memcontrol.c 146.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75 76 77 78 79
#else
#define do_swap_account		(0)
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 93 94
	MEM_CGROUP_STAT_NSTATS,
};

95 96 97 98
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
99 100
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
101 102
	MEM_CGROUP_EVENTS_NSTATS,
};
103 104 105 106 107 108 109 110 111
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
112
	MEM_CGROUP_TARGET_NUMAINFO,
113 114 115 116
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
117
#define NUMAINFO_EVENTS_TARGET	(1024)
118

119
struct mem_cgroup_stat_cpu {
120
	long count[MEM_CGROUP_STAT_NSTATS];
121
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
122
	unsigned long targets[MEM_CGROUP_NTARGETS];
123 124
};

125 126 127 128 129 130 131
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

132 133 134 135
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
136
	struct lruvec		lruvec;
137
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
138

139 140
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

K
KOSAKI Motohiro 已提交
141
	struct zone_reclaim_stat reclaim_stat;
142 143 144 145
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
146
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
147
						/* use container_of	   */
148 149 150 151 152 153 154 155 156 157
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

178 179 180 181 182
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
183
/* For threshold */
184 185
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
186
	int current_threshold;
187 188 189 190 191
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
192 193 194 195 196 197 198 199 200 201 202 203

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
204 205 206 207 208
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
209

210 211
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
212

B
Balbir Singh 已提交
213 214 215 216 217 218 219
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
220 221 222
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
223 224 225 226 227 228 229
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
		 * But when using vfree(), that cannot be done at
		 * interrupt time, so we must then queue the work.
		 */
		struct work_struct work_freeing;
	};

254 255 256 257
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
258
	struct mem_cgroup_lru_info info;
259 260 261
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
262 263
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
264
#endif
265 266 267 268
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
269 270 271 272

	bool		oom_lock;
	atomic_t	under_oom;

273
	atomic_t	refcnt;
274

275
	int	swappiness;
276 277
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
278

279 280 281
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

282 283 284 285
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
286
	struct mem_cgroup_thresholds thresholds;
287

288
	/* thresholds for mem+swap usage. RCU-protected */
289
	struct mem_cgroup_thresholds memsw_thresholds;
290

K
KAMEZAWA Hiroyuki 已提交
291 292
	/* For oom notifier event fd */
	struct list_head oom_notify;
293

294 295 296 297 298
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
299 300 301 302
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
303 304
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
305
	/*
306
	 * percpu counter.
307
	 */
308
	struct mem_cgroup_stat_cpu *stat;
309 310 311 312 313 314
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
315 316 317 318

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
319 320
};

321 322 323 324 325 326
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
327
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
328
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
329 330 331
	NR_MOVE_TYPE,
};

332 333
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
334
	spinlock_t	  lock; /* for from, to */
335 336 337
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
338
	unsigned long moved_charge;
339
	unsigned long moved_swap;
340 341 342
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
343
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
344 345
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
346

D
Daisuke Nishimura 已提交
347 348 349 350 351 352
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

353 354 355 356 357 358
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

359 360 361 362 363 364 365
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

366 367 368
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
369
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
370
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
371
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
372
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
373 374 375
	NR_CHARGE_TYPE,
};

376
/* for encoding cft->private value on file */
377 378 379
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
380 381 382
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
383 384
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
385

386 387 388 389 390 391 392 393
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

394 395
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
396 397 398 399

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#include <net/sock.h>
G
Glauber Costa 已提交
400
#include <net/ip.h>
G
Glauber Costa 已提交
401 402 403 404

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
405
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
406 407 408 409
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

410 411 412 413 414 415 416 417 418 419 420 421 422 423
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
437
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
438 439 440 441 442 443
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
444

445
#ifdef CONFIG_INET
G
Glauber Costa 已提交
446 447 448 449 450 451 452 453
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
454 455 456
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

457
static void drain_all_stock_async(struct mem_cgroup *memcg);
458

459
static struct mem_cgroup_per_zone *
460
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
461
{
462
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
463 464
}

465
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
466
{
467
	return &memcg->css;
468 469
}

470
static struct mem_cgroup_per_zone *
471
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
472
{
473 474
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
475

476
	return mem_cgroup_zoneinfo(memcg, nid, zid);
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
495
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
496
				struct mem_cgroup_per_zone *mz,
497 498
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
499 500 501 502 503 504 505 506
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

507 508 509
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
526 527 528
}

static void
529
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
530 531 532 533 534 535 536 537 538
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

539
static void
540
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
541 542 543 544
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
545
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
546 547 548 549
	spin_unlock(&mctz->lock);
}


550
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
551
{
552
	unsigned long long excess;
553 554
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
555 556
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
557 558 559
	mctz = soft_limit_tree_from_page(page);

	/*
560 561
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
562
	 */
563 564 565
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
566 567 568 569
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
570
		if (excess || mz->on_tree) {
571 572 573
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
574
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
575
			/*
576 577
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
578
			 */
579
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
580 581
			spin_unlock(&mctz->lock);
		}
582 583 584
	}
}

585
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
586 587 588 589 590
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
591
	for_each_node(node) {
592
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
593
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
594
			mctz = soft_limit_tree_node_zone(node, zone);
595
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
596 597 598 599
		}
	}
}

600 601 602 603
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
604
	struct mem_cgroup_per_zone *mz;
605 606

retry:
607
	mz = NULL;
608 609 610 611 612 613 614 615 616 617
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
618 619 620
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
656
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
657
				 enum mem_cgroup_stat_index idx)
658
{
659
	long val = 0;
660 661
	int cpu;

662 663
	get_online_cpus();
	for_each_online_cpu(cpu)
664
		val += per_cpu(memcg->stat->count[idx], cpu);
665
#ifdef CONFIG_HOTPLUG_CPU
666 667 668
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
669 670
#endif
	put_online_cpus();
671 672 673
	return val;
}

674
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
675 676 677
					 bool charge)
{
	int val = (charge) ? 1 : -1;
678
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
679 680
}

681
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
682 683 684 685 686 687
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
688
		val += per_cpu(memcg->stat->events[idx], cpu);
689
#ifdef CONFIG_HOTPLUG_CPU
690 691 692
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
693 694 695 696
#endif
	return val;
}

697
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
698
					 bool anon, int nr_pages)
699
{
700 701
	preempt_disable();

702 703 704 705 706 707
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
708
				nr_pages);
709
	else
710
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
711
				nr_pages);
712

713 714
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
715
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
716
	else {
717
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
718 719
		nr_pages = -nr_pages; /* for event */
	}
720

721
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
722

723
	preempt_enable();
724 725
}

726
unsigned long
727
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
728
			unsigned int lru_mask)
729 730
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
731
	enum lru_list lru;
732 733
	unsigned long ret = 0;

734
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
735

H
Hugh Dickins 已提交
736 737 738
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
739 740 741 742 743
	}
	return ret;
}

static unsigned long
744
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
745 746
			int nid, unsigned int lru_mask)
{
747 748 749
	u64 total = 0;
	int zid;

750
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
751 752
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
753

754 755
	return total;
}
756

757
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
758
			unsigned int lru_mask)
759
{
760
	int nid;
761 762
	u64 total = 0;

763
	for_each_node_state(nid, N_HIGH_MEMORY)
764
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
765
	return total;
766 767
}

768 769
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
770 771 772
{
	unsigned long val, next;

773 774
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
775
	/* from time_after() in jiffies.h */
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
792
	}
793
	return false;
794 795 796 797 798 799
}

/*
 * Check events in order.
 *
 */
800
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
801
{
802
	preempt_disable();
803
	/* threshold event is triggered in finer grain than soft limit */
804 805
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
806 807
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
808 809 810 811 812 813 814 815 816

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

817
		mem_cgroup_threshold(memcg);
818
		if (unlikely(do_softlimit))
819
			mem_cgroup_update_tree(memcg, page);
820
#if MAX_NUMNODES > 1
821
		if (unlikely(do_numainfo))
822
			atomic_inc(&memcg->numainfo_events);
823
#endif
824 825
	} else
		preempt_enable();
826 827
}

G
Glauber Costa 已提交
828
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
829 830 831 832 833 834
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

835
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
836
{
837 838 839 840 841 842 843 844
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

845 846 847 848
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

849
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
850
{
851
	struct mem_cgroup *memcg = NULL;
852 853 854

	if (!mm)
		return NULL;
855 856 857 858 859 860 861
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
862 863
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
864
			break;
865
	} while (!css_tryget(&memcg->css));
866
	rcu_read_unlock();
867
	return memcg;
868 869
}

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
890
{
891 892
	struct mem_cgroup *memcg = NULL;
	int id = 0;
893

894 895 896
	if (mem_cgroup_disabled())
		return NULL;

897 898
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
899

900 901
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
902

903 904
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
905

906 907 908 909 910
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
911

912
	while (!memcg) {
913
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
914
		struct cgroup_subsys_state *css;
915

916 917 918 919 920 921 922 923 924 925 926
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
927

928 929 930 931 932 933 934 935
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
936 937
		rcu_read_unlock();

938 939 940 941 942 943 944
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
945 946 947 948 949

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
950
}
K
KAMEZAWA Hiroyuki 已提交
951

952 953 954 955 956 957 958
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
959 960 961 962 963 964
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
965

966 967 968 969 970 971
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
972
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
973
	     iter != NULL;				\
974
	     iter = mem_cgroup_iter(root, iter, NULL))
975

976
#define for_each_mem_cgroup(iter)			\
977
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
978
	     iter != NULL;				\
979
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
980

981
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
982
{
983
	return (memcg == root_mem_cgroup);
984 985
}

986 987
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
988
	struct mem_cgroup *memcg;
989 990 991 992 993

	if (!mm)
		return;

	rcu_read_lock();
994 995
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
996 997 998 999
		goto out;

	switch (idx) {
	case PGFAULT:
1000 1001 1002 1003
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1004 1005 1006 1007 1008 1009 1010 1011 1012
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
 * @mem: memcg of the wanted lruvec
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
/**
 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
 * @zone: zone of the page
 * @page: the page
 * @lru: current lru
 *
 * This function accounts for @page being added to @lru, and returns
 * the lruvec for the given @zone and the memcg @page is charged to.
 *
 * The callsite is then responsible for physically linking the page to
 * the returned lruvec->lists[@lru].
 */
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
				       enum lru_list lru)
K
KAMEZAWA Hiroyuki 已提交
1062 1063
{
	struct mem_cgroup_per_zone *mz;
1064 1065
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1066

1067
	if (mem_cgroup_disabled())
1068 1069
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1070
	pc = lookup_page_cgroup(page);
1071
	memcg = pc->mem_cgroup;
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

	/*
	 * Surreptitiously switch any uncharged page to root:
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
	if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
		pc->mem_cgroup = memcg = root_mem_cgroup;

1085 1086
	mz = page_cgroup_zoneinfo(memcg, page);
	/* compound_order() is stabilized through lru_lock */
1087
	mz->lru_size[lru] += 1 << compound_order(page);
1088
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1089
}
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099
/**
 * mem_cgroup_lru_del_list - account for removing an lru page
 * @page: the page
 * @lru: target lru
 *
 * This function accounts for @page being removed from @lru.
 *
 * The callsite is then responsible for physically unlinking
 * @page->lru.
1100
 */
1101
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1102 1103
{
	struct mem_cgroup_per_zone *mz;
1104
	struct mem_cgroup *memcg;
1105 1106 1107 1108 1109 1110
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1111 1112
	memcg = pc->mem_cgroup;
	VM_BUG_ON(!memcg);
1113 1114
	mz = page_cgroup_zoneinfo(memcg, page);
	/* huge page split is done under lru_lock. so, we have no races. */
1115 1116
	VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
	mz->lru_size[lru] -= 1 << compound_order(page);
1117 1118
}

1119
void mem_cgroup_lru_del(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1120
{
1121
	mem_cgroup_lru_del_list(page, page_lru(page));
1122 1123
}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
/**
 * mem_cgroup_lru_move_lists - account for moving a page between lrus
 * @zone: zone of the page
 * @page: the page
 * @from: current lru
 * @to: target lru
 *
 * This function accounts for @page being moved between the lrus @from
 * and @to, and returns the lruvec for the given @zone and the memcg
 * @page is charged to.
 *
 * The callsite is then responsible for physically relinking
 * @page->lru to the returned lruvec->lists[@to].
 */
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
					 struct page *page,
					 enum lru_list from,
					 enum lru_list to)
1142
{
1143 1144 1145
	/* XXX: Optimize this, especially for @from == @to */
	mem_cgroup_lru_del_list(page, from);
	return mem_cgroup_lru_add_list(zone, page, to);
K
KAMEZAWA Hiroyuki 已提交
1146
}
1147

1148
/*
1149
 * Checks whether given mem is same or in the root_mem_cgroup's
1150 1151
 * hierarchy subtree
 */
1152 1153
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1154
{
1155 1156 1157
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1158 1159 1160 1161 1162
	}

	return true;
}

1163
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1164 1165
{
	int ret;
1166
	struct mem_cgroup *curr = NULL;
1167
	struct task_struct *p;
1168

1169
	p = find_lock_task_mm(task);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1185 1186
	if (!curr)
		return 0;
1187
	/*
1188
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1189
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1190 1191
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1192
	 */
1193
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1194
	css_put(&curr->css);
1195 1196 1197
	return ret;
}

1198
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1199
{
1200 1201 1202
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1203
	unsigned long inactive;
1204
	unsigned long active;
1205
	unsigned long gb;
1206

1207 1208 1209 1210
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1211

1212 1213 1214 1215 1216 1217
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1218
	return inactive * inactive_ratio < active;
1219 1220
}

1221
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1222 1223 1224
{
	unsigned long active;
	unsigned long inactive;
1225 1226
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1227

1228 1229 1230 1231
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1232 1233 1234 1235

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1236 1237 1238
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1239
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1256 1257
	if (!PageCgroupUsed(pc))
		return NULL;
1258 1259
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1260
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1261 1262 1263
	return &mz->reclaim_stat;
}

1264 1265 1266
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1267
/**
1268 1269
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1270
 *
1271
 * Returns the maximum amount of memory @mem can be charged with, in
1272
 * pages.
1273
 */
1274
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1275
{
1276 1277
	unsigned long long margin;

1278
	margin = res_counter_margin(&memcg->res);
1279
	if (do_swap_account)
1280
		margin = min(margin, res_counter_margin(&memcg->memsw));
1281
	return margin >> PAGE_SHIFT;
1282 1283
}

1284
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1285 1286 1287 1288 1289 1290 1291
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1292
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1293 1294
}

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1309 1310 1311 1312

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1313
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1314
{
1315
	atomic_inc(&memcg_moving);
1316
	atomic_inc(&memcg->moving_account);
1317 1318 1319
	synchronize_rcu();
}

1320
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1321
{
1322 1323 1324 1325
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1326 1327
	if (memcg) {
		atomic_dec(&memcg_moving);
1328
		atomic_dec(&memcg->moving_account);
1329
	}
1330
}
1331

1332 1333 1334
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1335 1336
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1337 1338 1339 1340 1341 1342 1343
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1344
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1345 1346
{
	VM_BUG_ON(!rcu_read_lock_held());
1347
	return atomic_read(&memcg->moving_account) > 0;
1348
}
1349

1350
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1351
{
1352 1353
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1354
	bool ret = false;
1355 1356 1357 1358 1359 1360 1361 1362 1363
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1364

1365 1366
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1367 1368
unlock:
	spin_unlock(&mc.lock);
1369 1370 1371
	return ret;
}

1372
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1373 1374
{
	if (mc.moving_task && current != mc.moving_task) {
1375
		if (mem_cgroup_under_move(memcg)) {
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1388 1389 1390 1391
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1392
 * see mem_cgroup_stolen(), too.
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1406
/**
1407
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1426
	if (!memcg || !p)
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1472 1473 1474 1475
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1476
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1477 1478
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1479 1480
	struct mem_cgroup *iter;

1481
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1482
		num++;
1483 1484 1485
	return num;
}

D
David Rientjes 已提交
1486 1487 1488 1489 1490 1491 1492 1493
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1494 1495 1496
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1497 1498 1499 1500 1501 1502 1503 1504
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1551
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1552 1553
		int nid, bool noswap)
{
1554
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1555 1556 1557
		return true;
	if (noswap || !total_swap_pages)
		return false;
1558
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1559 1560 1561 1562
		return true;
	return false;

}
1563 1564 1565 1566 1567 1568 1569 1570
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1571
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1572 1573
{
	int nid;
1574 1575 1576 1577
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1578
	if (!atomic_read(&memcg->numainfo_events))
1579
		return;
1580
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1581 1582 1583
		return;

	/* make a nodemask where this memcg uses memory from */
1584
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1585 1586 1587

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1588 1589
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1590
	}
1591

1592 1593
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1608
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1609 1610 1611
{
	int node;

1612 1613
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1614

1615
	node = next_node(node, memcg->scan_nodes);
1616
	if (node == MAX_NUMNODES)
1617
		node = first_node(memcg->scan_nodes);
1618 1619 1620 1621 1622 1623 1624 1625 1626
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1627
	memcg->last_scanned_node = node;
1628 1629 1630
	return node;
}

1631 1632 1633 1634 1635 1636
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1637
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1638 1639 1640 1641 1642 1643 1644
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1645 1646
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1647
		     nid < MAX_NUMNODES;
1648
		     nid = next_node(nid, memcg->scan_nodes)) {
1649

1650
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1651 1652 1653 1654 1655 1656 1657
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1658
		if (node_isset(nid, memcg->scan_nodes))
1659
			continue;
1660
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1661 1662 1663 1664 1665
			return true;
	}
	return false;
}

1666
#else
1667
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1668 1669 1670
{
	return 0;
}
1671

1672
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1673
{
1674
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1675
}
1676 1677
#endif

1678 1679 1680 1681
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1682
{
1683
	struct mem_cgroup *victim = NULL;
1684
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1685
	int loop = 0;
1686
	unsigned long excess;
1687
	unsigned long nr_scanned;
1688 1689 1690 1691
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1692

1693
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1694

1695
	while (1) {
1696
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1697
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1698
			loop++;
1699 1700 1701 1702 1703 1704
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1705
				if (!total)
1706 1707
					break;
				/*
L
Lucas De Marchi 已提交
1708
				 * We want to do more targeted reclaim.
1709 1710 1711 1712 1713
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1714
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1715 1716
					break;
			}
1717
			continue;
1718
		}
1719
		if (!mem_cgroup_reclaimable(victim, false))
1720
			continue;
1721 1722 1723 1724
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1725
			break;
1726
	}
1727
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1728
	return total;
1729 1730
}

K
KAMEZAWA Hiroyuki 已提交
1731 1732 1733
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1734
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1735
 */
1736
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1737
{
1738
	struct mem_cgroup *iter, *failed = NULL;
1739

1740
	for_each_mem_cgroup_tree(iter, memcg) {
1741
		if (iter->oom_lock) {
1742 1743 1744 1745 1746
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1747 1748
			mem_cgroup_iter_break(memcg, iter);
			break;
1749 1750
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1751
	}
K
KAMEZAWA Hiroyuki 已提交
1752

1753
	if (!failed)
1754
		return true;
1755 1756 1757 1758 1759

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1760
	for_each_mem_cgroup_tree(iter, memcg) {
1761
		if (iter == failed) {
1762 1763
			mem_cgroup_iter_break(memcg, iter);
			break;
1764 1765 1766
		}
		iter->oom_lock = false;
	}
1767
	return false;
1768
}
1769

1770
/*
1771
 * Has to be called with memcg_oom_lock
1772
 */
1773
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1774
{
K
KAMEZAWA Hiroyuki 已提交
1775 1776
	struct mem_cgroup *iter;

1777
	for_each_mem_cgroup_tree(iter, memcg)
1778 1779 1780 1781
		iter->oom_lock = false;
	return 0;
}

1782
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1783 1784 1785
{
	struct mem_cgroup *iter;

1786
	for_each_mem_cgroup_tree(iter, memcg)
1787 1788 1789
		atomic_inc(&iter->under_oom);
}

1790
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1791 1792 1793
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1794 1795 1796 1797 1798
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1799
	for_each_mem_cgroup_tree(iter, memcg)
1800
		atomic_add_unless(&iter->under_oom, -1, 0);
1801 1802
}

1803
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1804 1805
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1806
struct oom_wait_info {
1807
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1808 1809 1810 1811 1812 1813
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1814 1815
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1816 1817 1818
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1819
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1820 1821

	/*
1822
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1823 1824
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1825 1826
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1827 1828 1829 1830
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1831
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1832
{
1833 1834
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1835 1836
}

1837
static void memcg_oom_recover(struct mem_cgroup *memcg)
1838
{
1839 1840
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1841 1842
}

K
KAMEZAWA Hiroyuki 已提交
1843 1844 1845
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1846
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1847
{
K
KAMEZAWA Hiroyuki 已提交
1848
	struct oom_wait_info owait;
1849
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1850

1851
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1852 1853 1854 1855
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1856
	need_to_kill = true;
1857
	mem_cgroup_mark_under_oom(memcg);
1858

1859
	/* At first, try to OOM lock hierarchy under memcg.*/
1860
	spin_lock(&memcg_oom_lock);
1861
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1862 1863 1864 1865 1866
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1867
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1868
	if (!locked || memcg->oom_kill_disable)
1869 1870
		need_to_kill = false;
	if (locked)
1871
		mem_cgroup_oom_notify(memcg);
1872
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1873

1874 1875
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1876
		mem_cgroup_out_of_memory(memcg, mask, order);
1877
	} else {
K
KAMEZAWA Hiroyuki 已提交
1878
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1879
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1880
	}
1881
	spin_lock(&memcg_oom_lock);
1882
	if (locked)
1883 1884
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1885
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1886

1887
	mem_cgroup_unmark_under_oom(memcg);
1888

K
KAMEZAWA Hiroyuki 已提交
1889 1890 1891
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1892
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1893
	return true;
1894 1895
}

1896 1897 1898
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1916 1917
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1918
 */
1919

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
	 * need to take move_lock_page_cgroup(). Because we already hold
	 * rcu_read_lock(), any calls to move_account will be delayed until
1935
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1936
	 */
1937
	if (!mem_cgroup_stolen(memcg))
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
	 * should take move_lock_page_cgroup().
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

1960 1961
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1962
{
1963
	struct mem_cgroup *memcg;
1964
	struct page_cgroup *pc = lookup_page_cgroup(page);
1965
	unsigned long uninitialized_var(flags);
1966

1967
	if (mem_cgroup_disabled())
1968
		return;
1969

1970 1971
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1972
		return;
1973 1974

	switch (idx) {
1975 1976
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1977 1978 1979
		break;
	default:
		BUG();
1980
	}
1981

1982
	this_cpu_add(memcg->stat->count[idx], val);
1983
}
1984

1985 1986 1987 1988
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1989
#define CHARGE_BATCH	32U
1990 1991
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1992
	unsigned int nr_pages;
1993
	struct work_struct work;
1994 1995
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
1996 1997
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1998
static DEFINE_MUTEX(percpu_charge_mutex);
1999 2000

/*
2001
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2002 2003 2004 2005
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2006
static bool consume_stock(struct mem_cgroup *memcg)
2007 2008 2009 2010 2011
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2012
	if (memcg == stock->cached && stock->nr_pages)
2013
		stock->nr_pages--;
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2027 2028 2029 2030
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2031
		if (do_swap_account)
2032 2033
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2046
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2047 2048 2049 2050
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2051
 * This will be consumed by consume_stock() function, later.
2052
 */
2053
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2054 2055 2056
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2057
	if (stock->cached != memcg) { /* reset if necessary */
2058
		drain_stock(stock);
2059
		stock->cached = memcg;
2060
	}
2061
	stock->nr_pages += nr_pages;
2062 2063 2064 2065
	put_cpu_var(memcg_stock);
}

/*
2066
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2067 2068
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2069
 */
2070
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2071
{
2072
	int cpu, curcpu;
2073

2074 2075
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2076
	curcpu = get_cpu();
2077 2078
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2079
		struct mem_cgroup *memcg;
2080

2081 2082
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2083
			continue;
2084
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2085
			continue;
2086 2087 2088 2089 2090 2091
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2092
	}
2093
	put_cpu();
2094 2095 2096 2097 2098 2099

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2100
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2101 2102 2103
			flush_work(&stock->work);
	}
out:
2104
 	put_online_cpus();
2105 2106 2107 2108 2109 2110 2111 2112
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2113
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2114
{
2115 2116 2117 2118 2119
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2120
	drain_all_stock(root_memcg, false);
2121
	mutex_unlock(&percpu_charge_mutex);
2122 2123 2124
}

/* This is a synchronous drain interface. */
2125
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2126 2127
{
	/* called when force_empty is called */
2128
	mutex_lock(&percpu_charge_mutex);
2129
	drain_all_stock(root_memcg, true);
2130
	mutex_unlock(&percpu_charge_mutex);
2131 2132
}

2133 2134 2135 2136
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2137
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2138 2139 2140
{
	int i;

2141
	spin_lock(&memcg->pcp_counter_lock);
2142
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2143
		long x = per_cpu(memcg->stat->count[i], cpu);
2144

2145 2146
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2147
	}
2148
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2149
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2150

2151 2152
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2153
	}
2154
	spin_unlock(&memcg->pcp_counter_lock);
2155 2156 2157
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2158 2159 2160 2161 2162
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2163
	struct mem_cgroup *iter;
2164

2165
	if (action == CPU_ONLINE)
2166 2167
		return NOTIFY_OK;

2168
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2169
		return NOTIFY_OK;
2170

2171
	for_each_mem_cgroup(iter)
2172 2173
		mem_cgroup_drain_pcp_counter(iter, cpu);

2174 2175 2176 2177 2178
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2189
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2190
				unsigned int nr_pages, bool oom_check)
2191
{
2192
	unsigned long csize = nr_pages * PAGE_SIZE;
2193 2194 2195 2196 2197
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2198
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2199 2200 2201 2202

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2203
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2204 2205 2206
		if (likely(!ret))
			return CHARGE_OK;

2207
		res_counter_uncharge(&memcg->res, csize);
2208 2209 2210 2211
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2212
	/*
2213 2214
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2215 2216 2217 2218
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2219
	if (nr_pages == CHARGE_BATCH)
2220 2221 2222 2223 2224
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2225
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2226
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2227
		return CHARGE_RETRY;
2228
	/*
2229 2230 2231 2232 2233 2234 2235
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2236
	 */
2237
	if (nr_pages == 1 && ret)
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2251
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2252 2253 2254 2255 2256
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2257
/*
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2277
 */
2278
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2279
				   gfp_t gfp_mask,
2280
				   unsigned int nr_pages,
2281
				   struct mem_cgroup **ptr,
2282
				   bool oom)
2283
{
2284
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2285
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2286
	struct mem_cgroup *memcg = NULL;
2287
	int ret;
2288

K
KAMEZAWA Hiroyuki 已提交
2289 2290 2291 2292 2293 2294 2295 2296
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2297

2298
	/*
2299 2300
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2301 2302 2303
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2304
	if (!*ptr && !mm)
2305
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2306
again:
2307 2308 2309 2310
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2311
			goto done;
2312
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2313
			goto done;
2314
		css_get(&memcg->css);
2315
	} else {
K
KAMEZAWA Hiroyuki 已提交
2316
		struct task_struct *p;
2317

K
KAMEZAWA Hiroyuki 已提交
2318 2319 2320
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2321
		 * Because we don't have task_lock(), "p" can exit.
2322
		 * In that case, "memcg" can point to root or p can be NULL with
2323 2324 2325 2326 2327 2328
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2329
		 */
2330
		memcg = mem_cgroup_from_task(p);
2331 2332 2333
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2334 2335 2336
			rcu_read_unlock();
			goto done;
		}
2337
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2350
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2351 2352 2353 2354 2355
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2356

2357 2358
	do {
		bool oom_check;
2359

2360
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2361
		if (fatal_signal_pending(current)) {
2362
			css_put(&memcg->css);
2363
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2364
		}
2365

2366 2367 2368 2369
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2370
		}
2371

2372
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2373 2374 2375 2376
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2377
			batch = nr_pages;
2378 2379
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2380
			goto again;
2381
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2382
			css_put(&memcg->css);
2383 2384
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2385
			if (!oom) {
2386
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2387
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2388
			}
2389 2390 2391 2392
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2393
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2394
			goto bypass;
2395
		}
2396 2397
	} while (ret != CHARGE_OK);

2398
	if (batch > nr_pages)
2399 2400
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2401
done:
2402
	*ptr = memcg;
2403 2404
	return 0;
nomem:
2405
	*ptr = NULL;
2406
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2407
bypass:
2408 2409
	*ptr = root_mem_cgroup;
	return -EINTR;
2410
}
2411

2412 2413 2414 2415 2416
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2417
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2418
				       unsigned int nr_pages)
2419
{
2420
	if (!mem_cgroup_is_root(memcg)) {
2421 2422
		unsigned long bytes = nr_pages * PAGE_SIZE;

2423
		res_counter_uncharge(&memcg->res, bytes);
2424
		if (do_swap_account)
2425
			res_counter_uncharge(&memcg->memsw, bytes);
2426
	}
2427 2428
}

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2448
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2449
{
2450
	struct mem_cgroup *memcg = NULL;
2451
	struct page_cgroup *pc;
2452
	unsigned short id;
2453 2454
	swp_entry_t ent;

2455 2456 2457
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2458
	lock_page_cgroup(pc);
2459
	if (PageCgroupUsed(pc)) {
2460 2461 2462
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2463
	} else if (PageSwapCache(page)) {
2464
		ent.val = page_private(page);
2465
		id = lookup_swap_cgroup_id(ent);
2466
		rcu_read_lock();
2467 2468 2469
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2470
		rcu_read_unlock();
2471
	}
2472
	unlock_page_cgroup(pc);
2473
	return memcg;
2474 2475
}

2476
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2477
				       struct page *page,
2478
				       unsigned int nr_pages,
2479
				       struct page_cgroup *pc,
2480 2481
				       enum charge_type ctype,
				       bool lrucare)
2482
{
2483 2484
	struct zone *uninitialized_var(zone);
	bool was_on_lru = false;
2485
	bool anon;
2486

2487 2488 2489
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2490
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2491 2492 2493 2494 2495 2496
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
			ClearPageLRU(page);
			del_page_from_lru_list(zone, page, page_lru(page));
			was_on_lru = true;
		}
	}

2512
	pc->mem_cgroup = memcg;
2513 2514 2515 2516 2517 2518 2519
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2520
	smp_wmb();
2521
	SetPageCgroupUsed(pc);
2522

2523 2524 2525 2526 2527 2528 2529 2530 2531
	if (lrucare) {
		if (was_on_lru) {
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
			add_page_to_lru_list(zone, page, page_lru(page));
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2532 2533 2534 2535 2536 2537
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2538
	unlock_page_cgroup(pc);
2539

2540 2541 2542 2543 2544
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2545
	memcg_check_events(memcg, page);
2546
}
2547

2548 2549
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2550
#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MIGRATION))
2551 2552
/*
 * Because tail pages are not marked as "used", set it. We're under
2553 2554 2555
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2556
 */
2557
void mem_cgroup_split_huge_fixup(struct page *head)
2558 2559
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2560 2561
	struct page_cgroup *pc;
	int i;
2562

2563 2564
	if (mem_cgroup_disabled())
		return;
2565 2566 2567 2568 2569 2570
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2571
}
2572
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2573

2574
/**
2575
 * mem_cgroup_move_account - move account of the page
2576
 * @page: the page
2577
 * @nr_pages: number of regular pages (>1 for huge pages)
2578 2579 2580
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2581
 * @uncharge: whether we should call uncharge and css_put against @from.
2582 2583
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2584
 * - page is not on LRU (isolate_page() is useful.)
2585
 * - compound_lock is held when nr_pages > 1
2586
 *
2587
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2588
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2589 2590
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2591
 */
2592 2593 2594 2595 2596 2597
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2598
{
2599 2600
	unsigned long flags;
	int ret;
2601
	bool anon = PageAnon(page);
2602

2603
	VM_BUG_ON(from == to);
2604
	VM_BUG_ON(PageLRU(page));
2605 2606 2607 2608 2609 2610 2611
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2612
	if (nr_pages > 1 && !PageTransHuge(page))
2613 2614 2615 2616 2617 2618 2619 2620
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2621
	move_lock_mem_cgroup(from, &flags);
2622

2623
	if (!anon && page_mapped(page)) {
2624 2625 2626 2627 2628
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2629
	}
2630
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2631 2632
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2633
		__mem_cgroup_cancel_charge(from, nr_pages);
2634

2635
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2636
	pc->mem_cgroup = to;
2637
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2638 2639 2640
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2641
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2642
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2643
	 * status here.
2644
	 */
2645
	move_unlock_mem_cgroup(from, &flags);
2646 2647
	ret = 0;
unlock:
2648
	unlock_page_cgroup(pc);
2649 2650 2651
	/*
	 * check events
	 */
2652 2653
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2654
out:
2655 2656 2657 2658 2659 2660 2661
	return ret;
}

/*
 * move charges to its parent.
 */

2662 2663
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2664 2665 2666 2667 2668 2669
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2670
	unsigned int nr_pages;
2671
	unsigned long uninitialized_var(flags);
2672 2673 2674 2675 2676 2677
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2678 2679 2680 2681 2682
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2683

2684
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2685

2686
	parent = mem_cgroup_from_cont(pcg);
2687
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2688
	if (ret)
2689
		goto put_back;
2690

2691
	if (nr_pages > 1)
2692 2693
		flags = compound_lock_irqsave(page);

2694
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2695
	if (ret)
2696
		__mem_cgroup_cancel_charge(parent, nr_pages);
2697

2698
	if (nr_pages > 1)
2699
		compound_unlock_irqrestore(page, flags);
2700
put_back:
K
KAMEZAWA Hiroyuki 已提交
2701
	putback_lru_page(page);
2702
put:
2703
	put_page(page);
2704
out:
2705 2706 2707
	return ret;
}

2708 2709 2710 2711 2712 2713 2714
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2715
				gfp_t gfp_mask, enum charge_type ctype)
2716
{
2717
	struct mem_cgroup *memcg = NULL;
2718
	unsigned int nr_pages = 1;
2719
	struct page_cgroup *pc;
2720
	bool oom = true;
2721
	int ret;
A
Andrea Arcangeli 已提交
2722

A
Andrea Arcangeli 已提交
2723
	if (PageTransHuge(page)) {
2724
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2725
		VM_BUG_ON(!PageTransHuge(page));
2726 2727 2728 2729 2730
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2731
	}
2732 2733

	pc = lookup_page_cgroup(page);
2734
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2735
	if (ret == -ENOMEM)
2736
		return ret;
2737
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype, false);
2738 2739 2740
	return 0;
}

2741 2742
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2743
{
2744
	if (mem_cgroup_disabled())
2745
		return 0;
2746 2747 2748
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2749
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2750
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2751 2752
}

D
Daisuke Nishimura 已提交
2753 2754 2755 2756
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2757 2758
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2759
{
2760
	struct mem_cgroup *memcg = NULL;
2761
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2762 2763
	int ret;

2764
	if (mem_cgroup_disabled())
2765
		return 0;
2766 2767
	if (PageCompound(page))
		return 0;
2768

2769
	if (unlikely(!mm))
2770
		mm = &init_mm;
2771 2772
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2773

2774
	if (!PageSwapCache(page))
2775
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2776
	else { /* page is swapcache/shmem */
2777
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2778
		if (!ret)
2779 2780
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2781
	return ret;
2782 2783
}

2784 2785 2786
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2787
 * struct page_cgroup is acquired. This refcnt will be consumed by
2788 2789
 * "commit()" or removed by "cancel()"
 */
2790 2791
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2792
				 gfp_t mask, struct mem_cgroup **memcgp)
2793
{
2794
	struct mem_cgroup *memcg;
2795
	int ret;
2796

2797
	*memcgp = NULL;
2798

2799
	if (mem_cgroup_disabled())
2800 2801 2802 2803 2804 2805
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2806 2807 2808
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2809 2810
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2811
		goto charge_cur_mm;
2812 2813
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2814
		goto charge_cur_mm;
2815 2816
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2817
	css_put(&memcg->css);
2818 2819
	if (ret == -EINTR)
		ret = 0;
2820
	return ret;
2821 2822 2823
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2824 2825 2826 2827
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2828 2829
}

D
Daisuke Nishimura 已提交
2830
static void
2831
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2832
					enum charge_type ctype)
2833
{
2834 2835
	struct page_cgroup *pc;

2836
	if (mem_cgroup_disabled())
2837
		return;
2838
	if (!memcg)
2839
		return;
2840
	cgroup_exclude_rmdir(&memcg->css);
2841

2842 2843
	pc = lookup_page_cgroup(page);
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype, true);
2844 2845 2846
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2847 2848 2849
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2850
	 */
2851
	if (do_swap_account && PageSwapCache(page)) {
2852
		swp_entry_t ent = {.val = page_private(page)};
2853
		struct mem_cgroup *swap_memcg;
2854 2855 2856 2857
		unsigned short id;

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
2858 2859
		swap_memcg = mem_cgroup_lookup(id);
		if (swap_memcg) {
2860 2861 2862 2863
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2864 2865 2866 2867 2868
			if (!mem_cgroup_is_root(swap_memcg))
				res_counter_uncharge(&swap_memcg->memsw,
						     PAGE_SIZE);
			mem_cgroup_swap_statistics(swap_memcg, false);
			mem_cgroup_put(swap_memcg);
2869
		}
2870
		rcu_read_unlock();
2871
	}
2872 2873 2874 2875 2876
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2877
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2878 2879
}

2880 2881
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2882
{
2883 2884
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2885 2886
}

2887
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2888
{
2889
	if (mem_cgroup_disabled())
2890
		return;
2891
	if (!memcg)
2892
		return;
2893
	__mem_cgroup_cancel_charge(memcg, 1);
2894 2895
}

2896
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2897 2898
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2899 2900 2901
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2902

2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2914
		batch->memcg = memcg;
2915 2916
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2917
	 * In those cases, all pages freed continuously can be expected to be in
2918 2919 2920 2921 2922 2923 2924 2925
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2926
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2927 2928
		goto direct_uncharge;

2929 2930 2931 2932 2933
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2934
	if (batch->memcg != memcg)
2935 2936
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2937
	batch->nr_pages++;
2938
	if (uncharge_memsw)
2939
		batch->memsw_nr_pages++;
2940 2941
	return;
direct_uncharge:
2942
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2943
	if (uncharge_memsw)
2944 2945 2946
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2947
}
2948

2949
/*
2950
 * uncharge if !page_mapped(page)
2951
 */
2952
static struct mem_cgroup *
2953
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2954
{
2955
	struct mem_cgroup *memcg = NULL;
2956 2957
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2958
	bool anon;
2959

2960
	if (mem_cgroup_disabled())
2961
		return NULL;
2962

K
KAMEZAWA Hiroyuki 已提交
2963
	if (PageSwapCache(page))
2964
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2965

A
Andrea Arcangeli 已提交
2966
	if (PageTransHuge(page)) {
2967
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2968 2969
		VM_BUG_ON(!PageTransHuge(page));
	}
2970
	/*
2971
	 * Check if our page_cgroup is valid
2972
	 */
2973
	pc = lookup_page_cgroup(page);
2974
	if (unlikely(!PageCgroupUsed(pc)))
2975
		return NULL;
2976

2977
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2978

2979
	memcg = pc->mem_cgroup;
2980

K
KAMEZAWA Hiroyuki 已提交
2981 2982 2983
	if (!PageCgroupUsed(pc))
		goto unlock_out;

2984 2985
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
2986 2987
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2988 2989 2990 2991 2992
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
2993 2994
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
2995
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2996 2997
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3009
	}
K
KAMEZAWA Hiroyuki 已提交
3010

3011
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3012

3013
	ClearPageCgroupUsed(pc);
3014 3015 3016 3017 3018 3019
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3020

3021
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3022
	/*
3023
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3024 3025
	 * will never be freed.
	 */
3026
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3027
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3028 3029
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3030
	}
3031 3032
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3033

3034
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3035 3036 3037

unlock_out:
	unlock_page_cgroup(pc);
3038
	return NULL;
3039 3040
}

3041 3042
void mem_cgroup_uncharge_page(struct page *page)
{
3043 3044 3045
	/* early check. */
	if (page_mapped(page))
		return;
3046
	VM_BUG_ON(page->mapping && !PageAnon(page));
3047 3048 3049 3050 3051 3052
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3053
	VM_BUG_ON(page->mapping);
3054 3055 3056
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3071 3072
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3093 3094 3095 3096 3097 3098
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3099
	memcg_oom_recover(batch->memcg);
3100 3101 3102 3103
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3104
#ifdef CONFIG_SWAP
3105
/*
3106
 * called after __delete_from_swap_cache() and drop "page" account.
3107 3108
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3109 3110
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3111 3112
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3113 3114 3115 3116 3117 3118
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3119

K
KAMEZAWA Hiroyuki 已提交
3120 3121 3122 3123 3124
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3125
		swap_cgroup_record(ent, css_id(&memcg->css));
3126
}
3127
#endif
3128 3129 3130 3131 3132 3133 3134

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3135
{
3136
	struct mem_cgroup *memcg;
3137
	unsigned short id;
3138 3139 3140 3141

	if (!do_swap_account)
		return;

3142 3143 3144
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3145
	if (memcg) {
3146 3147 3148 3149
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3150
		if (!mem_cgroup_is_root(memcg))
3151
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3152
		mem_cgroup_swap_statistics(memcg, false);
3153 3154
		mem_cgroup_put(memcg);
	}
3155
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3156
}
3157 3158 3159 3160 3161 3162

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3163
 * @need_fixup: whether we should fixup res_counters and refcounts.
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3174
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3175 3176 3177 3178 3179 3180 3181 3182
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3183
		mem_cgroup_swap_statistics(to, true);
3184
		/*
3185 3186 3187 3188 3189 3190
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3191 3192
		 */
		mem_cgroup_get(to);
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3204 3205 3206 3207 3208 3209
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3210
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3211 3212 3213
{
	return -EINVAL;
}
3214
#endif
K
KAMEZAWA Hiroyuki 已提交
3215

3216
/*
3217 3218
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3219
 */
3220
int mem_cgroup_prepare_migration(struct page *page,
3221
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3222
{
3223
	struct mem_cgroup *memcg = NULL;
3224
	struct page_cgroup *pc;
3225
	enum charge_type ctype;
3226
	int ret = 0;
3227

3228
	*memcgp = NULL;
3229

A
Andrea Arcangeli 已提交
3230
	VM_BUG_ON(PageTransHuge(page));
3231
	if (mem_cgroup_disabled())
3232 3233
		return 0;

3234 3235 3236
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3237 3238
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3270
	}
3271
	unlock_page_cgroup(pc);
3272 3273 3274 3275
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3276
	if (!memcg)
3277
		return 0;
3278

3279 3280
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3281
	css_put(&memcg->css);/* drop extra refcnt */
3282
	if (ret) {
3283 3284 3285 3286 3287 3288 3289 3290 3291
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
3292
		/* we'll need to revisit this error code (we have -EINTR) */
3293
		return -ENOMEM;
3294
	}
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3308
	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype, false);
3309
	return ret;
3310
}
3311

3312
/* remove redundant charge if migration failed*/
3313
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3314
	struct page *oldpage, struct page *newpage, bool migration_ok)
3315
{
3316
	struct page *used, *unused;
3317
	struct page_cgroup *pc;
3318
	bool anon;
3319

3320
	if (!memcg)
3321
		return;
3322
	/* blocks rmdir() */
3323
	cgroup_exclude_rmdir(&memcg->css);
3324
	if (!migration_ok) {
3325 3326
		used = oldpage;
		unused = newpage;
3327
	} else {
3328
		used = newpage;
3329 3330
		unused = oldpage;
	}
3331
	/*
3332 3333 3334
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3335
	 */
3336 3337 3338 3339
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3340 3341 3342 3343
	anon = PageAnon(used);
	__mem_cgroup_uncharge_common(unused,
		anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
		     : MEM_CGROUP_CHARGE_TYPE_CACHE);
3344

3345
	/*
3346 3347 3348 3349 3350 3351
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3352
	 */
3353
	if (anon)
3354
		mem_cgroup_uncharge_page(used);
3355
	/*
3356 3357
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3358 3359 3360
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3361
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3362
}
3363

3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
	memcg = pc->mem_cgroup;
3383
	mem_cgroup_charge_statistics(memcg, false, -1);
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
	ClearPageCgroupUsed(pc);
	unlock_page_cgroup(pc);

	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3395
	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, type, true);
3396 3397
}

3398 3399 3400 3401 3402 3403
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3404 3405 3406 3407 3408
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3428
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3429 3430 3431 3432 3433
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3434 3435
static DEFINE_MUTEX(set_limit_mutex);

3436
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3437
				unsigned long long val)
3438
{
3439
	int retry_count;
3440
	u64 memswlimit, memlimit;
3441
	int ret = 0;
3442 3443
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3444
	int enlarge;
3445 3446 3447 3448 3449 3450 3451 3452 3453

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3454

3455
	enlarge = 0;
3456
	while (retry_count) {
3457 3458 3459 3460
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3461 3462 3463
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3464
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3465 3466 3467 3468 3469 3470
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3471 3472
			break;
		}
3473 3474 3475 3476 3477

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3478
		ret = res_counter_set_limit(&memcg->res, val);
3479 3480 3481 3482 3483 3484
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3485 3486 3487 3488 3489
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3490 3491
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3492 3493 3494 3495 3496 3497
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3498
	}
3499 3500
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3501

3502 3503 3504
	return ret;
}

L
Li Zefan 已提交
3505 3506
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3507
{
3508
	int retry_count;
3509
	u64 memlimit, memswlimit, oldusage, curusage;
3510 3511
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3512
	int enlarge = 0;
3513

3514 3515 3516
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3517 3518 3519 3520 3521 3522 3523 3524
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3525
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3526 3527 3528 3529 3530 3531 3532 3533
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3534 3535 3536
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3537
		ret = res_counter_set_limit(&memcg->memsw, val);
3538 3539 3540 3541 3542 3543
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3544 3545 3546 3547 3548
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3549 3550 3551
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3552
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3553
		/* Usage is reduced ? */
3554
		if (curusage >= oldusage)
3555
			retry_count--;
3556 3557
		else
			oldusage = curusage;
3558
	}
3559 3560
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3561 3562 3563
	return ret;
}

3564
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3565 3566
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3567 3568 3569 3570 3571 3572
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3573
	unsigned long long excess;
3574
	unsigned long nr_scanned;
3575 3576 3577 3578

	if (order > 0)
		return 0;

3579
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3593
		nr_scanned = 0;
3594
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3595
						    gfp_mask, &nr_scanned);
3596
		nr_reclaimed += reclaimed;
3597
		*total_scanned += nr_scanned;
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3620
				if (next_mz == mz)
3621
					css_put(&next_mz->memcg->css);
3622
				else /* next_mz == NULL or other memcg */
3623 3624 3625
					break;
			} while (1);
		}
3626 3627
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3628 3629 3630 3631 3632 3633 3634 3635
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3636
		/* If excess == 0, no tree ops */
3637
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3638
		spin_unlock(&mctz->lock);
3639
		css_put(&mz->memcg->css);
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3652
		css_put(&next_mz->memcg->css);
3653 3654 3655
	return nr_reclaimed;
}

3656 3657 3658 3659
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3660
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3661
				int node, int zid, enum lru_list lru)
3662
{
K
KAMEZAWA Hiroyuki 已提交
3663 3664
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3665
	struct list_head *list;
3666 3667
	struct page *busy;
	struct zone *zone;
3668
	int ret = 0;
3669

K
KAMEZAWA Hiroyuki 已提交
3670
	zone = &NODE_DATA(node)->node_zones[zid];
3671
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3672
	list = &mz->lruvec.lists[lru];
3673

3674
	loop = mz->lru_size[lru];
3675 3676 3677 3678
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3679
		struct page_cgroup *pc;
3680 3681
		struct page *page;

3682
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3683
		spin_lock_irqsave(&zone->lru_lock, flags);
3684
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3685
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3686
			break;
3687
		}
3688 3689 3690
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3691
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3692
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3693 3694
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3695
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3696

3697
		pc = lookup_page_cgroup(page);
3698

3699
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3700
		if (ret == -ENOMEM || ret == -EINTR)
3701
			break;
3702 3703 3704

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3705
			busy = page;
3706 3707 3708
			cond_resched();
		} else
			busy = NULL;
3709
	}
K
KAMEZAWA Hiroyuki 已提交
3710

3711 3712 3713
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3714 3715 3716 3717 3718 3719
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3720
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3721
{
3722 3723 3724
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3725
	struct cgroup *cgrp = memcg->css.cgroup;
3726

3727
	css_get(&memcg->css);
3728 3729

	shrink = 0;
3730 3731 3732
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3733
move_account:
3734
	do {
3735
		ret = -EBUSY;
3736 3737 3738 3739
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3740
			goto out;
3741 3742
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3743
		drain_all_stock_sync(memcg);
3744
		ret = 0;
3745
		mem_cgroup_start_move(memcg);
3746
		for_each_node_state(node, N_HIGH_MEMORY) {
3747
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3748 3749
				enum lru_list lru;
				for_each_lru(lru) {
3750
					ret = mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3751
							node, zid, lru);
3752 3753 3754
					if (ret)
						break;
				}
3755
			}
3756 3757 3758
			if (ret)
				break;
		}
3759 3760
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3761 3762 3763
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3764
		cond_resched();
3765
	/* "ret" should also be checked to ensure all lists are empty. */
3766
	} while (memcg->res.usage > 0 || ret);
3767
out:
3768
	css_put(&memcg->css);
3769
	return ret;
3770 3771

try_to_free:
3772 3773
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3774 3775 3776
		ret = -EBUSY;
		goto out;
	}
3777 3778
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3779 3780
	/* try to free all pages in this cgroup */
	shrink = 1;
3781
	while (nr_retries && memcg->res.usage > 0) {
3782
		int progress;
3783 3784 3785 3786 3787

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3788
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3789
						false);
3790
		if (!progress) {
3791
			nr_retries--;
3792
			/* maybe some writeback is necessary */
3793
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3794
		}
3795 3796

	}
K
KAMEZAWA Hiroyuki 已提交
3797
	lru_add_drain();
3798
	/* try move_account...there may be some *locked* pages. */
3799
	goto move_account;
3800 3801
}

3802 3803 3804 3805 3806 3807
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3808 3809 3810 3811 3812 3813 3814 3815 3816
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3817
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3818
	struct cgroup *parent = cont->parent;
3819
	struct mem_cgroup *parent_memcg = NULL;
3820 3821

	if (parent)
3822
		parent_memcg = mem_cgroup_from_cont(parent);
3823 3824 3825

	cgroup_lock();
	/*
3826
	 * If parent's use_hierarchy is set, we can't make any modifications
3827 3828 3829 3830 3831 3832
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3833
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3834 3835
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3836
			memcg->use_hierarchy = val;
3837 3838 3839 3840 3841 3842 3843 3844 3845
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3846

3847
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3848
					       enum mem_cgroup_stat_index idx)
3849
{
K
KAMEZAWA Hiroyuki 已提交
3850
	struct mem_cgroup *iter;
3851
	long val = 0;
3852

3853
	/* Per-cpu values can be negative, use a signed accumulator */
3854
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3855 3856 3857 3858 3859
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3860 3861
}

3862
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3863
{
K
KAMEZAWA Hiroyuki 已提交
3864
	u64 val;
3865

3866
	if (!mem_cgroup_is_root(memcg)) {
3867
		if (!swap)
3868
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3869
		else
3870
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3871 3872
	}

3873 3874
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3875

K
KAMEZAWA Hiroyuki 已提交
3876
	if (swap)
3877
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3878 3879 3880 3881

	return val << PAGE_SHIFT;
}

3882 3883 3884
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3885
{
3886
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3887
	char str[64];
3888
	u64 val;
3889
	int type, name, len;
3890 3891 3892

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3893 3894 3895 3896

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3897 3898
	switch (type) {
	case _MEM:
3899
		if (name == RES_USAGE)
3900
			val = mem_cgroup_usage(memcg, false);
3901
		else
3902
			val = res_counter_read_u64(&memcg->res, name);
3903 3904
		break;
	case _MEMSWAP:
3905
		if (name == RES_USAGE)
3906
			val = mem_cgroup_usage(memcg, true);
3907
		else
3908
			val = res_counter_read_u64(&memcg->memsw, name);
3909 3910 3911 3912
		break;
	default:
		BUG();
	}
3913 3914 3915

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3916
}
3917 3918 3919 3920
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3921 3922
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3923
{
3924
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3925
	int type, name;
3926 3927 3928
	unsigned long long val;
	int ret;

3929 3930
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3931 3932 3933 3934

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3935
	switch (name) {
3936
	case RES_LIMIT:
3937 3938 3939 3940
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3941 3942
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3943 3944 3945
		if (ret)
			break;
		if (type == _MEM)
3946
			ret = mem_cgroup_resize_limit(memcg, val);
3947 3948
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3949
		break;
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3964 3965 3966 3967 3968
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3969 3970
}

3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

3998
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3999
{
4000
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4001
	int type, name;
4002

4003 4004
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4005 4006 4007 4008

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4009
	switch (name) {
4010
	case RES_MAX_USAGE:
4011
		if (type == _MEM)
4012
			res_counter_reset_max(&memcg->res);
4013
		else
4014
			res_counter_reset_max(&memcg->memsw);
4015 4016
		break;
	case RES_FAILCNT:
4017
		if (type == _MEM)
4018
			res_counter_reset_failcnt(&memcg->res);
4019
		else
4020
			res_counter_reset_failcnt(&memcg->memsw);
4021 4022
		break;
	}
4023

4024
	return 0;
4025 4026
}

4027 4028 4029 4030 4031 4032
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4033
#ifdef CONFIG_MMU
4034 4035 4036
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4037
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4038 4039 4040 4041 4042 4043 4044 4045 4046

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4047
	memcg->move_charge_at_immigrate = val;
4048 4049 4050 4051
	cgroup_unlock();

	return 0;
}
4052 4053 4054 4055 4056 4057 4058
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4059

K
KAMEZAWA Hiroyuki 已提交
4060 4061 4062 4063 4064

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4065
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4066 4067
	MCS_PGPGIN,
	MCS_PGPGOUT,
4068
	MCS_SWAP,
4069 4070
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4081 4082
};

K
KAMEZAWA Hiroyuki 已提交
4083 4084 4085 4086 4087 4088
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4089
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4090 4091
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4092
	{"swap", "total_swap"},
4093 4094
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4095 4096 4097 4098 4099 4100 4101 4102
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4103
static void
4104
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4105 4106 4107 4108
{
	s64 val;

	/* per cpu stat */
4109
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4110
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4111
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4112
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4113
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4114
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4115
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4116
	s->stat[MCS_PGPGIN] += val;
4117
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4118
	s->stat[MCS_PGPGOUT] += val;
4119
	if (do_swap_account) {
4120
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4121 4122
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4123
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4124
	s->stat[MCS_PGFAULT] += val;
4125
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4126
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4127 4128

	/* per zone stat */
4129
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4130
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4131
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4132
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4133
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4134
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4135
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4136
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4137
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4138 4139 4140 4141
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4142
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4143
{
K
KAMEZAWA Hiroyuki 已提交
4144 4145
	struct mem_cgroup *iter;

4146
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4147
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4148 4149
}

4150 4151 4152 4153 4154 4155 4156
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
4157
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4158

4159
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4160 4161
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4162
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4163 4164 4165 4166
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4167
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4168 4169
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4170
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4171
				LRU_ALL_FILE);
4172 4173 4174 4175
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4176
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4177 4178
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4179
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4180
				LRU_ALL_ANON);
4181 4182 4183 4184
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4185
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4186 4187
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4188
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4189
				BIT(LRU_UNEVICTABLE));
4190 4191 4192 4193 4194 4195 4196
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4197 4198
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4199
{
4200
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4201
	struct mcs_total_stat mystat;
4202 4203
	int i;

K
KAMEZAWA Hiroyuki 已提交
4204
	memset(&mystat, 0, sizeof(mystat));
4205
	mem_cgroup_get_local_stat(memcg, &mystat);
4206

4207

4208 4209 4210
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4211
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4212
	}
L
Lee Schermerhorn 已提交
4213

K
KAMEZAWA Hiroyuki 已提交
4214
	/* Hierarchical information */
4215 4216
	{
		unsigned long long limit, memsw_limit;
4217
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4218 4219 4220 4221
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4222

K
KAMEZAWA Hiroyuki 已提交
4223
	memset(&mystat, 0, sizeof(mystat));
4224
	mem_cgroup_get_total_stat(memcg, &mystat);
4225 4226 4227
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4228
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4229
	}
K
KAMEZAWA Hiroyuki 已提交
4230

K
KOSAKI Motohiro 已提交
4231 4232 4233 4234 4235 4236 4237 4238 4239
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4240
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
K
KOSAKI Motohiro 已提交
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4258 4259 4260
	return 0;
}

K
KOSAKI Motohiro 已提交
4261 4262 4263 4264
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4265
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4266 4267 4268 4269 4270 4271 4272
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4273

K
KOSAKI Motohiro 已提交
4274 4275 4276 4277 4278 4279 4280
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4281 4282 4283

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4284 4285
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4286 4287
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4288
		return -EINVAL;
4289
	}
K
KOSAKI Motohiro 已提交
4290 4291 4292

	memcg->swappiness = val;

4293 4294
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4295 4296 4297
	return 0;
}

4298 4299 4300 4301 4302 4303 4304 4305
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4306
		t = rcu_dereference(memcg->thresholds.primary);
4307
	else
4308
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4320
	i = t->current_threshold;
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4344
	t->current_threshold = i - 1;
4345 4346 4347 4348 4349 4350
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4351 4352 4353 4354 4355 4356 4357
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4368
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4369 4370 4371
{
	struct mem_cgroup_eventfd_list *ev;

4372
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4373 4374 4375 4376
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4377
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4378
{
K
KAMEZAWA Hiroyuki 已提交
4379 4380
	struct mem_cgroup *iter;

4381
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4382
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4383 4384 4385 4386
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4387 4388
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4389 4390
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4391 4392
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4393
	int i, size, ret;
4394 4395 4396 4397 4398 4399

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4400

4401
	if (type == _MEM)
4402
		thresholds = &memcg->thresholds;
4403
	else if (type == _MEMSWAP)
4404
		thresholds = &memcg->memsw_thresholds;
4405 4406 4407 4408 4409 4410
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4411
	if (thresholds->primary)
4412 4413
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4414
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4415 4416

	/* Allocate memory for new array of thresholds */
4417
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4418
			GFP_KERNEL);
4419
	if (!new) {
4420 4421 4422
		ret = -ENOMEM;
		goto unlock;
	}
4423
	new->size = size;
4424 4425

	/* Copy thresholds (if any) to new array */
4426 4427
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4428
				sizeof(struct mem_cgroup_threshold));
4429 4430
	}

4431
	/* Add new threshold */
4432 4433
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4434 4435

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4436
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4437 4438 4439
			compare_thresholds, NULL);

	/* Find current threshold */
4440
	new->current_threshold = -1;
4441
	for (i = 0; i < size; i++) {
4442
		if (new->entries[i].threshold < usage) {
4443
			/*
4444 4445
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4446 4447
			 * it here.
			 */
4448
			++new->current_threshold;
4449 4450 4451
		}
	}

4452 4453 4454 4455 4456
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4457

4458
	/* To be sure that nobody uses thresholds */
4459 4460 4461 4462 4463 4464 4465 4466
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4467
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4468
	struct cftype *cft, struct eventfd_ctx *eventfd)
4469 4470
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4471 4472
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4473 4474
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4475
	int i, j, size;
4476 4477 4478

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4479
		thresholds = &memcg->thresholds;
4480
	else if (type == _MEMSWAP)
4481
		thresholds = &memcg->memsw_thresholds;
4482 4483 4484
	else
		BUG();

4485 4486 4487
	if (!thresholds->primary)
		goto unlock;

4488 4489 4490 4491 4492 4493
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4494 4495 4496
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4497 4498 4499
			size++;
	}

4500
	new = thresholds->spare;
4501

4502 4503
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4504 4505
		kfree(new);
		new = NULL;
4506
		goto swap_buffers;
4507 4508
	}

4509
	new->size = size;
4510 4511

	/* Copy thresholds and find current threshold */
4512 4513 4514
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4515 4516
			continue;

4517 4518
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4519
			/*
4520
			 * new->current_threshold will not be used
4521 4522 4523
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4524
			++new->current_threshold;
4525 4526 4527 4528
		}
		j++;
	}

4529
swap_buffers:
4530 4531 4532
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4533

4534
	/* To be sure that nobody uses thresholds */
4535
	synchronize_rcu();
4536
unlock:
4537 4538
	mutex_unlock(&memcg->thresholds_lock);
}
4539

K
KAMEZAWA Hiroyuki 已提交
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4552
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4553 4554 4555 4556 4557

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4558
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4559
		eventfd_signal(eventfd, 1);
4560
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4561 4562 4563 4564

	return 0;
}

4565
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4566 4567
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4568
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4569 4570 4571 4572 4573
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4574
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4575

4576
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4577 4578 4579 4580 4581 4582
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4583
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4584 4585
}

4586 4587 4588
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4589
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4590

4591
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4592

4593
	if (atomic_read(&memcg->under_oom))
4594 4595 4596 4597 4598 4599 4600 4601 4602
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4603
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4615
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4616 4617 4618
		cgroup_unlock();
		return -EINVAL;
	}
4619
	memcg->oom_kill_disable = val;
4620
	if (!val)
4621
		memcg_oom_recover(memcg);
4622 4623 4624 4625
	cgroup_unlock();
	return 0;
}

4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4642 4643 4644
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
G
Glauber Costa 已提交
4645 4646 4647 4648 4649 4650 4651
	/*
	 * Part of this would be better living in a separate allocation
	 * function, leaving us with just the cgroup tree population work.
	 * We, however, depend on state such as network's proto_list that
	 * is only initialized after cgroup creation. I found the less
	 * cumbersome way to deal with it to defer it all to populate time
	 */
4652
	return mem_cgroup_sockets_init(cont, ss);
4653 4654
};

4655
static void kmem_cgroup_destroy(struct cgroup *cont)
G
Glauber Costa 已提交
4656
{
4657
	mem_cgroup_sockets_destroy(cont);
G
Glauber Costa 已提交
4658
}
4659 4660 4661 4662 4663
#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
G
Glauber Costa 已提交
4664

4665
static void kmem_cgroup_destroy(struct cgroup *cont)
G
Glauber Costa 已提交
4666 4667
{
}
4668 4669
#endif

B
Balbir Singh 已提交
4670 4671
static struct cftype mem_cgroup_files[] = {
	{
4672
		.name = "usage_in_bytes",
4673
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4674
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4675 4676
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4677
	},
4678 4679
	{
		.name = "max_usage_in_bytes",
4680
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4681
		.trigger = mem_cgroup_reset,
4682
		.read = mem_cgroup_read,
4683
	},
B
Balbir Singh 已提交
4684
	{
4685
		.name = "limit_in_bytes",
4686
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4687
		.write_string = mem_cgroup_write,
4688
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4689
	},
4690 4691 4692 4693
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4694
		.read = mem_cgroup_read,
4695
	},
B
Balbir Singh 已提交
4696 4697
	{
		.name = "failcnt",
4698
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4699
		.trigger = mem_cgroup_reset,
4700
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4701
	},
4702 4703
	{
		.name = "stat",
4704
		.read_map = mem_control_stat_show,
4705
	},
4706 4707 4708 4709
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4710 4711 4712 4713 4714
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4715 4716 4717 4718 4719
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4720 4721 4722 4723 4724
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4725 4726
	{
		.name = "oom_control",
4727 4728
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4729 4730 4731 4732
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4733 4734 4735 4736
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4737
		.mode = S_IRUGO,
4738 4739
	},
#endif
4740 4741 4742 4743
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4744
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4745 4746
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4747 4748 4749 4750 4751
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4752
		.read = mem_cgroup_read,
4753 4754 4755 4756 4757
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4758
		.read = mem_cgroup_read,
4759 4760 4761 4762 4763
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4764
		.read = mem_cgroup_read,
4765 4766
	},
#endif
4767
};
4768

4769
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4770 4771
{
	struct mem_cgroup_per_node *pn;
4772
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
4773
	enum lru_list lru;
4774
	int zone, tmp = node;
4775 4776 4777 4778 4779 4780 4781 4782
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4783 4784
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4785
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4786 4787
	if (!pn)
		return 1;
4788 4789 4790

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
H
Hugh Dickins 已提交
4791 4792
		for_each_lru(lru)
			INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
4793
		mz->usage_in_excess = 0;
4794
		mz->on_tree = false;
4795
		mz->memcg = memcg;
4796
	}
4797
	memcg->info.nodeinfo[node] = pn;
4798 4799 4800
	return 0;
}

4801
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4802
{
4803
	kfree(memcg->info.nodeinfo[node]);
4804 4805
}

4806 4807
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4808
	struct mem_cgroup *memcg;
4809
	int size = sizeof(struct mem_cgroup);
4810

4811
	/* Can be very big if MAX_NUMNODES is very big */
4812
	if (size < PAGE_SIZE)
4813
		memcg = kzalloc(size, GFP_KERNEL);
4814
	else
4815
		memcg = vzalloc(size);
4816

4817
	if (!memcg)
4818 4819
		return NULL;

4820 4821
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4822
		goto out_free;
4823 4824
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4825 4826 4827

out_free:
	if (size < PAGE_SIZE)
4828
		kfree(memcg);
4829
	else
4830
		vfree(memcg);
4831
	return NULL;
4832 4833
}

4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
/*
 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
static void vfree_work(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, work_freeing);
	vfree(memcg);
}
static void vfree_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, vfree_work);
	schedule_work(&memcg->work_freeing);
}

4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4866
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4867
{
K
KAMEZAWA Hiroyuki 已提交
4868 4869
	int node;

4870 4871
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4872

B
Bob Liu 已提交
4873
	for_each_node(node)
4874
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4875

4876
	free_percpu(memcg->stat);
4877
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4878
		kfree_rcu(memcg, rcu_freeing);
4879
	else
4880
		call_rcu(&memcg->rcu_freeing, vfree_rcu);
4881 4882
}

4883
static void mem_cgroup_get(struct mem_cgroup *memcg)
4884
{
4885
	atomic_inc(&memcg->refcnt);
4886 4887
}

4888
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4889
{
4890 4891 4892
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4893 4894 4895
		if (parent)
			mem_cgroup_put(parent);
	}
4896 4897
}

4898
static void mem_cgroup_put(struct mem_cgroup *memcg)
4899
{
4900
	__mem_cgroup_put(memcg, 1);
4901 4902
}

4903 4904 4905
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4906
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4907
{
4908
	if (!memcg->res.parent)
4909
		return NULL;
4910
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4911
}
G
Glauber Costa 已提交
4912
EXPORT_SYMBOL(parent_mem_cgroup);
4913

4914 4915 4916
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4917
	if (!mem_cgroup_disabled() && really_do_swap_account)
4918 4919 4920 4921 4922 4923 4924 4925
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4926 4927 4928 4929 4930 4931
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4932
	for_each_node(node) {
4933 4934 4935 4936 4937
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4938
			goto err_cleanup;
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4949 4950

err_cleanup:
B
Bob Liu 已提交
4951
	for_each_node(node) {
4952 4953 4954 4955 4956 4957 4958
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4959 4960
}

L
Li Zefan 已提交
4961
static struct cgroup_subsys_state * __ref
4962
mem_cgroup_create(struct cgroup *cont)
B
Balbir Singh 已提交
4963
{
4964
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4965
	long error = -ENOMEM;
4966
	int node;
B
Balbir Singh 已提交
4967

4968 4969
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4970
		return ERR_PTR(error);
4971

B
Bob Liu 已提交
4972
	for_each_node(node)
4973
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4974
			goto free_out;
4975

4976
	/* root ? */
4977
	if (cont->parent == NULL) {
4978
		int cpu;
4979
		enable_swap_cgroup();
4980
		parent = NULL;
4981 4982
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4983
		root_mem_cgroup = memcg;
4984 4985 4986 4987 4988
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4989
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4990
	} else {
4991
		parent = mem_cgroup_from_cont(cont->parent);
4992 4993
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4994
	}
4995

4996
	if (parent && parent->use_hierarchy) {
4997 4998
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4999 5000 5001 5002 5003 5004 5005
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5006
	} else {
5007 5008
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5009
	}
5010 5011
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5012

K
KOSAKI Motohiro 已提交
5013
	if (parent)
5014 5015 5016 5017
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
5018
	spin_lock_init(&memcg->move_lock);
5019
	return &memcg->css;
5020
free_out:
5021
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5022
	return ERR_PTR(error);
B
Balbir Singh 已提交
5023 5024
}

5025
static int mem_cgroup_pre_destroy(struct cgroup *cont)
5026
{
5027
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5028

5029
	return mem_cgroup_force_empty(memcg, false);
5030 5031
}

5032
static void mem_cgroup_destroy(struct cgroup *cont)
B
Balbir Singh 已提交
5033
{
5034
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5035

5036
	kmem_cgroup_destroy(cont);
G
Glauber Costa 已提交
5037

5038
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5039 5040 5041 5042 5043
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5044 5045 5046 5047 5048
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

5049 5050 5051
	if (!ret)
		ret = register_kmem_files(cont, ss);

5052
	return ret;
B
Balbir Singh 已提交
5053 5054
}

5055
#ifdef CONFIG_MMU
5056
/* Handlers for move charge at task migration. */
5057 5058
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5059
{
5060 5061
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5062
	struct mem_cgroup *memcg = mc.to;
5063

5064
	if (mem_cgroup_is_root(memcg)) {
5065 5066 5067 5068 5069 5070 5071 5072
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5073
		 * "memcg" cannot be under rmdir() because we've already checked
5074 5075 5076 5077
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5078
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5079
			goto one_by_one;
5080
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5081
						PAGE_SIZE * count, &dummy)) {
5082
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5099 5100
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5101
		if (ret)
5102
			/* mem_cgroup_clear_mc() will do uncharge later */
5103
			return ret;
5104 5105
		mc.precharge++;
	}
5106 5107 5108 5109
	return ret;
}

/**
5110
 * get_mctgt_type - get target type of moving charge
5111 5112 5113
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5114
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5115 5116 5117 5118 5119 5120
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5121 5122 5123
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5124 5125 5126 5127 5128
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5129
	swp_entry_t	ent;
5130 5131 5132
};

enum mc_target_type {
5133
	MC_TARGET_NONE = 0,
5134
	MC_TARGET_PAGE,
5135
	MC_TARGET_SWAP,
5136 5137
};

D
Daisuke Nishimura 已提交
5138 5139
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5140
{
D
Daisuke Nishimura 已提交
5141
	struct page *page = vm_normal_page(vma, addr, ptent);
5142

D
Daisuke Nishimura 已提交
5143 5144 5145 5146
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5147
		if (!move_anon() || page_mapcount(page) > 2)
D
Daisuke Nishimura 已提交
5148
			return NULL;
5149 5150
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5169 5170
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5171
		return NULL;
5172
	}
D
Daisuke Nishimura 已提交
5173 5174 5175 5176 5177 5178
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5200 5201 5202 5203 5204 5205
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5206
		if (do_swap_account)
5207 5208
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5209
	}
5210
#endif
5211 5212 5213
	return page;
}

5214
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5215 5216 5217 5218
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5219
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5220 5221 5222 5223 5224 5225
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5226 5227
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5228 5229

	if (!page && !ent.val)
5230
		return ret;
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5246 5247
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5248
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5249 5250 5251
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5252 5253 5254 5255
	}
	return ret;
}

5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5291 5292 5293 5294 5295 5296 5297 5298
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5299 5300 5301 5302
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5303
		return 0;
5304
	}
5305

5306 5307
	if (pmd_trans_unstable(pmd))
		return 0;
5308 5309
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5310
		if (get_mctgt_type(vma, addr, *pte, NULL))
5311 5312 5313 5314
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5315 5316 5317
	return 0;
}

5318 5319 5320 5321 5322
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5323
	down_read(&mm->mmap_sem);
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5335
	up_read(&mm->mmap_sem);
5336 5337 5338 5339 5340 5341 5342 5343 5344

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5345 5346 5347 5348 5349
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5350 5351
}

5352 5353
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5354
{
5355 5356 5357
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5358
	/* we must uncharge all the leftover precharges from mc.to */
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5370
	}
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5405
	spin_lock(&mc.lock);
5406 5407
	mc.from = NULL;
	mc.to = NULL;
5408
	spin_unlock(&mc.lock);
5409
	mem_cgroup_end_move(from);
5410 5411
}

5412 5413
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5414
{
5415
	struct task_struct *p = cgroup_taskset_first(tset);
5416
	int ret = 0;
5417
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5418

5419
	if (memcg->move_charge_at_immigrate) {
5420 5421 5422
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5423
		VM_BUG_ON(from == memcg);
5424 5425 5426 5427 5428

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5429 5430 5431 5432
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5433
			VM_BUG_ON(mc.moved_charge);
5434
			VM_BUG_ON(mc.moved_swap);
5435
			mem_cgroup_start_move(from);
5436
			spin_lock(&mc.lock);
5437
			mc.from = from;
5438
			mc.to = memcg;
5439
			spin_unlock(&mc.lock);
5440
			/* We set mc.moving_task later */
5441 5442 5443 5444

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5445 5446
		}
		mmput(mm);
5447 5448 5449 5450
	}
	return ret;
}

5451 5452
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5453
{
5454
	mem_cgroup_clear_mc();
5455 5456
}

5457 5458 5459
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5460
{
5461 5462 5463 5464
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5465 5466 5467 5468
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5469

5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (!mc.precharge) {
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
							     pc, mc.from, mc.to,
							     false)) {
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5501
		return 0;
5502 5503
	}

5504 5505
	if (pmd_trans_unstable(pmd))
		return 0;
5506 5507 5508 5509
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5510
		swp_entry_t ent;
5511 5512 5513 5514

		if (!mc.precharge)
			break;

5515
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5516 5517 5518 5519 5520
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5521 5522
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5523
				mc.precharge--;
5524 5525
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5526 5527
			}
			putback_lru_page(page);
5528
put:			/* get_mctgt_type() gets the page */
5529 5530
			put_page(page);
			break;
5531 5532
		case MC_TARGET_SWAP:
			ent = target.ent;
5533 5534
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5535
				mc.precharge--;
5536 5537 5538
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5539
			break;
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5554
		ret = mem_cgroup_do_precharge(1);
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5598
	up_read(&mm->mmap_sem);
5599 5600
}

5601 5602
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5603
{
5604
	struct task_struct *p = cgroup_taskset_first(tset);
5605
	struct mm_struct *mm = get_task_mm(p);
5606 5607

	if (mm) {
5608 5609 5610
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5611 5612
		mmput(mm);
	}
5613 5614
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5615
}
5616
#else	/* !CONFIG_MMU */
5617 5618
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5619 5620 5621
{
	return 0;
}
5622 5623
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5624 5625
{
}
5626 5627
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5628 5629 5630
{
}
#endif
B
Balbir Singh 已提交
5631

B
Balbir Singh 已提交
5632 5633 5634 5635
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5636
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5637 5638
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5639 5640
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5641
	.attach = mem_cgroup_move_task,
5642
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5643
	.use_id = 1,
B
Balbir Singh 已提交
5644
};
5645 5646

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5647 5648 5649
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5650
	if (!strcmp(s, "1"))
5651
		really_do_swap_account = 1;
5652
	else if (!strcmp(s, "0"))
5653 5654 5655
		really_do_swap_account = 0;
	return 1;
}
5656
__setup("swapaccount=", enable_swap_account);
5657 5658

#endif