202 1203
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1204 1205 1206 1207 1208 1209 1210
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1211 1212 1213
 * Returns 0 if the seqno was found within the alloted time. Else returns the
 * errno with remaining time filled in timeout argument.
 */
1214
int __i915_wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1215
			unsigned reset_counter,
1216
			bool interruptible,
1217
			s64 *timeout,
1218
			struct drm_i915_file_private *file_priv)
1219
{
1220
	struct drm_device *dev = ring->dev;
1221
	struct drm_i915_private *dev_priv = dev->dev_private;
1222 1223
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1224
	DEFINE_WAIT(wait);
1225
	unsigned long timeout_expire;
1226
	s64 before, now;
1227 1228
	int ret;

1229
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1230

1231 1232 1233
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
		return 0;

1234 1235
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1236

1237
	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1238 1239 1240 1241 1242 1243 1244
		gen6_rps_boost(dev_priv);
		if (file_priv)
			mod_delayed_work(dev_priv->wq,
					 &file_priv->mm.idle_work,
					 msecs_to_jiffies(100));
	}

1245
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1246 1247
		return -ENODEV;

1248 1249
	/* Record current time in case interrupted by signal, or wedged */
	trace_i915_gem_request_wait_begin(ring, seqno);
1250
	before = ktime_get_raw_ns();
1251 1252
	for (;;) {
		struct timer_list timer;
1253

1254 1255
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1256

1257 1258
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1259 1260 1261 1262 1263 1264 1265 1266
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1267

1268 1269 1270 1271
		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
			ret = 0;
			break;
		}
1272

1273 1274 1275 1276 1277
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1278
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1279 1280 1281 1282 1283 1284
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1285 1286
			unsigned long expire;

1287
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1288
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1289 1290 1291
			mod_timer(&timer, expire);
		}

1292
		io_schedule();
1293 1294 1295 1296 1297 1298

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1299
	now = ktime_get_raw_ns();
1300
	trace_i915_gem_request_wait_end(ring, seqno);
1301

1302 1303
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1304 1305

	finish_wait(&ring->irq_queue, &wait);
1306 1307

	if (timeout) {
1308 1309 1310
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1321 1322
	}

1323
	return ret;
1324 1325 1326 1327 1328 1329 1330
}

/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
int
1331
i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1332 1333 1334 1335
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool interruptible = dev_priv->mm.interruptible;
1336
	unsigned reset_counter;
1337 1338 1339 1340 1341
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(seqno == 0);

1342
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1343 1344 1345 1346 1347 1348 1349
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

1350 1351 1352
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
	return __i915_wait_seqno(ring, seqno, reset_counter, interruptible,
				 NULL, NULL);
1353 1354
}

1355
static int
1356
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1357
{
1358 1359
	if (!obj->active)
		return 0;
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
	 * Note that the last_write_seqno is always the earlier of
	 * the two (read/write) seqno, so if we haved successfully waited,
	 * we know we have passed the last write.
	 */
	obj->last_write_seqno = 0;

	return 0;
}

1373 1374 1375 1376 1377 1378 1379 1380
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1381
	struct intel_engine_cs *ring = obj->ring;
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	u32 seqno;
	int ret;

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

	ret = i915_wait_seqno(ring, seqno);
	if (ret)
		return ret;

1393
	return i915_gem_object_wait_rendering__tail(obj);
1394 1395
}

1396 1397 1398 1399 1400
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1401
					    struct drm_i915_file_private *file_priv,
1402 1403 1404 1405
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1406
	struct intel_engine_cs *ring = obj->ring;
1407
	unsigned reset_counter;
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	u32 seqno;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

1418
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1419 1420 1421 1422 1423 1424 1425
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

1426
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1427
	mutex_unlock(&dev->struct_mutex);
1428 1429
	ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL,
				file_priv);
1430
	mutex_lock(&dev->struct_mutex);
1431 1432
	if (ret)
		return ret;
1433

1434
	return i915_gem_object_wait_rendering__tail(obj);
1435 1436
}

1437
/**
1438 1439
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1440 1441 1442
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1443
			  struct drm_file *file)
1444 1445
{
	struct drm_i915_gem_set_domain *args = data;
1446
	struct drm_i915_gem_object *obj;
1447 1448
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1449 1450
	int ret;

1451
	/* Only handle setting domains to types used by the CPU. */
1452
	if (write_domain & I915_GEM_GPU_DOMAINS)
1453 1454
		return -EINVAL;

1455
	if (read_domains & I915_GEM_GPU_DOMAINS)
1456 1457 1458 1459 1460 1461 1462 1463
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1464
	ret = i915_mutex_lock_interruptible(dev);
1465
	if (ret)
1466
		return ret;
1467

1468
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1469
	if (&obj->base == NULL) {
1470 1471
		ret = -ENOENT;
		goto unlock;
1472
	}
1473

1474 1475 1476 1477
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1478 1479 1480
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1481 1482 1483
	if (ret)
		goto unref;

1484 1485
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1486 1487 1488 1489 1490 1491 1492

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1493
	} else {
1494
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1495 1496
	}

1497
unref:
1498
	drm_gem_object_unreference(&obj->base);
1499
unlock:
1500 1501 1502 1503 1504 1505 1506 1507 1508
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1509
			 struct drm_file *file)
1510 1511
{
	struct drm_i915_gem_sw_finish *args = data;
1512
	struct drm_i915_gem_object *obj;
1513 1514
	int ret = 0;

1515
	ret = i915_mutex_lock_interruptible(dev);
1516
	if (ret)
1517
		return ret;
1518

1519
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1520
	if (&obj->base == NULL) {
1521 1522
		ret = -ENOENT;
		goto unlock;
1523 1524 1525
	}

	/* Pinned buffers may be scanout, so flush the cache */
1526 1527
	if (obj->pin_display)
		i915_gem_object_flush_cpu_write_domain(obj, true);
1528

1529
	drm_gem_object_unreference(&obj->base);
1530
unlock:
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1551 1552 1553
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1554
		    struct drm_file *file)
1555 1556 1557 1558 1559
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1560
	obj = drm_gem_object_lookup(dev, file, args->handle);
1561
	if (obj == NULL)
1562
		return -ENOENT;
1563

1564 1565 1566 1567 1568 1569 1570 1571
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1572
	addr = vm_mmap(obj->filp, 0, args->size,
1573 1574
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1575
	drm_gem_object_unreference_unlocked(obj);
1576 1577 1578 1579 1580 1581 1582 1583
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1602 1603
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1604
	struct drm_i915_private *dev_priv = dev->dev_private;
1605 1606 1607
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1608
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1609

1610 1611
	intel_runtime_pm_get(dev_priv);

1612 1613 1614 1615
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1616 1617 1618
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1619

C
Chris Wilson 已提交
1620 1621
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1622 1623 1624 1625 1626 1627 1628 1629 1630
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1631 1632
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1633
		ret = -EFAULT;
1634 1635 1636
		goto unlock;
	}

1637
	/* Now bind it into the GTT if needed */
1638
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1639 1640
	if (ret)
		goto unlock;
1641

1642 1643 1644
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1645

1646
	ret = i915_gem_object_get_fence(obj);
1647
	if (ret)
1648
		goto unpin;
1649

1650
	/* Finally, remap it using the new GTT offset */
1651 1652
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
1653

1654
	if (!obj->fault_mappable) {
1655 1656 1657
		unsigned long size = min_t(unsigned long,
					   vma->vm_end - vma->vm_start,
					   obj->base.size);
1658 1659
		int i;

1660
		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
			ret = vm_insert_pfn(vma,
					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}

		obj->fault_mappable = true;
	} else
		ret = vm_insert_pfn(vma,
				    (unsigned long)vmf->virtual_address,
				    pfn + page_offset);
1673
unpin:
B
Ben Widawsky 已提交
1674
	i915_gem_object_ggtt_unpin(obj);
1675
unlock:
1676
	mutex_unlock(&dev->struct_mutex);
1677
out:
1678
	switch (ret) {
1679
	case -EIO:
1680 1681 1682 1683 1684 1685 1686
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1687 1688 1689
			ret = VM_FAULT_SIGBUS;
			break;
		}
1690
	case -EAGAIN:
D
Daniel Vetter 已提交
1691 1692 1693 1694
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1695
		 */
1696 1697
	case 0:
	case -ERESTARTSYS:
1698
	case -EINTR:
1699 1700 1701 1702 1703
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1704 1705
		ret = VM_FAULT_NOPAGE;
		break;
1706
	case -ENOMEM:
1707 1708
		ret = VM_FAULT_OOM;
		break;
1709
	case -ENOSPC:
1710
	case -EFAULT:
1711 1712
		ret = VM_FAULT_SIGBUS;
		break;
1713
	default:
1714
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1715 1716
		ret = VM_FAULT_SIGBUS;
		break;
1717
	}
1718 1719 1720

	intel_runtime_pm_put(dev_priv);
	return ret;
1721 1722
}

1723 1724 1725 1726
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1727
 * Preserve the reservation of the mmapping with the DRM core code, but
1728 1729 1730 1731 1732 1733 1734 1735 1736
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1737
void
1738
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1739
{
1740 1741
	if (!obj->fault_mappable)
		return;
1742

1743 1744
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1745
	obj->fault_mappable = false;
1746 1747
}

1748 1749 1750 1751 1752 1753 1754 1755 1756
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1757
uint32_t
1758
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1759
{
1760
	uint32_t gtt_size;
1761 1762

	if (INTEL_INFO(dev)->gen >= 4 ||
1763 1764
	    tiling_mode == I915_TILING_NONE)
		return size;
1765 1766 1767

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1768
		gtt_size = 1024*1024;
1769
	else
1770
		gtt_size = 512*1024;
1771

1772 1773
	while (gtt_size < size)
		gtt_size <<= 1;
1774

1775
	return gtt_size;
1776 1777
}

1778 1779 1780 1781 1782
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1783
 * potential fence register mapping.
1784
 */
1785 1786 1787
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1788 1789 1790 1791 1792
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1793
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1794
	    tiling_mode == I915_TILING_NONE)
1795 1796
		return 4096;

1797 1798 1799 1800
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1801
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1802 1803
}

1804 1805 1806 1807 1808
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1809
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1810 1811
		return 0;

1812 1813
	dev_priv->mm.shrinker_no_lock_stealing = true;

1814 1815
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1816
		goto out;
1817 1818 1819 1820 1821 1822 1823 1824

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1825 1826 1827 1828 1829
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1830 1831
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1832
		goto out;
1833 1834

	i915_gem_shrink_all(dev_priv);
1835 1836 1837 1838 1839
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1840 1841 1842 1843 1844 1845 1846
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1847
int
1848 1849
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1850
		  uint32_t handle,
1851
		  uint64_t *offset)
1852
{
1853
	struct drm_i915_private *dev_priv = dev->dev_private;
1854
	struct drm_i915_gem_object *obj;
1855 1856
	int ret;

1857
	ret = i915_mutex_lock_interruptible(dev);
1858
	if (ret)
1859
		return ret;
1860

1861
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1862
	if (&obj->base == NULL) {
1863 1864 1865
		ret = -ENOENT;
		goto unlock;
	}
1866

B
Ben Widawsky 已提交
1867
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1868
		ret = -E2BIG;
1869
		goto out;
1870 1871
	}

1872
	if (obj->madv != I915_MADV_WILLNEED) {
1873
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1874
		ret = -EFAULT;
1875
		goto out;
1876 1877
	}

1878 1879 1880
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1881

1882
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1883

1884
out:
1885
	drm_gem_object_unreference(&obj->base);
1886
unlock:
1887
	mutex_unlock(&dev->struct_mutex);
1888
	return ret;
1889 1890
}

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1912
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1913 1914
}

1915 1916 1917 1918 1919 1920
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
}

D
Daniel Vetter 已提交
1921 1922 1923
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1924
{
1925
	i915_gem_object_free_mmap_offset(obj);
1926

1927 1928
	if (obj->base.filp == NULL)
		return;
1929

D
Daniel Vetter 已提交
1930 1931 1932 1933 1934
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1935
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1936 1937
	obj->madv = __I915_MADV_PURGED;
}
1938

1939 1940 1941
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1942
{
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1957 1958
}

1959
static void
1960
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1961
{
1962 1963
	struct sg_page_iter sg_iter;
	int ret;
1964

1965
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1966

C
Chris Wilson 已提交
1967 1968 1969 1970 1971 1972
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
1973
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
1974 1975 1976
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1977
	if (i915_gem_object_needs_bit17_swizzle(obj))
1978 1979
		i915_gem_object_save_bit_17_swizzle(obj);

1980 1981
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1982

1983
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1984
		struct page *page = sg_page_iter_page(&sg_iter);
1985

1986
		if (obj->dirty)
1987
			set_page_dirty(page);
1988

1989
		if (obj->madv == I915_MADV_WILLNEED)
1990
			mark_page_accessed(page);
1991

1992
		page_cache_release(page);
1993
	}
1994
	obj->dirty = 0;
1995

1996 1997
	sg_free_table(obj->pages);
	kfree(obj->pages);
1998
}
C
Chris Wilson 已提交
1999

2000
int
2001 2002 2003 2004
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2005
	if (obj->pages == NULL)
2006 2007
		return 0;

2008 2009 2010
	if (obj->pages_pin_count)
		return -EBUSY;

2011
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2012

2013 2014 2015
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2016
	list_del(&obj->global_list);
2017

2018
	ops->put_pages(obj);
2019
	obj->pages = NULL;
2020

2021
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2022 2023 2024 2025

	return 0;
}

2026 2027 2028
unsigned long
i915_gem_shrink(struct drm_i915_private *dev_priv,
		long target, unsigned flags)
C
Chris Wilson 已提交
2029
{
2030 2031 2032 2033 2034 2035 2036 2037
	const struct {
		struct list_head *list;
		unsigned int bit;
	} phases[] = {
		{ &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
		{ &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
		{ NULL, 0 },
	}, *phase;
2038
	unsigned long count = 0;
C
Chris Wilson 已提交
2039

2040
	/*
2041
	 * As we may completely rewrite the (un)bound list whilst unbinding
2042 2043 2044
	 * (due to retiring requests) we have to strictly process only
	 * one element of the list at the time, and recheck the list
	 * on every iteration.
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
	 *
	 * In particular, we must hold a reference whilst removing the
	 * object as we may end up waiting for and/or retiring the objects.
	 * This might release the final reference (held by the active list)
	 * and result in the object being freed from under us. This is
	 * similar to the precautions the eviction code must take whilst
	 * removing objects.
	 *
	 * Also note that although these lists do not hold a reference to
	 * the object we can safely grab one here: The final object
	 * unreferencing and the bound_list are both protected by the
	 * dev->struct_mutex and so we won't ever be able to observe an
	 * object on the bound_list with a reference count equals 0.
2058
	 */
2059
	for (phase = phases; phase->list; phase++) {
2060
		struct list_head still_in_list;
2061

2062 2063
		if ((flags & phase->bit) == 0)
			continue;
2064

2065
		INIT_LIST_HEAD(&still_in_list);
2066
		while (count < target && !list_empty(phase->list)) {
2067 2068
			struct drm_i915_gem_object *obj;
			struct i915_vma *vma, *v;
2069

2070
			obj = list_first_entry(phase->list,
2071 2072
					       typeof(*obj), global_list);
			list_move_tail(&obj->global_list, &still_in_list);
2073

2074 2075
			if (flags & I915_SHRINK_PURGEABLE &&
			    !i915_gem_object_is_purgeable(obj))
2076
				continue;
2077

2078
			drm_gem_object_reference(&obj->base);
2079

2080 2081 2082
			/* For the unbound phase, this should be a no-op! */
			list_for_each_entry_safe(vma, v,
						 &obj->vma_list, vma_link)
2083 2084
				if (i915_vma_unbind(vma))
					break;
2085

2086 2087 2088 2089 2090
			if (i915_gem_object_put_pages(obj) == 0)
				count += obj->base.size >> PAGE_SHIFT;

			drm_gem_object_unreference(&obj->base);
		}
2091
		list_splice(&still_in_list, phase->list);
C
Chris Wilson 已提交
2092 2093 2094 2095 2096
	}

	return count;
}

2097
static unsigned long
C
Chris Wilson 已提交
2098 2099 2100
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	i915_gem_evict_everything(dev_priv->dev);
2101 2102
	return i915_gem_shrink(dev_priv, LONG_MAX,
			       I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
D
Daniel Vetter 已提交
2103 2104
}

2105
static int
C
Chris Wilson 已提交
2106
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2107
{
C
Chris Wilson 已提交
2108
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2109 2110
	int page_count, i;
	struct address_space *mapping;
2111 2112
	struct sg_table *st;
	struct scatterlist *sg;
2113
	struct sg_page_iter sg_iter;
2114
	struct page *page;
2115
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2116
	gfp_t gfp;
2117

C
Chris Wilson 已提交
2118 2119 2120 2121 2122 2123 2124
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2125 2126 2127 2128
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2129
	page_count = obj->base.size / PAGE_SIZE;
2130 2131
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2132
		return -ENOMEM;
2133
	}
2134

2135 2136 2137 2138 2139
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2140
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2141
	gfp = mapping_gfp_mask(mapping);
2142
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2143
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2144 2145 2146
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2147 2148
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2149 2150 2151 2152 2153
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2154 2155 2156 2157 2158 2159 2160 2161
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2162
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2163 2164 2165
			if (IS_ERR(page))
				goto err_pages;
		}
2166 2167 2168 2169 2170 2171 2172 2173
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2174 2175 2176 2177 2178 2179 2180 2181 2182
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2183 2184 2185

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2186
	}
2187 2188 2189 2190
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2191 2192
	obj->pages = st;

2193
	if (i915_gem_object_needs_bit17_swizzle(obj))
2194 2195
		i915_gem_object_do_bit_17_swizzle(obj);

2196 2197 2198 2199
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2200 2201 2202
	return 0;

err_pages:
2203 2204
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2205
		page_cache_release(sg_page_iter_page(&sg_iter));
2206 2207
	sg_free_table(st);
	kfree(st);
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2221 2222
}

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2237
	if (obj->pages)
2238 2239
		return 0;

2240
	if (obj->madv != I915_MADV_WILLNEED) {
2241
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2242
		return -EFAULT;
2243 2244
	}

2245 2246
	BUG_ON(obj->pages_pin_count);

2247 2248 2249 2250
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2251
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2252
	return 0;
2253 2254
}

B
Ben Widawsky 已提交
2255
static void
2256
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2257
			       struct intel_engine_cs *ring)
2258
{
2259
	u32 seqno = intel_ring_get_seqno(ring);
2260

2261
	BUG_ON(ring == NULL);
2262 2263 2264 2265
	if (obj->ring != ring && obj->last_write_seqno) {
		/* Keep the seqno relative to the current ring */
		obj->last_write_seqno = seqno;
	}
2266
	obj->ring = ring;
2267 2268

	/* Add a reference if we're newly entering the active list. */
2269 2270 2271
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2272
	}
2273

2274
	list_move_tail(&obj->ring_list, &ring->active_list);
2275

2276
	obj->last_read_seqno = seqno;
2277 2278
}

B
Ben Widawsky 已提交
2279
void i915_vma_move_to_active(struct i915_vma *vma,
2280
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2281 2282 2283 2284 2285
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2286 2287
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2288
{
B
Ben Widawsky 已提交
2289
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2290 2291
	struct i915_address_space *vm;
	struct i915_vma *vma;
2292

2293
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2294
	BUG_ON(!obj->active);
2295

2296 2297 2298 2299 2300
	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
		vma = i915_gem_obj_to_vma(obj, vm);
		if (vma && !list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vm->inactive_list);
	}
2301

2302 2303
	intel_fb_obj_flush(obj, true);

2304
	list_del_init(&obj->ring_list);
2305 2306
	obj->ring = NULL;

2307 2308 2309 2310 2311
	obj->last_read_seqno = 0;
	obj->last_write_seqno = 0;
	obj->base.write_domain = 0;

	obj->last_fenced_seqno = 0;
2312 2313 2314 2315 2316

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2317
}
2318

2319 2320 2321
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2322
	struct intel_engine_cs *ring = obj->ring;
2323 2324 2325 2326 2327 2328 2329 2330 2331

	if (ring == NULL)
		return;

	if (i915_seqno_passed(ring->get_seqno(ring, true),
			      obj->last_read_seqno))
		i915_gem_object_move_to_inactive(obj);
}

2332
static int
2333
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2334
{
2335
	struct drm_i915_private *dev_priv = dev->dev_private;
2336
	struct intel_engine_cs *ring;
2337
	int ret, i, j;
2338

2339
	/* Carefully retire all requests without writing to the rings */
2340
	for_each_ring(ring, dev_priv, i) {
2341 2342 2343
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2344 2345
	}
	i915_gem_retire_requests(dev);
2346 2347

	/* Finally reset hw state */
2348
	for_each_ring(ring, dev_priv, i) {
2349
		intel_ring_init_seqno(ring, seqno);
2350

2351 2352
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2353
	}
2354

2355
	return 0;
2356 2357
}

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2384 2385
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2386
{
2387 2388 2389 2390
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2391
		int ret = i915_gem_init_seqno(dev, 0);
2392 2393
		if (ret)
			return ret;
2394

2395 2396
		dev_priv->next_seqno = 1;
	}
2397

2398
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2399
	return 0;
2400 2401
}

2402
int __i915_add_request(struct intel_engine_cs *ring,
2403
		       struct drm_file *file,
2404
		       struct drm_i915_gem_object *obj,
2405
		       u32 *out_seqno)
2406
{
2407
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2408
	struct drm_i915_gem_request *request;
2409
	struct intel_ringbuffer *ringbuf;
2410
	u32 request_ring_position, request_start;
2411 2412
	int ret;

2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	request = ring->preallocated_lazy_request;
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
		struct intel_context *ctx = request->ctx;
		ringbuf = ctx->engine[ring->id].ringbuf;
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2424 2425 2426 2427 2428 2429 2430
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2431 2432 2433 2434 2435 2436 2437 2438 2439
	if (i915.enable_execlists) {
		ret = logical_ring_flush_all_caches(ringbuf);
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2440

2441 2442 2443 2444 2445
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2446
	request_ring_position = intel_ring_get_tail(ringbuf);
2447

2448 2449 2450 2451 2452 2453 2454 2455 2456
	if (i915.enable_execlists) {
		ret = ring->emit_request(ringbuf);
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
	}
2457

2458
	request->seqno = intel_ring_get_seqno(ring);
2459
	request->ring = ring;
2460
	request->head = request_start;
2461
	request->tail = request_ring_position;
2462 2463 2464 2465 2466 2467 2468

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2469
	request->batch_obj = obj;
2470

2471 2472 2473 2474 2475 2476 2477 2478
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2479

2480
	request->emitted_jiffies = jiffies;
2481
	list_add_tail(&request->list, &ring->request_list);
2482
	request->file_priv = NULL;
2483

C
Chris Wilson 已提交
2484 2485 2486
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2487
		spin_lock(&file_priv->mm.lock);
2488
		request->file_priv = file_priv;
2489
		list_add_tail(&request->client_list,
2490
			      &file_priv->mm.request_list);
2491
		spin_unlock(&file_priv->mm.lock);
2492
	}
2493

2494
	trace_i915_gem_request_add(ring, request->seqno);
2495
	ring->outstanding_lazy_seqno = 0;
2496
	ring->preallocated_lazy_request = NULL;
C
Chris Wilson 已提交
2497

2498
	i915_queue_hangcheck(ring->dev);
2499

2500 2501 2502 2503 2504
	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2505

2506
	if (out_seqno)
2507
		*out_seqno = request->seqno;
2508
	return 0;
2509 2510
}

2511 2512
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2513
{
2514
	struct drm_i915_file_private *file_priv = request->file_priv;
2515

2516 2517
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2518

2519
	spin_lock(&file_priv->mm.lock);
2520 2521
	list_del(&request->client_list);
	request->file_priv = NULL;
2522
	spin_unlock(&file_priv->mm.lock);
2523 2524
}

2525
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2526
				   const struct intel_context *ctx)
2527
{
2528
	unsigned long elapsed;
2529

2530 2531 2532
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2533 2534 2535
		return true;

	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2536
		if (!i915_gem_context_is_default(ctx)) {
2537
			DRM_DEBUG("context hanging too fast, banning!\n");
2538
			return true;
2539 2540 2541
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2542
			return true;
2543
		}
2544 2545 2546 2547 2548
	}

	return false;
}

2549
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2550
				  struct intel_context *ctx,
2551
				  const bool guilty)
2552
{
2553 2554 2555 2556
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2557

2558 2559 2560
	hs = &ctx->hang_stats;

	if (guilty) {
2561
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2562 2563 2564 2565
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2566 2567 2568
	}
}

2569 2570
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
2571 2572
	struct intel_context *ctx = request->ctx;

2573 2574 2575
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

2576 2577 2578
	if (ctx) {
		if (i915.enable_execlists) {
			struct intel_engine_cs *ring = request->ring;
2579

2580 2581 2582
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2583 2584
		i915_gem_context_unreference(ctx);
	}
2585 2586 2587
	kfree(request);
}

2588
struct drm_i915_gem_request *
2589
i915_gem_find_active_request(struct intel_engine_cs *ring)
2590
{
2591
	struct drm_i915_gem_request *request;
2592 2593 2594
	u32 completed_seqno;

	completed_seqno = ring->get_seqno(ring, false);
2595 2596 2597 2598

	list_for_each_entry(request, &ring->request_list, list) {
		if (i915_seqno_passed(completed_seqno, request->seqno))
			continue;
2599

2600
		return request;
2601
	}
2602 2603 2604 2605 2606

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2607
				       struct intel_engine_cs *ring)
2608 2609 2610 2611
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2612
	request = i915_gem_find_active_request(ring);
2613 2614 2615 2616 2617 2618

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2619
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2620 2621

	list_for_each_entry_continue(request, &ring->request_list, list)
2622
		i915_set_reset_status(dev_priv, request->ctx, false);
2623
}
2624

2625
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2626
					struct intel_engine_cs *ring)
2627
{
2628
	while (!list_empty(&ring->active_list)) {
2629
		struct drm_i915_gem_object *obj;
2630

2631 2632 2633
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2634

2635
		i915_gem_object_move_to_inactive(obj);
2636
	}
2637

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
		struct intel_ctx_submit_request *submit_req;

		submit_req = list_first_entry(&ring->execlist_queue,
				struct intel_ctx_submit_request,
				execlist_link);
		list_del(&submit_req->execlist_link);
		intel_runtime_pm_put(dev_priv);
		i915_gem_context_unreference(submit_req->ctx);
		kfree(submit_req);
	}

2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2671 2672 2673 2674 2675

	/* These may not have been flush before the reset, do so now */
	kfree(ring->preallocated_lazy_request);
	ring->preallocated_lazy_request = NULL;
	ring->outstanding_lazy_seqno = 0;
2676 2677
}

2678
void i915_gem_restore_fences(struct drm_device *dev)
2679 2680 2681 2682
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2683
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2684
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2685

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2696 2697 2698
	}
}

2699
void i915_gem_reset(struct drm_device *dev)
2700
{
2701
	struct drm_i915_private *dev_priv = dev->dev_private;
2702
	struct intel_engine_cs *ring;
2703
	int i;
2704

2705 2706 2707 2708 2709 2710 2711 2712
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2713
	for_each_ring(ring, dev_priv, i)
2714
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2715

2716 2717
	i915_gem_context_reset(dev);

2718
	i915_gem_restore_fences(dev);
2719 2720 2721 2722 2723
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2724
void
2725
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2726 2727 2728
{
	uint32_t seqno;

C
Chris Wilson 已提交
2729
	if (list_empty(&ring->request_list))
2730 2731
		return;

C
Chris Wilson 已提交
2732
	WARN_ON(i915_verify_lists(ring->dev));
2733

2734
	seqno = ring->get_seqno(ring, true);
2735

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
			break;

		i915_gem_object_move_to_inactive(obj);
	}


2754
	while (!list_empty(&ring->request_list)) {
2755
		struct drm_i915_gem_request *request;
2756
		struct intel_ringbuffer *ringbuf;
2757

2758
		request = list_first_entry(&ring->request_list,
2759 2760 2761
					   struct drm_i915_gem_request,
					   list);

2762
		if (!i915_seqno_passed(seqno, request->seqno))
2763 2764
			break;

C
Chris Wilson 已提交
2765
		trace_i915_gem_request_retire(ring, request->seqno);
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777

		/* This is one of the few common intersection points
		 * between legacy ringbuffer submission and execlists:
		 * we need to tell them apart in order to find the correct
		 * ringbuffer to which the request belongs to.
		 */
		if (i915.enable_execlists) {
			struct intel_context *ctx = request->ctx;
			ringbuf = ctx->engine[ring->id].ringbuf;
		} else
			ringbuf = ring->buffer;

2778 2779 2780 2781 2782
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2783
		ringbuf->last_retired_head = request->tail;
2784

2785
		i915_gem_free_request(request);
2786
	}
2787

C
Chris Wilson 已提交
2788 2789
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2790
		ring->irq_put(ring);
C
Chris Wilson 已提交
2791
		ring->trace_irq_seqno = 0;
2792
	}
2793

C
Chris Wilson 已提交
2794
	WARN_ON(i915_verify_lists(ring->dev));
2795 2796
}

2797
bool
2798 2799
i915_gem_retire_requests(struct drm_device *dev)
{
2800
	struct drm_i915_private *dev_priv = dev->dev_private;
2801
	struct intel_engine_cs *ring;
2802
	bool idle = true;
2803
	int i;
2804

2805
	for_each_ring(ring, dev_priv, i) {
2806
		i915_gem_retire_requests_ring(ring);
2807
		idle &= list_empty(&ring->request_list);
2808 2809 2810 2811 2812 2813 2814 2815 2816
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2817 2818 2819 2820 2821 2822 2823 2824
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2825 2826
}

2827
static void
2828 2829
i915_gem_retire_work_handler(struct work_struct *work)
{
2830 2831 2832
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2833
	bool idle;
2834

2835
	/* Come back later if the device is busy... */
2836 2837 2838 2839
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2840
	}
2841
	if (!idle)
2842 2843
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2844
}
2845

2846 2847 2848 2849 2850 2851 2852
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);

	intel_mark_idle(dev_priv->dev);
2853 2854
}

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->active) {
2866
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2867 2868 2869 2870 2871 2872 2873 2874 2875
		if (ret)
			return ret;

		i915_gem_retire_requests_ring(obj->ring);
	}

	return 0;
}

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2901
	struct drm_i915_private *dev_priv = dev->dev_private;
2902 2903
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2904
	struct intel_engine_cs *ring = NULL;
2905
	unsigned reset_counter;
2906 2907 2908
	u32 seqno = 0;
	int ret = 0;

2909 2910 2911
	if (args->flags != 0)
		return -EINVAL;

2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2922 2923
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2924 2925 2926 2927
	if (ret)
		goto out;

	if (obj->active) {
2928
		seqno = obj->last_read_seqno;
2929 2930 2931 2932 2933 2934 2935
		ring = obj->ring;
	}

	if (seqno == 0)
		 goto out;

	/* Do this after OLR check to make sure we make forward progress polling
2936
	 * on this IOCTL with a timeout <=0 (like busy ioctl)
2937
	 */
2938
	if (args->timeout_ns <= 0) {
2939 2940 2941 2942 2943
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2944
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2945 2946
	mutex_unlock(&dev->struct_mutex);

2947 2948
	return __i915_wait_seqno(ring, seqno, reset_counter, true,
				 &args->timeout_ns, file->driver_priv);
2949 2950 2951 2952 2953 2954 2955

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2968 2969
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2970
		     struct intel_engine_cs *to)
2971
{
2972
	struct intel_engine_cs *from = obj->ring;
2973 2974 2975 2976 2977 2978
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2979
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2980
		return i915_gem_object_wait_rendering(obj, false);
2981 2982 2983

	idx = intel_ring_sync_index(from, to);

2984
	seqno = obj->last_read_seqno;
R
Rodrigo Vivi 已提交
2985 2986
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
2987
	if (seqno <= from->semaphore.sync_seqno[idx])
2988 2989
		return 0;

2990 2991 2992
	ret = i915_gem_check_olr(obj->ring, seqno);
	if (ret)
		return ret;
2993

2994
	trace_i915_gem_ring_sync_to(from, to, seqno);
2995
	ret = to->semaphore.sync_to(to, from, seqno);
2996
	if (!ret)
2997 2998 2999 3000
		/* We use last_read_seqno because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
3001
		from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
3002

3003
	return ret;
3004 3005
}

3006 3007 3008 3009 3010 3011 3012
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3013 3014 3015
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3016 3017 3018
	/* Wait for any direct GTT access to complete */
	mb();

3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3030
int i915_vma_unbind(struct i915_vma *vma)
3031
{
3032
	struct drm_i915_gem_object *obj = vma->obj;
3033
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3034
	int ret;
3035

3036
	if (list_empty(&vma->vma_link))
3037 3038
		return 0;

3039 3040 3041 3042
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3043

B
Ben Widawsky 已提交
3044
	if (vma->pin_count)
3045
		return -EBUSY;
3046

3047 3048
	BUG_ON(obj->pages == NULL);

3049
	ret = i915_gem_object_finish_gpu(obj);
3050
	if (ret)
3051 3052 3053 3054 3055 3056
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3057 3058 3059
	/* Throw away the active reference before moving to the unbound list */
	i915_gem_object_retire(obj);

3060 3061
	if (i915_is_ggtt(vma->vm)) {
		i915_gem_object_finish_gtt(obj);
3062

3063 3064 3065 3066 3067
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3068

3069
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3070

3071 3072
	vma->unbind_vma(vma);

3073
	list_del_init(&vma->mm_list);
3074
	if (i915_is_ggtt(vma->vm))
3075
		obj->map_and_fenceable = false;
3076

B
Ben Widawsky 已提交
3077 3078 3079 3080
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3081
	 * no more VMAs exist. */
3082 3083
	if (list_empty(&obj->vma_list)) {
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3084
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3085
	}
3086

3087 3088 3089 3090 3091 3092
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3093
	return 0;
3094 3095
}

3096
int i915_gpu_idle(struct drm_device *dev)
3097
{
3098
	struct drm_i915_private *dev_priv = dev->dev_private;
3099
	struct intel_engine_cs *ring;
3100
	int ret, i;
3101 3102

	/* Flush everything onto the inactive list. */
3103
	for_each_ring(ring, dev_priv, i) {
3104 3105 3106 3107 3108
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3109

3110
		ret = intel_ring_idle(ring);
3111 3112 3113
		if (ret)
			return ret;
	}
3114

3115
	return 0;
3116 3117
}

3118 3119
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3120
{
3121
	struct drm_i915_private *dev_priv = dev->dev_private;
3122 3123
	int fence_reg;
	int fence_pitch_shift;
3124

3125 3126 3127 3128 3129 3130 3131 3132
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3147
	if (obj) {
3148
		u32 size = i915_gem_obj_ggtt_size(obj);
3149
		uint64_t val;
3150

3151
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3152
				 0xfffff000) << 32;
3153
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3154
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3155 3156 3157
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3158

3159 3160 3161 3162 3163 3164 3165 3166 3167
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3168 3169
}

3170 3171
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3172
{
3173
	struct drm_i915_private *dev_priv = dev->dev_private;
3174
	u32 val;
3175

3176
	if (obj) {
3177
		u32 size = i915_gem_obj_ggtt_size(obj);
3178 3179
		int pitch_val;
		int tile_width;
3180

3181
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3182
		     (size & -size) != size ||
3183 3184 3185
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3186

3187 3188 3189 3190 3191 3192 3193 3194 3195
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3196
		val = i915_gem_obj_ggtt_offset(obj);
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3212 3213
}

3214 3215
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3216
{
3217
	struct drm_i915_private *dev_priv = dev->dev_private;
3218 3219
	uint32_t val;

3220
	if (obj) {
3221
		u32 size = i915_gem_obj_ggtt_size(obj);
3222
		uint32_t pitch_val;
3223

3224
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3225
		     (size & -size) != size ||
3226 3227 3228
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3229

3230 3231
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3232

3233
		val = i915_gem_obj_ggtt_offset(obj);
3234 3235 3236 3237 3238 3239 3240
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3241

3242 3243 3244 3245
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3246 3247 3248 3249 3250
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3251 3252 3253
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3254 3255 3256 3257 3258 3259 3260 3261
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3262 3263 3264 3265
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3266
	switch (INTEL_INFO(dev)->gen) {
3267
	case 9:
3268
	case 8:
3269
	case 7:
3270
	case 6:
3271 3272 3273 3274
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3275
	default: BUG();
3276
	}
3277 3278 3279 3280 3281 3282

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3283 3284
}

3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3295
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3296 3297 3298
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3299 3300

	if (enable) {
3301
		obj->fence_reg = reg;
3302 3303 3304 3305 3306 3307 3308
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3309
	obj->fence_dirty = false;
3310 3311
}

3312
static int
3313
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3314
{
3315
	if (obj->last_fenced_seqno) {
3316
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3317 3318
		if (ret)
			return ret;
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328

		obj->last_fenced_seqno = 0;
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3329
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3330
	struct drm_i915_fence_reg *fence;
3331 3332
	int ret;

3333
	ret = i915_gem_object_wait_fence(obj);
3334 3335 3336
	if (ret)
		return ret;

3337 3338
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3339

3340 3341
	fence = &dev_priv->fence_regs[obj->fence_reg];

3342 3343 3344
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3345
	i915_gem_object_fence_lost(obj);
3346
	i915_gem_object_update_fence(obj, fence, false);
3347 3348 3349 3350 3351

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3352
i915_find_fence_reg(struct drm_device *dev)
3353 3354
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3355
	struct drm_i915_fence_reg *reg, *avail;
3356
	int i;
3357 3358

	/* First try to find a free reg */
3359
	avail = NULL;
3360 3361 3362
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3363
			return reg;
3364

3365
		if (!reg->pin_count)
3366
			avail = reg;
3367 3368
	}

3369
	if (avail == NULL)
3370
		goto deadlock;
3371 3372

	/* None available, try to steal one or wait for a user to finish */
3373
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3374
		if (reg->pin_count)
3375 3376
			continue;

C
Chris Wilson 已提交
3377
		return reg;
3378 3379
	}

3380 3381 3382 3383 3384 3385
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3386 3387
}

3388
/**
3389
 * i915_gem_object_get_fence - set up fencing for an object
3390 3391 3392 3393 3394 3395 3396 3397 3398
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3399 3400
 *
 * For an untiled surface, this removes any existing fence.
3401
 */
3402
int
3403
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3404
{
3405
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3406
	struct drm_i915_private *dev_priv = dev->dev_private;
3407
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3408
	struct drm_i915_fence_reg *reg;
3409
	int ret;
3410

3411 3412 3413
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3414
	if (obj->fence_dirty) {
3415
		ret = i915_gem_object_wait_fence(obj);
3416 3417 3418
		if (ret)
			return ret;
	}
3419

3420
	/* Just update our place in the LRU if our fence is getting reused. */
3421 3422
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3423
		if (!obj->fence_dirty) {
3424 3425 3426 3427 3428
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3429 3430 3431
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3432
		reg = i915_find_fence_reg(dev);
3433 3434
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3435

3436 3437 3438
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3439
			ret = i915_gem_object_wait_fence(old);
3440 3441 3442
			if (ret)
				return ret;

3443
			i915_gem_object_fence_lost(old);
3444
		}
3445
	} else
3446 3447
		return 0;

3448 3449
	i915_gem_object_update_fence(obj, reg, enable);

3450
	return 0;
3451 3452
}

3453
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3454 3455
				     unsigned long cache_level)
{
3456
	struct drm_mm_node *gtt_space = &vma->node;
3457 3458
	struct drm_mm_node *other;

3459 3460 3461 3462 3463 3464
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3465
	 */
3466
	if (vma->vm->mm.color_adjust == NULL)
3467 3468
		return true;

3469
	if (!drm_mm_node_allocated(gtt_space))
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3486 3487 3488
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3489
static struct i915_vma *
3490 3491 3492
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
			   unsigned alignment,
3493
			   uint64_t flags)
3494
{
3495
	struct drm_device *dev = obj->base.dev;
3496
	struct drm_i915_private *dev_priv = dev->dev_private;
3497
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3498 3499 3500
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3501
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3502
	struct i915_vma *vma;
3503
	int ret;
3504

3505 3506 3507 3508 3509
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3510
						     obj->tiling_mode, true);
3511
	unfenced_alignment =
3512
		i915_gem_get_gtt_alignment(dev,
3513 3514
					   obj->base.size,
					   obj->tiling_mode, false);
3515

3516
	if (alignment == 0)
3517
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3518
						unfenced_alignment;
3519
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3520
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3521
		return ERR_PTR(-EINVAL);
3522 3523
	}

3524
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3525

3526 3527 3528
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3529 3530
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3531
			  obj->base.size,
3532
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3533
			  end);
3534
		return ERR_PTR(-E2BIG);
3535 3536
	}

3537
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3538
	if (ret)
3539
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3540

3541 3542
	i915_gem_object_pin_pages(obj);

3543
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3544
	if (IS_ERR(vma))
3545
		goto err_unpin;
B
Ben Widawsky 已提交
3546

3547
search_free:
3548
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3549
						  size, alignment,
3550 3551
						  obj->cache_level,
						  start, end,
3552 3553
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3554
	if (ret) {
3555
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3556 3557 3558
					       obj->cache_level,
					       start, end,
					       flags);
3559 3560
		if (ret == 0)
			goto search_free;
3561

3562
		goto err_free_vma;
3563
	}
3564
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3565
		ret = -EINVAL;
3566
		goto err_remove_node;
3567 3568
	}

3569
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3570
	if (ret)
3571
		goto err_remove_node;
3572

3573
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3574
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3575

3576
	trace_i915_vma_bind(vma, flags);
3577
	vma->bind_vma(vma, obj->cache_level,
3578
		      flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3579

3580
	return vma;
B
Ben Widawsky 已提交
3581

3582
err_remove_node:
3583
	drm_mm_remove_node(&vma->node);
3584
err_free_vma:
B
Ben Widawsky 已提交
3585
	i915_gem_vma_destroy(vma);
3586
	vma = ERR_PTR(ret);
3587
err_unpin:
B
Ben Widawsky 已提交
3588
	i915_gem_object_unpin_pages(obj);
3589
	return vma;
3590 3591
}

3592
bool
3593 3594
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3595 3596 3597 3598 3599
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3600
	if (obj->pages == NULL)
3601
		return false;
3602

3603 3604 3605 3606
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3607
	if (obj->stolen || obj->phys_handle)
3608
		return false;
3609

3610 3611 3612 3613 3614 3615 3616 3617
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3618
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3619
		return false;
3620

C
Chris Wilson 已提交
3621
	trace_i915_gem_object_clflush(obj);
3622
	drm_clflush_sg(obj->pages);
3623 3624

	return true;
3625 3626 3627 3628
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3629
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3630
{
C
Chris Wilson 已提交
3631 3632
	uint32_t old_write_domain;

3633
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3634 3635
		return;

3636
	/* No actual flushing is required for the GTT write domain.  Writes
3637 3638
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3639 3640 3641 3642
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3643
	 */
3644 3645
	wmb();

3646 3647
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3648

3649 3650
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3651
	trace_i915_gem_object_change_domain(obj,
3652
					    obj->base.read_domains,
C
Chris Wilson 已提交
3653
					    old_write_domain);
3654 3655 3656 3657
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3658 3659
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
				       bool force)
3660
{
C
Chris Wilson 已提交
3661
	uint32_t old_write_domain;
3662

3663
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3664 3665
		return;

3666 3667 3668
	if (i915_gem_clflush_object(obj, force))
		i915_gem_chipset_flush(obj->base.dev);

3669 3670
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3671

3672 3673
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3674
	trace_i915_gem_object_change_domain(obj,
3675
					    obj->base.read_domains,
C
Chris Wilson 已提交
3676
					    old_write_domain);
3677 3678
}

3679 3680 3681 3682 3683 3684
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3685
int
3686
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3687
{
3688
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3689
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
C
Chris Wilson 已提交
3690
	uint32_t old_write_domain, old_read_domains;
3691
	int ret;
3692

3693
	/* Not valid to be called on unbound objects. */
3694
	if (vma == NULL)
3695 3696
		return -EINVAL;

3697 3698 3699
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3700
	ret = i915_gem_object_wait_rendering(obj, !write);
3701 3702 3703
	if (ret)
		return ret;

3704
	i915_gem_object_retire(obj);
3705
	i915_gem_object_flush_cpu_write_domain(obj, false);
C
Chris Wilson 已提交
3706

3707 3708 3709 3710 3711 3712 3713
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3714 3715
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3716

3717 3718 3719
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3720 3721
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3722
	if (write) {
3723 3724 3725
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3726 3727
	}

3728 3729 3730
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
3731 3732 3733 3734
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3735
	/* And bump the LRU for this access */
3736 3737 3738
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&vma->mm_list,
			       &dev_priv->gtt.base.inactive_list);
3739

3740 3741 3742
	return 0;
}

3743 3744 3745
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3746
	struct drm_device *dev = obj->base.dev;
3747
	struct i915_vma *vma, *next;
3748 3749 3750 3751 3752
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3753
	if (i915_gem_obj_is_pinned(obj)) {
3754 3755 3756 3757
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3758
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3759
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3760
			ret = i915_vma_unbind(vma);
3761 3762 3763
			if (ret)
				return ret;
		}
3764 3765
	}

3766
	if (i915_gem_obj_bound_any(obj)) {
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3777
		if (INTEL_INFO(dev)->gen < 6) {
3778 3779 3780 3781 3782
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3783
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3784 3785
			if (drm_mm_node_allocated(&vma->node))
				vma->bind_vma(vma, cache_level,
3786
						vma->bound & GLOBAL_BIND);
3787 3788
	}

3789 3790 3791 3792 3793
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

	if (cpu_write_needs_clflush(obj)) {
3794 3795 3796 3797 3798 3799 3800 3801
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
3802
		i915_gem_object_retire(obj);
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	return 0;
}

B
Ben Widawsky 已提交
3819 3820
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3821
{
B
Ben Widawsky 已提交
3822
	struct drm_i915_gem_caching *args = data;
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3836 3837 3838 3839 3840 3841
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3842 3843 3844 3845
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3846 3847 3848 3849
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3850 3851 3852 3853 3854 3855 3856

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3857 3858
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3859
{
B
Ben Widawsky 已提交
3860
	struct drm_i915_gem_caching *args = data;
3861 3862 3863 3864
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3865 3866
	switch (args->caching) {
	case I915_CACHING_NONE:
3867 3868
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3869
	case I915_CACHING_CACHED:
3870 3871
		level = I915_CACHE_LLC;
		break;
3872 3873 3874
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3875 3876 3877 3878
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3879 3880 3881 3882
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3897 3898
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3899 3900 3901 3902 3903 3904
	struct i915_vma *vma;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
	/* There are 3 sources that pin objects:
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *   3. The user.
	 *
	 * We can ignore reservations as we hold the struct_mutex and
	 * are only called outside of the reservation path.  The user
	 * can only increment pin_count once, and so if after
	 * subtracting the potential reference by the user, any pin_count
	 * remains, it must be due to another use by the display engine.
	 */
3916
	return vma->pin_count - !!obj->user_pin_count;
3917 3918
}

3919
/*
3920 3921 3922
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3923 3924
 */
int
3925 3926
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3927
				     struct intel_engine_cs *pipelined)
3928
{
3929
	u32 old_read_domains, old_write_domain;
3930
	bool was_pin_display;
3931 3932
	int ret;

3933
	if (pipelined != obj->ring) {
3934 3935
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3936 3937 3938
			return ret;
	}

3939 3940 3941
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3942
	was_pin_display = obj->pin_display;
3943 3944
	obj->pin_display = true;

3945 3946 3947 3948 3949 3950 3951 3952 3953
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3954 3955
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3956
	if (ret)
3957
		goto err_unpin_display;
3958

3959 3960 3961 3962
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3963
	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3964
	if (ret)
3965
		goto err_unpin_display;
3966

3967
	i915_gem_object_flush_cpu_write_domain(obj, true);
3968

3969
	old_write_domain = obj->base.write_domain;
3970
	old_read_domains = obj->base.read_domains;
3971 3972 3973 3974

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3975
	obj->base.write_domain = 0;
3976
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3977 3978 3979

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3980
					    old_write_domain);
3981 3982

	return 0;
3983 3984

err_unpin_display:
3985 3986
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
3987 3988 3989 3990 3991 3992
	return ret;
}

void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
{
B
Ben Widawsky 已提交
3993
	i915_gem_object_ggtt_unpin(obj);
3994
	obj->pin_display = is_pin_display(obj);
3995 3996
}

3997
int
3998
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3999
{
4000 4001
	int ret;

4002
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4003 4004
		return 0;

4005
	ret = i915_gem_object_wait_rendering(obj, false);
4006 4007 4008
	if (ret)
		return ret;

4009 4010
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4011
	return 0;
4012 4013
}

4014 4015 4016 4017 4018 4019
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4020
int
4021
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4022
{
C
Chris Wilson 已提交
4023
	uint32_t old_write_domain, old_read_domains;
4024 4025
	int ret;

4026 4027 4028
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4029
	ret = i915_gem_object_wait_rendering(obj, !write);
4030 4031 4032
	if (ret)
		return ret;

4033
	i915_gem_object_retire(obj);
4034
	i915_gem_object_flush_gtt_write_domain(obj);
4035

4036 4037
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4038

4039
	/* Flush the CPU cache if it's still invalid. */
4040
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4041
		i915_gem_clflush_object(obj, false);
4042

4043
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4044 4045 4046 4047 4048
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4049
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4050 4051 4052 4053 4054

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4055 4056
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4057
	}
4058

4059 4060 4061
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
4062 4063 4064 4065
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4066 4067 4068
	return 0;
}

4069 4070 4071
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4072 4073 4074 4075
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4076 4077 4078
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4079
static int
4080
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4081
{
4082 4083
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4084
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4085
	struct drm_i915_gem_request *request;
4086
	struct intel_engine_cs *ring = NULL;
4087
	unsigned reset_counter;
4088 4089
	u32 seqno = 0;
	int ret;
4090

4091 4092 4093 4094 4095 4096 4097
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4098

4099
	spin_lock(&file_priv->mm.lock);
4100
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4101 4102
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4103

4104 4105
		ring = request->ring;
		seqno = request->seqno;
4106
	}
4107
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4108
	spin_unlock(&file_priv->mm.lock);
4109

4110 4111
	if (seqno == 0)
		return 0;
4112

4113
	ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4114 4115
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4116 4117 4118 4119

	return ret;
}

4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4139
int
4140
i915_gem_object_pin(struct drm_i915_gem_object *obj,
B
Ben Widawsky 已提交
4141
		    struct i915_address_space *vm,
4142
		    uint32_t alignment,
4143
		    uint64_t flags)
4144
{
4145
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4146
	struct i915_vma *vma;
4147
	unsigned bound;
4148 4149
	int ret;

4150 4151 4152
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4153
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4154
		return -EINVAL;
4155

4156 4157 4158
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4159 4160
	vma = i915_gem_obj_to_vma(obj, vm);
	if (vma) {
B
Ben Widawsky 已提交
4161 4162 4163
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4164
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4165
			WARN(vma->pin_count,
4166
			     "bo is already pinned with incorrect alignment:"
4167
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4168
			     " obj->map_and_fenceable=%d\n",
4169
			     i915_gem_obj_offset(obj, vm), alignment,
4170
			     !!(flags & PIN_MAPPABLE),
4171
			     obj->map_and_fenceable);
4172
			ret = i915_vma_unbind(vma);
4173 4174
			if (ret)
				return ret;
4175 4176

			vma = NULL;
4177 4178 4179
		}
	}

4180
	bound = vma ? vma->bound : 0;
4181
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4182 4183 4184
		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4185
	}
J
Jesse Barnes 已提交
4186

4187
	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
4188
		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4189

4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
	if ((bound ^ vma->bound) & GLOBAL_BIND) {
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

		mappable = (vma->node.start + obj->base.size <=
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;
	}

	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);

4213
	vma->pin_count++;
4214 4215
	if (flags & PIN_MAPPABLE)
		obj->pin_mappable |= true;
4216 4217 4218 4219 4220

	return 0;
}

void
B
Ben Widawsky 已提交
4221
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4222
{
B
Ben Widawsky 已提交
4223
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4224

B
Ben Widawsky 已提交
4225 4226 4227 4228 4229
	BUG_ON(!vma);
	BUG_ON(vma->pin_count == 0);
	BUG_ON(!i915_gem_obj_ggtt_bound(obj));

	if (--vma->pin_count == 0)
4230
		obj->pin_mappable = false;
4231 4232
}

4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4259 4260
int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4261
		   struct drm_file *file)
4262 4263
{
	struct drm_i915_gem_pin *args = data;
4264
	struct drm_i915_gem_object *obj;
4265 4266
	int ret;

4267
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4268 4269
		return -ENODEV;

4270 4271 4272
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4273

4274
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4275
	if (&obj->base == NULL) {
4276 4277
		ret = -ENOENT;
		goto unlock;
4278 4279
	}

4280
	if (obj->madv != I915_MADV_WILLNEED) {
4281
		DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4282
		ret = -EFAULT;
4283
		goto out;
4284 4285
	}

4286
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
4287
		DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
J
Jesse Barnes 已提交
4288
			  args->handle);
4289 4290
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4291 4292
	}

4293 4294 4295 4296 4297
	if (obj->user_pin_count == ULONG_MAX) {
		ret = -EBUSY;
		goto out;
	}

4298
	if (obj->user_pin_count == 0) {
4299
		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4300 4301
		if (ret)
			goto out;
4302 4303
	}

4304 4305 4306
	obj->user_pin_count++;
	obj->pin_filp = file;

4307
	args->offset = i915_gem_obj_ggtt_offset(obj);
4308
out:
4309
	drm_gem_object_unreference(&obj->base);
4310
unlock:
4311
	mutex_unlock(&dev->struct_mutex);
4312
	return ret;
4313 4314 4315 4316
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4317
		     struct drm_file *file)
4318 4319
{
	struct drm_i915_gem_pin *args = data;
4320
	struct drm_i915_gem_object *obj;
4321
	int ret;
4322

4323 4324 4325
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

4326 4327 4328
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4329

4330
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4331
	if (&obj->base == NULL) {
4332 4333
		ret = -ENOENT;
		goto unlock;
4334
	}
4335

4336
	if (obj->pin_filp != file) {
4337
		DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
J
Jesse Barnes 已提交
4338
			  args->handle);
4339 4340
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4341
	}
4342 4343 4344
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
B
Ben Widawsky 已提交
4345
		i915_gem_object_ggtt_unpin(obj);
J
Jesse Barnes 已提交
4346
	}
4347

4348
out:
4349
	drm_gem_object_unreference(&obj->base);
4350
unlock:
4351
	mutex_unlock(&dev->struct_mutex);
4352
	return ret;
4353 4354 4355 4356
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4357
		    struct drm_file *file)
4358 4359
{
	struct drm_i915_gem_busy *args = data;
4360
	struct drm_i915_gem_object *obj;
4361 4362
	int ret;

4363
	ret = i915_mutex_lock_interruptible(dev);
4364
	if (ret)
4365
		return ret;
4366

4367
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4368
	if (&obj->base == NULL) {
4369 4370
		ret = -ENOENT;
		goto unlock;
4371
	}
4372

4373 4374 4375 4376
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4377
	 */
4378
	ret = i915_gem_object_flush_active(obj);
4379

4380
	args->busy = obj->active;
4381 4382 4383 4384
	if (obj->ring) {
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
		args->busy |= intel_ring_flag(obj->ring) << 16;
	}
4385

4386
	drm_gem_object_unreference(&obj->base);
4387
unlock:
4388
	mutex_unlock(&dev->struct_mutex);
4389
	return ret;
4390 4391 4392 4393 4394 4395
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4396
	return i915_gem_ring_throttle(dev, file_priv);
4397 4398
}

4399 4400 4401 4402
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4403
	struct drm_i915_private *dev_priv = dev->dev_private;
4404
	struct drm_i915_gem_madvise *args = data;
4405
	struct drm_i915_gem_object *obj;
4406
	int ret;
4407 4408 4409 4410 4411 4412 4413 4414 4415

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4416 4417 4418 4419
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4420
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4421
	if (&obj->base == NULL) {
4422 4423
		ret = -ENOENT;
		goto unlock;
4424 4425
	}

B
Ben Widawsky 已提交
4426
	if (i915_gem_obj_is_pinned(obj)) {
4427 4428
		ret = -EINVAL;
		goto out;
4429 4430
	}

4431 4432 4433 4434 4435 4436 4437 4438 4439
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4440 4441
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4442

C
Chris Wilson 已提交
4443 4444
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4445 4446
		i915_gem_object_truncate(obj);

4447
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4448

4449
out:
4450
	drm_gem_object_unreference(&obj->base);
4451
unlock:
4452
	mutex_unlock(&dev->struct_mutex);
4453
	return ret;
4454 4455
}

4456 4457
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4458
{
4459
	INIT_LIST_HEAD(&obj->global_list);
4460
	INIT_LIST_HEAD(&obj->ring_list);
4461
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4462
	INIT_LIST_HEAD(&obj->vma_list);
4463

4464 4465
	obj->ops = ops;

4466 4467 4468 4469 4470 4471
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4472 4473 4474 4475 4476
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4477 4478
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4479
{
4480
	struct drm_i915_gem_object *obj;
4481
	struct address_space *mapping;
D
Daniel Vetter 已提交
4482
	gfp_t mask;
4483

4484
	obj = i915_gem_object_alloc(dev);
4485 4486
	if (obj == NULL)
		return NULL;
4487

4488
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4489
		i915_gem_object_free(obj);
4490 4491
		return NULL;
	}
4492

4493 4494 4495 4496 4497 4498 4499
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4500
	mapping = file_inode(obj->base.filp)->i_mapping;
4501
	mapping_set_gfp_mask(mapping, mask);
4502

4503
	i915_gem_object_init(obj, &i915_gem_object_ops);
4504

4505 4506
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4507

4508 4509
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4525 4526
	trace_i915_gem_object_create(obj);

4527
	return obj;
4528 4529
}

4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4554
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4555
{
4556
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4557
	struct drm_device *dev = obj->base.dev;
4558
	struct drm_i915_private *dev_priv = dev->dev_private;
4559
	struct i915_vma *vma, *next;
4560

4561 4562
	intel_runtime_pm_get(dev_priv);

4563 4564
	trace_i915_gem_object_destroy(obj);

4565
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4566 4567 4568 4569
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4570 4571
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4572

4573 4574
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4575

4576
			WARN_ON(i915_vma_unbind(vma));
4577

4578 4579
			dev_priv->mm.interruptible = was_interruptible;
		}
4580 4581
	}

B
Ben Widawsky 已提交
4582 4583 4584 4585 4586
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4587 4588
	WARN_ON(obj->frontbuffer_bits);

4589 4590 4591 4592 4593
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4594 4595
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4596
	if (discard_backing_storage(obj))
4597
		obj->madv = I915_MADV_DONTNEED;
4598
	i915_gem_object_put_pages(obj);
4599
	i915_gem_object_free_mmap_offset(obj);
4600

4601 4602
	BUG_ON(obj->pages);

4603 4604
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4605

4606 4607 4608
	if (obj->ops->release)
		obj->ops->release(obj);

4609 4610
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4611

4612
	kfree(obj->bit_17);
4613
	i915_gem_object_free(obj);
4614 4615

	intel_runtime_pm_put(dev_priv);
4616 4617
}

4618
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
B
Ben Widawsky 已提交
4619
				     struct i915_address_space *vm)
4620 4621 4622 4623 4624 4625 4626 4627 4628
{
	struct i915_vma *vma;
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (vma->vm == vm)
			return vma;

	return NULL;
}

B
Ben Widawsky 已提交
4629 4630
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4631
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4632
	WARN_ON(vma->node.allocated);
4633 4634 4635 4636 4637

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4638 4639
	vm = vma->vm;

4640 4641
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4642

4643
	list_del(&vma->vma_link);
4644

B
Ben Widawsky 已提交
4645 4646 4647
	kfree(vma);
}

4648 4649 4650 4651
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4652
	struct intel_engine_cs *ring;
4653 4654 4655
	int i;

	for_each_ring(ring, dev_priv, i)
4656
		dev_priv->gt.stop_ring(ring);
4657 4658
}

4659
int
4660
i915_gem_suspend(struct drm_device *dev)
4661
{
4662
	struct drm_i915_private *dev_priv = dev->dev_private;
4663
	int ret = 0;
4664

4665
	mutex_lock(&dev->struct_mutex);
4666
	ret = i915_gpu_idle(dev);
4667
	if (ret)
4668
		goto err;
4669

4670
	i915_gem_retire_requests(dev);
4671

4672
	/* Under UMS, be paranoid and evict. */
4673
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
C
Chris Wilson 已提交
4674
		i915_gem_evict_everything(dev);
4675

4676
	i915_gem_stop_ringbuffers(dev);
4677 4678 4679
	mutex_unlock(&dev->struct_mutex);

	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4680
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4681
	flush_delayed_work(&dev_priv->mm.idle_work);
4682

4683
	return 0;
4684 4685 4686 4687

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4688 4689
}

4690
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4691
{
4692
	struct drm_device *dev = ring->dev;
4693
	struct drm_i915_private *dev_priv = dev->dev_private;
4694 4695
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4696
	int i, ret;
B
Ben Widawsky 已提交
4697

4698
	if (!HAS_L3_DPF(dev) || !remap_info)
4699
		return 0;
B
Ben Widawsky 已提交
4700

4701 4702 4703
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4704

4705 4706 4707 4708 4709
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4710
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4711 4712 4713
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4714 4715
	}

4716
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4717

4718
	return ret;
B
Ben Widawsky 已提交
4719 4720
}

4721 4722
void i915_gem_init_swizzling(struct drm_device *dev)
{
4723
	struct drm_i915_private *dev_priv = dev->dev_private;
4724

4725
	if (INTEL_INFO(dev)->gen < 5 ||
4726 4727 4728 4729 4730 4731
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4732 4733 4734
	if (IS_GEN5(dev))
		return;

4735 4736
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4737
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4738
	else if (IS_GEN7(dev))
4739
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4740 4741
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4742 4743
	else
		BUG();
4744
}
D
Daniel Vetter 已提交
4745

4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4789
int i915_gem_init_rings(struct drm_device *dev)
4790
{
4791
	struct drm_i915_private *dev_priv = dev->dev_private;
4792
	int ret;
4793

4794 4795 4796 4797 4798 4799 4800 4801
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4802
	ret = intel_init_render_ring_buffer(dev);
4803
	if (ret)
4804
		return ret;
4805 4806

	if (HAS_BSD(dev)) {
4807
		ret = intel_init_bsd_ring_buffer(dev);
4808 4809
		if (ret)
			goto cleanup_render_ring;
4810
	}
4811

4812
	if (intel_enable_blt(dev)) {
4813 4814 4815 4816 4817
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4818 4819 4820 4821 4822 4823
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4824 4825 4826 4827 4828
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4829

4830
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4831
	if (ret)
4832
		goto cleanup_bsd2_ring;
4833 4834 4835

	return 0;

4836 4837
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4838 4839
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4853
	struct drm_i915_private *dev_priv = dev->dev_private;
4854
	int ret, i;
4855 4856 4857 4858

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
4859
	if (dev_priv->ellc_size)
4860
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4861

4862 4863 4864
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4865

4866
	if (HAS_PCH_NOP(dev)) {
4867 4868 4869 4870 4871 4872 4873 4874 4875
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4876 4877
	}

4878 4879
	i915_gem_init_swizzling(dev);

4880
	ret = dev_priv->gt.init_rings(dev);
4881 4882 4883
	if (ret)
		return ret;

4884 4885 4886
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4887
	/*
4888 4889 4890 4891 4892
	 * XXX: Contexts should only be initialized once. Doing a switch to the
	 * default context switch however is something we'd like to do after
	 * reset or thaw (the latter may not actually be necessary for HW, but
	 * goes with our code better). Context switching requires rings (for
	 * the do_switch), but before enabling PPGTT. So don't move this.
4893
	 */
4894
	ret = i915_gem_context_enable(dev_priv);
4895
	if (ret && ret != -EIO) {
4896
		DRM_ERROR("Context enable failed %d\n", ret);
4897
		i915_gem_cleanup_ringbuffer(dev);
4898 4899 4900 4901 4902 4903 4904 4905

		return ret;
	}

	ret = i915_ppgtt_init_hw(dev);
	if (ret && ret != -EIO) {
		DRM_ERROR("PPGTT enable failed %d\n", ret);
		i915_gem_cleanup_ringbuffer(dev);
4906
	}
D
Daniel Vetter 已提交
4907

4908
	return ret;
4909 4910
}

4911 4912 4913 4914 4915
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4916 4917 4918
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4919
	mutex_lock(&dev->struct_mutex);
4920 4921 4922

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4923 4924 4925
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4926 4927 4928
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4929 4930 4931 4932 4933
	if (!i915.enable_execlists) {
		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4934 4935 4936 4937 4938
	} else {
		dev_priv->gt.do_execbuf = intel_execlists_submission;
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4939 4940
	}

4941 4942 4943 4944 4945 4946
	ret = i915_gem_init_userptr(dev);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}

4947
	i915_gem_init_global_gtt(dev);
4948

4949
	ret = i915_gem_context_init(dev);
4950 4951
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4952
		return ret;
4953
	}
4954

4955
	ret = i915_gem_init_hw(dev);
4956 4957 4958 4959 4960 4961 4962 4963
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4964
	}
4965
	mutex_unlock(&dev->struct_mutex);
4966

4967
	return ret;
4968 4969
}

4970 4971 4972
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4973
	struct drm_i915_private *dev_priv = dev->dev_private;
4974
	struct intel_engine_cs *ring;
4975
	int i;
4976

4977
	for_each_ring(ring, dev_priv, i)
4978
		dev_priv->gt.cleanup_ring(ring);
4979 4980
}

4981
static void
4982
init_ring_lists(struct intel_engine_cs *ring)
4983 4984 4985 4986 4987
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4988 4989
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4990
{
4991 4992
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4993 4994 4995 4996
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4997
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4998 4999
}

5000 5001 5002
void
i915_gem_load(struct drm_device *dev)
{
5003
	struct drm_i915_private *dev_priv = dev->dev_private;
5004 5005 5006 5007 5008 5009 5010
	int i;

	dev_priv->slab =
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5011

B
Ben Widawsky 已提交
5012 5013 5014
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

5015
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5016 5017
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5018
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5019 5020
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
5021
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5022
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5023 5024
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5025 5026
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5027
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5028

5029
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5030
	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
5031 5032
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5033 5034
	}

5035 5036
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5037
	/* Old X drivers will take 0-2 for front, back, depth buffers */
5038 5039
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
5040

5041 5042 5043
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5044 5045 5046 5047
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5048
	/* Initialize fence registers to zero */
5049 5050
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5051

5052
	i915_gem_detect_bit_6_swizzle(dev);
5053
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5054

5055 5056
	dev_priv->mm.interruptible = true;

5057 5058 5059 5060
	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.shrinker);
5061 5062 5063

	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
	register_oom_notifier(&dev_priv->mm.oom_notifier);
5064 5065

	mutex_init(&dev_priv->fb_tracking.lock);
5066
}
5067

5068
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5069
{
5070
	struct drm_i915_file_private *file_priv = file->driver_priv;
5071

5072 5073
	cancel_delayed_work_sync(&file_priv->mm.idle_work);

5074 5075 5076 5077
	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5078
	spin_lock(&file_priv->mm.lock);
5079 5080 5081 5082 5083 5084 5085 5086 5087
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5088
	spin_unlock(&file_priv->mm.lock);
5089
}
5090

5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
static void
i915_gem_file_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_file_private *file_priv =
		container_of(work, typeof(*file_priv), mm.idle_work.work);

	atomic_set(&file_priv->rps_wait_boost, false);
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5103
	int ret;
5104 5105 5106 5107 5108 5109 5110 5111 5112

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5113
	file_priv->file = file;
5114 5115 5116 5117 5118 5119

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);
	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
			  i915_gem_file_idle_work_handler);

5120 5121 5122
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5123

5124
	return ret;
5125 5126
}

5127 5128 5129 5130 5131 5132 5133 5134 5135
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5153 5154 5155 5156 5157
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
{
	if (!mutex_is_locked(mutex))
		return false;

5158
#if defined(CONFIG_SMP) && !defined(CONFIG_DEBUG_MUTEXES)
5159 5160 5161 5162 5163 5164 5165
	return mutex->owner == task;
#else
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
	return false;
#endif
}

5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
{
	if (!mutex_trylock(&dev->struct_mutex)) {
		if (!mutex_is_locked_by(&dev->struct_mutex, current))
			return false;

		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
			return false;

		*unlock = false;
	} else
		*unlock = true;

	return true;
}

5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
static int num_vma_bound(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	int count = 0;

	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
			count++;

	return count;
}

5194
static unsigned long
5195
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5196
{
5197
	struct drm_i915_private *dev_priv =
5198
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5199
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
5200
	struct drm_i915_gem_object *obj;
5201
	unsigned long count;
5202
	bool unlock;
5203

5204 5205
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return 0;
5206

5207
	count = 0;
5208
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5209
		if (obj->pages_pin_count == 0)
5210
			count += obj->base.size >> PAGE_SHIFT;
5211 5212

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5213 5214
		if (!i915_gem_obj_is_pinned(obj) &&
		    obj->pages_pin_count == num_vma_bound(obj))
5215
			count += obj->base.size >> PAGE_SHIFT;
5216
	}
5217

5218 5219
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5220

5221
	return count;
5222
}
5223 5224 5225 5226 5227 5228 5229 5230

/* All the new VM stuff */
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
				  struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5231
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5232 5233 5234 5235 5236 5237

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (vma->vm == vm)
			return vma->node.start;

	}
5238 5239
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5240 5241 5242 5243 5244 5245 5246 5247 5248
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5249
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5250 5251 5252 5253 5254 5255 5256
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5257
	struct i915_vma *vma;
5258

5259 5260
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5272
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5273 5274 5275 5276 5277 5278 5279 5280 5281 5282

	BUG_ON(list_empty(&o->vma_list));

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == vm)
			return vma->node.size;

	return 0;
}

5283
static unsigned long
5284
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5285 5286
{
	struct drm_i915_private *dev_priv =
5287
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5288 5289
	struct drm_device *dev = dev_priv->dev;
	unsigned long freed;
5290
	bool unlock;
5291

5292 5293
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return SHRINK_STOP;
5294

5295 5296 5297 5298 5299
	freed = i915_gem_shrink(dev_priv,
				sc->nr_to_scan,
				I915_SHRINK_BOUND |
				I915_SHRINK_UNBOUND |
				I915_SHRINK_PURGEABLE);
5300
	if (freed < sc->nr_to_scan)
5301 5302 5303 5304
		freed += i915_gem_shrink(dev_priv,
					 sc->nr_to_scan - freed,
					 I915_SHRINK_BOUND |
					 I915_SHRINK_UNBOUND);
5305 5306
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5307

5308 5309
	return freed;
}
5310

5311 5312 5313 5314 5315 5316 5317 5318
static int
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
{
	struct drm_i915_private *dev_priv =
		container_of(nb, struct drm_i915_private, mm.oom_notifier);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj;
	unsigned long timeout = msecs_to_jiffies(5000) + 1;
5319
	unsigned long pinned, bound, unbound, freed_pages;
5320 5321 5322
	bool was_interruptible;
	bool unlock;

5323
	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5324
		schedule_timeout_killable(1);
5325 5326 5327
		if (fatal_signal_pending(current))
			return NOTIFY_DONE;
	}
5328 5329 5330 5331 5332 5333 5334 5335
	if (timeout == 0) {
		pr_err("Unable to purge GPU memory due lock contention.\n");
		return NOTIFY_DONE;
	}

	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

5336
	freed_pages = i915_gem_shrink_all(dev_priv);
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366

	dev_priv->mm.interruptible = was_interruptible;

	/* Because we may be allocating inside our own driver, we cannot
	 * assert that there are no objects with pinned pages that are not
	 * being pointed to by hardware.
	 */
	unbound = bound = pinned = 0;
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		if (!obj->base.filp) /* not backed by a freeable object */
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			unbound += obj->base.size;
	}
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		if (!obj->base.filp)
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			bound += obj->base.size;
	}

	if (unlock)
		mutex_unlock(&dev->struct_mutex);

5367 5368 5369
	if (freed_pages || unbound || bound)
		pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
			freed_pages << PAGE_SHIFT, pinned);
5370 5371 5372 5373 5374
	if (unbound || bound)
		pr_err("%lu and %lu bytes still available in the "
		       "bound and unbound GPU page lists.\n",
		       bound, unbound);

5375
	*(unsigned long *)ptr += freed_pages;
5376 5377 5378
	return NOTIFY_DONE;
}

5379 5380 5381 5382 5383
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5384
	if (vma->vm != i915_obj_to_ggtt(obj))
5385 5386 5387 5388
		return NULL;

	return vma;
}