memcontrol.c 187.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
K
KAMEZAWA Hiroyuki 已提交
58
#include "internal.h"
G
Glauber Costa 已提交
59
#include <net/sock.h>
M
Michal Hocko 已提交
60
#include <net/ip.h>
G
Glauber Costa 已提交
61
#include <net/tcp_memcontrol.h>
62
#include "slab.h"
B
Balbir Singh 已提交
63

64 65
#include <asm/uaccess.h>

66 67
#include <trace/events/vmscan.h>

68
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
69 70
EXPORT_SYMBOL(mem_cgroup_subsys);

71
#define MEM_CGROUP_RECLAIM_RETRIES	5
72
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
73

A
Andrew Morton 已提交
74
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
75
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
76
int do_swap_account __read_mostly;
77 78

/* for remember boot option*/
A
Andrew Morton 已提交
79
#ifdef CONFIG_MEMCG_SWAP_ENABLED
80 81 82 83 84
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

85
#else
86
#define do_swap_account		0
87 88 89
#endif


90 91 92
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
93
	"rss_huge",
94
	"mapped_file",
95
	"writeback",
96 97 98
	"swap",
};

99 100 101
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
102 103
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
104 105
	MEM_CGROUP_EVENTS_NSTATS,
};
106 107 108 109 110 111 112 113

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

114 115 116 117 118 119 120 121
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

122 123 124 125 126 127 128 129
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
130
	MEM_CGROUP_TARGET_SOFTLIMIT,
131
	MEM_CGROUP_TARGET_NUMAINFO,
132 133
	MEM_CGROUP_NTARGETS,
};
134 135 136
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
137

138
struct mem_cgroup_stat_cpu {
139
	long count[MEM_CGROUP_STAT_NSTATS];
140
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
141
	unsigned long nr_page_events;
142
	unsigned long targets[MEM_CGROUP_NTARGETS];
143 144
};

145
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
146 147 148 149
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
150
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
151 152
	unsigned long last_dead_count;

153 154 155 156
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

157 158 159 160
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
161
	struct lruvec		lruvec;
162
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
163

164 165
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

166 167 168 169
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
170
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
171
						/* use container_of	   */
172 173 174 175 176 177
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

198 199 200 201 202
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
203
/* For threshold */
204
struct mem_cgroup_threshold_ary {
205
	/* An array index points to threshold just below or equal to usage. */
206
	int current_threshold;
207 208 209 210 211
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
212 213 214 215 216 217 218 219 220 221 222 223

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
224 225 226 227 228
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
229

230 231
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
232

B
Balbir Singh 已提交
233 234 235 236 237 238 239
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
240 241 242
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
243 244 245 246 247 248 249
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
250

251 252 253
	/* vmpressure notifications */
	struct vmpressure vmpressure;

254 255 256 257
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
258

259 260 261 262
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
263 264 265 266
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
267
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
268 269 270

	bool		oom_lock;
	atomic_t	under_oom;
271
	atomic_t	oom_wakeups;
272

273
	int	swappiness;
274 275
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
276

277 278 279
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

280 281 282 283
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
284
	struct mem_cgroup_thresholds thresholds;
285

286
	/* thresholds for mem+swap usage. RCU-protected */
287
	struct mem_cgroup_thresholds memsw_thresholds;
288

K
KAMEZAWA Hiroyuki 已提交
289 290
	/* For oom notifier event fd */
	struct list_head oom_notify;
291

292 293 294 295
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
296
	unsigned long move_charge_at_immigrate;
297 298 299 300
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
301 302
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
303
	/*
304
	 * percpu counter.
305
	 */
306
	struct mem_cgroup_stat_cpu __percpu *stat;
307 308 309 310 311 312
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
313

M
Michal Hocko 已提交
314
	atomic_t	dead_count;
M
Michal Hocko 已提交
315
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
316
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
317
#endif
318 319 320 321 322 323 324 325
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
326 327 328 329 330 331 332

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
333

334 335
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
336 337
};

338 339 340
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
341
		nr_node_ids * sizeof(struct mem_cgroup_per_node *);
342 343
}

344 345 346
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
347
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
348
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
349 350
};

351 352 353
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
354 355 356 357 358 359

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
360 361 362 363 364 365

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

366 367 368 369 370
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

371 372 373 374 375
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

376 377
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
378 379 380 381 382
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
383 384 385 386 387 388 389 390 391
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
392 393
#endif

394 395
/* Stuffs for move charges at task migration. */
/*
396 397
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
398 399
 */
enum move_type {
400
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
401
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
402 403 404
	NR_MOVE_TYPE,
};

405 406
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
407
	spinlock_t	  lock; /* for from, to */
408 409
	struct mem_cgroup *from;
	struct mem_cgroup *to;
410
	unsigned long immigrate_flags;
411
	unsigned long precharge;
412
	unsigned long moved_charge;
413
	unsigned long moved_swap;
414 415 416
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
417
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
418 419
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
420

D
Daisuke Nishimura 已提交
421 422
static bool move_anon(void)
{
423
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
424 425
}

426 427
static bool move_file(void)
{
428
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
429 430
}

431 432 433 434
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
435
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
436
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
437

438 439
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
440
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
441
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
442
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
443 444 445
	NR_CHARGE_TYPE,
};

446
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
447 448 449 450
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
451
	_KMEM,
G
Glauber Costa 已提交
452 453
};

454 455
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
456
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
457 458
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
459

460 461 462 463 464 465 466 467
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

468 469 470 471 472 473 474
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

475 476
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
477
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
478 479
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

498 499 500 501 502
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

503 504 505 506 507 508
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
	/*
	 * The ID of the root cgroup is 0, but memcg treat 0 as an
	 * invalid ID, so we return (cgroup_id + 1).
	 */
	return memcg->css.cgroup->id + 1;
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

	css = css_from_id(id - 1, &mem_cgroup_subsys);
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
526
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
527
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
528 529 530

void sock_update_memcg(struct sock *sk)
{
531
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
532
		struct mem_cgroup *memcg;
533
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
534 535 536

		BUG_ON(!sk->sk_prot->proto_cgroup);

537 538 539 540 541 542 543 544 545 546
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
547
			css_get(&sk->sk_cgrp->memcg->css);
548 549 550
			return;
		}

G
Glauber Costa 已提交
551 552
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
553
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
554 555
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
556
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
557 558 559 560 561 562 563 564
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
565
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
566 567 568
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
569
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
570 571
	}
}
G
Glauber Costa 已提交
572 573 574 575 576 577

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

578
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
579 580
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
581

582 583
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
584
	if (!memcg_proto_activated(&memcg->tcp_mem))
585 586 587 588 589 590 591 592 593
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

594
#ifdef CONFIG_MEMCG_KMEM
595 596
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
597 598 599 600 601
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
602 603 604 605 606 607
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
608 609
int memcg_limited_groups_array_size;

610 611 612 613 614 615
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
616
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
617 618
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
619
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
620 621 622
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
623
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
624

625 626 627 628 629 630
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
631
struct static_key memcg_kmem_enabled_key;
632
EXPORT_SYMBOL(memcg_kmem_enabled_key);
633 634 635

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
636
	if (memcg_kmem_is_active(memcg)) {
637
		static_key_slow_dec(&memcg_kmem_enabled_key);
638 639
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
640 641 642 643 644
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
645 646 647 648 649 650 651 652 653 654 655 656 657
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

658
static void drain_all_stock_async(struct mem_cgroup *memcg);
659

660
static struct mem_cgroup_per_zone *
661
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
662
{
663
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
664
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
665 666
}

667
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
668
{
669
	return &memcg->css;
670 671
}

672
static struct mem_cgroup_per_zone *
673
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
674
{
675 676
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
677

678
	return mem_cgroup_zoneinfo(memcg, nid, zid);
679 680
}

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
	mctz = soft_limit_tree_from_page(page);

	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node(node) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
858
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
859
				 enum mem_cgroup_stat_index idx)
860
{
861
	long val = 0;
862 863
	int cpu;

864 865
	get_online_cpus();
	for_each_online_cpu(cpu)
866
		val += per_cpu(memcg->stat->count[idx], cpu);
867
#ifdef CONFIG_HOTPLUG_CPU
868 869 870
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
871 872
#endif
	put_online_cpus();
873 874 875
	return val;
}

876
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
877 878 879
					 bool charge)
{
	int val = (charge) ? 1 : -1;
880
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
881 882
}

883
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
884 885 886 887 888
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

889
	get_online_cpus();
890
	for_each_online_cpu(cpu)
891
		val += per_cpu(memcg->stat->events[idx], cpu);
892
#ifdef CONFIG_HOTPLUG_CPU
893 894 895
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
896
#endif
897
	put_online_cpus();
898 899 900
	return val;
}

901
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
902
					 struct page *page,
903
					 bool anon, int nr_pages)
904
{
905 906
	preempt_disable();

907 908 909 910 911 912
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
913
				nr_pages);
914
	else
915
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
916
				nr_pages);
917

918 919 920 921
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

922 923
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
924
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
925
	else {
926
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
927 928
		nr_pages = -nr_pages; /* for event */
	}
929

930
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
931

932
	preempt_enable();
933 934
}

935
unsigned long
936
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
937 938 939 940 941 942 943 944
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
945
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
946
			unsigned int lru_mask)
947 948
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
949
	enum lru_list lru;
950 951
	unsigned long ret = 0;

952
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
953

H
Hugh Dickins 已提交
954 955 956
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
957 958 959 960 961
	}
	return ret;
}

static unsigned long
962
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
963 964
			int nid, unsigned int lru_mask)
{
965 966 967
	u64 total = 0;
	int zid;

968
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
969 970
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
971

972 973
	return total;
}
974

975
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
976
			unsigned int lru_mask)
977
{
978
	int nid;
979 980
	u64 total = 0;

981
	for_each_node_state(nid, N_MEMORY)
982
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
983
	return total;
984 985
}

986 987
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
988 989 990
{
	unsigned long val, next;

991
	val = __this_cpu_read(memcg->stat->nr_page_events);
992
	next = __this_cpu_read(memcg->stat->targets[target]);
993
	/* from time_after() in jiffies.h */
994 995 996 997 998
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
999 1000 1001
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
1002 1003 1004 1005 1006 1007 1008 1009
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1010
	}
1011
	return false;
1012 1013 1014 1015 1016 1017
}

/*
 * Check events in order.
 *
 */
1018
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1019
{
1020
	preempt_disable();
1021
	/* threshold event is triggered in finer grain than soft limit */
1022 1023
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1024
		bool do_softlimit;
1025
		bool do_numainfo __maybe_unused;
1026

1027 1028
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1029 1030 1031 1032 1033 1034
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1035
		mem_cgroup_threshold(memcg);
1036 1037
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1038
#if MAX_NUMNODES > 1
1039
		if (unlikely(do_numainfo))
1040
			atomic_inc(&memcg->numainfo_events);
1041
#endif
1042 1043
	} else
		preempt_enable();
1044 1045
}

1046
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1047
{
1048 1049 1050 1051 1052 1053 1054 1055
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1056
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1057 1058
}

1059
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1060
{
1061
	struct mem_cgroup *memcg = NULL;
1062 1063 1064

	if (!mm)
		return NULL;
1065 1066 1067 1068 1069 1070 1071
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1072 1073
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1074
			break;
1075
	} while (!css_tryget(&memcg->css));
1076
	rcu_read_unlock();
1077
	return memcg;
1078 1079
}

1080 1081 1082 1083 1084 1085 1086
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1087
		struct mem_cgroup *last_visited)
1088
{
1089
	struct cgroup_subsys_state *prev_css, *next_css;
1090

1091
	prev_css = last_visited ? &last_visited->css : NULL;
1092
skip_node:
1093
	next_css = css_next_descendant_pre(prev_css, &root->css);
1094 1095 1096 1097 1098 1099 1100 1101

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
1102 1103 1104
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

1105 1106 1107
		if (css_tryget(&mem->css))
			return mem;
		else {
1108
			prev_css = next_css;
1109 1110 1111 1112 1113 1114 1115
			goto skip_node;
		}
	}

	return NULL;
}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1185
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1186
				   struct mem_cgroup *prev,
1187
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1188
{
1189
	struct mem_cgroup *memcg = NULL;
1190
	struct mem_cgroup *last_visited = NULL;
1191

1192 1193
	if (mem_cgroup_disabled())
		return NULL;
1194

1195 1196
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1197

1198
	if (prev && !reclaim)
1199
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1200

1201 1202
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1203
			goto out_css_put;
1204
		return root;
1205
	}
K
KAMEZAWA Hiroyuki 已提交
1206

1207
	rcu_read_lock();
1208
	while (!memcg) {
1209
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1210
		int uninitialized_var(seq);
1211

1212 1213 1214 1215 1216 1217 1218
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1219
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1220
				iter->last_visited = NULL;
1221 1222
				goto out_unlock;
			}
M
Michal Hocko 已提交
1223

1224
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1225
		}
K
KAMEZAWA Hiroyuki 已提交
1226

1227
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1228

1229
		if (reclaim) {
1230
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1231

M
Michal Hocko 已提交
1232
			if (!memcg)
1233 1234 1235 1236
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1237

1238
		if (prev && !memcg)
1239
			goto out_unlock;
1240
	}
1241 1242
out_unlock:
	rcu_read_unlock();
1243 1244 1245 1246
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1247
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1248
}
K
KAMEZAWA Hiroyuki 已提交
1249

1250 1251 1252 1253 1254 1255 1256
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1257 1258 1259 1260 1261 1262
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1263

1264 1265 1266 1267 1268 1269
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1270
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1271
	     iter != NULL;				\
1272
	     iter = mem_cgroup_iter(root, iter, NULL))
1273

1274
#define for_each_mem_cgroup(iter)			\
1275
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1276
	     iter != NULL;				\
1277
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1278

1279
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1280
{
1281
	struct mem_cgroup *memcg;
1282 1283

	rcu_read_lock();
1284 1285
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1286 1287 1288 1289
		goto out;

	switch (idx) {
	case PGFAULT:
1290 1291 1292 1293
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1294 1295 1296 1297 1298 1299 1300
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1301
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1302

1303 1304 1305
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1306
 * @memcg: memcg of the wanted lruvec
1307 1308 1309 1310 1311 1312 1313 1314 1315
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1316
	struct lruvec *lruvec;
1317

1318 1319 1320 1321
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1322 1323

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1334 1335
}

K
KAMEZAWA Hiroyuki 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1349

1350
/**
1351
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1352
 * @page: the page
1353
 * @zone: zone of the page
1354
 */
1355
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1356 1357
{
	struct mem_cgroup_per_zone *mz;
1358 1359
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1360
	struct lruvec *lruvec;
1361

1362 1363 1364 1365
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1366

K
KAMEZAWA Hiroyuki 已提交
1367
	pc = lookup_page_cgroup(page);
1368
	memcg = pc->mem_cgroup;
1369 1370

	/*
1371
	 * Surreptitiously switch any uncharged offlist page to root:
1372 1373 1374 1375 1376 1377 1378
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1379
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1380 1381
		pc->mem_cgroup = memcg = root_mem_cgroup;

1382
	mz = page_cgroup_zoneinfo(memcg, page);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1393
}
1394

1395
/**
1396 1397 1398 1399
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1400
 *
1401 1402
 * This function must be called when a page is added to or removed from an
 * lru list.
1403
 */
1404 1405
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1406 1407
{
	struct mem_cgroup_per_zone *mz;
1408
	unsigned long *lru_size;
1409 1410 1411 1412

	if (mem_cgroup_disabled())
		return;

1413 1414 1415 1416
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1417
}
1418

1419
/*
1420
 * Checks whether given mem is same or in the root_mem_cgroup's
1421 1422
 * hierarchy subtree
 */
1423 1424
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1425
{
1426 1427
	if (root_memcg == memcg)
		return true;
1428
	if (!root_memcg->use_hierarchy || !memcg)
1429
		return false;
1430
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1431 1432 1433 1434 1435 1436 1437
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1438
	rcu_read_lock();
1439
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1440 1441
	rcu_read_unlock();
	return ret;
1442 1443
}

1444 1445
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1446
{
1447
	struct mem_cgroup *curr = NULL;
1448
	struct task_struct *p;
1449
	bool ret;
1450

1451
	p = find_lock_task_mm(task);
1452 1453 1454 1455 1456 1457 1458 1459 1460
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1461
		rcu_read_lock();
1462 1463 1464
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1465
		rcu_read_unlock();
1466
	}
1467
	if (!curr)
1468
		return false;
1469
	/*
1470
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1471
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1472 1473
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1474
	 */
1475
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1476
	css_put(&curr->css);
1477 1478 1479
	return ret;
}

1480
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1481
{
1482
	unsigned long inactive_ratio;
1483
	unsigned long inactive;
1484
	unsigned long active;
1485
	unsigned long gb;
1486

1487 1488
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1489

1490 1491 1492 1493 1494 1495
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1496
	return inactive * inactive_ratio < active;
1497 1498
}

1499 1500 1501
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1502
/**
1503
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1504
 * @memcg: the memory cgroup
1505
 *
1506
 * Returns the maximum amount of memory @mem can be charged with, in
1507
 * pages.
1508
 */
1509
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1510
{
1511 1512
	unsigned long long margin;

1513
	margin = res_counter_margin(&memcg->res);
1514
	if (do_swap_account)
1515
		margin = min(margin, res_counter_margin(&memcg->memsw));
1516
	return margin >> PAGE_SHIFT;
1517 1518
}

1519
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1520 1521
{
	/* root ? */
T
Tejun Heo 已提交
1522
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1523 1524
		return vm_swappiness;

1525
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1526 1527
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1542 1543 1544 1545

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1546
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1547
{
1548
	atomic_inc(&memcg_moving);
1549
	atomic_inc(&memcg->moving_account);
1550 1551 1552
	synchronize_rcu();
}

1553
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1554
{
1555 1556 1557 1558
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1559 1560
	if (memcg) {
		atomic_dec(&memcg_moving);
1561
		atomic_dec(&memcg->moving_account);
1562
	}
1563
}
1564

1565 1566 1567
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1568 1569
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1570 1571 1572 1573 1574 1575 1576
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1577
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1578 1579
{
	VM_BUG_ON(!rcu_read_lock_held());
1580
	return atomic_read(&memcg->moving_account) > 0;
1581
}
1582

1583
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1584
{
1585 1586
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1587
	bool ret = false;
1588 1589 1590 1591 1592 1593 1594 1595 1596
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1597

1598 1599
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1600 1601
unlock:
	spin_unlock(&mc.lock);
1602 1603 1604
	return ret;
}

1605
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1606 1607
{
	if (mc.moving_task && current != mc.moving_task) {
1608
		if (mem_cgroup_under_move(memcg)) {
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1621 1622 1623 1624
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1625
 * see mem_cgroup_stolen(), too.
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1639
#define K(x) ((x) << (PAGE_SHIFT-10))
1640
/**
1641
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1659 1660
	struct mem_cgroup *iter;
	unsigned int i;
1661

1662
	if (!p)
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1681
	pr_info("Task in %s killed", memcg_name);
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1694
	pr_cont(" as a result of limit of %s\n", memcg_name);
1695 1696
done:

1697
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1698 1699 1700
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1701
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1702 1703 1704
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1705
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1706 1707 1708
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1733 1734
}

1735 1736 1737 1738
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1739
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1740 1741
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1742 1743
	struct mem_cgroup *iter;

1744
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1745
		num++;
1746 1747 1748
	return num;
}

D
David Rientjes 已提交
1749 1750 1751
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1752
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1753 1754 1755
{
	u64 limit;

1756 1757
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1758
	/*
1759
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1760
	 */
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1775 1776
}

1777 1778
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1779 1780 1781 1782 1783 1784 1785
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1786
	/*
1787 1788 1789
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1790
	 */
1791
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1792 1793 1794 1795 1796
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1797 1798
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1799
		struct css_task_iter it;
1800 1801
		struct task_struct *task;

1802 1803
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1816
				css_task_iter_end(&it);
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1833
		css_task_iter_end(&it);
1834 1835 1836 1837 1838 1839 1840 1841 1842
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1879 1880
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1881
 * @memcg: the target memcg
1882 1883 1884 1885 1886 1887 1888
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1889
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1890 1891
		int nid, bool noswap)
{
1892
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1893 1894 1895
		return true;
	if (noswap || !total_swap_pages)
		return false;
1896
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1897 1898 1899 1900
		return true;
	return false;

}
1901
#if MAX_NUMNODES > 1
1902 1903 1904 1905 1906 1907 1908

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1909
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1910 1911
{
	int nid;
1912 1913 1914 1915
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1916
	if (!atomic_read(&memcg->numainfo_events))
1917
		return;
1918
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1919 1920 1921
		return;

	/* make a nodemask where this memcg uses memory from */
1922
	memcg->scan_nodes = node_states[N_MEMORY];
1923

1924
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1925

1926 1927
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1928
	}
1929

1930 1931
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1946
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1947 1948 1949
{
	int node;

1950 1951
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1952

1953
	node = next_node(node, memcg->scan_nodes);
1954
	if (node == MAX_NUMNODES)
1955
		node = first_node(memcg->scan_nodes);
1956 1957 1958 1959 1960 1961 1962 1963 1964
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1965
	memcg->last_scanned_node = node;
1966 1967 1968
	return node;
}

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

2004
#else
2005
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2006 2007 2008
{
	return 0;
}
2009

2010 2011 2012 2013
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
2014 2015
#endif

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2064
	}
2065 2066
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2067 2068
}

2069 2070 2071 2072 2073 2074
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2075 2076
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2077 2078 2079 2080
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2081
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2082
{
2083
	struct mem_cgroup *iter, *failed = NULL;
2084

2085 2086
	spin_lock(&memcg_oom_lock);

2087
	for_each_mem_cgroup_tree(iter, memcg) {
2088
		if (iter->oom_lock) {
2089 2090 2091 2092 2093
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2094 2095
			mem_cgroup_iter_break(memcg, iter);
			break;
2096 2097
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2098
	}
K
KAMEZAWA Hiroyuki 已提交
2099

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2111
		}
2112 2113
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2114 2115 2116 2117

	spin_unlock(&memcg_oom_lock);

	return !failed;
2118
}
2119

2120
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2121
{
K
KAMEZAWA Hiroyuki 已提交
2122 2123
	struct mem_cgroup *iter;

2124
	spin_lock(&memcg_oom_lock);
2125
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2126
	for_each_mem_cgroup_tree(iter, memcg)
2127
		iter->oom_lock = false;
2128
	spin_unlock(&memcg_oom_lock);
2129 2130
}

2131
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2132 2133 2134
{
	struct mem_cgroup *iter;

2135
	for_each_mem_cgroup_tree(iter, memcg)
2136 2137 2138
		atomic_inc(&iter->under_oom);
}

2139
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2140 2141 2142
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2143 2144 2145 2146 2147
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2148
	for_each_mem_cgroup_tree(iter, memcg)
2149
		atomic_add_unless(&iter->under_oom, -1, 0);
2150 2151
}

K
KAMEZAWA Hiroyuki 已提交
2152 2153
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2154
struct oom_wait_info {
2155
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2156 2157 2158 2159 2160 2161
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2162 2163
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2164 2165 2166
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2167
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2168 2169

	/*
2170
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2171 2172
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2173 2174
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2175 2176 2177 2178
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2179
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2180
{
2181
	atomic_inc(&memcg->oom_wakeups);
2182 2183
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2184 2185
}

2186
static void memcg_oom_recover(struct mem_cgroup *memcg)
2187
{
2188 2189
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2190 2191
}

2192
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2193
{
2194 2195
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2196
	/*
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2209
	 */
2210 2211 2212 2213
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2214 2215 2216 2217
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2218
 * @handle: actually kill/wait or just clean up the OOM state
2219
 *
2220 2221
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2222
 *
2223
 * Memcg supports userspace OOM handling where failed allocations must
2224 2225 2226 2227
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2228
 * the end of the page fault to complete the OOM handling.
2229 2230
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2231
 * completed, %false otherwise.
2232
 */
2233
bool mem_cgroup_oom_synchronize(bool handle)
2234
{
2235
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2236
	struct oom_wait_info owait;
2237
	bool locked;
2238 2239 2240

	/* OOM is global, do not handle */
	if (!memcg)
2241
		return false;
2242

2243 2244
	if (!handle)
		goto cleanup;
2245 2246 2247 2248 2249 2250

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2251

2252
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2266
		schedule();
2267 2268 2269 2270 2271
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2272 2273 2274 2275 2276 2277 2278 2279
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2280 2281
cleanup:
	current->memcg_oom.memcg = NULL;
2282
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2283
	return true;
2284 2285
}

2286 2287 2288
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2306 2307
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2308
 */
2309

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2323
	 * need to take move_lock_mem_cgroup(). Because we already hold
2324
	 * rcu_read_lock(), any calls to move_account will be delayed until
2325
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2326
	 */
2327
	if (!mem_cgroup_stolen(memcg))
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2345
	 * should take move_lock_mem_cgroup().
2346 2347 2348 2349
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2350
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2351
				 enum mem_cgroup_stat_index idx, int val)
2352
{
2353
	struct mem_cgroup *memcg;
2354
	struct page_cgroup *pc = lookup_page_cgroup(page);
2355
	unsigned long uninitialized_var(flags);
2356

2357
	if (mem_cgroup_disabled())
2358
		return;
2359

2360
	VM_BUG_ON(!rcu_read_lock_held());
2361 2362
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2363
		return;
2364

2365
	this_cpu_add(memcg->stat->count[idx], val);
2366
}
2367

2368 2369 2370 2371
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2372
#define CHARGE_BATCH	32U
2373 2374
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2375
	unsigned int nr_pages;
2376
	struct work_struct work;
2377
	unsigned long flags;
2378
#define FLUSHING_CACHED_CHARGE	0
2379 2380
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2381
static DEFINE_MUTEX(percpu_charge_mutex);
2382

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2393
 */
2394
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2395 2396 2397 2398
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2399 2400 2401
	if (nr_pages > CHARGE_BATCH)
		return false;

2402
	stock = &get_cpu_var(memcg_stock);
2403 2404
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2418 2419 2420 2421
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2422
		if (do_swap_account)
2423 2424
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2437
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2438 2439
}

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2451 2452
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2453
 * This will be consumed by consume_stock() function, later.
2454
 */
2455
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2456 2457 2458
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2459
	if (stock->cached != memcg) { /* reset if necessary */
2460
		drain_stock(stock);
2461
		stock->cached = memcg;
2462
	}
2463
	stock->nr_pages += nr_pages;
2464 2465 2466 2467
	put_cpu_var(memcg_stock);
}

/*
2468
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2469 2470
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2471
 */
2472
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2473
{
2474
	int cpu, curcpu;
2475

2476 2477
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2478
	curcpu = get_cpu();
2479 2480
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2481
		struct mem_cgroup *memcg;
2482

2483 2484
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2485
			continue;
2486
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2487
			continue;
2488 2489 2490 2491 2492 2493
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2494
	}
2495
	put_cpu();
2496 2497 2498 2499 2500 2501

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2502
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2503 2504 2505
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2506
	put_online_cpus();
2507 2508 2509 2510 2511 2512 2513 2514
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2515
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2516
{
2517 2518 2519 2520 2521
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2522
	drain_all_stock(root_memcg, false);
2523
	mutex_unlock(&percpu_charge_mutex);
2524 2525 2526
}

/* This is a synchronous drain interface. */
2527
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2528 2529
{
	/* called when force_empty is called */
2530
	mutex_lock(&percpu_charge_mutex);
2531
	drain_all_stock(root_memcg, true);
2532
	mutex_unlock(&percpu_charge_mutex);
2533 2534
}

2535 2536 2537 2538
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2539
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2540 2541 2542
{
	int i;

2543
	spin_lock(&memcg->pcp_counter_lock);
2544
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2545
		long x = per_cpu(memcg->stat->count[i], cpu);
2546

2547 2548
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2549
	}
2550
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2551
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2552

2553 2554
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2555
	}
2556
	spin_unlock(&memcg->pcp_counter_lock);
2557 2558
}

2559
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2560 2561 2562 2563 2564
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2565
	struct mem_cgroup *iter;
2566

2567
	if (action == CPU_ONLINE)
2568 2569
		return NOTIFY_OK;

2570
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2571
		return NOTIFY_OK;
2572

2573
	for_each_mem_cgroup(iter)
2574 2575
		mem_cgroup_drain_pcp_counter(iter, cpu);

2576 2577 2578 2579 2580
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2581 2582 2583 2584 2585 2586 2587 2588 2589

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2590
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2591
				unsigned int nr_pages, unsigned int min_pages,
2592
				bool invoke_oom)
2593
{
2594
	unsigned long csize = nr_pages * PAGE_SIZE;
2595 2596 2597 2598 2599
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2600
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2601 2602 2603 2604

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2605
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2606 2607 2608
		if (likely(!ret))
			return CHARGE_OK;

2609
		res_counter_uncharge(&memcg->res, csize);
2610 2611 2612 2613
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2614 2615 2616 2617
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2618
	if (nr_pages > min_pages)
2619 2620 2621 2622 2623
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2624 2625 2626
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2627
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2628
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2629
		return CHARGE_RETRY;
2630
	/*
2631 2632 2633 2634 2635 2636 2637
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2638
	 */
2639
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2640 2641 2642 2643 2644 2645 2646 2647 2648
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2649 2650
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2651

2652
	return CHARGE_NOMEM;
2653 2654
}

2655
/*
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2675
 */
2676
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2677
				   gfp_t gfp_mask,
2678
				   unsigned int nr_pages,
2679
				   struct mem_cgroup **ptr,
2680
				   bool oom)
2681
{
2682
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2683
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2684
	struct mem_cgroup *memcg = NULL;
2685
	int ret;
2686

K
KAMEZAWA Hiroyuki 已提交
2687 2688 2689 2690 2691 2692 2693 2694
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2695

2696
	if (unlikely(task_in_memcg_oom(current)))
2697
		goto nomem;
2698

2699 2700 2701
	if (gfp_mask & __GFP_NOFAIL)
		oom = false;

2702
	/*
2703 2704
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2705
	 * thread group leader migrates. It's possible that mm is not
2706
	 * set, if so charge the root memcg (happens for pagecache usage).
2707
	 */
2708
	if (!*ptr && !mm)
2709
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2710
again:
2711 2712 2713
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2714
			goto done;
2715
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2716
			goto done;
2717
		css_get(&memcg->css);
2718
	} else {
K
KAMEZAWA Hiroyuki 已提交
2719
		struct task_struct *p;
2720

K
KAMEZAWA Hiroyuki 已提交
2721 2722 2723
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2724
		 * Because we don't have task_lock(), "p" can exit.
2725
		 * In that case, "memcg" can point to root or p can be NULL with
2726 2727 2728 2729 2730 2731
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2732
		 */
2733
		memcg = mem_cgroup_from_task(p);
2734 2735 2736
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2737 2738 2739
			rcu_read_unlock();
			goto done;
		}
2740
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2753
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2754 2755 2756 2757 2758
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2759

2760
	do {
2761
		bool invoke_oom = oom && !nr_oom_retries;
2762

2763
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2764
		if (fatal_signal_pending(current)) {
2765
			css_put(&memcg->css);
2766
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2767
		}
2768

2769 2770
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2771 2772 2773 2774
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2775
			batch = nr_pages;
2776 2777
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2778
			goto again;
2779
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2780
			css_put(&memcg->css);
2781 2782
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2783
			if (!oom || invoke_oom) {
2784
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2785
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2786
			}
2787 2788
			nr_oom_retries--;
			break;
2789
		}
2790 2791
	} while (ret != CHARGE_OK);

2792
	if (batch > nr_pages)
2793 2794
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2795
done:
2796
	*ptr = memcg;
2797 2798
	return 0;
nomem:
2799 2800 2801 2802
	if (!(gfp_mask & __GFP_NOFAIL)) {
		*ptr = NULL;
		return -ENOMEM;
	}
K
KAMEZAWA Hiroyuki 已提交
2803
bypass:
2804 2805
	*ptr = root_mem_cgroup;
	return -EINTR;
2806
}
2807

2808 2809 2810 2811 2812
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2813
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2814
				       unsigned int nr_pages)
2815
{
2816
	if (!mem_cgroup_is_root(memcg)) {
2817 2818
		unsigned long bytes = nr_pages * PAGE_SIZE;

2819
		res_counter_uncharge(&memcg->res, bytes);
2820
		if (do_swap_account)
2821
			res_counter_uncharge(&memcg->memsw, bytes);
2822
	}
2823 2824
}

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2843 2844
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2845 2846 2847
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2848 2849 2850 2851 2852 2853
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2854
	return mem_cgroup_from_id(id);
2855 2856
}

2857
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2858
{
2859
	struct mem_cgroup *memcg = NULL;
2860
	struct page_cgroup *pc;
2861
	unsigned short id;
2862 2863
	swp_entry_t ent;

2864 2865 2866
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2867
	lock_page_cgroup(pc);
2868
	if (PageCgroupUsed(pc)) {
2869 2870 2871
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2872
	} else if (PageSwapCache(page)) {
2873
		ent.val = page_private(page);
2874
		id = lookup_swap_cgroup_id(ent);
2875
		rcu_read_lock();
2876 2877 2878
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2879
		rcu_read_unlock();
2880
	}
2881
	unlock_page_cgroup(pc);
2882
	return memcg;
2883 2884
}

2885
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2886
				       struct page *page,
2887
				       unsigned int nr_pages,
2888 2889
				       enum charge_type ctype,
				       bool lrucare)
2890
{
2891
	struct page_cgroup *pc = lookup_page_cgroup(page);
2892
	struct zone *uninitialized_var(zone);
2893
	struct lruvec *lruvec;
2894
	bool was_on_lru = false;
2895
	bool anon;
2896

2897
	lock_page_cgroup(pc);
2898
	VM_BUG_ON(PageCgroupUsed(pc));
2899 2900 2901 2902
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2903 2904 2905 2906 2907 2908 2909 2910 2911

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2912
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2913
			ClearPageLRU(page);
2914
			del_page_from_lru_list(page, lruvec, page_lru(page));
2915 2916 2917 2918
			was_on_lru = true;
		}
	}

2919
	pc->mem_cgroup = memcg;
2920 2921 2922 2923 2924 2925
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2926
	 */
K
KAMEZAWA Hiroyuki 已提交
2927
	smp_wmb();
2928
	SetPageCgroupUsed(pc);
2929

2930 2931
	if (lrucare) {
		if (was_on_lru) {
2932
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2933 2934
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2935
			add_page_to_lru_list(page, lruvec, page_lru(page));
2936 2937 2938 2939
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2940
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2941 2942 2943 2944
		anon = true;
	else
		anon = false;

2945
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2946
	unlock_page_cgroup(pc);
2947

2948
	/*
2949 2950 2951
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2952
	 */
2953
	memcg_check_events(memcg, page);
2954
}
2955

2956 2957
static DEFINE_MUTEX(set_limit_mutex);

2958 2959 2960 2961
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2962 2963
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK) ==
							KMEM_ACCOUNTED_MASK;
2964 2965
}

G
Glauber Costa 已提交
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2976
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2977 2978
}

2979
#ifdef CONFIG_SLABINFO
2980 2981
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2982
{
2983
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3012
				      &_memcg, oom_gfp_allowed(gfp));
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3046 3047 3048 3049 3050

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3051 3052 3053 3054 3055 3056 3057 3058
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3059
	if (memcg_kmem_test_and_clear_dead(memcg))
3060
		css_put(&memcg->css);
3061 3062
}

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3083 3084 3085 3086 3087 3088 3089
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
3090
static int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3146 3147
static void kmem_cache_destroy_work_func(struct work_struct *w);

3148 3149 3150 3151
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

3152
	VM_BUG_ON(!is_root_cache(s));
3153 3154 3155 3156 3157 3158

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3159
		size += offsetof(struct memcg_cache_params, memcg_caches);
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3199 3200
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3201
{
3202
	size_t size;
3203 3204 3205 3206

	if (!memcg_kmem_enabled())
		return 0;

3207 3208
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3209
		size += memcg_limited_groups_array_size * sizeof(void *);
3210 3211
	} else
		size = sizeof(struct memcg_cache_params);
3212

3213 3214 3215 3216
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3217
	if (memcg) {
3218
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3219
		s->memcg_params->root_cache = root_cache;
3220 3221
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3222 3223 3224
	} else
		s->memcg_params->is_root_cache = true;

3225 3226 3227 3228 3229
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3254
	css_put(&memcg->css);
3255
out:
3256 3257 3258
	kfree(s->memcg_params);
}

3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3290 3291 3292 3293 3294 3295 3296 3297 3298
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3320 3321 3322 3323 3324 3325 3326 3327
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3348 3349 3350 3351 3352 3353 3354
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3355 3356 3357 3358 3359 3360 3361 3362 3363
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3364

3365 3366 3367
/*
 * Called with memcg_cache_mutex held
 */
3368 3369 3370 3371
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3372
	static char *tmp_name = NULL;
3373

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3392

3393
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3394
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3395

3396 3397 3398
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
3413
	new_cachep = cache_from_memcg_idx(cachep, idx);
3414 3415
	if (new_cachep) {
		css_put(&memcg->css);
3416
		goto out;
3417
	}
3418 3419 3420 3421

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3422
		css_put(&memcg->css);
3423 3424 3425
		goto out;
	}

G
Glauber Costa 已提交
3426
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
3459 3460
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3478
		cancel_work_sync(&c->memcg_params->destroy);
3479 3480 3481 3482 3483
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3484 3485 3486 3487 3488 3489
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3519 3520
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3521 3522 3523 3524
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3525 3526
	if (cw == NULL) {
		css_put(&memcg->css);
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3577 3578 3579
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3580 3581 3582 3583
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3584
		goto out;
3585 3586 3587 3588 3589 3590 3591 3592

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3593 3594
	if (likely(cache_from_memcg_idx(cachep, idx))) {
		cachep = cache_from_memcg_idx(cachep, idx);
3595
		goto out;
3596 3597
	}

3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3625 3626 3627
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3664 3665 3666
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3751 3752 3753 3754
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3755 3756
#endif /* CONFIG_MEMCG_KMEM */

3757 3758
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3759
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3760 3761
/*
 * Because tail pages are not marked as "used", set it. We're under
3762 3763 3764
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3765
 */
3766
void mem_cgroup_split_huge_fixup(struct page *head)
3767 3768
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3769
	struct page_cgroup *pc;
3770
	struct mem_cgroup *memcg;
3771
	int i;
3772

3773 3774
	if (mem_cgroup_disabled())
		return;
3775 3776

	memcg = head_pc->mem_cgroup;
3777 3778
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3779
		pc->mem_cgroup = memcg;
3780 3781 3782
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3783 3784
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3785
}
3786
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3787

3788 3789 3790 3791 3792 3793 3794 3795
static inline
void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
					struct mem_cgroup *to,
					unsigned int nr_pages,
					enum mem_cgroup_stat_index idx)
{
	/* Update stat data for mem_cgroup */
	preempt_disable();
3796
	__this_cpu_sub(from->stat->count[idx], nr_pages);
3797 3798 3799 3800
	__this_cpu_add(to->stat->count[idx], nr_pages);
	preempt_enable();
}

3801
/**
3802
 * mem_cgroup_move_account - move account of the page
3803
 * @page: the page
3804
 * @nr_pages: number of regular pages (>1 for huge pages)
3805 3806 3807 3808 3809
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3810
 * - page is not on LRU (isolate_page() is useful.)
3811
 * - compound_lock is held when nr_pages > 1
3812
 *
3813 3814
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3815
 */
3816 3817 3818 3819
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3820
				   struct mem_cgroup *to)
3821
{
3822 3823
	unsigned long flags;
	int ret;
3824
	bool anon = PageAnon(page);
3825

3826
	VM_BUG_ON(from == to);
3827
	VM_BUG_ON(PageLRU(page));
3828 3829 3830 3831 3832 3833 3834
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3835
	if (nr_pages > 1 && !PageTransHuge(page))
3836 3837 3838 3839 3840 3841 3842 3843
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3844
	move_lock_mem_cgroup(from, &flags);
3845

3846 3847 3848 3849 3850 3851 3852 3853
	if (!anon && page_mapped(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_FILE_MAPPED);

	if (PageWriteback(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_WRITEBACK);

3854
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3855

3856
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3857
	pc->mem_cgroup = to;
3858
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3859
	move_unlock_mem_cgroup(from, &flags);
3860 3861
	ret = 0;
unlock:
3862
	unlock_page_cgroup(pc);
3863 3864 3865
	/*
	 * check events
	 */
3866 3867
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3868
out:
3869 3870 3871
	return ret;
}

3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3892
 */
3893 3894
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3895
				  struct mem_cgroup *child)
3896 3897
{
	struct mem_cgroup *parent;
3898
	unsigned int nr_pages;
3899
	unsigned long uninitialized_var(flags);
3900 3901
	int ret;

3902
	VM_BUG_ON(mem_cgroup_is_root(child));
3903

3904 3905 3906 3907 3908
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3909

3910
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3911

3912 3913 3914 3915 3916 3917
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3918

3919 3920
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3921
		flags = compound_lock_irqsave(page);
3922
	}
3923

3924
	ret = mem_cgroup_move_account(page, nr_pages,
3925
				pc, child, parent);
3926 3927
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3928

3929
	if (nr_pages > 1)
3930
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3931
	putback_lru_page(page);
3932
put:
3933
	put_page(page);
3934
out:
3935 3936 3937
	return ret;
}

3938 3939 3940 3941 3942 3943 3944
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3945
				gfp_t gfp_mask, enum charge_type ctype)
3946
{
3947
	struct mem_cgroup *memcg = NULL;
3948
	unsigned int nr_pages = 1;
3949
	bool oom = true;
3950
	int ret;
A
Andrea Arcangeli 已提交
3951

A
Andrea Arcangeli 已提交
3952
	if (PageTransHuge(page)) {
3953
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3954
		VM_BUG_ON(!PageTransHuge(page));
3955 3956 3957 3958 3959
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3960
	}
3961

3962
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3963
	if (ret == -ENOMEM)
3964
		return ret;
3965
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3966 3967 3968
	return 0;
}

3969 3970
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3971
{
3972
	if (mem_cgroup_disabled())
3973
		return 0;
3974 3975 3976
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3977
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3978
					MEM_CGROUP_CHARGE_TYPE_ANON);
3979 3980
}

3981 3982 3983
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3984
 * struct page_cgroup is acquired. This refcnt will be consumed by
3985 3986
 * "commit()" or removed by "cancel()"
 */
3987 3988 3989 3990
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3991
{
3992
	struct mem_cgroup *memcg;
3993
	struct page_cgroup *pc;
3994
	int ret;
3995

3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
4006 4007
	if (!do_swap_account)
		goto charge_cur_mm;
4008 4009
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
4010
		goto charge_cur_mm;
4011 4012
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4013
	css_put(&memcg->css);
4014 4015
	if (ret == -EINTR)
		ret = 0;
4016
	return ret;
4017
charge_cur_mm:
4018 4019 4020 4021
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
4022 4023
}

4024 4025 4026 4027 4028 4029
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
4044 4045 4046
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

4047 4048 4049 4050 4051 4052 4053 4054 4055
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4056
static void
4057
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4058
					enum charge_type ctype)
4059
{
4060
	if (mem_cgroup_disabled())
4061
		return;
4062
	if (!memcg)
4063
		return;
4064

4065
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4066 4067 4068
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4069 4070 4071
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4072
	 */
4073
	if (do_swap_account && PageSwapCache(page)) {
4074
		swp_entry_t ent = {.val = page_private(page)};
4075
		mem_cgroup_uncharge_swap(ent);
4076
	}
4077 4078
}

4079 4080
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4081
{
4082
	__mem_cgroup_commit_charge_swapin(page, memcg,
4083
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4084 4085
}

4086 4087
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4088
{
4089 4090 4091 4092
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4093
	if (mem_cgroup_disabled())
4094 4095 4096 4097 4098 4099 4100
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4101 4102
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4103 4104 4105 4106
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4107 4108
}

4109
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4110 4111
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4112 4113 4114
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4115

4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4127
		batch->memcg = memcg;
4128 4129
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4130
	 * In those cases, all pages freed continuously can be expected to be in
4131 4132 4133 4134 4135 4136 4137 4138
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4139
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4140 4141
		goto direct_uncharge;

4142 4143 4144 4145 4146
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4147
	if (batch->memcg != memcg)
4148 4149
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4150
	batch->nr_pages++;
4151
	if (uncharge_memsw)
4152
		batch->memsw_nr_pages++;
4153 4154
	return;
direct_uncharge:
4155
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4156
	if (uncharge_memsw)
4157 4158 4159
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4160
}
4161

4162
/*
4163
 * uncharge if !page_mapped(page)
4164
 */
4165
static struct mem_cgroup *
4166 4167
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4168
{
4169
	struct mem_cgroup *memcg = NULL;
4170 4171
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4172
	bool anon;
4173

4174
	if (mem_cgroup_disabled())
4175
		return NULL;
4176

A
Andrea Arcangeli 已提交
4177
	if (PageTransHuge(page)) {
4178
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4179 4180
		VM_BUG_ON(!PageTransHuge(page));
	}
4181
	/*
4182
	 * Check if our page_cgroup is valid
4183
	 */
4184
	pc = lookup_page_cgroup(page);
4185
	if (unlikely(!PageCgroupUsed(pc)))
4186
		return NULL;
4187

4188
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4189

4190
	memcg = pc->mem_cgroup;
4191

K
KAMEZAWA Hiroyuki 已提交
4192 4193 4194
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4195 4196
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4197
	switch (ctype) {
4198
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4199 4200 4201 4202 4203
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4204 4205
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4206
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4207
		/* See mem_cgroup_prepare_migration() */
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4229
	}
K
KAMEZAWA Hiroyuki 已提交
4230

4231
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4232

4233
	ClearPageCgroupUsed(pc);
4234 4235 4236 4237 4238 4239
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4240

4241
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4242
	/*
4243
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4244
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4245
	 */
4246
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4247
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4248
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4249
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4250
	}
4251 4252 4253 4254 4255 4256
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4257
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4258

4259
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4260 4261 4262

unlock_out:
	unlock_page_cgroup(pc);
4263
	return NULL;
4264 4265
}

4266 4267
void mem_cgroup_uncharge_page(struct page *page)
{
4268 4269 4270
	/* early check. */
	if (page_mapped(page))
		return;
4271
	VM_BUG_ON(page->mapping && !PageAnon(page));
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4284 4285
	if (PageSwapCache(page))
		return;
4286
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4287 4288 4289 4290 4291
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4292
	VM_BUG_ON(page->mapping);
4293
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4294 4295
}

4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4310 4311
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4332 4333 4334 4335 4336 4337
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4338
	memcg_oom_recover(batch->memcg);
4339 4340 4341 4342
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4343
#ifdef CONFIG_SWAP
4344
/*
4345
 * called after __delete_from_swap_cache() and drop "page" account.
4346 4347
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4348 4349
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4350 4351
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4352 4353 4354 4355 4356
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4357
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4358

K
KAMEZAWA Hiroyuki 已提交
4359 4360
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4361
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4362 4363
	 */
	if (do_swap_account && swapout && memcg)
L
Li Zefan 已提交
4364
		swap_cgroup_record(ent, mem_cgroup_id(memcg));
4365
}
4366
#endif
4367

A
Andrew Morton 已提交
4368
#ifdef CONFIG_MEMCG_SWAP
4369 4370 4371 4372 4373
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4374
{
4375
	struct mem_cgroup *memcg;
4376
	unsigned short id;
4377 4378 4379 4380

	if (!do_swap_account)
		return;

4381 4382 4383
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4384
	if (memcg) {
4385 4386 4387 4388
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4389
		if (!mem_cgroup_is_root(memcg))
4390
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4391
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4392
		css_put(&memcg->css);
4393
	}
4394
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4395
}
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4412
				struct mem_cgroup *from, struct mem_cgroup *to)
4413 4414 4415
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
4416 4417
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
4418 4419 4420

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4421
		mem_cgroup_swap_statistics(to, true);
4422
		/*
4423 4424 4425
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4426 4427 4428 4429 4430 4431
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4432
		 */
L
Li Zefan 已提交
4433
		css_get(&to->css);
4434 4435 4436 4437 4438 4439
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4440
				struct mem_cgroup *from, struct mem_cgroup *to)
4441 4442 4443
{
	return -EINVAL;
}
4444
#endif
K
KAMEZAWA Hiroyuki 已提交
4445

4446
/*
4447 4448
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4449
 */
4450 4451
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4452
{
4453
	struct mem_cgroup *memcg = NULL;
4454
	unsigned int nr_pages = 1;
4455
	struct page_cgroup *pc;
4456
	enum charge_type ctype;
4457

4458
	*memcgp = NULL;
4459

4460
	if (mem_cgroup_disabled())
4461
		return;
4462

4463 4464 4465
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4466 4467 4468
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4469 4470
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4502
	}
4503
	unlock_page_cgroup(pc);
4504 4505 4506 4507
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4508
	if (!memcg)
4509
		return;
4510

4511
	*memcgp = memcg;
4512 4513 4514 4515 4516 4517 4518
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4519
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4520
	else
4521
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4522 4523 4524 4525 4526
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4527
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4528
}
4529

4530
/* remove redundant charge if migration failed*/
4531
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4532
	struct page *oldpage, struct page *newpage, bool migration_ok)
4533
{
4534
	struct page *used, *unused;
4535
	struct page_cgroup *pc;
4536
	bool anon;
4537

4538
	if (!memcg)
4539
		return;
4540

4541
	if (!migration_ok) {
4542 4543
		used = oldpage;
		unused = newpage;
4544
	} else {
4545
		used = newpage;
4546 4547
		unused = oldpage;
	}
4548
	anon = PageAnon(used);
4549 4550 4551 4552
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4553
	css_put(&memcg->css);
4554
	/*
4555 4556 4557
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4558
	 */
4559 4560 4561 4562 4563
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4564
	/*
4565 4566 4567 4568 4569 4570
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4571
	 */
4572
	if (anon)
4573
		mem_cgroup_uncharge_page(used);
4574
}
4575

4576 4577 4578 4579 4580 4581 4582 4583
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4584
	struct mem_cgroup *memcg = NULL;
4585 4586 4587 4588 4589 4590 4591 4592 4593
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4594 4595
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4596
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4597 4598
		ClearPageCgroupUsed(pc);
	}
4599 4600
	unlock_page_cgroup(pc);

4601 4602 4603 4604 4605 4606
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4607 4608 4609 4610 4611
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4612
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4613 4614
}

4615 4616 4617 4618 4619 4620
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4621 4622 4623 4624 4625
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4645 4646
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4647 4648 4649 4650
	}
}
#endif

4651
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4652
				unsigned long long val)
4653
{
4654
	int retry_count;
4655
	u64 memswlimit, memlimit;
4656
	int ret = 0;
4657 4658
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4659
	int enlarge;
4660 4661 4662 4663 4664 4665 4666 4667 4668

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4669

4670
	enlarge = 0;
4671
	while (retry_count) {
4672 4673 4674 4675
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4676 4677 4678
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4679
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4680 4681 4682 4683 4684 4685
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4686 4687
			break;
		}
4688 4689 4690 4691 4692

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4693
		ret = res_counter_set_limit(&memcg->res, val);
4694 4695 4696 4697 4698 4699
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4700 4701 4702 4703 4704
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4705 4706
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4707 4708
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4709
		if (curusage >= oldusage)
4710 4711 4712
			retry_count--;
		else
			oldusage = curusage;
4713
	}
4714 4715
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4716

4717 4718 4719
	return ret;
}

L
Li Zefan 已提交
4720 4721
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4722
{
4723
	int retry_count;
4724
	u64 memlimit, memswlimit, oldusage, curusage;
4725 4726
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4727
	int enlarge = 0;
4728

4729
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4730
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4731
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4732 4733 4734 4735 4736 4737 4738 4739
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4740
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4741 4742 4743 4744 4745 4746 4747 4748
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4749 4750 4751
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4752
		ret = res_counter_set_limit(&memcg->memsw, val);
4753 4754 4755 4756 4757 4758
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4759 4760 4761 4762 4763
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4764 4765 4766
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4767
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4768
		/* Usage is reduced ? */
4769
		if (curusage >= oldusage)
4770
			retry_count--;
4771 4772
		else
			oldusage = curusage;
4773
	}
4774 4775
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4776 4777 4778
	return ret;
}

4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
		spin_unlock(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

4871 4872 4873 4874 4875 4876 4877
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4878
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4879 4880
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4881
 */
4882
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4883
				int node, int zid, enum lru_list lru)
4884
{
4885
	struct lruvec *lruvec;
4886
	unsigned long flags;
4887
	struct list_head *list;
4888 4889
	struct page *busy;
	struct zone *zone;
4890

K
KAMEZAWA Hiroyuki 已提交
4891
	zone = &NODE_DATA(node)->node_zones[zid];
4892 4893
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4894

4895
	busy = NULL;
4896
	do {
4897
		struct page_cgroup *pc;
4898 4899
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4900
		spin_lock_irqsave(&zone->lru_lock, flags);
4901
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4902
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4903
			break;
4904
		}
4905 4906 4907
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4908
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4909
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4910 4911
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4912
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4913

4914
		pc = lookup_page_cgroup(page);
4915

4916
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4917
			/* found lock contention or "pc" is obsolete. */
4918
			busy = page;
4919 4920 4921
			cond_resched();
		} else
			busy = NULL;
4922
	} while (!list_empty(list));
4923 4924 4925
}

/*
4926 4927
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4928
 * This enables deleting this mem_cgroup.
4929 4930
 *
 * Caller is responsible for holding css reference on the memcg.
4931
 */
4932
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4933
{
4934
	int node, zid;
4935
	u64 usage;
4936

4937
	do {
4938 4939
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4940 4941
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4942
		for_each_node_state(node, N_MEMORY) {
4943
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4944 4945
				enum lru_list lru;
				for_each_lru(lru) {
4946
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4947
							node, zid, lru);
4948
				}
4949
			}
4950
		}
4951 4952
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4953
		cond_resched();
4954

4955
		/*
4956 4957 4958 4959 4960
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4961 4962 4963 4964 4965 4966
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4967 4968 4969
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4970 4971
}

4972 4973
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
	lockdep_assert_held(&memcg_create_mutex);
	/*
	 * The lock does not prevent addition or deletion to the list
	 * of children, but it prevents a new child from being
	 * initialized based on this parent in css_online(), so it's
	 * enough to decide whether hierarchically inherited
	 * attributes can still be changed or not.
	 */
	return memcg->use_hierarchy &&
		!list_empty(&memcg->css.cgroup->children);
4984 4985
}

4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4996

4997
	/* returns EBUSY if there is a task or if we come here twice. */
4998 4999 5000
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

5001 5002
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
5003
	/* try to free all pages in this cgroup */
5004
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5005
		int progress;
5006

5007 5008 5009
		if (signal_pending(current))
			return -EINTR;

5010
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5011
						false);
5012
		if (!progress) {
5013
			nr_retries--;
5014
			/* maybe some writeback is necessary */
5015
			congestion_wait(BLK_RW_ASYNC, HZ/10);
5016
		}
5017 5018

	}
K
KAMEZAWA Hiroyuki 已提交
5019
	lru_add_drain();
5020 5021 5022
	mem_cgroup_reparent_charges(memcg);

	return 0;
5023 5024
}

5025 5026
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
5027
{
5028
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5029

5030 5031
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
5032
	return mem_cgroup_force_empty(memcg);
5033 5034
}

5035 5036
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
5037
{
5038
	return mem_cgroup_from_css(css)->use_hierarchy;
5039 5040
}

5041 5042
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
5043 5044
{
	int retval = 0;
5045
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5046
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5047

5048
	mutex_lock(&memcg_create_mutex);
5049 5050 5051 5052

	if (memcg->use_hierarchy == val)
		goto out;

5053
	/*
5054
	 * If parent's use_hierarchy is set, we can't make any modifications
5055 5056 5057 5058 5059 5060
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5061
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5062
				(val == 1 || val == 0)) {
5063
		if (list_empty(&memcg->css.cgroup->children))
5064
			memcg->use_hierarchy = val;
5065 5066 5067 5068
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5069 5070

out:
5071
	mutex_unlock(&memcg_create_mutex);
5072 5073 5074 5075

	return retval;
}

5076

5077
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5078
					       enum mem_cgroup_stat_index idx)
5079
{
K
KAMEZAWA Hiroyuki 已提交
5080
	struct mem_cgroup *iter;
5081
	long val = 0;
5082

5083
	/* Per-cpu values can be negative, use a signed accumulator */
5084
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5085 5086 5087 5088 5089
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5090 5091
}

5092
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5093
{
K
KAMEZAWA Hiroyuki 已提交
5094
	u64 val;
5095

5096
	if (!mem_cgroup_is_root(memcg)) {
5097
		if (!swap)
5098
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5099
		else
5100
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5101 5102
	}

5103 5104 5105 5106
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5107 5108
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5109

K
KAMEZAWA Hiroyuki 已提交
5110
	if (swap)
5111
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5112 5113 5114 5115

	return val << PAGE_SHIFT;
}

5116 5117 5118
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5119
{
5120
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5121
	char str[64];
5122
	u64 val;
G
Glauber Costa 已提交
5123 5124
	int name, len;
	enum res_type type;
5125 5126 5127

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5128

5129 5130
	switch (type) {
	case _MEM:
5131
		if (name == RES_USAGE)
5132
			val = mem_cgroup_usage(memcg, false);
5133
		else
5134
			val = res_counter_read_u64(&memcg->res, name);
5135 5136
		break;
	case _MEMSWAP:
5137
		if (name == RES_USAGE)
5138
			val = mem_cgroup_usage(memcg, true);
5139
		else
5140
			val = res_counter_read_u64(&memcg->memsw, name);
5141
		break;
5142 5143 5144
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5145 5146 5147
	default:
		BUG();
	}
5148 5149 5150

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5151
}
5152

5153
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5154 5155 5156
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
5157
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5170
	mutex_lock(&memcg_create_mutex);
5171
	mutex_lock(&set_limit_mutex);
5172
	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5173
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5174 5175 5176 5177 5178 5179
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5180 5181
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
5182
			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5183 5184
			goto out;
		}
5185 5186 5187 5188 5189 5190
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
5191 5192 5193 5194
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5195
	mutex_unlock(&memcg_create_mutex);
5196 5197 5198 5199
#endif
	return ret;
}

5200
#ifdef CONFIG_MEMCG_KMEM
5201
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5202
{
5203
	int ret = 0;
5204 5205
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5206 5207
		goto out;

5208
	memcg->kmem_account_flags = parent->kmem_account_flags;
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5219 5220 5221 5222
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
5223 5224 5225
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5226 5227 5228 5229
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5230
	memcg_stop_kmem_account();
5231
	ret = memcg_update_cache_sizes(memcg);
5232
	memcg_resume_kmem_account();
5233 5234 5235
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5236
}
5237
#endif /* CONFIG_MEMCG_KMEM */
5238

5239 5240 5241 5242
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5243
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5244
			    const char *buffer)
B
Balbir Singh 已提交
5245
{
5246
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5247 5248
	enum res_type type;
	int name;
5249 5250 5251
	unsigned long long val;
	int ret;

5252 5253
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5254

5255
	switch (name) {
5256
	case RES_LIMIT:
5257 5258 5259 5260
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5261 5262
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5263 5264 5265
		if (ret)
			break;
		if (type == _MEM)
5266
			ret = mem_cgroup_resize_limit(memcg, val);
5267
		else if (type == _MEMSWAP)
5268
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5269
		else if (type == _KMEM)
5270
			ret = memcg_update_kmem_limit(css, val);
5271 5272
		else
			return -EINVAL;
5273
		break;
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5288 5289 5290 5291 5292
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5293 5294
}

5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5305 5306
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5319
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5320
{
5321
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5322 5323
	int name;
	enum res_type type;
5324

5325 5326
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5327

5328
	switch (name) {
5329
	case RES_MAX_USAGE:
5330
		if (type == _MEM)
5331
			res_counter_reset_max(&memcg->res);
5332
		else if (type == _MEMSWAP)
5333
			res_counter_reset_max(&memcg->memsw);
5334 5335 5336 5337
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5338 5339
		break;
	case RES_FAILCNT:
5340
		if (type == _MEM)
5341
			res_counter_reset_failcnt(&memcg->res);
5342
		else if (type == _MEMSWAP)
5343
			res_counter_reset_failcnt(&memcg->memsw);
5344 5345 5346 5347
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5348 5349
		break;
	}
5350

5351
	return 0;
5352 5353
}

5354
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5355 5356
					struct cftype *cft)
{
5357
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5358 5359
}

5360
#ifdef CONFIG_MMU
5361
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5362 5363
					struct cftype *cft, u64 val)
{
5364
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5365 5366 5367

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5368

5369
	/*
5370 5371 5372 5373
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5374
	 */
5375
	memcg->move_charge_at_immigrate = val;
5376 5377
	return 0;
}
5378
#else
5379
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5380 5381 5382 5383 5384
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5385

5386
#ifdef CONFIG_NUMA
5387 5388
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5389
{
5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
5402
	int nid;
5403
	unsigned long nr;
5404
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5405

5406 5407 5408 5409 5410 5411 5412 5413 5414
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5415 5416
	}

5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5432 5433 5434 5435 5436 5437
	}

	return 0;
}
#endif /* CONFIG_NUMA */

5438 5439 5440 5441 5442
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5443
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5444
				 struct seq_file *m)
5445
{
5446
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5447 5448
	struct mem_cgroup *mi;
	unsigned int i;
5449

5450
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5451
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5452
			continue;
5453 5454
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5455
	}
L
Lee Schermerhorn 已提交
5456

5457 5458 5459 5460 5461 5462 5463 5464
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5465
	/* Hierarchical information */
5466 5467
	{
		unsigned long long limit, memsw_limit;
5468
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5469
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5470
		if (do_swap_account)
5471 5472
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5473
	}
K
KOSAKI Motohiro 已提交
5474

5475 5476 5477
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5478
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5479
			continue;
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5500
	}
K
KAMEZAWA Hiroyuki 已提交
5501

K
KOSAKI Motohiro 已提交
5502 5503 5504 5505
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5506
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5507 5508 5509 5510 5511
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5512
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5513
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5514

5515 5516 5517 5518
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5519
			}
5520 5521 5522 5523
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5524 5525 5526
	}
#endif

5527 5528 5529
	return 0;
}

5530 5531
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5532
{
5533
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5534

5535
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5536 5537
}

5538 5539
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5540
{
5541
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5542
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5543

T
Tejun Heo 已提交
5544
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5545 5546
		return -EINVAL;

5547
	mutex_lock(&memcg_create_mutex);
5548

K
KOSAKI Motohiro 已提交
5549
	/* If under hierarchy, only empty-root can set this value */
5550
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5551
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5552
		return -EINVAL;
5553
	}
K
KOSAKI Motohiro 已提交
5554 5555 5556

	memcg->swappiness = val;

5557
	mutex_unlock(&memcg_create_mutex);
5558

K
KOSAKI Motohiro 已提交
5559 5560 5561
	return 0;
}

5562 5563 5564 5565 5566 5567 5568 5569
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5570
		t = rcu_dereference(memcg->thresholds.primary);
5571
	else
5572
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5573 5574 5575 5576 5577 5578 5579

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5580
	 * current_threshold points to threshold just below or equal to usage.
5581 5582 5583
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5584
	i = t->current_threshold;
5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5608
	t->current_threshold = i - 1;
5609 5610 5611 5612 5613 5614
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5615 5616 5617 5618 5619 5620 5621
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5622 5623 5624 5625 5626 5627 5628
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5629 5630 5631 5632 5633 5634 5635
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5636 5637
}

5638
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5639 5640 5641
{
	struct mem_cgroup_eventfd_list *ev;

5642
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5643 5644 5645 5646
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5647
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5648
{
K
KAMEZAWA Hiroyuki 已提交
5649 5650
	struct mem_cgroup *iter;

5651
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5652
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5653 5654
}

5655
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5656
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5657
{
5658
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5659 5660
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5661
	enum res_type type = MEMFILE_TYPE(cft->private);
5662
	u64 threshold, usage;
5663
	int i, size, ret;
5664 5665 5666 5667 5668 5669

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5670

5671
	if (type == _MEM)
5672
		thresholds = &memcg->thresholds;
5673
	else if (type == _MEMSWAP)
5674
		thresholds = &memcg->memsw_thresholds;
5675 5676 5677 5678 5679 5680
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5681
	if (thresholds->primary)
5682 5683
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5684
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5685 5686

	/* Allocate memory for new array of thresholds */
5687
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5688
			GFP_KERNEL);
5689
	if (!new) {
5690 5691 5692
		ret = -ENOMEM;
		goto unlock;
	}
5693
	new->size = size;
5694 5695

	/* Copy thresholds (if any) to new array */
5696 5697
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5698
				sizeof(struct mem_cgroup_threshold));
5699 5700
	}

5701
	/* Add new threshold */
5702 5703
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5704 5705

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5706
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5707 5708 5709
			compare_thresholds, NULL);

	/* Find current threshold */
5710
	new->current_threshold = -1;
5711
	for (i = 0; i < size; i++) {
5712
		if (new->entries[i].threshold <= usage) {
5713
			/*
5714 5715
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5716 5717
			 * it here.
			 */
5718
			++new->current_threshold;
5719 5720
		} else
			break;
5721 5722
	}

5723 5724 5725 5726 5727
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5728

5729
	/* To be sure that nobody uses thresholds */
5730 5731 5732 5733 5734 5735 5736 5737
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5738
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5739
	struct cftype *cft, struct eventfd_ctx *eventfd)
5740
{
5741
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5742 5743
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5744
	enum res_type type = MEMFILE_TYPE(cft->private);
5745
	u64 usage;
5746
	int i, j, size;
5747 5748 5749

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5750
		thresholds = &memcg->thresholds;
5751
	else if (type == _MEMSWAP)
5752
		thresholds = &memcg->memsw_thresholds;
5753 5754 5755
	else
		BUG();

5756 5757 5758
	if (!thresholds->primary)
		goto unlock;

5759 5760 5761 5762 5763 5764
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5765 5766 5767
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5768 5769 5770
			size++;
	}

5771
	new = thresholds->spare;
5772

5773 5774
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5775 5776
		kfree(new);
		new = NULL;
5777
		goto swap_buffers;
5778 5779
	}

5780
	new->size = size;
5781 5782

	/* Copy thresholds and find current threshold */
5783 5784 5785
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5786 5787
			continue;

5788
		new->entries[j] = thresholds->primary->entries[i];
5789
		if (new->entries[j].threshold <= usage) {
5790
			/*
5791
			 * new->current_threshold will not be used
5792 5793 5794
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5795
			++new->current_threshold;
5796 5797 5798 5799
		}
		j++;
	}

5800
swap_buffers:
5801 5802
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5803 5804 5805 5806 5807 5808
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5809
	rcu_assign_pointer(thresholds->primary, new);
5810

5811
	/* To be sure that nobody uses thresholds */
5812
	synchronize_rcu();
5813
unlock:
5814 5815
	mutex_unlock(&memcg->thresholds_lock);
}
5816

5817
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5818 5819
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5820
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5821
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5822
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5823 5824 5825 5826 5827 5828

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5829
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5830 5831 5832 5833 5834

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5835
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5836
		eventfd_signal(eventfd, 1);
5837
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5838 5839 5840 5841

	return 0;
}

5842
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5843 5844
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5845
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5846
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5847
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5848 5849 5850

	BUG_ON(type != _OOM_TYPE);

5851
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5852

5853
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5854 5855 5856 5857 5858 5859
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5860
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5861 5862
}

5863
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5864 5865
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5866
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5867

5868
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5869

5870
	if (atomic_read(&memcg->under_oom))
5871 5872 5873 5874 5875 5876
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5877
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5878 5879
	struct cftype *cft, u64 val)
{
5880
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5881
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5882 5883

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5884
	if (!parent || !((val == 0) || (val == 1)))
5885 5886
		return -EINVAL;

5887
	mutex_lock(&memcg_create_mutex);
5888
	/* oom-kill-disable is a flag for subhierarchy. */
5889
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5890
		mutex_unlock(&memcg_create_mutex);
5891 5892
		return -EINVAL;
	}
5893
	memcg->oom_kill_disable = val;
5894
	if (!val)
5895
		memcg_oom_recover(memcg);
5896
	mutex_unlock(&memcg_create_mutex);
5897 5898 5899
	return 0;
}

A
Andrew Morton 已提交
5900
#ifdef CONFIG_MEMCG_KMEM
5901
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5902
{
5903 5904
	int ret;

5905
	memcg->kmemcg_id = -1;
5906 5907 5908
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5909

5910
	return mem_cgroup_sockets_init(memcg, ss);
5911
}
5912

5913
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5914
{
5915
	mem_cgroup_sockets_destroy(memcg);
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5942 5943 5944 5945 5946 5947 5948

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5949
		css_put(&memcg->css);
G
Glauber Costa 已提交
5950
}
5951
#else
5952
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5953 5954 5955
{
	return 0;
}
G
Glauber Costa 已提交
5956

5957 5958 5959 5960 5961
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5962 5963
{
}
5964 5965
#endif

B
Balbir Singh 已提交
5966 5967
static struct cftype mem_cgroup_files[] = {
	{
5968
		.name = "usage_in_bytes",
5969
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5970
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5971 5972
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5973
	},
5974 5975
	{
		.name = "max_usage_in_bytes",
5976
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5977
		.trigger = mem_cgroup_reset,
5978
		.read = mem_cgroup_read,
5979
	},
B
Balbir Singh 已提交
5980
	{
5981
		.name = "limit_in_bytes",
5982
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5983
		.write_string = mem_cgroup_write,
5984
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5985
	},
5986 5987 5988 5989
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5990
		.read = mem_cgroup_read,
5991
	},
B
Balbir Singh 已提交
5992 5993
	{
		.name = "failcnt",
5994
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5995
		.trigger = mem_cgroup_reset,
5996
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5997
	},
5998 5999
	{
		.name = "stat",
6000
		.read_seq_string = memcg_stat_show,
6001
	},
6002 6003 6004 6005
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
6006 6007
	{
		.name = "use_hierarchy",
6008
		.flags = CFTYPE_INSANE,
6009 6010 6011
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
6012 6013 6014 6015 6016
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
6017 6018 6019 6020 6021
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
6022 6023
	{
		.name = "oom_control",
6024 6025
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6026 6027 6028 6029
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6030 6031 6032 6033 6034
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
6035 6036 6037
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6038
		.read_seq_string = memcg_numa_stat_show,
6039 6040
	},
#endif
6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
6065 6066 6067 6068 6069 6070
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
6071
#endif
6072
	{ },	/* terminate */
6073
};
6074

6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
6105
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6106 6107
{
	struct mem_cgroup_per_node *pn;
6108
	struct mem_cgroup_per_zone *mz;
6109
	int zone, tmp = node;
6110 6111 6112 6113 6114 6115 6116 6117
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6118 6119
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6120
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6121 6122
	if (!pn)
		return 1;
6123 6124 6125

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6126
		lruvec_init(&mz->lruvec);
6127 6128
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6129
		mz->memcg = memcg;
6130
	}
6131
	memcg->nodeinfo[node] = pn;
6132 6133 6134
	return 0;
}

6135
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6136
{
6137
	kfree(memcg->nodeinfo[node]);
6138 6139
}

6140 6141
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6142
	struct mem_cgroup *memcg;
6143
	size_t size = memcg_size();
6144

6145
	/* Can be very big if nr_node_ids is very big */
6146
	if (size < PAGE_SIZE)
6147
		memcg = kzalloc(size, GFP_KERNEL);
6148
	else
6149
		memcg = vzalloc(size);
6150

6151
	if (!memcg)
6152 6153
		return NULL;

6154 6155
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6156
		goto out_free;
6157 6158
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6159 6160 6161

out_free:
	if (size < PAGE_SIZE)
6162
		kfree(memcg);
6163
	else
6164
		vfree(memcg);
6165
	return NULL;
6166 6167
}

6168
/*
6169 6170 6171 6172 6173 6174 6175 6176
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6177
 */
6178 6179

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6180
{
6181
	int node;
6182
	size_t size = memcg_size();
6183

6184
	mem_cgroup_remove_from_trees(memcg);
6185 6186 6187 6188 6189 6190

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6202
	disarm_static_keys(memcg);
6203 6204 6205 6206
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6207
}
6208

6209 6210 6211
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6212
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6213
{
6214
	if (!memcg->res.parent)
6215
		return NULL;
6216
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6217
}
G
Glauber Costa 已提交
6218
EXPORT_SYMBOL(parent_mem_cgroup);
6219

6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6243
static struct cgroup_subsys_state * __ref
6244
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6245
{
6246
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6247
	long error = -ENOMEM;
6248
	int node;
B
Balbir Singh 已提交
6249

6250 6251
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6252
		return ERR_PTR(error);
6253

B
Bob Liu 已提交
6254
	for_each_node(node)
6255
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6256
			goto free_out;
6257

6258
	/* root ? */
6259
	if (parent_css == NULL) {
6260
		root_mem_cgroup = memcg;
6261 6262 6263
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6264
	}
6265

6266 6267 6268 6269 6270
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6271
	vmpressure_init(&memcg->vmpressure);
6272 6273 6274 6275 6276 6277 6278 6279 6280

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6281
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6282
{
6283 6284
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6285 6286
	int error = 0;

6287 6288 6289
	if (css->cgroup->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;

T
Tejun Heo 已提交
6290
	if (!parent)
6291 6292
		return 0;

6293
	mutex_lock(&memcg_create_mutex);
6294 6295 6296 6297 6298 6299

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6300 6301
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6302
		res_counter_init(&memcg->kmem, &parent->kmem);
6303

6304
		/*
6305 6306
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6307
		 */
6308
	} else {
6309 6310
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6311
		res_counter_init(&memcg->kmem, NULL);
6312 6313 6314 6315 6316
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6317
		if (parent != root_mem_cgroup)
6318
			mem_cgroup_subsys.broken_hierarchy = true;
6319
	}
6320 6321

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6322
	mutex_unlock(&memcg_create_mutex);
6323
	return error;
B
Balbir Singh 已提交
6324 6325
}

M
Michal Hocko 已提交
6326 6327 6328 6329 6330 6331 6332 6333
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6334
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6335 6336 6337 6338 6339 6340

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6341
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6342 6343
}

6344
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6345
{
6346
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6347

6348 6349
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6350
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6351
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6352
	mem_cgroup_destroy_all_caches(memcg);
6353
	vmpressure_cleanup(&memcg->vmpressure);
6354 6355
}

6356
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6357
{
6358
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394
	/*
	 * XXX: css_offline() would be where we should reparent all
	 * memory to prepare the cgroup for destruction.  However,
	 * memcg does not do css_tryget() and res_counter charging
	 * under the same RCU lock region, which means that charging
	 * could race with offlining.  Offlining only happens to
	 * cgroups with no tasks in them but charges can show up
	 * without any tasks from the swapin path when the target
	 * memcg is looked up from the swapout record and not from the
	 * current task as it usually is.  A race like this can leak
	 * charges and put pages with stale cgroup pointers into
	 * circulation:
	 *
	 * #0                        #1
	 *                           lookup_swap_cgroup_id()
	 *                           rcu_read_lock()
	 *                           mem_cgroup_lookup()
	 *                           css_tryget()
	 *                           rcu_read_unlock()
	 * disable css_tryget()
	 * call_rcu()
	 *   offline_css()
	 *     reparent_charges()
	 *                           res_counter_charge()
	 *                           css_put()
	 *                             css_free()
	 *                           pc->mem_cgroup = dead memcg
	 *                           add page to lru
	 *
	 * The bulk of the charges are still moved in offline_css() to
	 * avoid pinning a lot of pages in case a long-term reference
	 * like a swapout record is deferring the css_free() to long
	 * after offlining.  But this makes sure we catch any charges
	 * made after offlining:
	 */
	mem_cgroup_reparent_charges(memcg);
6395

6396
	memcg_destroy_kmem(memcg);
6397
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6398 6399
}

6400
#ifdef CONFIG_MMU
6401
/* Handlers for move charge at task migration. */
6402 6403
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6404
{
6405 6406
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6407
	struct mem_cgroup *memcg = mc.to;
6408

6409
	if (mem_cgroup_is_root(memcg)) {
6410 6411 6412 6413 6414 6415 6416 6417
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6418
		 * "memcg" cannot be under rmdir() because we've already checked
6419 6420 6421 6422
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6423
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6424
			goto one_by_one;
6425
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6426
						PAGE_SIZE * count, &dummy)) {
6427
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6444 6445
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6446
		if (ret)
6447
			/* mem_cgroup_clear_mc() will do uncharge later */
6448
			return ret;
6449 6450
		mc.precharge++;
	}
6451 6452 6453 6454
	return ret;
}

/**
6455
 * get_mctgt_type - get target type of moving charge
6456 6457 6458
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6459
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6460 6461 6462 6463 6464 6465
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6466 6467 6468
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6469 6470 6471 6472 6473
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6474
	swp_entry_t	ent;
6475 6476 6477
};

enum mc_target_type {
6478
	MC_TARGET_NONE = 0,
6479
	MC_TARGET_PAGE,
6480
	MC_TARGET_SWAP,
6481 6482
};

D
Daisuke Nishimura 已提交
6483 6484
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6485
{
D
Daisuke Nishimura 已提交
6486
	struct page *page = vm_normal_page(vma, addr, ptent);
6487

D
Daisuke Nishimura 已提交
6488 6489 6490 6491
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6492
		if (!move_anon())
D
Daisuke Nishimura 已提交
6493
			return NULL;
6494 6495
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6496 6497 6498 6499 6500 6501 6502
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6503
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6504 6505 6506 6507 6508 6509 6510 6511
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6512 6513 6514 6515
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6516
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6517 6518 6519 6520 6521
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6522 6523 6524 6525 6526 6527 6528
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6529

6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6549 6550 6551 6552 6553 6554
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6555
		if (do_swap_account)
6556
			*entry = swap;
6557
		page = find_get_page(swap_address_space(swap), swap.val);
6558
	}
6559
#endif
6560 6561 6562
	return page;
}

6563
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6564 6565 6566 6567
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6568
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6569 6570 6571 6572 6573 6574
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6575 6576
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6577 6578

	if (!page && !ent.val)
6579
		return ret;
6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6595 6596
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
6597
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6598 6599 6600
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6601 6602 6603 6604
	}
	return ret;
}

6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6640 6641 6642 6643 6644 6645 6646 6647
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6648
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6649 6650
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
6651
		spin_unlock(ptl);
6652
		return 0;
6653
	}
6654

6655 6656
	if (pmd_trans_unstable(pmd))
		return 0;
6657 6658
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6659
		if (get_mctgt_type(vma, addr, *pte, NULL))
6660 6661 6662 6663
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6664 6665 6666
	return 0;
}

6667 6668 6669 6670 6671
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6672
	down_read(&mm->mmap_sem);
6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6684
	up_read(&mm->mmap_sem);
6685 6686 6687 6688 6689 6690 6691 6692 6693

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6694 6695 6696 6697 6698
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6699 6700
}

6701 6702
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6703
{
6704 6705
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6706
	int i;
6707

6708
	/* we must uncharge all the leftover precharges from mc.to */
6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6720
	}
6721 6722 6723 6724 6725 6726
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6727 6728 6729

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6730 6731 6732 6733 6734 6735 6736 6737 6738

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6739
		/* we've already done css_get(mc.to) */
6740 6741
		mc.moved_swap = 0;
	}
6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6757
	spin_lock(&mc.lock);
6758 6759
	mc.from = NULL;
	mc.to = NULL;
6760
	spin_unlock(&mc.lock);
6761
	mem_cgroup_end_move(from);
6762 6763
}

6764
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6765
				 struct cgroup_taskset *tset)
6766
{
6767
	struct task_struct *p = cgroup_taskset_first(tset);
6768
	int ret = 0;
6769
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6770
	unsigned long move_charge_at_immigrate;
6771

6772 6773 6774 6775 6776 6777 6778
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6779 6780 6781
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6782
		VM_BUG_ON(from == memcg);
6783 6784 6785 6786 6787

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6788 6789 6790 6791
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6792
			VM_BUG_ON(mc.moved_charge);
6793
			VM_BUG_ON(mc.moved_swap);
6794
			mem_cgroup_start_move(from);
6795
			spin_lock(&mc.lock);
6796
			mc.from = from;
6797
			mc.to = memcg;
6798
			mc.immigrate_flags = move_charge_at_immigrate;
6799
			spin_unlock(&mc.lock);
6800
			/* We set mc.moving_task later */
6801 6802 6803 6804

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6805 6806
		}
		mmput(mm);
6807 6808 6809 6810
	}
	return ret;
}

6811
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6812
				     struct cgroup_taskset *tset)
6813
{
6814
	mem_cgroup_clear_mc();
6815 6816
}

6817 6818 6819
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6820
{
6821 6822 6823 6824
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6825 6826 6827 6828
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6829

6830 6831 6832 6833 6834 6835 6836 6837 6838 6839
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
6840
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6841
		if (mc.precharge < HPAGE_PMD_NR) {
6842
			spin_unlock(ptl);
6843 6844 6845 6846 6847 6848 6849 6850
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6851
							pc, mc.from, mc.to)) {
6852 6853 6854 6855 6856 6857 6858
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
6859
		spin_unlock(ptl);
6860
		return 0;
6861 6862
	}

6863 6864
	if (pmd_trans_unstable(pmd))
		return 0;
6865 6866 6867 6868
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6869
		swp_entry_t ent;
6870 6871 6872 6873

		if (!mc.precharge)
			break;

6874
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6875 6876 6877 6878 6879
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6880
			if (!mem_cgroup_move_account(page, 1, pc,
6881
						     mc.from, mc.to)) {
6882
				mc.precharge--;
6883 6884
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6885 6886
			}
			putback_lru_page(page);
6887
put:			/* get_mctgt_type() gets the page */
6888 6889
			put_page(page);
			break;
6890 6891
		case MC_TARGET_SWAP:
			ent = target.ent;
6892
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6893
				mc.precharge--;
6894 6895 6896
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6897
			break;
6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6912
		ret = mem_cgroup_do_precharge(1);
6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6956
	up_read(&mm->mmap_sem);
6957 6958
}

6959
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6960
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6961
{
6962
	struct task_struct *p = cgroup_taskset_first(tset);
6963
	struct mm_struct *mm = get_task_mm(p);
6964 6965

	if (mm) {
6966 6967
		if (mc.to)
			mem_cgroup_move_charge(mm);
6968 6969
		mmput(mm);
	}
6970 6971
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6972
}
6973
#else	/* !CONFIG_MMU */
6974
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6975
				 struct cgroup_taskset *tset)
6976 6977 6978
{
	return 0;
}
6979
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6980
				     struct cgroup_taskset *tset)
6981 6982
{
}
6983
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6984
				 struct cgroup_taskset *tset)
6985 6986 6987
{
}
#endif
B
Balbir Singh 已提交
6988

6989 6990 6991 6992
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6993
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6994 6995 6996 6997 6998 6999
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
7000 7001
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
7002 7003
}

B
Balbir Singh 已提交
7004 7005 7006
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
7007
	.css_alloc = mem_cgroup_css_alloc,
7008
	.css_online = mem_cgroup_css_online,
7009 7010
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
7011 7012
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
7013
	.attach = mem_cgroup_move_task,
7014
	.bind = mem_cgroup_bind,
7015
	.base_cftypes = mem_cgroup_files,
7016
	.early_init = 0,
B
Balbir Singh 已提交
7017
};
7018

A
Andrew Morton 已提交
7019
#ifdef CONFIG_MEMCG_SWAP
7020 7021
static int __init enable_swap_account(char *s)
{
7022
	if (!strcmp(s, "1"))
7023
		really_do_swap_account = 1;
7024
	else if (!strcmp(s, "0"))
7025 7026 7027
		really_do_swap_account = 0;
	return 1;
}
7028
__setup("swapaccount=", enable_swap_account);
7029

7030 7031
static void __init memsw_file_init(void)
{
7032 7033 7034 7035 7036 7037 7038 7039 7040
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
7041
}
7042

7043
#else
7044
static void __init enable_swap_cgroup(void)
7045 7046
{
}
7047
#endif
7048 7049

/*
7050 7051 7052 7053 7054 7055
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7056 7057 7058 7059
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7060
	enable_swap_cgroup();
7061
	mem_cgroup_soft_limit_tree_init();
7062
	memcg_stock_init();
7063 7064 7065
	return 0;
}
subsys_initcall(mem_cgroup_init);