memcontrol.c 143.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75
#else
76
#define do_swap_account		0
77 78 79
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97 98 99 100
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

101 102 103
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
104 105
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
106 107
	MEM_CGROUP_EVENTS_NSTATS,
};
108 109 110 111 112 113 114 115

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

116 117 118 119 120 121 122 123 124
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
125
	MEM_CGROUP_TARGET_NUMAINFO,
126 127
	MEM_CGROUP_NTARGETS,
};
128 129 130
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
131

132
struct mem_cgroup_stat_cpu {
133
	long count[MEM_CGROUP_STAT_NSTATS];
134
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135
	unsigned long nr_page_events;
136
	unsigned long targets[MEM_CGROUP_NTARGETS];
137 138
};

139 140 141 142 143 144 145
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

146 147 148 149
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
150
	struct lruvec		lruvec;
151
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
152

153 154
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

155 156 157 158
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
159
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
160
						/* use container_of	   */
161 162 163 164 165 166 167 168 169 170
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

191 192 193 194 195
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
196
/* For threshold */
197
struct mem_cgroup_threshold_ary {
198
	/* An array index points to threshold just below or equal to usage. */
199
	int current_threshold;
200 201 202 203 204
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
205 206 207 208 209 210 211 212 213 214 215 216

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
217 218 219 220 221
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
222

223 224
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
225

B
Balbir Singh 已提交
226 227 228 229 230 231 232
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 234 235
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
236 237 238 239 240 241 242
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
		 * But when using vfree(), that cannot be done at
		 * interrupt time, so we must then queue the work.
		 */
		struct work_struct work_freeing;
	};

267 268 269 270
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
271
	struct mem_cgroup_lru_info info;
272 273 274
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
275 276
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
277
#endif
278 279 280 281
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
282 283 284 285

	bool		oom_lock;
	atomic_t	under_oom;

286
	atomic_t	refcnt;
287

288
	int	swappiness;
289 290
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
291

292 293 294
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

295 296 297 298
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
299
	struct mem_cgroup_thresholds thresholds;
300

301
	/* thresholds for mem+swap usage. RCU-protected */
302
	struct mem_cgroup_thresholds memsw_thresholds;
303

K
KAMEZAWA Hiroyuki 已提交
304 305
	/* For oom notifier event fd */
	struct list_head oom_notify;
306

307 308 309 310 311
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
312 313 314 315
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
316 317
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
318
	/*
319
	 * percpu counter.
320
	 */
321
	struct mem_cgroup_stat_cpu __percpu *stat;
322 323 324 325 326 327
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
328 329 330 331

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
332 333
};

334 335 336 337 338 339
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
340
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
341
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
342 343 344
	NR_MOVE_TYPE,
};

345 346
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
347
	spinlock_t	  lock; /* for from, to */
348 349 350
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
351
	unsigned long moved_charge;
352
	unsigned long moved_swap;
353 354 355
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
356
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 358
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
359

D
Daisuke Nishimura 已提交
360 361 362 363 364 365
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

366 367 368 369 370 371
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

372 373 374 375
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
376 377
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
378

379 380 381
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
382
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
383
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
384
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
385
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
386 387 388
	NR_CHARGE_TYPE,
};

389
/* for encoding cft->private value on file */
390 391 392
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
393 394
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
395
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
396 397
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
398

399 400 401 402 403 404 405 406
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

407 408
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
409 410 411 412

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#include <net/sock.h>
G
Glauber Costa 已提交
413
#include <net/ip.h>
G
Glauber Costa 已提交
414 415 416 417

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
418
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
419 420 421 422
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

423 424 425 426 427 428 429 430 431 432 433 434 435 436
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
450
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
451 452 453 454 455 456
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
457

458
#ifdef CONFIG_INET
G
Glauber Costa 已提交
459 460 461 462 463 464 465 466
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
467 468 469
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

470
static void drain_all_stock_async(struct mem_cgroup *memcg);
471

472
static struct mem_cgroup_per_zone *
473
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
474
{
475
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
476 477
}

478
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
479
{
480
	return &memcg->css;
481 482
}

483
static struct mem_cgroup_per_zone *
484
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
485
{
486 487
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
488

489
	return mem_cgroup_zoneinfo(memcg, nid, zid);
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
508
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
509
				struct mem_cgroup_per_zone *mz,
510 511
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
512 513 514 515 516 517 518 519
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

520 521 522
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
539 540 541
}

static void
542
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
543 544 545 546 547 548 549 550 551
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

552
static void
553
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
554 555 556 557
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
558
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
559 560 561 562
	spin_unlock(&mctz->lock);
}


563
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
564
{
565
	unsigned long long excess;
566 567
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
568 569
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
570 571 572
	mctz = soft_limit_tree_from_page(page);

	/*
573 574
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
575
	 */
576 577 578
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
579 580 581 582
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
583
		if (excess || mz->on_tree) {
584 585 586
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
587
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
588
			/*
589 590
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
591
			 */
592
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
593 594
			spin_unlock(&mctz->lock);
		}
595 596 597
	}
}

598
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
599 600 601 602 603
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
604
	for_each_node(node) {
605
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
606
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
607
			mctz = soft_limit_tree_node_zone(node, zone);
608
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
609 610 611 612
		}
	}
}

613 614 615 616
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
617
	struct mem_cgroup_per_zone *mz;
618 619

retry:
620
	mz = NULL;
621 622 623 624 625 626 627 628 629 630
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
631 632 633
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
669
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
670
				 enum mem_cgroup_stat_index idx)
671
{
672
	long val = 0;
673 674
	int cpu;

675 676
	get_online_cpus();
	for_each_online_cpu(cpu)
677
		val += per_cpu(memcg->stat->count[idx], cpu);
678
#ifdef CONFIG_HOTPLUG_CPU
679 680 681
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
682 683
#endif
	put_online_cpus();
684 685 686
	return val;
}

687
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
688 689 690
					 bool charge)
{
	int val = (charge) ? 1 : -1;
691
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
692 693
}

694
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
695 696 697 698 699 700
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
701
		val += per_cpu(memcg->stat->events[idx], cpu);
702
#ifdef CONFIG_HOTPLUG_CPU
703 704 705
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
706 707 708 709
#endif
	return val;
}

710
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
711
					 bool anon, int nr_pages)
712
{
713 714
	preempt_disable();

715 716 717 718 719 720
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
721
				nr_pages);
722
	else
723
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
724
				nr_pages);
725

726 727
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
728
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
729
	else {
730
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
731 732
		nr_pages = -nr_pages; /* for event */
	}
733

734
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
735

736
	preempt_enable();
737 738
}

739
unsigned long
740 741 742 743 744 745 746 747 748
mem_cgroup_get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
749
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
750
			unsigned int lru_mask)
751 752
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
753
	enum lru_list lru;
754 755
	unsigned long ret = 0;

756
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
757

H
Hugh Dickins 已提交
758 759 760
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
761 762 763 764 765
	}
	return ret;
}

static unsigned long
766
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
767 768
			int nid, unsigned int lru_mask)
{
769 770 771
	u64 total = 0;
	int zid;

772
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
773 774
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
775

776 777
	return total;
}
778

779
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
780
			unsigned int lru_mask)
781
{
782
	int nid;
783 784
	u64 total = 0;

785
	for_each_node_state(nid, N_HIGH_MEMORY)
786
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
787
	return total;
788 789
}

790 791
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
792 793 794
{
	unsigned long val, next;

795
	val = __this_cpu_read(memcg->stat->nr_page_events);
796
	next = __this_cpu_read(memcg->stat->targets[target]);
797
	/* from time_after() in jiffies.h */
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
814
	}
815
	return false;
816 817 818 819 820 821
}

/*
 * Check events in order.
 *
 */
822
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
823
{
824
	preempt_disable();
825
	/* threshold event is triggered in finer grain than soft limit */
826 827
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
828 829
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
830 831 832 833 834 835 836 837 838

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

839
		mem_cgroup_threshold(memcg);
840
		if (unlikely(do_softlimit))
841
			mem_cgroup_update_tree(memcg, page);
842
#if MAX_NUMNODES > 1
843
		if (unlikely(do_numainfo))
844
			atomic_inc(&memcg->numainfo_events);
845
#endif
846 847
	} else
		preempt_enable();
848 849
}

G
Glauber Costa 已提交
850
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
851 852 853 854 855 856
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

857
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
858
{
859 860 861 862 863 864 865 866
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

867 868 869 870
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

871
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
872
{
873
	struct mem_cgroup *memcg = NULL;
874 875 876

	if (!mm)
		return NULL;
877 878 879 880 881 882 883
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
884 885
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
886
			break;
887
	} while (!css_tryget(&memcg->css));
888
	rcu_read_unlock();
889
	return memcg;
890 891
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
912
{
913 914
	struct mem_cgroup *memcg = NULL;
	int id = 0;
915

916 917 918
	if (mem_cgroup_disabled())
		return NULL;

919 920
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
921

922 923
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
924

925 926
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
927

928 929 930 931 932
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
933

934
	while (!memcg) {
935
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
936
		struct cgroup_subsys_state *css;
937

938 939 940 941 942 943 944 945 946 947 948
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
949

950 951 952 953 954 955 956 957
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
958 959
		rcu_read_unlock();

960 961 962 963 964 965 966
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
967 968 969 970 971

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
972
}
K
KAMEZAWA Hiroyuki 已提交
973

974 975 976 977 978 979 980
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
981 982 983 984 985 986
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
987

988 989 990 991 992 993
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
994
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
995
	     iter != NULL;				\
996
	     iter = mem_cgroup_iter(root, iter, NULL))
997

998
#define for_each_mem_cgroup(iter)			\
999
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1000
	     iter != NULL;				\
1001
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1002

1003
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1004
{
1005
	return (memcg == root_mem_cgroup);
1006 1007
}

1008 1009
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
1010
	struct mem_cgroup *memcg;
1011 1012 1013 1014 1015

	if (!mm)
		return;

	rcu_read_lock();
1016 1017
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1018 1019 1020 1021
		goto out;

	switch (idx) {
	case PGFAULT:
1022 1023 1024 1025
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1026 1027 1028 1029 1030 1031 1032 1033 1034
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
 * @mem: memcg of the wanted lruvec
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1069

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
/**
 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
 * @zone: zone of the page
 * @page: the page
 * @lru: current lru
 *
 * This function accounts for @page being added to @lru, and returns
 * the lruvec for the given @zone and the memcg @page is charged to.
 *
 * The callsite is then responsible for physically linking the page to
 * the returned lruvec->lists[@lru].
 */
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
				       enum lru_list lru)
K
KAMEZAWA Hiroyuki 已提交
1084 1085
{
	struct mem_cgroup_per_zone *mz;
1086 1087
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1088

1089
	if (mem_cgroup_disabled())
1090 1091
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1092
	pc = lookup_page_cgroup(page);
1093
	memcg = pc->mem_cgroup;
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

	/*
	 * Surreptitiously switch any uncharged page to root:
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
	if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
		pc->mem_cgroup = memcg = root_mem_cgroup;

1107 1108
	mz = page_cgroup_zoneinfo(memcg, page);
	/* compound_order() is stabilized through lru_lock */
1109
	mz->lru_size[lru] += 1 << compound_order(page);
1110
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1111
}
1112

1113 1114 1115 1116 1117 1118 1119 1120 1121
/**
 * mem_cgroup_lru_del_list - account for removing an lru page
 * @page: the page
 * @lru: target lru
 *
 * This function accounts for @page being removed from @lru.
 *
 * The callsite is then responsible for physically unlinking
 * @page->lru.
1122
 */
1123
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1124 1125
{
	struct mem_cgroup_per_zone *mz;
1126
	struct mem_cgroup *memcg;
1127 1128 1129 1130 1131 1132
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1133 1134
	memcg = pc->mem_cgroup;
	VM_BUG_ON(!memcg);
1135 1136
	mz = page_cgroup_zoneinfo(memcg, page);
	/* huge page split is done under lru_lock. so, we have no races. */
1137 1138
	VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
	mz->lru_size[lru] -= 1 << compound_order(page);
1139 1140
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
/**
 * mem_cgroup_lru_move_lists - account for moving a page between lrus
 * @zone: zone of the page
 * @page: the page
 * @from: current lru
 * @to: target lru
 *
 * This function accounts for @page being moved between the lrus @from
 * and @to, and returns the lruvec for the given @zone and the memcg
 * @page is charged to.
 *
 * The callsite is then responsible for physically relinking
 * @page->lru to the returned lruvec->lists[@to].
 */
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
					 struct page *page,
					 enum lru_list from,
					 enum lru_list to)
1159
{
1160 1161 1162
	/* XXX: Optimize this, especially for @from == @to */
	mem_cgroup_lru_del_list(page, from);
	return mem_cgroup_lru_add_list(zone, page, to);
K
KAMEZAWA Hiroyuki 已提交
1163
}
1164

1165
/*
1166
 * Checks whether given mem is same or in the root_mem_cgroup's
1167 1168
 * hierarchy subtree
 */
1169 1170
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1171
{
1172 1173 1174 1175
	if (root_memcg == memcg)
		return true;
	if (!root_memcg->use_hierarchy)
		return false;
1176 1177 1178 1179 1180 1181 1182 1183
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1184
	rcu_read_lock();
1185
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1186 1187
	rcu_read_unlock();
	return ret;
1188 1189
}

1190
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1191 1192
{
	int ret;
1193
	struct mem_cgroup *curr = NULL;
1194
	struct task_struct *p;
1195

1196
	p = find_lock_task_mm(task);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1212 1213
	if (!curr)
		return 0;
1214
	/*
1215
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1216
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1217 1218
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1219
	 */
1220
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1221
	css_put(&curr->css);
1222 1223 1224
	return ret;
}

1225
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1226
{
1227
	unsigned long inactive_ratio;
1228
	unsigned long inactive;
1229
	unsigned long active;
1230
	unsigned long gb;
1231

1232 1233
	inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_ANON);
1234

1235 1236 1237 1238 1239 1240
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1241
	return inactive * inactive_ratio < active;
1242 1243
}

1244
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1245 1246 1247 1248
{
	unsigned long active;
	unsigned long inactive;

1249 1250
	inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_FILE);
1251 1252 1253 1254

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1265 1266
	if (!PageCgroupUsed(pc))
		return NULL;
1267 1268
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1269
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1270
	return &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
1271 1272
}

1273 1274 1275
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1276
/**
1277 1278
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1279
 *
1280
 * Returns the maximum amount of memory @mem can be charged with, in
1281
 * pages.
1282
 */
1283
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1284
{
1285 1286
	unsigned long long margin;

1287
	margin = res_counter_margin(&memcg->res);
1288
	if (do_swap_account)
1289
		margin = min(margin, res_counter_margin(&memcg->memsw));
1290
	return margin >> PAGE_SHIFT;
1291 1292
}

1293
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1294 1295 1296 1297 1298 1299 1300
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1301
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1302 1303
}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1318 1319 1320 1321

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1322
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1323
{
1324
	atomic_inc(&memcg_moving);
1325
	atomic_inc(&memcg->moving_account);
1326 1327 1328
	synchronize_rcu();
}

1329
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1330
{
1331 1332 1333 1334
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1335 1336
	if (memcg) {
		atomic_dec(&memcg_moving);
1337
		atomic_dec(&memcg->moving_account);
1338
	}
1339
}
1340

1341 1342 1343
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1344 1345
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1346 1347 1348 1349 1350 1351 1352
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1353
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1354 1355
{
	VM_BUG_ON(!rcu_read_lock_held());
1356
	return atomic_read(&memcg->moving_account) > 0;
1357
}
1358

1359
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1360
{
1361 1362
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1363
	bool ret = false;
1364 1365 1366 1367 1368 1369 1370 1371 1372
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1373

1374 1375
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1376 1377
unlock:
	spin_unlock(&mc.lock);
1378 1379 1380
	return ret;
}

1381
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1382 1383
{
	if (mc.moving_task && current != mc.moving_task) {
1384
		if (mem_cgroup_under_move(memcg)) {
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1397 1398 1399 1400
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1401
 * see mem_cgroup_stolen(), too.
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1415
/**
1416
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1435
	if (!memcg || !p)
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1481 1482 1483 1484
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1485
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1486 1487
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1488 1489
	struct mem_cgroup *iter;

1490
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1491
		num++;
1492 1493 1494
	return num;
}

D
David Rientjes 已提交
1495 1496 1497 1498 1499 1500 1501 1502
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1503 1504 1505
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1506 1507 1508 1509 1510 1511 1512 1513
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1560
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1561 1562
		int nid, bool noswap)
{
1563
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1564 1565 1566
		return true;
	if (noswap || !total_swap_pages)
		return false;
1567
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1568 1569 1570 1571
		return true;
	return false;

}
1572 1573 1574 1575 1576 1577 1578 1579
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1580
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1581 1582
{
	int nid;
1583 1584 1585 1586
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1587
	if (!atomic_read(&memcg->numainfo_events))
1588
		return;
1589
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1590 1591 1592
		return;

	/* make a nodemask where this memcg uses memory from */
1593
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1594 1595 1596

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1597 1598
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1599
	}
1600

1601 1602
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1617
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1618 1619 1620
{
	int node;

1621 1622
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1623

1624
	node = next_node(node, memcg->scan_nodes);
1625
	if (node == MAX_NUMNODES)
1626
		node = first_node(memcg->scan_nodes);
1627 1628 1629 1630 1631 1632 1633 1634 1635
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1636
	memcg->last_scanned_node = node;
1637 1638 1639
	return node;
}

1640 1641 1642 1643 1644 1645
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1646
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1647 1648 1649 1650 1651 1652 1653
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1654 1655
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1656
		     nid < MAX_NUMNODES;
1657
		     nid = next_node(nid, memcg->scan_nodes)) {
1658

1659
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1660 1661 1662 1663 1664 1665 1666
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1667
		if (node_isset(nid, memcg->scan_nodes))
1668
			continue;
1669
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1670 1671 1672 1673 1674
			return true;
	}
	return false;
}

1675
#else
1676
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1677 1678 1679
{
	return 0;
}
1680

1681
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1682
{
1683
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1684
}
1685 1686
#endif

1687 1688 1689 1690
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1691
{
1692
	struct mem_cgroup *victim = NULL;
1693
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1694
	int loop = 0;
1695
	unsigned long excess;
1696
	unsigned long nr_scanned;
1697 1698 1699 1700
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1701

1702
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1703

1704
	while (1) {
1705
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1706
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1707
			loop++;
1708 1709 1710 1711 1712 1713
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1714
				if (!total)
1715 1716
					break;
				/*
L
Lucas De Marchi 已提交
1717
				 * We want to do more targeted reclaim.
1718 1719 1720 1721 1722
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1723
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1724 1725
					break;
			}
1726
			continue;
1727
		}
1728
		if (!mem_cgroup_reclaimable(victim, false))
1729
			continue;
1730 1731 1732 1733
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1734
			break;
1735
	}
1736
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1737
	return total;
1738 1739
}

K
KAMEZAWA Hiroyuki 已提交
1740 1741 1742
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1743
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1744
 */
1745
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1746
{
1747
	struct mem_cgroup *iter, *failed = NULL;
1748

1749
	for_each_mem_cgroup_tree(iter, memcg) {
1750
		if (iter->oom_lock) {
1751 1752 1753 1754 1755
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1756 1757
			mem_cgroup_iter_break(memcg, iter);
			break;
1758 1759
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1760
	}
K
KAMEZAWA Hiroyuki 已提交
1761

1762
	if (!failed)
1763
		return true;
1764 1765 1766 1767 1768

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1769
	for_each_mem_cgroup_tree(iter, memcg) {
1770
		if (iter == failed) {
1771 1772
			mem_cgroup_iter_break(memcg, iter);
			break;
1773 1774 1775
		}
		iter->oom_lock = false;
	}
1776
	return false;
1777
}
1778

1779
/*
1780
 * Has to be called with memcg_oom_lock
1781
 */
1782
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1783
{
K
KAMEZAWA Hiroyuki 已提交
1784 1785
	struct mem_cgroup *iter;

1786
	for_each_mem_cgroup_tree(iter, memcg)
1787 1788 1789 1790
		iter->oom_lock = false;
	return 0;
}

1791
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1792 1793 1794
{
	struct mem_cgroup *iter;

1795
	for_each_mem_cgroup_tree(iter, memcg)
1796 1797 1798
		atomic_inc(&iter->under_oom);
}

1799
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1800 1801 1802
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1803 1804 1805 1806 1807
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1808
	for_each_mem_cgroup_tree(iter, memcg)
1809
		atomic_add_unless(&iter->under_oom, -1, 0);
1810 1811
}

1812
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1813 1814
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1815
struct oom_wait_info {
1816
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1817 1818 1819 1820 1821 1822
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1823 1824
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1825 1826 1827
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1828
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1829 1830

	/*
1831
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1832 1833
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1834 1835
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1836 1837 1838 1839
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1840
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1841
{
1842 1843
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1844 1845
}

1846
static void memcg_oom_recover(struct mem_cgroup *memcg)
1847
{
1848 1849
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1850 1851
}

K
KAMEZAWA Hiroyuki 已提交
1852 1853 1854
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1855 1856
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1857
{
K
KAMEZAWA Hiroyuki 已提交
1858
	struct oom_wait_info owait;
1859
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1860

1861
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1862 1863 1864 1865
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1866
	need_to_kill = true;
1867
	mem_cgroup_mark_under_oom(memcg);
1868

1869
	/* At first, try to OOM lock hierarchy under memcg.*/
1870
	spin_lock(&memcg_oom_lock);
1871
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1872 1873 1874 1875 1876
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1877
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1878
	if (!locked || memcg->oom_kill_disable)
1879 1880
		need_to_kill = false;
	if (locked)
1881
		mem_cgroup_oom_notify(memcg);
1882
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1883

1884 1885
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1886
		mem_cgroup_out_of_memory(memcg, mask, order);
1887
	} else {
K
KAMEZAWA Hiroyuki 已提交
1888
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1889
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1890
	}
1891
	spin_lock(&memcg_oom_lock);
1892
	if (locked)
1893 1894
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1895
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1896

1897
	mem_cgroup_unmark_under_oom(memcg);
1898

K
KAMEZAWA Hiroyuki 已提交
1899 1900 1901
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1902
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1903
	return true;
1904 1905
}

1906 1907 1908
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1926 1927
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1928
 */
1929

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
	 * need to take move_lock_page_cgroup(). Because we already hold
	 * rcu_read_lock(), any calls to move_account will be delayed until
1945
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1946
	 */
1947
	if (!mem_cgroup_stolen(memcg))
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
	 * should take move_lock_page_cgroup().
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

1970 1971
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1972
{
1973
	struct mem_cgroup *memcg;
1974
	struct page_cgroup *pc = lookup_page_cgroup(page);
1975
	unsigned long uninitialized_var(flags);
1976

1977
	if (mem_cgroup_disabled())
1978
		return;
1979

1980 1981
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1982
		return;
1983 1984

	switch (idx) {
1985 1986
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1987 1988 1989
		break;
	default:
		BUG();
1990
	}
1991

1992
	this_cpu_add(memcg->stat->count[idx], val);
1993
}
1994

1995 1996 1997 1998
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1999
#define CHARGE_BATCH	32U
2000 2001
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2002
	unsigned int nr_pages;
2003
	struct work_struct work;
2004
	unsigned long flags;
2005
#define FLUSHING_CACHED_CHARGE	0
2006 2007
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2008
static DEFINE_MUTEX(percpu_charge_mutex);
2009 2010

/*
2011
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2012 2013 2014 2015
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2016
static bool consume_stock(struct mem_cgroup *memcg)
2017 2018 2019 2020 2021
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2022
	if (memcg == stock->cached && stock->nr_pages)
2023
		stock->nr_pages--;
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2037 2038 2039 2040
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2041
		if (do_swap_account)
2042 2043
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2056
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2057 2058 2059 2060
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2061
 * This will be consumed by consume_stock() function, later.
2062
 */
2063
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2064 2065 2066
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2067
	if (stock->cached != memcg) { /* reset if necessary */
2068
		drain_stock(stock);
2069
		stock->cached = memcg;
2070
	}
2071
	stock->nr_pages += nr_pages;
2072 2073 2074 2075
	put_cpu_var(memcg_stock);
}

/*
2076
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2077 2078
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2079
 */
2080
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2081
{
2082
	int cpu, curcpu;
2083

2084 2085
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2086
	curcpu = get_cpu();
2087 2088
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2089
		struct mem_cgroup *memcg;
2090

2091 2092
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2093
			continue;
2094
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2095
			continue;
2096 2097 2098 2099 2100 2101
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2102
	}
2103
	put_cpu();
2104 2105 2106 2107 2108 2109

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2110
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2111 2112 2113
			flush_work(&stock->work);
	}
out:
2114
 	put_online_cpus();
2115 2116 2117 2118 2119 2120 2121 2122
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2123
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2124
{
2125 2126 2127 2128 2129
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2130
	drain_all_stock(root_memcg, false);
2131
	mutex_unlock(&percpu_charge_mutex);
2132 2133 2134
}

/* This is a synchronous drain interface. */
2135
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2136 2137
{
	/* called when force_empty is called */
2138
	mutex_lock(&percpu_charge_mutex);
2139
	drain_all_stock(root_memcg, true);
2140
	mutex_unlock(&percpu_charge_mutex);
2141 2142
}

2143 2144 2145 2146
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2147
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2148 2149 2150
{
	int i;

2151
	spin_lock(&memcg->pcp_counter_lock);
2152
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2153
		long x = per_cpu(memcg->stat->count[i], cpu);
2154

2155 2156
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2157
	}
2158
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2159
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2160

2161 2162
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2163
	}
2164
	spin_unlock(&memcg->pcp_counter_lock);
2165 2166 2167
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2168 2169 2170 2171 2172
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2173
	struct mem_cgroup *iter;
2174

2175
	if (action == CPU_ONLINE)
2176 2177
		return NOTIFY_OK;

2178
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2179
		return NOTIFY_OK;
2180

2181
	for_each_mem_cgroup(iter)
2182 2183
		mem_cgroup_drain_pcp_counter(iter, cpu);

2184 2185 2186 2187 2188
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2199
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2200
				unsigned int nr_pages, bool oom_check)
2201
{
2202
	unsigned long csize = nr_pages * PAGE_SIZE;
2203 2204 2205 2206 2207
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2208
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2209 2210 2211 2212

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2213
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2214 2215 2216
		if (likely(!ret))
			return CHARGE_OK;

2217
		res_counter_uncharge(&memcg->res, csize);
2218 2219 2220 2221
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2222
	/*
2223 2224
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2225 2226 2227 2228
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2229
	if (nr_pages == CHARGE_BATCH)
2230 2231 2232 2233 2234
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2235
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2236
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2237
		return CHARGE_RETRY;
2238
	/*
2239 2240 2241 2242 2243 2244 2245
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2246
	 */
2247
	if (nr_pages == 1 && ret)
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2261
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2262 2263 2264 2265 2266
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2267
/*
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2287
 */
2288
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2289
				   gfp_t gfp_mask,
2290
				   unsigned int nr_pages,
2291
				   struct mem_cgroup **ptr,
2292
				   bool oom)
2293
{
2294
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2295
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2296
	struct mem_cgroup *memcg = NULL;
2297
	int ret;
2298

K
KAMEZAWA Hiroyuki 已提交
2299 2300 2301 2302 2303 2304 2305 2306
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2307

2308
	/*
2309 2310
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2311 2312 2313
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2314
	if (!*ptr && !mm)
2315
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2316
again:
2317 2318 2319 2320
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2321
			goto done;
2322
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2323
			goto done;
2324
		css_get(&memcg->css);
2325
	} else {
K
KAMEZAWA Hiroyuki 已提交
2326
		struct task_struct *p;
2327

K
KAMEZAWA Hiroyuki 已提交
2328 2329 2330
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2331
		 * Because we don't have task_lock(), "p" can exit.
2332
		 * In that case, "memcg" can point to root or p can be NULL with
2333 2334 2335 2336 2337 2338
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2339
		 */
2340
		memcg = mem_cgroup_from_task(p);
2341 2342 2343
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2344 2345 2346
			rcu_read_unlock();
			goto done;
		}
2347
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2360
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2361 2362 2363 2364 2365
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2366

2367 2368
	do {
		bool oom_check;
2369

2370
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2371
		if (fatal_signal_pending(current)) {
2372
			css_put(&memcg->css);
2373
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2374
		}
2375

2376 2377 2378 2379
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2380
		}
2381

2382
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2383 2384 2385 2386
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2387
			batch = nr_pages;
2388 2389
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2390
			goto again;
2391
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2392
			css_put(&memcg->css);
2393 2394
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2395
			if (!oom) {
2396
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2397
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2398
			}
2399 2400 2401 2402
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2403
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2404
			goto bypass;
2405
		}
2406 2407
	} while (ret != CHARGE_OK);

2408
	if (batch > nr_pages)
2409 2410
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2411
done:
2412
	*ptr = memcg;
2413 2414
	return 0;
nomem:
2415
	*ptr = NULL;
2416
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2417
bypass:
2418 2419
	*ptr = root_mem_cgroup;
	return -EINTR;
2420
}
2421

2422 2423 2424 2425 2426
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2427
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2428
				       unsigned int nr_pages)
2429
{
2430
	if (!mem_cgroup_is_root(memcg)) {
2431 2432
		unsigned long bytes = nr_pages * PAGE_SIZE;

2433
		res_counter_uncharge(&memcg->res, bytes);
2434
		if (do_swap_account)
2435
			res_counter_uncharge(&memcg->memsw, bytes);
2436
	}
2437 2438
}

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2476
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2477
{
2478
	struct mem_cgroup *memcg = NULL;
2479
	struct page_cgroup *pc;
2480
	unsigned short id;
2481 2482
	swp_entry_t ent;

2483 2484 2485
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2486
	lock_page_cgroup(pc);
2487
	if (PageCgroupUsed(pc)) {
2488 2489 2490
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2491
	} else if (PageSwapCache(page)) {
2492
		ent.val = page_private(page);
2493
		id = lookup_swap_cgroup_id(ent);
2494
		rcu_read_lock();
2495 2496 2497
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2498
		rcu_read_unlock();
2499
	}
2500
	unlock_page_cgroup(pc);
2501
	return memcg;
2502 2503
}

2504
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2505
				       struct page *page,
2506
				       unsigned int nr_pages,
2507 2508
				       enum charge_type ctype,
				       bool lrucare)
2509
{
2510
	struct page_cgroup *pc = lookup_page_cgroup(page);
2511 2512
	struct zone *uninitialized_var(zone);
	bool was_on_lru = false;
2513
	bool anon;
2514

2515 2516 2517
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2518
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2519 2520 2521 2522 2523 2524
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
			ClearPageLRU(page);
			del_page_from_lru_list(zone, page, page_lru(page));
			was_on_lru = true;
		}
	}

2540
	pc->mem_cgroup = memcg;
2541 2542 2543 2544 2545 2546 2547
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2548
	smp_wmb();
2549
	SetPageCgroupUsed(pc);
2550

2551 2552 2553 2554 2555 2556 2557 2558 2559
	if (lrucare) {
		if (was_on_lru) {
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
			add_page_to_lru_list(zone, page, page_lru(page));
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2560 2561 2562 2563 2564 2565
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2566
	unlock_page_cgroup(pc);
2567

2568 2569 2570 2571 2572
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2573
	memcg_check_events(memcg, page);
2574
}
2575

2576 2577
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2578
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2579 2580
/*
 * Because tail pages are not marked as "used", set it. We're under
2581 2582 2583
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2584
 */
2585
void mem_cgroup_split_huge_fixup(struct page *head)
2586 2587
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2588 2589
	struct page_cgroup *pc;
	int i;
2590

2591 2592
	if (mem_cgroup_disabled())
		return;
2593 2594 2595 2596 2597 2598
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2599
}
2600
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2601

2602
/**
2603
 * mem_cgroup_move_account - move account of the page
2604
 * @page: the page
2605
 * @nr_pages: number of regular pages (>1 for huge pages)
2606 2607 2608 2609 2610
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2611
 * - page is not on LRU (isolate_page() is useful.)
2612
 * - compound_lock is held when nr_pages > 1
2613
 *
2614 2615
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2616
 */
2617 2618 2619 2620
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2621
				   struct mem_cgroup *to)
2622
{
2623 2624
	unsigned long flags;
	int ret;
2625
	bool anon = PageAnon(page);
2626

2627
	VM_BUG_ON(from == to);
2628
	VM_BUG_ON(PageLRU(page));
2629 2630 2631 2632 2633 2634 2635
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2636
	if (nr_pages > 1 && !PageTransHuge(page))
2637 2638 2639 2640 2641 2642 2643 2644
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2645
	move_lock_mem_cgroup(from, &flags);
2646

2647
	if (!anon && page_mapped(page)) {
2648 2649 2650 2651 2652
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2653
	}
2654
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2655

2656
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2657
	pc->mem_cgroup = to;
2658
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2659 2660 2661
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2662
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2663
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2664
	 * status here.
2665
	 */
2666
	move_unlock_mem_cgroup(from, &flags);
2667 2668
	ret = 0;
unlock:
2669
	unlock_page_cgroup(pc);
2670 2671 2672
	/*
	 * check events
	 */
2673 2674
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2675
out:
2676 2677 2678 2679 2680 2681 2682
	return ret;
}

/*
 * move charges to its parent.
 */

2683 2684
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2685 2686 2687 2688
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct mem_cgroup *parent;
2689
	unsigned int nr_pages;
2690
	unsigned long uninitialized_var(flags);
2691 2692 2693
	int ret;

	/* Is ROOT ? */
2694
	if (mem_cgroup_is_root(child))
2695 2696
		return -EINVAL;

2697 2698 2699 2700 2701
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2702

2703
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2704

2705 2706 2707 2708 2709 2710
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
2711

2712
	if (nr_pages > 1)
2713 2714
		flags = compound_lock_irqsave(page);

2715
	ret = mem_cgroup_move_account(page, nr_pages,
2716
				pc, child, parent);
2717 2718
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
2719

2720
	if (nr_pages > 1)
2721
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
2722
	putback_lru_page(page);
2723
put:
2724
	put_page(page);
2725
out:
2726 2727 2728
	return ret;
}

2729 2730 2731 2732 2733 2734 2735
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2736
				gfp_t gfp_mask, enum charge_type ctype)
2737
{
2738
	struct mem_cgroup *memcg = NULL;
2739
	unsigned int nr_pages = 1;
2740
	bool oom = true;
2741
	int ret;
A
Andrea Arcangeli 已提交
2742

A
Andrea Arcangeli 已提交
2743
	if (PageTransHuge(page)) {
2744
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2745
		VM_BUG_ON(!PageTransHuge(page));
2746 2747 2748 2749 2750
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2751
	}
2752

2753
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2754
	if (ret == -ENOMEM)
2755
		return ret;
2756
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2757 2758 2759
	return 0;
}

2760 2761
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2762
{
2763
	if (mem_cgroup_disabled())
2764
		return 0;
2765 2766 2767
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2768
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2769
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2770 2771
}

D
Daisuke Nishimura 已提交
2772 2773 2774 2775
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2776 2777
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2778
{
2779
	struct mem_cgroup *memcg = NULL;
2780
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2781 2782
	int ret;

2783
	if (mem_cgroup_disabled())
2784
		return 0;
2785 2786
	if (PageCompound(page))
		return 0;
2787

2788
	if (unlikely(!mm))
2789
		mm = &init_mm;
2790 2791
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2792

2793
	if (!PageSwapCache(page))
2794
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2795
	else { /* page is swapcache/shmem */
2796
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2797
		if (!ret)
2798 2799
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2800
	return ret;
2801 2802
}

2803 2804 2805
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2806
 * struct page_cgroup is acquired. This refcnt will be consumed by
2807 2808
 * "commit()" or removed by "cancel()"
 */
2809 2810
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2811
				 gfp_t mask, struct mem_cgroup **memcgp)
2812
{
2813
	struct mem_cgroup *memcg;
2814
	int ret;
2815

2816
	*memcgp = NULL;
2817

2818
	if (mem_cgroup_disabled())
2819 2820 2821 2822 2823 2824
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2825 2826 2827
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2828 2829
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2830
		goto charge_cur_mm;
2831 2832
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2833
		goto charge_cur_mm;
2834 2835
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2836
	css_put(&memcg->css);
2837 2838
	if (ret == -EINTR)
		ret = 0;
2839
	return ret;
2840 2841 2842
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2843 2844 2845 2846
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2847 2848
}

D
Daisuke Nishimura 已提交
2849
static void
2850
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2851
					enum charge_type ctype)
2852
{
2853
	if (mem_cgroup_disabled())
2854
		return;
2855
	if (!memcg)
2856
		return;
2857
	cgroup_exclude_rmdir(&memcg->css);
2858

2859
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2860 2861 2862
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2863 2864 2865
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2866
	 */
2867
	if (do_swap_account && PageSwapCache(page)) {
2868
		swp_entry_t ent = {.val = page_private(page)};
2869
		mem_cgroup_uncharge_swap(ent);
2870
	}
2871 2872 2873 2874 2875
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2876
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2877 2878
}

2879 2880
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2881
{
2882 2883
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2884 2885
}

2886
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2887
{
2888
	if (mem_cgroup_disabled())
2889
		return;
2890
	if (!memcg)
2891
		return;
2892
	__mem_cgroup_cancel_charge(memcg, 1);
2893 2894
}

2895
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2896 2897
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2898 2899 2900
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2901

2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2913
		batch->memcg = memcg;
2914 2915
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2916
	 * In those cases, all pages freed continuously can be expected to be in
2917 2918 2919 2920 2921 2922 2923 2924
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2925
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2926 2927
		goto direct_uncharge;

2928 2929 2930 2931 2932
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2933
	if (batch->memcg != memcg)
2934 2935
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2936
	batch->nr_pages++;
2937
	if (uncharge_memsw)
2938
		batch->memsw_nr_pages++;
2939 2940
	return;
direct_uncharge:
2941
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2942
	if (uncharge_memsw)
2943 2944 2945
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2946
}
2947

2948
/*
2949
 * uncharge if !page_mapped(page)
2950
 */
2951
static struct mem_cgroup *
2952
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2953
{
2954
	struct mem_cgroup *memcg = NULL;
2955 2956
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2957
	bool anon;
2958

2959
	if (mem_cgroup_disabled())
2960
		return NULL;
2961

K
KAMEZAWA Hiroyuki 已提交
2962
	if (PageSwapCache(page))
2963
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2964

A
Andrea Arcangeli 已提交
2965
	if (PageTransHuge(page)) {
2966
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2967 2968
		VM_BUG_ON(!PageTransHuge(page));
	}
2969
	/*
2970
	 * Check if our page_cgroup is valid
2971
	 */
2972
	pc = lookup_page_cgroup(page);
2973
	if (unlikely(!PageCgroupUsed(pc)))
2974
		return NULL;
2975

2976
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2977

2978
	memcg = pc->mem_cgroup;
2979

K
KAMEZAWA Hiroyuki 已提交
2980 2981 2982
	if (!PageCgroupUsed(pc))
		goto unlock_out;

2983 2984
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
2985 2986
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2987 2988 2989 2990 2991
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
2992 2993
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
2994
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2995 2996
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3008
	}
K
KAMEZAWA Hiroyuki 已提交
3009

3010
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3011

3012
	ClearPageCgroupUsed(pc);
3013 3014 3015 3016 3017 3018
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3019

3020
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3021
	/*
3022
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3023 3024
	 * will never be freed.
	 */
3025
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3026
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3027 3028
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3029
	}
3030 3031
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3032

3033
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3034 3035 3036

unlock_out:
	unlock_page_cgroup(pc);
3037
	return NULL;
3038 3039
}

3040 3041
void mem_cgroup_uncharge_page(struct page *page)
{
3042 3043 3044
	/* early check. */
	if (page_mapped(page))
		return;
3045
	VM_BUG_ON(page->mapping && !PageAnon(page));
3046 3047 3048 3049 3050 3051
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3052
	VM_BUG_ON(page->mapping);
3053 3054 3055
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3070 3071
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3092 3093 3094 3095 3096 3097
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3098
	memcg_oom_recover(batch->memcg);
3099 3100 3101 3102
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3103
#ifdef CONFIG_SWAP
3104
/*
3105
 * called after __delete_from_swap_cache() and drop "page" account.
3106 3107
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3108 3109
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3110 3111
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3112 3113 3114 3115 3116 3117
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3118

K
KAMEZAWA Hiroyuki 已提交
3119 3120 3121 3122 3123
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3124
		swap_cgroup_record(ent, css_id(&memcg->css));
3125
}
3126
#endif
3127 3128 3129 3130 3131 3132 3133

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3134
{
3135
	struct mem_cgroup *memcg;
3136
	unsigned short id;
3137 3138 3139 3140

	if (!do_swap_account)
		return;

3141 3142 3143
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3144
	if (memcg) {
3145 3146 3147 3148
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3149
		if (!mem_cgroup_is_root(memcg))
3150
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3151
		mem_cgroup_swap_statistics(memcg, false);
3152 3153
		mem_cgroup_put(memcg);
	}
3154
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3155
}
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3172
				struct mem_cgroup *from, struct mem_cgroup *to)
3173 3174 3175 3176 3177 3178 3179 3180
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3181
		mem_cgroup_swap_statistics(to, true);
3182
		/*
3183 3184 3185 3186 3187 3188
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3189 3190 3191 3192 3193 3194 3195 3196
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3197
				struct mem_cgroup *from, struct mem_cgroup *to)
3198 3199 3200
{
	return -EINVAL;
}
3201
#endif
K
KAMEZAWA Hiroyuki 已提交
3202

3203
/*
3204 3205
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3206
 */
3207
int mem_cgroup_prepare_migration(struct page *page,
3208
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3209
{
3210
	struct mem_cgroup *memcg = NULL;
3211
	struct page_cgroup *pc;
3212
	enum charge_type ctype;
3213
	int ret = 0;
3214

3215
	*memcgp = NULL;
3216

A
Andrea Arcangeli 已提交
3217
	VM_BUG_ON(PageTransHuge(page));
3218
	if (mem_cgroup_disabled())
3219 3220
		return 0;

3221 3222 3223
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3224 3225
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3257
	}
3258
	unlock_page_cgroup(pc);
3259 3260 3261 3262
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3263
	if (!memcg)
3264
		return 0;
3265

3266 3267
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3268
	css_put(&memcg->css);/* drop extra refcnt */
3269
	if (ret) {
3270 3271 3272 3273 3274 3275 3276 3277 3278
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
3279
		/* we'll need to revisit this error code (we have -EINTR) */
3280
		return -ENOMEM;
3281
	}
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3294
	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3295
	return ret;
3296
}
3297

3298
/* remove redundant charge if migration failed*/
3299
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3300
	struct page *oldpage, struct page *newpage, bool migration_ok)
3301
{
3302
	struct page *used, *unused;
3303
	struct page_cgroup *pc;
3304
	bool anon;
3305

3306
	if (!memcg)
3307
		return;
3308
	/* blocks rmdir() */
3309
	cgroup_exclude_rmdir(&memcg->css);
3310
	if (!migration_ok) {
3311 3312
		used = oldpage;
		unused = newpage;
3313
	} else {
3314
		used = newpage;
3315 3316
		unused = oldpage;
	}
3317
	/*
3318 3319 3320
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3321
	 */
3322 3323 3324 3325
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3326 3327 3328 3329
	anon = PageAnon(used);
	__mem_cgroup_uncharge_common(unused,
		anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
		     : MEM_CGROUP_CHARGE_TYPE_CACHE);
3330

3331
	/*
3332 3333 3334 3335 3336 3337
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3338
	 */
3339
	if (anon)
3340
		mem_cgroup_uncharge_page(used);
3341
	/*
3342 3343
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3344 3345 3346
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3347
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3348
}
3349

3350 3351 3352 3353 3354 3355 3356 3357
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3358
	struct mem_cgroup *memcg = NULL;
3359 3360 3361 3362 3363 3364 3365 3366 3367
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3368 3369 3370 3371 3372
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3373 3374
	unlock_page_cgroup(pc);

3375 3376 3377 3378 3379 3380 3381
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;

3382 3383 3384 3385 3386 3387 3388 3389
	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3390
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3391 3392
}

3393 3394 3395 3396 3397 3398
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3399 3400 3401 3402 3403
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3423
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3424 3425 3426 3427 3428
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3429 3430
static DEFINE_MUTEX(set_limit_mutex);

3431
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3432
				unsigned long long val)
3433
{
3434
	int retry_count;
3435
	u64 memswlimit, memlimit;
3436
	int ret = 0;
3437 3438
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3439
	int enlarge;
3440 3441 3442 3443 3444 3445 3446 3447 3448

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3449

3450
	enlarge = 0;
3451
	while (retry_count) {
3452 3453 3454 3455
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3456 3457 3458
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3459
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3460 3461 3462 3463 3464 3465
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3466 3467
			break;
		}
3468 3469 3470 3471 3472

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3473
		ret = res_counter_set_limit(&memcg->res, val);
3474 3475 3476 3477 3478 3479
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3480 3481 3482 3483 3484
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3485 3486
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3487 3488 3489 3490 3491 3492
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3493
	}
3494 3495
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3496

3497 3498 3499
	return ret;
}

L
Li Zefan 已提交
3500 3501
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3502
{
3503
	int retry_count;
3504
	u64 memlimit, memswlimit, oldusage, curusage;
3505 3506
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3507
	int enlarge = 0;
3508

3509 3510 3511
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3512 3513 3514 3515 3516 3517 3518 3519
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3520
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3521 3522 3523 3524 3525 3526 3527 3528
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3529 3530 3531
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3532
		ret = res_counter_set_limit(&memcg->memsw, val);
3533 3534 3535 3536 3537 3538
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3539 3540 3541 3542 3543
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3544 3545 3546
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3547
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3548
		/* Usage is reduced ? */
3549
		if (curusage >= oldusage)
3550
			retry_count--;
3551 3552
		else
			oldusage = curusage;
3553
	}
3554 3555
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3556 3557 3558
	return ret;
}

3559
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3560 3561
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3562 3563 3564 3565 3566 3567
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3568
	unsigned long long excess;
3569
	unsigned long nr_scanned;
3570 3571 3572 3573

	if (order > 0)
		return 0;

3574
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3588
		nr_scanned = 0;
3589
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3590
						    gfp_mask, &nr_scanned);
3591
		nr_reclaimed += reclaimed;
3592
		*total_scanned += nr_scanned;
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3615
				if (next_mz == mz)
3616
					css_put(&next_mz->memcg->css);
3617
				else /* next_mz == NULL or other memcg */
3618 3619 3620
					break;
			} while (1);
		}
3621 3622
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3623 3624 3625 3626 3627 3628 3629 3630
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3631
		/* If excess == 0, no tree ops */
3632
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3633
		spin_unlock(&mctz->lock);
3634
		css_put(&mz->memcg->css);
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3647
		css_put(&next_mz->memcg->css);
3648 3649 3650
	return nr_reclaimed;
}

3651 3652 3653 3654
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3655
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3656
				int node, int zid, enum lru_list lru)
3657
{
K
KAMEZAWA Hiroyuki 已提交
3658 3659
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3660
	struct list_head *list;
3661 3662
	struct page *busy;
	struct zone *zone;
3663
	int ret = 0;
3664

K
KAMEZAWA Hiroyuki 已提交
3665
	zone = &NODE_DATA(node)->node_zones[zid];
3666
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3667
	list = &mz->lruvec.lists[lru];
3668

3669
	loop = mz->lru_size[lru];
3670 3671 3672 3673
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3674
		struct page_cgroup *pc;
3675 3676
		struct page *page;

3677
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3678
		spin_lock_irqsave(&zone->lru_lock, flags);
3679
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3680
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3681
			break;
3682
		}
3683 3684 3685
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3686
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3687
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3688 3689
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3690
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3691

3692
		pc = lookup_page_cgroup(page);
3693

3694
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3695
		if (ret == -ENOMEM || ret == -EINTR)
3696
			break;
3697 3698 3699

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3700
			busy = page;
3701 3702 3703
			cond_resched();
		} else
			busy = NULL;
3704
	}
K
KAMEZAWA Hiroyuki 已提交
3705

3706 3707 3708
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3709 3710 3711 3712 3713 3714
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3715
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3716
{
3717 3718 3719
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3720
	struct cgroup *cgrp = memcg->css.cgroup;
3721

3722
	css_get(&memcg->css);
3723 3724

	shrink = 0;
3725 3726 3727
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3728
move_account:
3729
	do {
3730
		ret = -EBUSY;
3731 3732 3733 3734
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3735
			goto out;
3736 3737
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3738
		drain_all_stock_sync(memcg);
3739
		ret = 0;
3740
		mem_cgroup_start_move(memcg);
3741
		for_each_node_state(node, N_HIGH_MEMORY) {
3742
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3743 3744
				enum lru_list lru;
				for_each_lru(lru) {
3745
					ret = mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3746
							node, zid, lru);
3747 3748 3749
					if (ret)
						break;
				}
3750
			}
3751 3752 3753
			if (ret)
				break;
		}
3754 3755
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3756 3757 3758
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3759
		cond_resched();
3760
	/* "ret" should also be checked to ensure all lists are empty. */
3761
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3762
out:
3763
	css_put(&memcg->css);
3764
	return ret;
3765 3766

try_to_free:
3767 3768
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3769 3770 3771
		ret = -EBUSY;
		goto out;
	}
3772 3773
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3774 3775
	/* try to free all pages in this cgroup */
	shrink = 1;
3776
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3777
		int progress;
3778 3779 3780 3781 3782

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3783
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3784
						false);
3785
		if (!progress) {
3786
			nr_retries--;
3787
			/* maybe some writeback is necessary */
3788
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3789
		}
3790 3791

	}
K
KAMEZAWA Hiroyuki 已提交
3792
	lru_add_drain();
3793
	/* try move_account...there may be some *locked* pages. */
3794
	goto move_account;
3795 3796
}

3797
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3798 3799 3800 3801 3802
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3803 3804 3805 3806 3807 3808 3809 3810 3811
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3812
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3813
	struct cgroup *parent = cont->parent;
3814
	struct mem_cgroup *parent_memcg = NULL;
3815 3816

	if (parent)
3817
		parent_memcg = mem_cgroup_from_cont(parent);
3818 3819 3820

	cgroup_lock();
	/*
3821
	 * If parent's use_hierarchy is set, we can't make any modifications
3822 3823 3824 3825 3826 3827
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3828
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3829 3830
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3831
			memcg->use_hierarchy = val;
3832 3833 3834 3835 3836 3837 3838 3839 3840
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3841

3842
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3843
					       enum mem_cgroup_stat_index idx)
3844
{
K
KAMEZAWA Hiroyuki 已提交
3845
	struct mem_cgroup *iter;
3846
	long val = 0;
3847

3848
	/* Per-cpu values can be negative, use a signed accumulator */
3849
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3850 3851 3852 3853 3854
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3855 3856
}

3857
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3858
{
K
KAMEZAWA Hiroyuki 已提交
3859
	u64 val;
3860

3861
	if (!mem_cgroup_is_root(memcg)) {
3862
		if (!swap)
3863
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3864
		else
3865
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3866 3867
	}

3868 3869
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3870

K
KAMEZAWA Hiroyuki 已提交
3871
	if (swap)
3872
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3873 3874 3875 3876

	return val << PAGE_SHIFT;
}

3877 3878 3879
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3880
{
3881
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3882
	char str[64];
3883
	u64 val;
3884
	int type, name, len;
3885 3886 3887

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3888 3889 3890 3891

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3892 3893
	switch (type) {
	case _MEM:
3894
		if (name == RES_USAGE)
3895
			val = mem_cgroup_usage(memcg, false);
3896
		else
3897
			val = res_counter_read_u64(&memcg->res, name);
3898 3899
		break;
	case _MEMSWAP:
3900
		if (name == RES_USAGE)
3901
			val = mem_cgroup_usage(memcg, true);
3902
		else
3903
			val = res_counter_read_u64(&memcg->memsw, name);
3904 3905 3906 3907
		break;
	default:
		BUG();
	}
3908 3909 3910

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3911
}
3912 3913 3914 3915
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3916 3917
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3918
{
3919
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3920
	int type, name;
3921 3922 3923
	unsigned long long val;
	int ret;

3924 3925
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3926 3927 3928 3929

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3930
	switch (name) {
3931
	case RES_LIMIT:
3932 3933 3934 3935
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3936 3937
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3938 3939 3940
		if (ret)
			break;
		if (type == _MEM)
3941
			ret = mem_cgroup_resize_limit(memcg, val);
3942 3943
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3944
		break;
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3959 3960 3961 3962 3963
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3964 3965
}

3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

3993
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3994
{
3995
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3996
	int type, name;
3997

3998 3999
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4000 4001 4002 4003

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4004
	switch (name) {
4005
	case RES_MAX_USAGE:
4006
		if (type == _MEM)
4007
			res_counter_reset_max(&memcg->res);
4008
		else
4009
			res_counter_reset_max(&memcg->memsw);
4010 4011
		break;
	case RES_FAILCNT:
4012
		if (type == _MEM)
4013
			res_counter_reset_failcnt(&memcg->res);
4014
		else
4015
			res_counter_reset_failcnt(&memcg->memsw);
4016 4017
		break;
	}
4018

4019
	return 0;
4020 4021
}

4022 4023 4024 4025 4026 4027
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4028
#ifdef CONFIG_MMU
4029 4030 4031
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4032
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4033 4034 4035 4036 4037 4038 4039 4040 4041

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4042
	memcg->move_charge_at_immigrate = val;
4043 4044 4045 4046
	cgroup_unlock();

	return 0;
}
4047 4048 4049 4050 4051 4052 4053
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4054

4055
#ifdef CONFIG_NUMA
4056 4057
static int mem_control_numa_stat_show(struct cgroup *cont, struct cftype *cft,
				      struct seq_file *m)
4058 4059 4060 4061
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4062
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4063

4064
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4065 4066
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4067
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4068 4069 4070 4071
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4072
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4073 4074
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4075
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4076
				LRU_ALL_FILE);
4077 4078 4079 4080
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4081
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4082 4083
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4084
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4085
				LRU_ALL_ANON);
4086 4087 4088 4089
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4090
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4091 4092
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4093
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4094
				BIT(LRU_UNEVICTABLE));
4095 4096 4097 4098 4099 4100 4101
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4115
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4116
				 struct seq_file *m)
4117
{
4118
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4119 4120
	struct mem_cgroup *mi;
	unsigned int i;
4121

4122 4123
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account)
4124
			continue;
4125 4126
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4127
	}
L
Lee Schermerhorn 已提交
4128

4129 4130 4131 4132 4133 4134 4135 4136
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4137
	/* Hierarchical information */
4138 4139
	{
		unsigned long long limit, memsw_limit;
4140
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4141
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4142
		if (do_swap_account)
4143 4144
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4145
	}
K
KOSAKI Motohiro 已提交
4146

4147 4148 4149 4150
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

		if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account)
4151
			continue;
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4172
	}
K
KAMEZAWA Hiroyuki 已提交
4173

K
KOSAKI Motohiro 已提交
4174 4175 4176 4177
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4178
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4179 4180 4181 4182 4183
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4184
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4185
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4186

4187 4188 4189 4190
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4191
			}
4192 4193 4194 4195
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4196 4197 4198
	}
#endif

4199 4200 4201
	return 0;
}

K
KOSAKI Motohiro 已提交
4202 4203 4204 4205
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4206
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4207 4208 4209 4210 4211 4212 4213
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4214

K
KOSAKI Motohiro 已提交
4215 4216 4217 4218 4219 4220 4221
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4222 4223 4224

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4225 4226
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4227 4228
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4229
		return -EINVAL;
4230
	}
K
KOSAKI Motohiro 已提交
4231 4232 4233

	memcg->swappiness = val;

4234 4235
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4236 4237 4238
	return 0;
}

4239 4240 4241 4242 4243 4244 4245 4246
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4247
		t = rcu_dereference(memcg->thresholds.primary);
4248
	else
4249
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4250 4251 4252 4253 4254 4255 4256

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4257
	 * current_threshold points to threshold just below or equal to usage.
4258 4259 4260
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4261
	i = t->current_threshold;
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4285
	t->current_threshold = i - 1;
4286 4287 4288 4289 4290 4291
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4292 4293 4294 4295 4296 4297 4298
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4309
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4310 4311 4312
{
	struct mem_cgroup_eventfd_list *ev;

4313
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4314 4315 4316 4317
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4318
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4319
{
K
KAMEZAWA Hiroyuki 已提交
4320 4321
	struct mem_cgroup *iter;

4322
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4323
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4324 4325 4326 4327
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4328 4329
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4330 4331
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4332 4333
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4334
	int i, size, ret;
4335 4336 4337 4338 4339 4340

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4341

4342
	if (type == _MEM)
4343
		thresholds = &memcg->thresholds;
4344
	else if (type == _MEMSWAP)
4345
		thresholds = &memcg->memsw_thresholds;
4346 4347 4348 4349 4350 4351
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4352
	if (thresholds->primary)
4353 4354
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4355
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4356 4357

	/* Allocate memory for new array of thresholds */
4358
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4359
			GFP_KERNEL);
4360
	if (!new) {
4361 4362 4363
		ret = -ENOMEM;
		goto unlock;
	}
4364
	new->size = size;
4365 4366

	/* Copy thresholds (if any) to new array */
4367 4368
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4369
				sizeof(struct mem_cgroup_threshold));
4370 4371
	}

4372
	/* Add new threshold */
4373 4374
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4375 4376

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4377
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4378 4379 4380
			compare_thresholds, NULL);

	/* Find current threshold */
4381
	new->current_threshold = -1;
4382
	for (i = 0; i < size; i++) {
4383
		if (new->entries[i].threshold <= usage) {
4384
			/*
4385 4386
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4387 4388
			 * it here.
			 */
4389
			++new->current_threshold;
4390 4391
		} else
			break;
4392 4393
	}

4394 4395 4396 4397 4398
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4399

4400
	/* To be sure that nobody uses thresholds */
4401 4402 4403 4404 4405 4406 4407 4408
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4409
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4410
	struct cftype *cft, struct eventfd_ctx *eventfd)
4411 4412
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4413 4414
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4415 4416
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4417
	int i, j, size;
4418 4419 4420

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4421
		thresholds = &memcg->thresholds;
4422
	else if (type == _MEMSWAP)
4423
		thresholds = &memcg->memsw_thresholds;
4424 4425 4426
	else
		BUG();

4427 4428 4429
	if (!thresholds->primary)
		goto unlock;

4430 4431 4432 4433 4434 4435
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4436 4437 4438
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4439 4440 4441
			size++;
	}

4442
	new = thresholds->spare;
4443

4444 4445
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4446 4447
		kfree(new);
		new = NULL;
4448
		goto swap_buffers;
4449 4450
	}

4451
	new->size = size;
4452 4453

	/* Copy thresholds and find current threshold */
4454 4455 4456
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4457 4458
			continue;

4459
		new->entries[j] = thresholds->primary->entries[i];
4460
		if (new->entries[j].threshold <= usage) {
4461
			/*
4462
			 * new->current_threshold will not be used
4463 4464 4465
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4466
			++new->current_threshold;
4467 4468 4469 4470
		}
		j++;
	}

4471
swap_buffers:
4472 4473
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4474 4475 4476 4477 4478 4479
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4480
	rcu_assign_pointer(thresholds->primary, new);
4481

4482
	/* To be sure that nobody uses thresholds */
4483
	synchronize_rcu();
4484
unlock:
4485 4486
	mutex_unlock(&memcg->thresholds_lock);
}
4487

K
KAMEZAWA Hiroyuki 已提交
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4500
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4501 4502 4503 4504 4505

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4506
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4507
		eventfd_signal(eventfd, 1);
4508
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4509 4510 4511 4512

	return 0;
}

4513
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4514 4515
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4516
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4517 4518 4519 4520 4521
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4522
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4523

4524
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4525 4526 4527 4528 4529 4530
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4531
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4532 4533
}

4534 4535 4536
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4537
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4538

4539
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4540

4541
	if (atomic_read(&memcg->under_oom))
4542 4543 4544 4545 4546 4547 4548 4549 4550
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4551
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4563
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4564 4565 4566
		cgroup_unlock();
		return -EINVAL;
	}
4567
	memcg->oom_kill_disable = val;
4568
	if (!val)
4569
		memcg_oom_recover(memcg);
4570 4571 4572 4573
	cgroup_unlock();
	return 0;
}

4574
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4575
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4576
{
4577
	return mem_cgroup_sockets_init(memcg, ss);
4578 4579
};

4580
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4581
{
4582
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4583
}
4584
#else
4585
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4586 4587 4588
{
	return 0;
}
G
Glauber Costa 已提交
4589

4590
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4591 4592
{
}
4593 4594
#endif

B
Balbir Singh 已提交
4595 4596
static struct cftype mem_cgroup_files[] = {
	{
4597
		.name = "usage_in_bytes",
4598
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4599
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4600 4601
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4602
	},
4603 4604
	{
		.name = "max_usage_in_bytes",
4605
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4606
		.trigger = mem_cgroup_reset,
4607
		.read = mem_cgroup_read,
4608
	},
B
Balbir Singh 已提交
4609
	{
4610
		.name = "limit_in_bytes",
4611
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4612
		.write_string = mem_cgroup_write,
4613
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4614
	},
4615 4616 4617 4618
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4619
		.read = mem_cgroup_read,
4620
	},
B
Balbir Singh 已提交
4621 4622
	{
		.name = "failcnt",
4623
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4624
		.trigger = mem_cgroup_reset,
4625
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4626
	},
4627 4628
	{
		.name = "stat",
4629
		.read_seq_string = mem_control_stat_show,
4630
	},
4631 4632 4633 4634
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4635 4636 4637 4638 4639
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4640 4641 4642 4643 4644
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4645 4646 4647 4648 4649
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4650 4651
	{
		.name = "oom_control",
4652 4653
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4654 4655 4656 4657
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4658 4659 4660
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4661
		.read_seq_string = mem_control_numa_stat_show,
4662 4663
	},
#endif
4664 4665 4666 4667
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4668
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4669 4670
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4671 4672 4673 4674 4675
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4676
		.read = mem_cgroup_read,
4677 4678 4679 4680 4681
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4682
		.read = mem_cgroup_read,
4683 4684 4685 4686 4687
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4688
		.read = mem_cgroup_read,
4689 4690
	},
#endif
4691
	{ },	/* terminate */
4692
};
4693

4694
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4695 4696
{
	struct mem_cgroup_per_node *pn;
4697
	struct mem_cgroup_per_zone *mz;
4698
	int zone, tmp = node;
4699 4700 4701 4702 4703 4704 4705 4706
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4707 4708
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4709
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4710 4711
	if (!pn)
		return 1;
4712 4713 4714

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4715
		lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4716
		mz->usage_in_excess = 0;
4717
		mz->on_tree = false;
4718
		mz->memcg = memcg;
4719
	}
4720
	memcg->info.nodeinfo[node] = pn;
4721 4722 4723
	return 0;
}

4724
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4725
{
4726
	kfree(memcg->info.nodeinfo[node]);
4727 4728
}

4729 4730
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4731
	struct mem_cgroup *memcg;
4732
	int size = sizeof(struct mem_cgroup);
4733

4734
	/* Can be very big if MAX_NUMNODES is very big */
4735
	if (size < PAGE_SIZE)
4736
		memcg = kzalloc(size, GFP_KERNEL);
4737
	else
4738
		memcg = vzalloc(size);
4739

4740
	if (!memcg)
4741 4742
		return NULL;

4743 4744
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4745
		goto out_free;
4746 4747
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4748 4749 4750

out_free:
	if (size < PAGE_SIZE)
4751
		kfree(memcg);
4752
	else
4753
		vfree(memcg);
4754
	return NULL;
4755 4756
}

4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
/*
 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
static void vfree_work(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, work_freeing);
	vfree(memcg);
}
static void vfree_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, vfree_work);
	schedule_work(&memcg->work_freeing);
}

4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4789
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4790
{
K
KAMEZAWA Hiroyuki 已提交
4791 4792
	int node;

4793 4794
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4795

B
Bob Liu 已提交
4796
	for_each_node(node)
4797
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4798

4799
	free_percpu(memcg->stat);
4800
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4801
		kfree_rcu(memcg, rcu_freeing);
4802
	else
4803
		call_rcu(&memcg->rcu_freeing, vfree_rcu);
4804 4805
}

4806
static void mem_cgroup_get(struct mem_cgroup *memcg)
4807
{
4808
	atomic_inc(&memcg->refcnt);
4809 4810
}

4811
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4812
{
4813 4814 4815
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4816 4817 4818
		if (parent)
			mem_cgroup_put(parent);
	}
4819 4820
}

4821
static void mem_cgroup_put(struct mem_cgroup *memcg)
4822
{
4823
	__mem_cgroup_put(memcg, 1);
4824 4825
}

4826 4827 4828
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4829
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4830
{
4831
	if (!memcg->res.parent)
4832
		return NULL;
4833
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4834
}
G
Glauber Costa 已提交
4835
EXPORT_SYMBOL(parent_mem_cgroup);
4836

4837 4838 4839
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4840
	if (!mem_cgroup_disabled() && really_do_swap_account)
4841 4842 4843 4844 4845 4846 4847 4848
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4849 4850 4851 4852 4853 4854
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4855
	for_each_node(node) {
4856 4857 4858 4859 4860
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4861
			goto err_cleanup;
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4872 4873

err_cleanup:
B
Bob Liu 已提交
4874
	for_each_node(node) {
4875 4876 4877 4878 4879 4880 4881
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4882 4883
}

L
Li Zefan 已提交
4884
static struct cgroup_subsys_state * __ref
4885
mem_cgroup_create(struct cgroup *cont)
B
Balbir Singh 已提交
4886
{
4887
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4888
	long error = -ENOMEM;
4889
	int node;
B
Balbir Singh 已提交
4890

4891 4892
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4893
		return ERR_PTR(error);
4894

B
Bob Liu 已提交
4895
	for_each_node(node)
4896
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4897
			goto free_out;
4898

4899
	/* root ? */
4900
	if (cont->parent == NULL) {
4901
		int cpu;
4902
		enable_swap_cgroup();
4903
		parent = NULL;
4904 4905
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4906
		root_mem_cgroup = memcg;
4907 4908 4909 4910 4911
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4912
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4913
	} else {
4914
		parent = mem_cgroup_from_cont(cont->parent);
4915 4916
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4917
	}
4918

4919
	if (parent && parent->use_hierarchy) {
4920 4921
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4922 4923 4924 4925 4926 4927 4928
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4929
	} else {
4930 4931
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4932
	}
4933 4934
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4935

K
KOSAKI Motohiro 已提交
4936
	if (parent)
4937 4938 4939 4940
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
4941
	spin_lock_init(&memcg->move_lock);
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
4953
	return &memcg->css;
4954
free_out:
4955
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
4956
	return ERR_PTR(error);
B
Balbir Singh 已提交
4957 4958
}

4959
static int mem_cgroup_pre_destroy(struct cgroup *cont)
4960
{
4961
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4962

4963
	return mem_cgroup_force_empty(memcg, false);
4964 4965
}

4966
static void mem_cgroup_destroy(struct cgroup *cont)
B
Balbir Singh 已提交
4967
{
4968
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4969

4970
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
4971

4972
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
4973 4974
}

4975
#ifdef CONFIG_MMU
4976
/* Handlers for move charge at task migration. */
4977 4978
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4979
{
4980 4981
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4982
	struct mem_cgroup *memcg = mc.to;
4983

4984
	if (mem_cgroup_is_root(memcg)) {
4985 4986 4987 4988 4989 4990 4991 4992
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
4993
		 * "memcg" cannot be under rmdir() because we've already checked
4994 4995 4996 4997
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
4998
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
4999
			goto one_by_one;
5000
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5001
						PAGE_SIZE * count, &dummy)) {
5002
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5019 5020
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5021
		if (ret)
5022
			/* mem_cgroup_clear_mc() will do uncharge later */
5023
			return ret;
5024 5025
		mc.precharge++;
	}
5026 5027 5028 5029
	return ret;
}

/**
5030
 * get_mctgt_type - get target type of moving charge
5031 5032 5033
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5034
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5035 5036 5037 5038 5039 5040
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5041 5042 5043
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5044 5045 5046 5047 5048
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5049
	swp_entry_t	ent;
5050 5051 5052
};

enum mc_target_type {
5053
	MC_TARGET_NONE = 0,
5054
	MC_TARGET_PAGE,
5055
	MC_TARGET_SWAP,
5056 5057
};

D
Daisuke Nishimura 已提交
5058 5059
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5060
{
D
Daisuke Nishimura 已提交
5061
	struct page *page = vm_normal_page(vma, addr, ptent);
5062

D
Daisuke Nishimura 已提交
5063 5064 5065 5066
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5067
		if (!move_anon())
D
Daisuke Nishimura 已提交
5068
			return NULL;
5069 5070
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5071 5072 5073 5074 5075 5076 5077
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5078
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5079 5080 5081 5082 5083 5084 5085 5086
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5087 5088 5089 5090 5091
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5092 5093 5094 5095 5096
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5097 5098 5099 5100 5101 5102 5103
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5104

5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5124 5125 5126 5127 5128 5129
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5130
		if (do_swap_account)
5131 5132
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5133
	}
5134
#endif
5135 5136 5137
	return page;
}

5138
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5139 5140 5141 5142
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5143
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5144 5145 5146 5147 5148 5149
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5150 5151
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5152 5153

	if (!page && !ent.val)
5154
		return ret;
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5170 5171
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5172
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5173 5174 5175
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5176 5177 5178 5179
	}
	return ret;
}

5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5215 5216 5217 5218 5219 5220 5221 5222
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5223 5224 5225 5226
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5227
		return 0;
5228
	}
5229

5230 5231
	if (pmd_trans_unstable(pmd))
		return 0;
5232 5233
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5234
		if (get_mctgt_type(vma, addr, *pte, NULL))
5235 5236 5237 5238
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5239 5240 5241
	return 0;
}

5242 5243 5244 5245 5246
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5247
	down_read(&mm->mmap_sem);
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5259
	up_read(&mm->mmap_sem);
5260 5261 5262 5263 5264 5265 5266 5267 5268

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5269 5270 5271 5272 5273
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5274 5275
}

5276 5277
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5278
{
5279 5280 5281
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5282
	/* we must uncharge all the leftover precharges from mc.to */
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5294
	}
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5329
	spin_lock(&mc.lock);
5330 5331
	mc.from = NULL;
	mc.to = NULL;
5332
	spin_unlock(&mc.lock);
5333
	mem_cgroup_end_move(from);
5334 5335
}

5336 5337
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5338
{
5339
	struct task_struct *p = cgroup_taskset_first(tset);
5340
	int ret = 0;
5341
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5342

5343
	if (memcg->move_charge_at_immigrate) {
5344 5345 5346
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5347
		VM_BUG_ON(from == memcg);
5348 5349 5350 5351 5352

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5353 5354 5355 5356
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5357
			VM_BUG_ON(mc.moved_charge);
5358
			VM_BUG_ON(mc.moved_swap);
5359
			mem_cgroup_start_move(from);
5360
			spin_lock(&mc.lock);
5361
			mc.from = from;
5362
			mc.to = memcg;
5363
			spin_unlock(&mc.lock);
5364
			/* We set mc.moving_task later */
5365 5366 5367 5368

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5369 5370
		}
		mmput(mm);
5371 5372 5373 5374
	}
	return ret;
}

5375 5376
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5377
{
5378
	mem_cgroup_clear_mc();
5379 5380
}

5381 5382 5383
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5384
{
5385 5386 5387 5388
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5389 5390 5391 5392
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5393

5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5405
		if (mc.precharge < HPAGE_PMD_NR) {
5406 5407 5408 5409 5410 5411 5412 5413 5414
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5415
							pc, mc.from, mc.to)) {
5416 5417 5418 5419 5420 5421 5422 5423
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5424
		return 0;
5425 5426
	}

5427 5428
	if (pmd_trans_unstable(pmd))
		return 0;
5429 5430 5431 5432
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5433
		swp_entry_t ent;
5434 5435 5436 5437

		if (!mc.precharge)
			break;

5438
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5439 5440 5441 5442 5443
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5444
			if (!mem_cgroup_move_account(page, 1, pc,
5445
						     mc.from, mc.to)) {
5446
				mc.precharge--;
5447 5448
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5449 5450
			}
			putback_lru_page(page);
5451
put:			/* get_mctgt_type() gets the page */
5452 5453
			put_page(page);
			break;
5454 5455
		case MC_TARGET_SWAP:
			ent = target.ent;
5456
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5457
				mc.precharge--;
5458 5459 5460
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5461
			break;
5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5476
		ret = mem_cgroup_do_precharge(1);
5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5520
	up_read(&mm->mmap_sem);
5521 5522
}

5523 5524
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5525
{
5526
	struct task_struct *p = cgroup_taskset_first(tset);
5527
	struct mm_struct *mm = get_task_mm(p);
5528 5529

	if (mm) {
5530 5531
		if (mc.to)
			mem_cgroup_move_charge(mm);
5532 5533
		mmput(mm);
	}
5534 5535
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5536
}
5537
#else	/* !CONFIG_MMU */
5538 5539
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5540 5541 5542
{
	return 0;
}
5543 5544
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5545 5546
{
}
5547 5548
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5549 5550 5551
{
}
#endif
B
Balbir Singh 已提交
5552

B
Balbir Singh 已提交
5553 5554 5555 5556
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5557
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5558
	.destroy = mem_cgroup_destroy,
5559 5560
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5561
	.attach = mem_cgroup_move_task,
5562
	.base_cftypes = mem_cgroup_files,
5563
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5564
	.use_id = 1,
5565
	.__DEPRECATED_clear_css_refs = true,
B
Balbir Singh 已提交
5566
};
5567 5568

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5569 5570 5571
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5572
	if (!strcmp(s, "1"))
5573
		really_do_swap_account = 1;
5574
	else if (!strcmp(s, "0"))
5575 5576 5577
		really_do_swap_account = 0;
	return 1;
}
5578
__setup("swapaccount=", enable_swap_account);
5579 5580

#endif