memcontrol.c 56.0 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
K
KAMEZAWA Hiroyuki 已提交
24
#include <linux/pagemap.h>
25
#include <linux/smp.h>
26
#include <linux/page-flags.h>
27
#include <linux/backing-dev.h>
28 29
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
30
#include <linux/mutex.h>
31
#include <linux/slab.h>
32 33 34
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
35
#include <linux/seq_file.h>
36
#include <linux/vmalloc.h>
37
#include <linux/mm_inline.h>
38
#include <linux/page_cgroup.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include "internal.h"
B
Balbir Singh 已提交
40

41 42
#include <asm/uaccess.h>

43 44
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
45

46 47 48 49 50 51 52 53
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

54
static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
55

56 57 58 59 60 61 62 63 64
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */
65 66
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
67 68 69 70 71 72 73 74 75

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
76
	struct mem_cgroup_stat_cpu cpustat[0];
77 78 79 80 81
};

/*
 * For accounting under irq disable, no need for increment preempt count.
 */
82
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
83 84
		enum mem_cgroup_stat_index idx, int val)
{
85
	stat->count[idx] += val;
86 87 88 89 90 91 92 93 94 95 96 97
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

98 99 100 101
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
102 103 104
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
105 106
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
107 108

	struct zone_reclaim_stat reclaim_stat;
109 110 111 112 113 114 115 116 117 118 119 120
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

B
Balbir Singh 已提交
121 122 123 124 125 126 127
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
128 129 130
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
131 132 133 134 135 136 137
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
138 139 140 141
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
142 143 144 145
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
146
	struct mem_cgroup_lru_info info;
147

K
KOSAKI Motohiro 已提交
148 149 150 151 152
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

153
	int	prev_priority;	/* for recording reclaim priority */
154 155 156

	/*
	 * While reclaiming in a hiearchy, we cache the last child we
157
	 * reclaimed from. Protected by hierarchy_mutex
158 159
	 */
	struct mem_cgroup *last_scanned_child;
160 161 162 163
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
164
	unsigned long	last_oom_jiffies;
165
	atomic_t	refcnt;
166

K
KOSAKI Motohiro 已提交
167 168
	unsigned int	swappiness;

169
	/*
170
	 * statistics. This must be placed at the end of memcg.
171 172
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
173 174
};

175 176 177
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
178
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
179
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
180
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
181 182 183
	NR_CHARGE_TYPE,
};

184 185 186 187
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
188 189
static const unsigned long
pcg_default_flags[NR_CHARGE_TYPE] = {
K
KAMEZAWA Hiroyuki 已提交
190 191 192
	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
	PCGF_USED | PCGF_LOCK, /* Anon */
	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
193
	0, /* FORCE */
194 195
};

196 197 198 199 200 201 202 203 204 205
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);

206 207 208
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
209 210 211
{
	int val = (charge)? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
212
	struct mem_cgroup_stat_cpu *cpustat;
K
KAMEZAWA Hiroyuki 已提交
213
	int cpu = get_cpu();
214

K
KAMEZAWA Hiroyuki 已提交
215
	cpustat = &stat->cpustat[cpu];
216
	if (PageCgroupCache(pc))
217
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
218
	else
219
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
220 221

	if (charge)
222
		__mem_cgroup_stat_add_safe(cpustat,
223 224
				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
	else
225
		__mem_cgroup_stat_add_safe(cpustat,
226
				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
K
KAMEZAWA Hiroyuki 已提交
227
	put_cpu();
228 229
}

230
static struct mem_cgroup_per_zone *
231 232 233 234 235
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

236
static struct mem_cgroup_per_zone *
237 238 239 240 241
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);
242

243 244 245
	if (!mem)
		return NULL;

246 247 248 249
	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
250
					enum lru_list idx)
251 252 253 254 255 256 257 258 259 260 261
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
262 263
}

264
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
265 266 267 268 269 270
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

271
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
272
{
273 274 275 276 277 278 279 280
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

281 282 283 284
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
{
	if (!mem)
		return true;
	return css_is_removed(&mem->css);
}

K
KAMEZAWA Hiroyuki 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
323

K
KAMEZAWA Hiroyuki 已提交
324 325 326 327 328
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup *mem;
	struct mem_cgroup_per_zone *mz;
329

330
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
331 332 333
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
334
	if (list_empty(&pc->lru) || !pc->mem_cgroup)
K
KAMEZAWA Hiroyuki 已提交
335
		return;
336 337 338 339
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
340 341
	mz = page_cgroup_zoneinfo(pc);
	mem = pc->mem_cgroup;
342
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
K
KAMEZAWA Hiroyuki 已提交
343 344
	list_del_init(&pc->lru);
	return;
345 346
}

K
KAMEZAWA Hiroyuki 已提交
347
void mem_cgroup_del_lru(struct page *page)
348
{
K
KAMEZAWA Hiroyuki 已提交
349 350
	mem_cgroup_del_lru_list(page, page_lru(page));
}
351

K
KAMEZAWA Hiroyuki 已提交
352 353 354 355
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
356

357
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
358
		return;
359

K
KAMEZAWA Hiroyuki 已提交
360
	pc = lookup_page_cgroup(page);
361 362 363 364
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
365 366 367 368 369 370
	smp_rmb();
	/* unused page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
371 372
}

K
KAMEZAWA Hiroyuki 已提交
373
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
374
{
K
KAMEZAWA Hiroyuki 已提交
375 376
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
377

378
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
379 380
		return;
	pc = lookup_page_cgroup(page);
381 382 383 384
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
385 386
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
387
		return;
388

K
KAMEZAWA Hiroyuki 已提交
389
	mz = page_cgroup_zoneinfo(pc);
390
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
K
KAMEZAWA Hiroyuki 已提交
391 392
	list_add(&pc->lru, &mz->lists[lru]);
}
393

K
KAMEZAWA Hiroyuki 已提交
394
/*
395 396 397 398 399
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
400
 */
401
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
402
{
403 404 405 406 407 408 409 410 411 412 413 414
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
415 416
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
	if (PageLRU(page) && list_empty(&pc->lru))
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
431 432 433
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
434
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
435 436 437
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
438 439
}

440 441 442 443 444
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;

	task_lock(task);
445
	ret = task->mm && mm_match_cgroup(task->mm, mem);
446 447 448 449
	task_unlock(task);
	return ret;
}

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
/*
 * Calculate mapped_ratio under memory controller. This will be used in
 * vmscan.c for deteremining we have to reclaim mapped pages.
 */
int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
{
	long total, rss;

	/*
	 * usage is recorded in bytes. But, here, we assume the number of
	 * physical pages can be represented by "long" on any arch.
	 */
	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	return (int)((rss * 100L) / total);
}
466

467 468 469 470 471
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
472 473 474 475 476 477 478
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
479 480 481 482
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
483
	spin_lock(&mem->reclaim_param_lock);
484 485
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
486
	spin_unlock(&mem->reclaim_param_lock);
487 488 489 490
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
491
	spin_lock(&mem->reclaim_param_lock);
492
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
493
	spin_unlock(&mem->reclaim_param_lock);
494 495
}

496
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
497 498 499
{
	unsigned long active;
	unsigned long inactive;
500 501
	unsigned long gb;
	unsigned long inactive_ratio;
502 503 504 505

	inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
533 534 535 536 537
		return 1;

	return 0;
}

538 539 540 541 542 543 544 545 546 547 548
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
569 570 571 572 573 574 575 576
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
577 578 579 580 581 582 583
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

584 585 586 587 588
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
589
					int active, int file)
590 591 592 593 594 595
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
596
	struct page_cgroup *pc, *tmp;
597 598 599
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
600
	int lru = LRU_FILE * !!file + !!active;
601

602
	BUG_ON(!mem_cont);
603
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
604
	src = &mz->lists[lru];
605

606 607
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
608
		if (scan >= nr_to_scan)
609
			break;
K
KAMEZAWA Hiroyuki 已提交
610 611

		page = pc->page;
612 613
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
614
		if (unlikely(!PageLRU(page)))
615 616
			continue;

H
Hugh Dickins 已提交
617
		scan++;
618
		if (__isolate_lru_page(page, mode, file) == 0) {
619 620 621 622 623 624 625 626 627
			list_move(&page->lru, dst);
			nr_taken++;
		}
	}

	*scanned = scan;
	return nr_taken;
}

628 629 630 631 632
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

/*
 * This routine finds the DFS walk successor. This routine should be
633
 * called with hierarchy_mutex held
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
 */
static struct mem_cgroup *
mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
{
	struct cgroup *cgroup, *curr_cgroup, *root_cgroup;

	curr_cgroup = curr->css.cgroup;
	root_cgroup = root_mem->css.cgroup;

	if (!list_empty(&curr_cgroup->children)) {
		/*
		 * Walk down to children
		 */
		mem_cgroup_put(curr);
		cgroup = list_entry(curr_cgroup->children.next,
						struct cgroup, sibling);
		curr = mem_cgroup_from_cont(cgroup);
		mem_cgroup_get(curr);
		goto done;
	}

visit_parent:
	if (curr_cgroup == root_cgroup) {
		mem_cgroup_put(curr);
		curr = root_mem;
		mem_cgroup_get(curr);
		goto done;
	}

	/*
	 * Goto next sibling
	 */
	if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
		mem_cgroup_put(curr);
		cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
						sibling);
		curr = mem_cgroup_from_cont(cgroup);
		mem_cgroup_get(curr);
		goto done;
	}

	/*
	 * Go up to next parent and next parent's sibling if need be
	 */
	curr_cgroup = curr_cgroup->parent;
	goto visit_parent;

done:
	root_mem->last_scanned_child = curr;
	return curr;
}

/*
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
{
	struct cgroup *cgroup;
	struct mem_cgroup *ret;
696 697 698
	bool obsolete;

	obsolete = mem_cgroup_is_obsolete(root_mem->last_scanned_child);
699 700 701 702

	/*
	 * Scan all children under the mem_cgroup mem
	 */
703
	mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
704 705 706 707 708 709 710
	if (list_empty(&root_mem->css.cgroup->children)) {
		ret = root_mem;
		goto done;
	}

	if (!root_mem->last_scanned_child || obsolete) {

711
		if (obsolete && root_mem->last_scanned_child)
712 713 714 715 716 717 718 719 720 721 722 723
			mem_cgroup_put(root_mem->last_scanned_child);

		cgroup = list_first_entry(&root_mem->css.cgroup->children,
				struct cgroup, sibling);
		ret = mem_cgroup_from_cont(cgroup);
		mem_cgroup_get(ret);
	} else
		ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
						root_mem);

done:
	root_mem->last_scanned_child = ret;
724
	mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
725 726 727
	return ret;
}

728 729 730 731 732 733 734 735 736 737 738 739
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
/*
 * Dance down the hierarchy if needed to reclaim memory. We remember the
 * last child we reclaimed from, so that we don't end up penalizing
 * one child extensively based on its position in the children list.
 *
 * root_mem is the original ancestor that we've been reclaim from.
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
						gfp_t gfp_mask, bool noswap)
{
	struct mem_cgroup *next_mem;
	int ret = 0;

	/*
	 * Reclaim unconditionally and don't check for return value.
	 * We need to reclaim in the current group and down the tree.
	 * One might think about checking for children before reclaiming,
	 * but there might be left over accounting, even after children
	 * have left.
	 */
K
KOSAKI Motohiro 已提交
776 777
	ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
					   get_swappiness(root_mem));
778
	if (mem_cgroup_check_under_limit(root_mem))
779
		return 0;
780 781
	if (!root_mem->use_hierarchy)
		return ret;
782 783 784 785

	next_mem = mem_cgroup_get_first_node(root_mem);

	while (next_mem != root_mem) {
786
		if (mem_cgroup_is_obsolete(next_mem)) {
787 788 789 790
			mem_cgroup_put(next_mem);
			next_mem = mem_cgroup_get_first_node(root_mem);
			continue;
		}
K
KOSAKI Motohiro 已提交
791 792
		ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
						   get_swappiness(next_mem));
793
		if (mem_cgroup_check_under_limit(root_mem))
794
			return 0;
795
		mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
796
		next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
797
		mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
798 799 800 801
	}
	return ret;
}

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
bool mem_cgroup_oom_called(struct task_struct *task)
{
	bool ret = false;
	struct mem_cgroup *mem;
	struct mm_struct *mm;

	rcu_read_lock();
	mm = task->mm;
	if (!mm)
		mm = &init_mm;
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
		ret = true;
	rcu_read_unlock();
	return ret;
}
818 819 820
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
821
 */
822
static int __mem_cgroup_try_charge(struct mm_struct *mm,
823 824
			gfp_t gfp_mask, struct mem_cgroup **memcg,
			bool oom)
825
{
826
	struct mem_cgroup *mem, *mem_over_limit;
827
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
828
	struct res_counter *fail_res;
829 830 831 832 833 834 835

	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
		/* Don't account this! */
		*memcg = NULL;
		return 0;
	}

836
	/*
837 838
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
839 840 841
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
842 843 844
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
845
		*memcg = mem;
846
	} else {
847
		css_get(&mem->css);
848
	}
849 850 851 852
	if (unlikely(!mem))
		return 0;

	VM_BUG_ON(mem_cgroup_is_obsolete(mem));
853

854 855 856
	while (1) {
		int ret;
		bool noswap = false;
857

858
		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
859 860 861
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
862 863
			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
							&fail_res);
864 865 866 867 868
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
			res_counter_uncharge(&mem->res, PAGE_SIZE);
			noswap = true;
869 870 871 872 873 874 875
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

876
		if (!(gfp_mask & __GFP_WAIT))
877
			goto nomem;
878

879 880
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
							noswap);
881 882

		/*
883 884 885 886 887
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
888
		 *
889
		 */
890 891
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
892 893

		if (!nr_retries--) {
894
			if (oom) {
895
				mutex_lock(&memcg_tasklist);
896
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
897
				mutex_unlock(&memcg_tasklist);
898
				mem_over_limit->last_oom_jiffies = jiffies;
899
			}
900
			goto nomem;
901
		}
902
	}
903 904 905 906 907
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
}
908

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
{
	struct mem_cgroup *mem;
	swp_entry_t ent;

	if (!PageSwapCache(page))
		return NULL;

	ent.val = page_private(page);
	mem = lookup_swap_cgroup(ent);
	if (!mem)
		return NULL;
	if (!css_tryget(&mem->css))
		return NULL;
	return mem;
}

926
/*
927
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
928 929 930 931 932 933 934 935 936 937
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
938 939 940 941 942

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
		res_counter_uncharge(&mem->res, PAGE_SIZE);
943 944
		if (do_swap_account)
			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
945
		css_put(&mem->css);
946
		return;
947
	}
948
	pc->mem_cgroup = mem;
K
KAMEZAWA Hiroyuki 已提交
949
	smp_wmb();
950
	pc->flags = pcg_default_flags[ctype];
951

K
KAMEZAWA Hiroyuki 已提交
952
	mem_cgroup_charge_statistics(mem, pc, true);
953 954

	unlock_page_cgroup(pc);
955
}
956

957 958 959 960 961 962 963
/**
 * mem_cgroup_move_account - move account of the page
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
964
 * - page is not on LRU (isolate_page() is useful.)
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
 *
 * returns 0 at success,
 * returns -EBUSY when lock is busy or "pc" is unstable.
 *
 * This function does "uncharge" from old cgroup but doesn't do "charge" to
 * new cgroup. It should be done by a caller.
 */

static int mem_cgroup_move_account(struct page_cgroup *pc,
	struct mem_cgroup *from, struct mem_cgroup *to)
{
	struct mem_cgroup_per_zone *from_mz, *to_mz;
	int nid, zid;
	int ret = -EBUSY;

	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
981
	VM_BUG_ON(PageLRU(pc->page));
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996

	nid = page_cgroup_nid(pc);
	zid = page_cgroup_zid(pc);
	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);

	if (!trylock_page_cgroup(pc))
		return ret;

	if (!PageCgroupUsed(pc))
		goto out;

	if (pc->mem_cgroup != from)
		goto out;

K
KAMEZAWA Hiroyuki 已提交
997 998 999 1000 1001 1002 1003 1004 1005
	css_put(&from->css);
	res_counter_uncharge(&from->res, PAGE_SIZE);
	mem_cgroup_charge_statistics(from, pc, false);
	if (do_swap_account)
		res_counter_uncharge(&from->memsw, PAGE_SIZE);
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
	css_get(&to->css);
	ret = 0;
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
out:
	unlock_page_cgroup(pc);
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1019
	struct page *page = pc->page;
1020 1021 1022 1023 1024 1025 1026 1027 1028
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

K
KAMEZAWA Hiroyuki 已提交
1029

1030 1031
	parent = mem_cgroup_from_cont(pcg);

K
KAMEZAWA Hiroyuki 已提交
1032

1033
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1034
	if (ret || !parent)
1035 1036
		return ret;

K
KAMEZAWA Hiroyuki 已提交
1037 1038 1039 1040 1041 1042 1043
	if (!get_page_unless_zero(page))
		return -EBUSY;

	ret = isolate_lru_page(page);

	if (ret)
		goto cancel;
1044 1045 1046

	ret = mem_cgroup_move_account(pc, child, parent);

K
KAMEZAWA Hiroyuki 已提交
1047
	/* drop extra refcnt by try_charge() (move_account increment one) */
1048
	css_put(&parent->css);
K
KAMEZAWA Hiroyuki 已提交
1049 1050 1051 1052
	putback_lru_page(page);
	if (!ret) {
		put_page(page);
		return 0;
1053
	}
K
KAMEZAWA Hiroyuki 已提交
1054 1055 1056 1057 1058 1059
	/* uncharge if move fails */
cancel:
	res_counter_uncharge(&parent->res, PAGE_SIZE);
	if (do_swap_account)
		res_counter_uncharge(&parent->memsw, PAGE_SIZE);
	put_page(page);
1060 1061 1062
	return ret;
}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1084
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1085
	if (ret || !mem)
1086 1087 1088
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1089 1090 1091
	return 0;
}

1092 1093
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1094
{
1095
	if (mem_cgroup_disabled())
1096
		return 0;
1097 1098
	if (PageCompound(page))
		return 0;
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
1110
	return mem_cgroup_charge_common(page, mm, gfp_mask,
1111
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1112 1113
}

1114 1115
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
1116
{
1117 1118 1119
	struct mem_cgroup *mem = NULL;
	int ret;

1120
	if (mem_cgroup_disabled())
1121
		return 0;
1122 1123
	if (PageCompound(page))
		return 0;
1124 1125 1126 1127 1128 1129 1130 1131
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
1132 1133
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
1134 1135 1136 1137
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

1138 1139 1140 1141 1142 1143 1144

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
1145 1146
			return 0;
		}
1147
		unlock_page_cgroup(pc);
1148 1149
	}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	if (do_swap_account && PageSwapCache(page)) {
		mem = try_get_mem_cgroup_from_swapcache(page);
		if (mem)
			mm = NULL;
		  else
			mem = NULL;
		/* SwapCache may be still linked to LRU now. */
		mem_cgroup_lru_del_before_commit_swapcache(page);
	}

	if (unlikely(!mm && !mem))
1161
		mm = &init_mm;
1162

1163 1164
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
1165
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

	ret = mem_cgroup_charge_common(page, mm, gfp_mask,
				MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
	if (mem)
		css_put(&mem->css);
	if (PageSwapCache(page))
		mem_cgroup_lru_add_after_commit_swapcache(page);

	if (do_swap_account && !ret && PageSwapCache(page)) {
		swp_entry_t ent = {.val = page_private(page)};
		/* avoid double counting */
		mem = swap_cgroup_record(ent, NULL);
		if (mem) {
			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
			mem_cgroup_put(mem);
		}
	}
	return ret;
1184 1185
}

1186 1187 1188 1189 1190 1191
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
 * struct page_cgroup is aquired. This refcnt will be cumsumed by
 * "commit()" or removed by "cancel()"
 */
1192 1193 1194 1195 1196
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
1197
	int ret;
1198

1199
	if (mem_cgroup_disabled())
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
	 * the pte, and even removed page from swap cache: return success
	 * to go on to do_swap_page()'s pte_same() test, which should fail.
	 */
	if (!PageSwapCache(page))
		return 0;
1211
	mem = try_get_mem_cgroup_from_swapcache(page);
1212 1213
	if (!mem)
		goto charge_cur_mm;
1214
	*ptr = mem;
1215 1216 1217 1218
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
1219 1220 1221 1222 1223 1224
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
}

1225 1226 1227 1228
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	struct page_cgroup *pc;

1229
	if (mem_cgroup_disabled())
1230 1231 1232 1233
		return;
	if (!ptr)
		return;
	pc = lookup_page_cgroup(page);
1234
	mem_cgroup_lru_del_before_commit_swapcache(page);
1235
	__mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1236
	mem_cgroup_lru_add_after_commit_swapcache(page);
1237 1238 1239
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
1240 1241 1242
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
1243
	 */
1244
	if (do_swap_account && PageSwapCache(page)) {
1245 1246 1247 1248 1249 1250 1251 1252 1253
		swp_entry_t ent = {.val = page_private(page)};
		struct mem_cgroup *memcg;
		memcg = swap_cgroup_record(ent, NULL);
		if (memcg) {
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
			mem_cgroup_put(memcg);
		}

	}
K
KAMEZAWA Hiroyuki 已提交
1254
	/* add this page(page_cgroup) to the LRU we want. */
1255

1256 1257 1258 1259
}

void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
1260
	if (mem_cgroup_disabled())
1261 1262 1263 1264
		return;
	if (!mem)
		return;
	res_counter_uncharge(&mem->res, PAGE_SIZE);
1265 1266
	if (do_swap_account)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1267 1268 1269 1270
	css_put(&mem->css);
}


1271
/*
1272
 * uncharge if !page_mapped(page)
1273
 */
1274
static struct mem_cgroup *
1275
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1276
{
H
Hugh Dickins 已提交
1277
	struct page_cgroup *pc;
1278
	struct mem_cgroup *mem = NULL;
1279
	struct mem_cgroup_per_zone *mz;
1280

1281
	if (mem_cgroup_disabled())
1282
		return NULL;
1283

K
KAMEZAWA Hiroyuki 已提交
1284
	if (PageSwapCache(page))
1285
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
1286

1287
	/*
1288
	 * Check if our page_cgroup is valid
1289
	 */
1290 1291
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
1292
		return NULL;
1293

1294
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
1295

1296 1297
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
1315
	}
K
KAMEZAWA Hiroyuki 已提交
1316

1317 1318 1319 1320
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
1321
	mem_cgroup_charge_statistics(mem, pc, false);
1322
	ClearPageCgroupUsed(pc);
1323 1324 1325 1326 1327 1328
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
1329

1330
	mz = page_cgroup_zoneinfo(pc);
1331
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
1332

K
KAMEZAWA Hiroyuki 已提交
1333 1334 1335
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
1336

1337
	return mem;
K
KAMEZAWA Hiroyuki 已提交
1338 1339 1340

unlock_out:
	unlock_page_cgroup(pc);
1341
	return NULL;
1342 1343
}

1344 1345
void mem_cgroup_uncharge_page(struct page *page)
{
1346 1347 1348 1349 1350
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
1351 1352 1353 1354 1355 1356
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
1357
	VM_BUG_ON(page->mapping);
1358 1359 1360
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
/*
 * called from __delete_from_swap_cache() and drop "page" account.
 * memcg information is recorded to swap_cgroup of "ent"
 */
void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
{
	struct mem_cgroup *memcg;

	memcg = __mem_cgroup_uncharge_common(page,
					MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
	/* record memcg information */
	if (do_swap_account && memcg) {
		swap_cgroup_record(ent, memcg);
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
1376 1377
	if (memcg)
		css_put(&memcg->css);
1378 1379 1380 1381 1382 1383 1384 1385
}

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
1386
{
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	struct mem_cgroup *memcg;

	if (!do_swap_account)
		return;

	memcg = swap_cgroup_record(ent, NULL);
	if (memcg) {
		res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
		mem_cgroup_put(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
1397
}
1398
#endif
K
KAMEZAWA Hiroyuki 已提交
1399

1400
/*
1401 1402
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
1403
 */
1404
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1405 1406
{
	struct page_cgroup *pc;
1407 1408
	struct mem_cgroup *mem = NULL;
	int ret = 0;
1409

1410
	if (mem_cgroup_disabled())
1411 1412
		return 0;

1413 1414 1415
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
1416 1417 1418
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
1419
	unlock_page_cgroup(pc);
1420

1421
	if (mem) {
1422
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1423 1424
		css_put(&mem->css);
	}
1425
	*ptr = mem;
1426
	return ret;
1427
}
1428

1429
/* remove redundant charge if migration failed*/
1430 1431
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
1432
{
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;

	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
1457
	if (unused)
1458 1459 1460
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
1461
	/*
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
1476
	 */
1477 1478
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
1479
}
1480

1481 1482 1483 1484 1485
/*
 * A call to try to shrink memory usage under specified resource controller.
 * This is typically used for page reclaiming for shmem for reducing side
 * effect of page allocation from shmem, which is used by some mem_cgroup.
 */
1486 1487 1488
int mem_cgroup_shrink_usage(struct page *page,
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
1489
{
1490
	struct mem_cgroup *mem = NULL;
1491 1492 1493
	int progress = 0;
	int retry = MEM_CGROUP_RECLAIM_RETRIES;

1494
	if (mem_cgroup_disabled())
1495
		return 0;
1496 1497 1498 1499
	if (page)
		mem = try_get_mem_cgroup_from_swapcache(page);
	if (!mem && mm)
		mem = try_get_mem_cgroup_from_mm(mm);
1500
	if (unlikely(!mem))
1501
		return 0;
1502 1503

	do {
1504
		progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
1505
		progress += mem_cgroup_check_under_limit(mem);
1506 1507 1508 1509 1510 1511 1512 1513
	} while (!progress && --retry);

	css_put(&mem->css);
	if (!retry)
		return -ENOMEM;
	return 0;
}

1514 1515
static DEFINE_MUTEX(set_limit_mutex);

1516
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1517
				unsigned long long val)
1518 1519 1520 1521
{

	int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
	int progress;
1522
	u64 memswlimit;
1523 1524
	int ret = 0;

1525
	while (retry_count) {
1526 1527 1528 1529
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
1540 1541
			break;
		}
1542 1543 1544 1545 1546 1547
		ret = res_counter_set_limit(&memcg->res, val);
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

1548 1549
		progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
							   false);
1550 1551
  		if (!progress)			retry_count--;
	}
1552

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
	return ret;
}

int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
				unsigned long long val)
{
	int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
	u64 memlimit, oldusage, curusage;
	int ret;

	if (!do_swap_account)
		return -EINVAL;

	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

		oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1590
		mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
1591 1592
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
		if (curusage >= oldusage)
1593 1594 1595 1596 1597
			retry_count--;
	}
	return ret;
}

1598 1599 1600 1601
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
1602
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
1603
				int node, int zid, enum lru_list lru)
1604
{
K
KAMEZAWA Hiroyuki 已提交
1605 1606
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
1607
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
1608
	unsigned long flags, loop;
1609
	struct list_head *list;
1610
	int ret = 0;
1611

K
KAMEZAWA Hiroyuki 已提交
1612 1613
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
1614
	list = &mz->lists[lru];
1615

1616 1617 1618 1619 1620 1621
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
1622
		spin_lock_irqsave(&zone->lru_lock, flags);
1623
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
1624
			spin_unlock_irqrestore(&zone->lru_lock, flags);
1625
			break;
1626 1627 1628 1629 1630
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
			busy = 0;
K
KAMEZAWA Hiroyuki 已提交
1631
			spin_unlock_irqrestore(&zone->lru_lock, flags);
1632 1633
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1634
		spin_unlock_irqrestore(&zone->lru_lock, flags);
1635

K
KAMEZAWA Hiroyuki 已提交
1636
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1637
		if (ret == -ENOMEM)
1638
			break;
1639 1640 1641 1642 1643 1644 1645

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
1646
	}
K
KAMEZAWA Hiroyuki 已提交
1647

1648 1649 1650
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
1651 1652 1653 1654 1655 1656
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
1657
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1658
{
1659 1660 1661
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1662
	struct cgroup *cgrp = mem->css.cgroup;
1663

1664
	css_get(&mem->css);
1665 1666

	shrink = 0;
1667 1668 1669
	/* should free all ? */
	if (free_all)
		goto try_to_free;
1670
move_account:
1671
	while (mem->res.usage > 0) {
1672
		ret = -EBUSY;
1673 1674 1675 1676
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
1677
			goto out;
1678 1679
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
1680 1681 1682
		ret = 0;
		for_each_node_state(node, N_POSSIBLE) {
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1683
				enum lru_list l;
1684 1685
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
1686
							node, zid, l);
1687 1688 1689
					if (ret)
						break;
				}
1690
			}
1691 1692 1693 1694 1695 1696
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
1697
		cond_resched();
1698 1699 1700 1701 1702
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
1703 1704

try_to_free:
1705 1706
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1707 1708 1709
		ret = -EBUSY;
		goto out;
	}
1710 1711
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
1712 1713 1714 1715
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
1716 1717 1718 1719 1720

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
1721 1722
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
1723
		if (!progress) {
1724
			nr_retries--;
1725 1726 1727
			/* maybe some writeback is necessary */
			congestion_wait(WRITE, HZ/10);
		}
1728 1729

	}
K
KAMEZAWA Hiroyuki 已提交
1730
	lru_add_drain();
1731 1732 1733 1734 1735
	/* try move_account...there may be some *locked* pages. */
	if (mem->res.usage)
		goto move_account;
	ret = 0;
	goto out;
1736 1737
}

1738 1739 1740 1741 1742 1743
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
	 * If parent's use_hiearchy is set, we can't make any modifications
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

1782
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
1783
{
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	u64 val = 0;
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
		val = res_counter_read_u64(&mem->res, name);
		break;
	case _MEMSWAP:
		if (do_swap_account)
			val = res_counter_read_u64(&mem->memsw, name);
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
1803
}
1804 1805 1806 1807
/*
 * The user of this function is...
 * RES_LIMIT.
 */
1808 1809
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
1810
{
1811
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1812
	int type, name;
1813 1814 1815
	unsigned long long val;
	int ret;

1816 1817 1818
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
1819 1820 1821
	case RES_LIMIT:
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
1822 1823 1824
		if (ret)
			break;
		if (type == _MEM)
1825
			ret = mem_cgroup_resize_limit(memcg, val);
1826 1827
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
1828 1829 1830 1831 1832 1833
		break;
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
1834 1835
}

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

1864
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1865 1866
{
	struct mem_cgroup *mem;
1867
	int type, name;
1868 1869

	mem = mem_cgroup_from_cont(cont);
1870 1871 1872
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
1873
	case RES_MAX_USAGE:
1874 1875 1876 1877
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
1878 1879
		break;
	case RES_FAILCNT:
1880 1881 1882 1883
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
1884 1885
		break;
	}
1886
	return 0;
1887 1888
}

1889 1890 1891 1892 1893 1894
static const struct mem_cgroup_stat_desc {
	const char *msg;
	u64 unit;
} mem_cgroup_stat_desc[] = {
	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1895 1896
	[MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
	[MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1897 1898
};

1899 1900
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
	struct mem_cgroup_stat *stat = &mem_cont->stat;
	int i;

	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
		s64 val;

		val = mem_cgroup_read_stat(stat, i);
		val *= mem_cgroup_stat_desc[i].unit;
1911
		cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1912
	}
1913 1914
	/* showing # of active pages */
	{
1915 1916
		unsigned long active_anon, inactive_anon;
		unsigned long active_file, inactive_file;
L
Lee Schermerhorn 已提交
1917
		unsigned long unevictable;
1918 1919 1920 1921 1922 1923 1924 1925 1926

		inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
						LRU_INACTIVE_ANON);
		active_anon = mem_cgroup_get_all_zonestat(mem_cont,
						LRU_ACTIVE_ANON);
		inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
						LRU_INACTIVE_FILE);
		active_file = mem_cgroup_get_all_zonestat(mem_cont,
						LRU_ACTIVE_FILE);
L
Lee Schermerhorn 已提交
1927 1928 1929
		unevictable = mem_cgroup_get_all_zonestat(mem_cont,
							LRU_UNEVICTABLE);

1930 1931 1932 1933
		cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
		cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
		cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
		cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
L
Lee Schermerhorn 已提交
1934 1935
		cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);

1936
	}
1937 1938 1939 1940 1941 1942 1943
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
1944 1945

#ifdef CONFIG_DEBUG_VM
1946
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

1974 1975 1976
	return 0;
}

K
KOSAKI Motohiro 已提交
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
	    (memcg->use_hierarchy && !list_empty(&cgrp->children)))
		return -EINVAL;

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

	return 0;
}

2008

B
Balbir Singh 已提交
2009 2010
static struct cftype mem_cgroup_files[] = {
	{
2011
		.name = "usage_in_bytes",
2012
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2013
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2014
	},
2015 2016
	{
		.name = "max_usage_in_bytes",
2017
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2018
		.trigger = mem_cgroup_reset,
2019 2020
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
2021
	{
2022
		.name = "limit_in_bytes",
2023
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2024
		.write_string = mem_cgroup_write,
2025
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2026 2027 2028
	},
	{
		.name = "failcnt",
2029
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2030
		.trigger = mem_cgroup_reset,
2031
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2032
	},
2033 2034
	{
		.name = "stat",
2035
		.read_map = mem_control_stat_show,
2036
	},
2037 2038 2039 2040
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
2041 2042 2043 2044 2045
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
2046 2047 2048 2049 2050
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
B
Balbir Singh 已提交
2051 2052
};

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

2094 2095 2096
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
2097
	struct mem_cgroup_per_zone *mz;
2098
	enum lru_list l;
2099
	int zone, tmp = node;
2100 2101 2102 2103 2104 2105 2106 2107
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
2108 2109 2110
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2111 2112
	if (!pn)
		return 1;
2113

2114 2115
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
2116 2117 2118

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
2119 2120
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
2121
	}
2122 2123 2124
	return 0;
}

2125 2126 2127 2128 2129
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

2130 2131 2132 2133 2134 2135
static int mem_cgroup_size(void)
{
	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
	return sizeof(struct mem_cgroup) + cpustat_size;
}

2136 2137 2138
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
2139
	int size = mem_cgroup_size();
2140

2141 2142
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
2143
	else
2144
		mem = vmalloc(size);
2145 2146

	if (mem)
2147
		memset(mem, 0, size);
2148 2149 2150
	return mem;
}

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

2162
static void __mem_cgroup_free(struct mem_cgroup *mem)
2163
{
K
KAMEZAWA Hiroyuki 已提交
2164 2165 2166 2167 2168
	int node;

	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

2169
	if (mem_cgroup_size() < PAGE_SIZE)
2170 2171 2172 2173 2174
		kfree(mem);
	else
		vfree(mem);
}

2175 2176 2177 2178 2179 2180 2181
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

static void mem_cgroup_put(struct mem_cgroup *mem)
{
2182 2183
	if (atomic_dec_and_test(&mem->refcnt))
		__mem_cgroup_free(mem);
2184 2185
}

2186

2187 2188 2189
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
2190
	if (!mem_cgroup_disabled() && really_do_swap_account)
2191 2192 2193 2194 2195 2196 2197 2198
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

B
Balbir Singh 已提交
2199 2200 2201
static struct cgroup_subsys_state *
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
2202
	struct mem_cgroup *mem, *parent;
2203
	int node;
B
Balbir Singh 已提交
2204

2205 2206 2207
	mem = mem_cgroup_alloc();
	if (!mem)
		return ERR_PTR(-ENOMEM);
2208

2209 2210 2211
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
2212
	/* root ? */
2213
	if (cont->parent == NULL) {
2214
		enable_swap_cgroup();
2215
		parent = NULL;
2216
	} else {
2217
		parent = mem_cgroup_from_cont(cont->parent);
2218 2219
		mem->use_hierarchy = parent->use_hierarchy;
	}
2220

2221 2222 2223 2224 2225 2226 2227
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
2228
	mem->last_scanned_child = NULL;
K
KOSAKI Motohiro 已提交
2229
	spin_lock_init(&mem->reclaim_param_lock);
2230

K
KOSAKI Motohiro 已提交
2231 2232
	if (parent)
		mem->swappiness = get_swappiness(parent);
2233
	atomic_set(&mem->refcnt, 1);
B
Balbir Singh 已提交
2234
	return &mem->css;
2235
free_out:
2236
	__mem_cgroup_free(mem);
2237
	return ERR_PTR(-ENOMEM);
B
Balbir Singh 已提交
2238 2239
}

2240 2241 2242 2243
static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2244
	mem_cgroup_force_empty(mem, false);
2245 2246
}

B
Balbir Singh 已提交
2247 2248 2249
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
2250
	mem_cgroup_put(mem_cgroup_from_cont(cont));
B
Balbir Singh 已提交
2251 2252 2253 2254 2255
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
2256 2257 2258 2259 2260 2261 2262 2263
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
2264 2265
}

B
Balbir Singh 已提交
2266 2267 2268 2269 2270
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p)
{
2271
	mutex_lock(&memcg_tasklist);
B
Balbir Singh 已提交
2272
	/*
2273 2274
	 * FIXME: It's better to move charges of this process from old
	 * memcg to new memcg. But it's just on TODO-List now.
B
Balbir Singh 已提交
2275
	 */
2276
	mutex_unlock(&memcg_tasklist);
B
Balbir Singh 已提交
2277 2278
}

B
Balbir Singh 已提交
2279 2280 2281 2282
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
2283
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
2284 2285
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
2286
	.attach = mem_cgroup_move_task,
2287
	.early_init = 0,
B
Balbir Singh 已提交
2288
};
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif