memcontrol.c 145.2 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75 76 77 78 79
#else
#define do_swap_account		(0)
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 94 95
	MEM_CGROUP_STAT_NSTATS,
};

96 97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111 112
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
113
	MEM_CGROUP_TARGET_NUMAINFO,
114 115 116 117
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
118
#define NUMAINFO_EVENTS_TARGET	(1024)
119

120
struct mem_cgroup_stat_cpu {
121
	long count[MEM_CGROUP_STAT_NSTATS];
122
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123
	unsigned long targets[MEM_CGROUP_NTARGETS];
124 125
};

126 127 128 129 130 131 132
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

133 134 135 136
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
137
	struct lruvec		lruvec;
138
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
139

140 141
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

K
KOSAKI Motohiro 已提交
142
	struct zone_reclaim_stat reclaim_stat;
143 144 145 146
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
147 148
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
149 150 151 152 153 154 155 156 157 158 159 160
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

181 182 183 184 185
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
186
/* For threshold */
187 188
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
189
	int current_threshold;
190 191 192 193 194
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
195 196 197 198 199 200 201 202 203 204 205 206

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
207 208 209 210 211
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
212

213 214
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215

B
Balbir Singh 已提交
216 217 218 219 220 221 222
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 224 225
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
226 227 228 229 230 231 232
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
233 234 235 236
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
237 238 239 240
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
241
	struct mem_cgroup_lru_info info;
242 243 244
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
245 246
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
247
#endif
248 249 250 251
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
252 253 254 255

	bool		oom_lock;
	atomic_t	under_oom;

256
	atomic_t	refcnt;
257

258
	int	swappiness;
259 260
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
261

262 263 264
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

265 266 267 268
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
269
	struct mem_cgroup_thresholds thresholds;
270

271
	/* thresholds for mem+swap usage. RCU-protected */
272
	struct mem_cgroup_thresholds memsw_thresholds;
273

K
KAMEZAWA Hiroyuki 已提交
274 275
	/* For oom notifier event fd */
	struct list_head oom_notify;
276

277 278 279 280 281
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
282
	/*
283
	 * percpu counter.
284
	 */
285
	struct mem_cgroup_stat_cpu *stat;
286 287 288 289 290 291
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
292 293 294 295

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
296 297
};

298 299 300 301 302 303
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
304
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
305
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
306 307 308
	NR_MOVE_TYPE,
};

309 310
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
311
	spinlock_t	  lock; /* for from, to */
312 313 314
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
315
	unsigned long moved_charge;
316
	unsigned long moved_swap;
317 318 319
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
320
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321 322
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
323

D
Daisuke Nishimura 已提交
324 325 326 327 328 329
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

330 331 332 333 334 335
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

336 337 338 339 340 341 342
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

343 344 345
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
346
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
347
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
348
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
349
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
350 351 352
	NR_CHARGE_TYPE,
};

353
/* for encoding cft->private value on file */
354 355 356
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
357 358 359
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
360 361
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
362

363 364 365 366 367 368 369 370
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

371 372
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
373 374 375 376 377

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#ifdef CONFIG_INET
#include <net/sock.h>
G
Glauber Costa 已提交
378
#include <net/ip.h>
G
Glauber Costa 已提交
379 380 381 382 383 384 385 386 387

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled)) {
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

388 389 390 391 392 393 394 395 396 397 398 399 400 401
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
422 423 424 425 426 427 428 429 430

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
431 432 433
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

434
static void drain_all_stock_async(struct mem_cgroup *memcg);
435

436
static struct mem_cgroup_per_zone *
437
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438
{
439
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440 441
}

442
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443
{
444
	return &memcg->css;
445 446
}

447
static struct mem_cgroup_per_zone *
448
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449
{
450 451
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
452

453
	return mem_cgroup_zoneinfo(memcg, nid, zid);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
472
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473
				struct mem_cgroup_per_zone *mz,
474 475
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
476 477 478 479 480 481 482 483
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

484 485 486
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
503 504 505
}

static void
506
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507 508 509 510 511 512 513 514 515
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

516
static void
517
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518 519 520 521
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
522
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
523 524 525 526
	spin_unlock(&mctz->lock);
}


527
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528
{
529
	unsigned long long excess;
530 531
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
532 533
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
534 535 536
	mctz = soft_limit_tree_from_page(page);

	/*
537 538
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
539
	 */
540 541 542
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
543 544 545 546
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
547
		if (excess || mz->on_tree) {
548 549 550
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
551
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
552
			/*
553 554
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
555
			 */
556
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557 558
			spin_unlock(&mctz->lock);
		}
559 560 561
	}
}

562
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563 564 565 566 567 568 569
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
571
			mctz = soft_limit_tree_node_zone(node, zone);
572
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 574 575 576
		}
	}
}

577 578 579 580
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
581
	struct mem_cgroup_per_zone *mz;
582 583

retry:
584
	mz = NULL;
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
633
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634
				 enum mem_cgroup_stat_index idx)
635
{
636
	long val = 0;
637 638
	int cpu;

639 640
	get_online_cpus();
	for_each_online_cpu(cpu)
641
		val += per_cpu(memcg->stat->count[idx], cpu);
642
#ifdef CONFIG_HOTPLUG_CPU
643 644 645
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
646 647
#endif
	put_online_cpus();
648 649 650
	return val;
}

651
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652 653 654
					 bool charge)
{
	int val = (charge) ? 1 : -1;
655
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656 657
}

658
void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
659
{
660
	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
661 662
}

663
void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
664
{
665
	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
666 667
}

668
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
669 670 671 672 673 674
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
675
		val += per_cpu(memcg->stat->events[idx], cpu);
676
#ifdef CONFIG_HOTPLUG_CPU
677 678 679
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
680 681 682 683
#endif
	return val;
}

684
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
685
					 bool file, int nr_pages)
686
{
687 688
	preempt_disable();

689
	if (file)
690 691
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
				nr_pages);
692
	else
693 694
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
				nr_pages);
695

696 697
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
698
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
699
	else {
700
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
701 702
		nr_pages = -nr_pages; /* for event */
	}
703

704
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
705

706
	preempt_enable();
707 708
}

709
unsigned long
710
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
711
			unsigned int lru_mask)
712 713
{
	struct mem_cgroup_per_zone *mz;
714 715 716
	enum lru_list l;
	unsigned long ret = 0;

717
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
718 719 720 721 722 723 724 725 726

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
727
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
728 729
			int nid, unsigned int lru_mask)
{
730 731 732
	u64 total = 0;
	int zid;

733
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
734 735
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
736

737 738
	return total;
}
739

740
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
741
			unsigned int lru_mask)
742
{
743
	int nid;
744 745
	u64 total = 0;

746
	for_each_node_state(nid, N_HIGH_MEMORY)
747
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
748
	return total;
749 750
}

751
static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
752 753 754
{
	unsigned long val, next;

755 756
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
757 758 759 760
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

761
static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
762
{
763
	unsigned long val, next;
764

765
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
766

767 768 769 770 771 772 773
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
774 775 776
	case MEM_CGROUP_TARGET_NUMAINFO:
		next = val + NUMAINFO_EVENTS_TARGET;
		break;
777 778 779 780
	default:
		return;
	}

781
	__this_cpu_write(memcg->stat->targets[target], next);
782 783 784 785 786 787
}

/*
 * Check events in order.
 *
 */
788
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
789
{
790
	preempt_disable();
791
	/* threshold event is triggered in finer grain than soft limit */
792 793 794 795
	if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
		mem_cgroup_threshold(memcg);
		__mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(memcg,
796
			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
797 798
			mem_cgroup_update_tree(memcg, page);
			__mem_cgroup_target_update(memcg,
799 800 801
						   MEM_CGROUP_TARGET_SOFTLIMIT);
		}
#if MAX_NUMNODES > 1
802
		if (unlikely(__memcg_event_check(memcg,
803
			MEM_CGROUP_TARGET_NUMAINFO))) {
804 805
			atomic_inc(&memcg->numainfo_events);
			__mem_cgroup_target_update(memcg,
806
				MEM_CGROUP_TARGET_NUMAINFO);
807
		}
808
#endif
809
	}
810
	preempt_enable();
811 812
}

G
Glauber Costa 已提交
813
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
814 815 816 817 818 819
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

820
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
821
{
822 823 824 825 826 827 828 829
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

830 831 832 833
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

834
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
835
{
836
	struct mem_cgroup *memcg = NULL;
837 838 839

	if (!mm)
		return NULL;
840 841 842 843 844 845 846
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
847 848
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
849
			break;
850
	} while (!css_tryget(&memcg->css));
851
	rcu_read_unlock();
852
	return memcg;
853 854
}

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
875
{
876 877
	struct mem_cgroup *memcg = NULL;
	int id = 0;
878

879 880 881
	if (mem_cgroup_disabled())
		return NULL;

882 883
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
884

885 886
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
887

888 889
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
890

891 892 893 894 895
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
896

897
	while (!memcg) {
898
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
899
		struct cgroup_subsys_state *css;
900

901 902 903 904 905 906 907 908 909 910 911
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
912

913 914 915 916 917 918 919 920
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
921 922
		rcu_read_unlock();

923 924 925 926 927 928 929
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
930 931 932 933 934

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
935
}
K
KAMEZAWA Hiroyuki 已提交
936

937 938 939 940 941 942 943
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
944 945 946 947 948 949
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
950

951 952 953 954 955 956
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
957
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
958
	     iter != NULL;				\
959
	     iter = mem_cgroup_iter(root, iter, NULL))
960

961
#define for_each_mem_cgroup(iter)			\
962
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
963
	     iter != NULL;				\
964
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
965

966
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
967
{
968
	return (memcg == root_mem_cgroup);
969 970
}

971 972
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
973
	struct mem_cgroup *memcg;
974 975 976 977 978

	if (!mm)
		return;

	rcu_read_lock();
979 980
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
981 982 983 984
		goto out;

	switch (idx) {
	case PGMAJFAULT:
985
		mem_cgroup_pgmajfault(memcg, 1);
986 987
		break;
	case PGFAULT:
988
		mem_cgroup_pgfault(memcg, 1);
989 990 991 992 993 994 995 996 997
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1011

K
KAMEZAWA Hiroyuki 已提交
1012 1013 1014 1015
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
1016

1017
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1018 1019 1020
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
1021
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
1022
		return;
1023
	VM_BUG_ON(!pc->mem_cgroup);
1024 1025 1026 1027
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
1028
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1029 1030
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1031
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
1032
	list_del_init(&pc->lru);
1033 1034
}

K
KAMEZAWA Hiroyuki 已提交
1035
void mem_cgroup_del_lru(struct page *page)
1036
{
K
KAMEZAWA Hiroyuki 已提交
1037 1038
	mem_cgroup_del_lru_list(page, page_lru(page));
}
1039

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1055
	/* unused page is not rotated. */
1056 1057 1058 1059
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1060
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1061
	list_move_tail(&pc->lru, &mz->lruvec.lists[lru]);
1062 1063
}

K
KAMEZAWA Hiroyuki 已提交
1064 1065 1066 1067
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
1068

1069
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1070
		return;
1071

K
KAMEZAWA Hiroyuki 已提交
1072
	pc = lookup_page_cgroup(page);
1073
	/* unused page is not rotated. */
1074 1075 1076 1077
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1078
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1079
	list_move(&pc->lru, &mz->lruvec.lists[lru]);
1080 1081
}

K
KAMEZAWA Hiroyuki 已提交
1082
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1083
{
K
KAMEZAWA Hiroyuki 已提交
1084 1085
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
1086

1087
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1088 1089
		return;
	pc = lookup_page_cgroup(page);
1090
	VM_BUG_ON(PageCgroupAcctLRU(pc));
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	/*
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
	 */
	smp_mb();
K
KAMEZAWA Hiroyuki 已提交
1101
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
1102
		return;
1103 1104
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1105
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1106 1107
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1108
	SetPageCgroupAcctLRU(pc);
1109
	list_add(&pc->lru, &mz->lruvec.lists[lru]);
K
KAMEZAWA Hiroyuki 已提交
1110
}
1111

K
KAMEZAWA Hiroyuki 已提交
1112
/*
1113 1114 1115 1116
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1117
 */
1118
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1119
{
1120 1121 1122 1123
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1135 1136 1137 1138 1139 1140 1141 1142
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1143 1144
}

1145
static void mem_cgroup_lru_add_after_commit(struct page *page)
1146 1147 1148 1149
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
	/*
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
	 */
	smp_mb();
1160 1161 1162
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1163 1164
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1165
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1166 1167 1168 1169 1170
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1171 1172 1173
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1174
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1175 1176 1177
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1178 1179
}

1180
/*
1181
 * Checks whether given mem is same or in the root_mem_cgroup's
1182 1183
 * hierarchy subtree
 */
1184 1185
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1186
{
1187 1188 1189
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1190 1191 1192 1193 1194
	}

	return true;
}

1195
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1196 1197
{
	int ret;
1198
	struct mem_cgroup *curr = NULL;
1199
	struct task_struct *p;
1200

1201 1202 1203 1204 1205
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1206 1207
	if (!curr)
		return 0;
1208
	/*
1209
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1210
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1211 1212
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1213
	 */
1214
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1215
	css_put(&curr->css);
1216 1217 1218
	return ret;
}

1219
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1220
{
1221 1222 1223
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1224
	unsigned long inactive;
1225
	unsigned long active;
1226
	unsigned long gb;
1227

1228 1229 1230 1231
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1232

1233 1234 1235 1236 1237 1238
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1239
	return inactive * inactive_ratio < active;
1240 1241
}

1242
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1243 1244 1245
{
	unsigned long active;
	unsigned long inactive;
1246 1247
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1248

1249 1250 1251 1252
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1253 1254 1255 1256

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1257 1258 1259
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1260
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1277 1278
	if (!PageCgroupUsed(pc))
		return NULL;
1279 1280
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1281
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1282 1283 1284
	return &mz->reclaim_stat;
}

1285 1286 1287
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
1288 1289
					isolate_mode_t mode,
					struct zone *z,
1290
					struct mem_cgroup *mem_cont,
1291
					int active, int file)
1292 1293 1294 1295 1296 1297
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1298
	struct page_cgroup *pc, *tmp;
1299
	int nid = zone_to_nid(z);
1300 1301
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1302
	int lru = LRU_FILE * file + active;
1303
	int ret;
1304

1305
	BUG_ON(!mem_cont);
1306
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1307
	src = &mz->lruvec.lists[lru];
1308

1309 1310
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1311
		if (scan >= nr_to_scan)
1312
			break;
K
KAMEZAWA Hiroyuki 已提交
1313

1314 1315
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1316

1317
		page = lookup_cgroup_page(pc);
1318

H
Hugh Dickins 已提交
1319
		if (unlikely(!PageLRU(page)))
1320 1321
			continue;

H
Hugh Dickins 已提交
1322
		scan++;
1323 1324 1325
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1326
			list_move(&page->lru, dst);
1327
			mem_cgroup_del_lru(page);
1328
			nr_taken += hpage_nr_pages(page);
1329 1330 1331 1332 1333 1334 1335
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1336 1337 1338 1339
		}
	}

	*scanned = scan;
1340 1341 1342 1343

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1344 1345 1346
	return nr_taken;
}

1347 1348 1349
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1350
/**
1351 1352
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1353
 *
1354
 * Returns the maximum amount of memory @mem can be charged with, in
1355
 * pages.
1356
 */
1357
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1358
{
1359 1360
	unsigned long long margin;

1361
	margin = res_counter_margin(&memcg->res);
1362
	if (do_swap_account)
1363
		margin = min(margin, res_counter_margin(&memcg->memsw));
1364
	return margin >> PAGE_SHIFT;
1365 1366
}

1367
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1368 1369 1370 1371 1372 1373 1374
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1375
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1376 1377
}

1378
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1379 1380
{
	int cpu;
1381 1382

	get_online_cpus();
1383
	spin_lock(&memcg->pcp_counter_lock);
1384
	for_each_online_cpu(cpu)
1385 1386 1387
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1388
	put_online_cpus();
1389 1390 1391 1392

	synchronize_rcu();
}

1393
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1394 1395 1396
{
	int cpu;

1397
	if (!memcg)
1398
		return;
1399
	get_online_cpus();
1400
	spin_lock(&memcg->pcp_counter_lock);
1401
	for_each_online_cpu(cpu)
1402 1403 1404
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1405
	put_online_cpus();
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1419
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1420 1421
{
	VM_BUG_ON(!rcu_read_lock_held());
1422
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1423
}
1424

1425
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1426
{
1427 1428
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1429
	bool ret = false;
1430 1431 1432 1433 1434 1435 1436 1437 1438
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1439

1440 1441
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1442 1443
unlock:
	spin_unlock(&mc.lock);
1444 1445 1446
	return ret;
}

1447
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1448 1449
{
	if (mc.moving_task && current != mc.moving_task) {
1450
		if (mem_cgroup_under_move(memcg)) {
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1463
/**
1464
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1483
	if (!memcg || !p)
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1530 1531 1532 1533
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1534
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1535 1536
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1537 1538
	struct mem_cgroup *iter;

1539
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1540
		num++;
1541 1542 1543
	return num;
}

D
David Rientjes 已提交
1544 1545 1546 1547 1548 1549 1550 1551
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1552 1553 1554
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1555 1556 1557 1558 1559 1560 1561 1562
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1609
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1610 1611
		int nid, bool noswap)
{
1612
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1613 1614 1615
		return true;
	if (noswap || !total_swap_pages)
		return false;
1616
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1617 1618 1619 1620
		return true;
	return false;

}
1621 1622 1623 1624 1625 1626 1627 1628
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1629
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1630 1631
{
	int nid;
1632 1633 1634 1635
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1636
	if (!atomic_read(&memcg->numainfo_events))
1637
		return;
1638
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1639 1640 1641
		return;

	/* make a nodemask where this memcg uses memory from */
1642
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1643 1644 1645

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1646 1647
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1648
	}
1649

1650 1651
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1666
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1667 1668 1669
{
	int node;

1670 1671
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1672

1673
	node = next_node(node, memcg->scan_nodes);
1674
	if (node == MAX_NUMNODES)
1675
		node = first_node(memcg->scan_nodes);
1676 1677 1678 1679 1680 1681 1682 1683 1684
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1685
	memcg->last_scanned_node = node;
1686 1687 1688
	return node;
}

1689 1690 1691 1692 1693 1694
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1695
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1696 1697 1698 1699 1700 1701 1702
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1703 1704
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1705
		     nid < MAX_NUMNODES;
1706
		     nid = next_node(nid, memcg->scan_nodes)) {
1707

1708
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1709 1710 1711 1712 1713 1714 1715
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1716
		if (node_isset(nid, memcg->scan_nodes))
1717
			continue;
1718
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1719 1720 1721 1722 1723
			return true;
	}
	return false;
}

1724
#else
1725
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1726 1727 1728
{
	return 0;
}
1729

1730
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1731
{
1732
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1733
}
1734 1735
#endif

1736 1737 1738 1739
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1740
{
1741
	struct mem_cgroup *victim = NULL;
1742
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1743
	int loop = 0;
1744
	unsigned long excess;
1745
	unsigned long nr_scanned;
1746 1747 1748 1749
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1750

1751
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1752

1753
	while (1) {
1754
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1755
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1756
			loop++;
1757 1758 1759 1760 1761 1762
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1763
				if (!total)
1764 1765
					break;
				/*
L
Lucas De Marchi 已提交
1766
				 * We want to do more targeted reclaim.
1767 1768 1769 1770 1771
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1772
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1773 1774
					break;
			}
1775
			continue;
1776
		}
1777
		if (!mem_cgroup_reclaimable(victim, false))
1778
			continue;
1779 1780 1781 1782
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1783
			break;
1784
	}
1785
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1786
	return total;
1787 1788
}

K
KAMEZAWA Hiroyuki 已提交
1789 1790 1791
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1792
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1793
 */
1794
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1795
{
1796
	struct mem_cgroup *iter, *failed = NULL;
1797

1798
	for_each_mem_cgroup_tree(iter, memcg) {
1799
		if (iter->oom_lock) {
1800 1801 1802 1803 1804
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1805 1806
			mem_cgroup_iter_break(memcg, iter);
			break;
1807 1808
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1809
	}
K
KAMEZAWA Hiroyuki 已提交
1810

1811
	if (!failed)
1812
		return true;
1813 1814 1815 1816 1817

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1818
	for_each_mem_cgroup_tree(iter, memcg) {
1819
		if (iter == failed) {
1820 1821
			mem_cgroup_iter_break(memcg, iter);
			break;
1822 1823 1824
		}
		iter->oom_lock = false;
	}
1825
	return false;
1826
}
1827

1828
/*
1829
 * Has to be called with memcg_oom_lock
1830
 */
1831
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1832
{
K
KAMEZAWA Hiroyuki 已提交
1833 1834
	struct mem_cgroup *iter;

1835
	for_each_mem_cgroup_tree(iter, memcg)
1836 1837 1838 1839
		iter->oom_lock = false;
	return 0;
}

1840
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1841 1842 1843
{
	struct mem_cgroup *iter;

1844
	for_each_mem_cgroup_tree(iter, memcg)
1845 1846 1847
		atomic_inc(&iter->under_oom);
}

1848
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1849 1850 1851
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1852 1853 1854 1855 1856
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1857
	for_each_mem_cgroup_tree(iter, memcg)
1858
		atomic_add_unless(&iter->under_oom, -1, 0);
1859 1860
}

1861
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1862 1863
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1864 1865 1866 1867 1868 1869 1870 1871
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1872 1873
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
			  *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1874 1875 1876
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1877
	oom_wait_memcg = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1878 1879 1880 1881 1882

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1883 1884
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1885 1886 1887 1888
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1889
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1890
{
1891 1892
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1893 1894
}

1895
static void memcg_oom_recover(struct mem_cgroup *memcg)
1896
{
1897 1898
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1899 1900
}

K
KAMEZAWA Hiroyuki 已提交
1901 1902 1903
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1904
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1905
{
K
KAMEZAWA Hiroyuki 已提交
1906
	struct oom_wait_info owait;
1907
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1908

1909
	owait.mem = memcg;
K
KAMEZAWA Hiroyuki 已提交
1910 1911 1912 1913
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1914
	need_to_kill = true;
1915
	mem_cgroup_mark_under_oom(memcg);
1916

1917
	/* At first, try to OOM lock hierarchy under memcg.*/
1918
	spin_lock(&memcg_oom_lock);
1919
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1920 1921 1922 1923 1924
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1925
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1926
	if (!locked || memcg->oom_kill_disable)
1927 1928
		need_to_kill = false;
	if (locked)
1929
		mem_cgroup_oom_notify(memcg);
1930
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1931

1932 1933
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1934
		mem_cgroup_out_of_memory(memcg, mask);
1935
	} else {
K
KAMEZAWA Hiroyuki 已提交
1936
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1937
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1938
	}
1939
	spin_lock(&memcg_oom_lock);
1940
	if (locked)
1941 1942
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1943
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1944

1945
	mem_cgroup_unmark_under_oom(memcg);
1946

K
KAMEZAWA Hiroyuki 已提交
1947 1948 1949
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1950
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1951
	return true;
1952 1953
}

1954 1955 1956
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1976
 */
1977

1978 1979
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1980
{
1981
	struct mem_cgroup *memcg;
1982 1983
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1984
	unsigned long uninitialized_var(flags);
1985 1986 1987 1988

	if (unlikely(!pc))
		return;

1989
	rcu_read_lock();
1990 1991
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1992 1993
		goto out;
	/* pc->mem_cgroup is unstable ? */
1994
	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1995
		/* take a lock against to access pc->mem_cgroup */
1996
		move_lock_page_cgroup(pc, &flags);
1997
		need_unlock = true;
1998 1999
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
2000 2001
			goto out;
	}
2002 2003

	switch (idx) {
2004
	case MEMCG_NR_FILE_MAPPED:
2005 2006 2007
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
2008
			ClearPageCgroupFileMapped(pc);
2009
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2010 2011 2012
		break;
	default:
		BUG();
2013
	}
2014

2015
	this_cpu_add(memcg->stat->count[idx], val);
2016

2017 2018
out:
	if (unlikely(need_unlock))
2019
		move_unlock_page_cgroup(pc, &flags);
2020 2021
	rcu_read_unlock();
	return;
2022
}
2023
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2024

2025 2026 2027 2028
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2029
#define CHARGE_BATCH	32U
2030 2031
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2032
	unsigned int nr_pages;
2033
	struct work_struct work;
2034 2035
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
2036 2037
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2038
static DEFINE_MUTEX(percpu_charge_mutex);
2039 2040

/*
2041
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2042 2043 2044 2045
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2046
static bool consume_stock(struct mem_cgroup *memcg)
2047 2048 2049 2050 2051
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2052
	if (memcg == stock->cached && stock->nr_pages)
2053
		stock->nr_pages--;
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2067 2068 2069 2070
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2071
		if (do_swap_account)
2072 2073
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2086
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2087 2088 2089 2090
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2091
 * This will be consumed by consume_stock() function, later.
2092
 */
2093
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2094 2095 2096
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2097
	if (stock->cached != memcg) { /* reset if necessary */
2098
		drain_stock(stock);
2099
		stock->cached = memcg;
2100
	}
2101
	stock->nr_pages += nr_pages;
2102 2103 2104 2105
	put_cpu_var(memcg_stock);
}

/*
2106
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2107 2108
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2109
 */
2110
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2111
{
2112
	int cpu, curcpu;
2113

2114 2115
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2116
	curcpu = get_cpu();
2117 2118
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2119
		struct mem_cgroup *memcg;
2120

2121 2122
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2123
			continue;
2124
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2125
			continue;
2126 2127 2128 2129 2130 2131
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2132
	}
2133
	put_cpu();
2134 2135 2136 2137 2138 2139

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2140
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2141 2142 2143
			flush_work(&stock->work);
	}
out:
2144
 	put_online_cpus();
2145 2146 2147 2148 2149 2150 2151 2152
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2153
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2154
{
2155 2156 2157 2158 2159
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2160
	drain_all_stock(root_memcg, false);
2161
	mutex_unlock(&percpu_charge_mutex);
2162 2163 2164
}

/* This is a synchronous drain interface. */
2165
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2166 2167
{
	/* called when force_empty is called */
2168
	mutex_lock(&percpu_charge_mutex);
2169
	drain_all_stock(root_memcg, true);
2170
	mutex_unlock(&percpu_charge_mutex);
2171 2172
}

2173 2174 2175 2176
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2177
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2178 2179 2180
{
	int i;

2181
	spin_lock(&memcg->pcp_counter_lock);
2182
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2183
		long x = per_cpu(memcg->stat->count[i], cpu);
2184

2185 2186
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2187
	}
2188
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2189
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2190

2191 2192
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2193
	}
2194
	/* need to clear ON_MOVE value, works as a kind of lock. */
2195 2196
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2197 2198
}

2199
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2200 2201 2202
{
	int idx = MEM_CGROUP_ON_MOVE;

2203 2204 2205
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2206 2207 2208
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2209 2210 2211 2212 2213
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2214
	struct mem_cgroup *iter;
2215

2216
	if ((action == CPU_ONLINE)) {
2217
		for_each_mem_cgroup(iter)
2218 2219 2220 2221
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2222
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2223
		return NOTIFY_OK;
2224

2225
	for_each_mem_cgroup(iter)
2226 2227
		mem_cgroup_drain_pcp_counter(iter, cpu);

2228 2229 2230 2231 2232
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2243
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2244
				unsigned int nr_pages, bool oom_check)
2245
{
2246
	unsigned long csize = nr_pages * PAGE_SIZE;
2247 2248 2249 2250 2251
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2252
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2253 2254 2255 2256

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2257
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2258 2259 2260
		if (likely(!ret))
			return CHARGE_OK;

2261
		res_counter_uncharge(&memcg->res, csize);
2262 2263 2264 2265
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2266
	/*
2267 2268
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2269 2270 2271 2272
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2273
	if (nr_pages == CHARGE_BATCH)
2274 2275 2276 2277 2278
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2279
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2280
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2281
		return CHARGE_RETRY;
2282
	/*
2283 2284 2285 2286 2287 2288 2289
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2290
	 */
2291
	if (nr_pages == 1 && ret)
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2311 2312 2313
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2314
 */
2315
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2316
				   gfp_t gfp_mask,
2317
				   unsigned int nr_pages,
2318
				   struct mem_cgroup **ptr,
2319
				   bool oom)
2320
{
2321
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2322
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2323
	struct mem_cgroup *memcg = NULL;
2324
	int ret;
2325

K
KAMEZAWA Hiroyuki 已提交
2326 2327 2328 2329 2330 2331 2332 2333
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2334

2335
	/*
2336 2337
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2338 2339 2340
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2341
	if (!*ptr && !mm)
K
KAMEZAWA Hiroyuki 已提交
2342 2343
		goto bypass;
again:
2344 2345 2346 2347
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2348
			goto done;
2349
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2350
			goto done;
2351
		css_get(&memcg->css);
2352
	} else {
K
KAMEZAWA Hiroyuki 已提交
2353
		struct task_struct *p;
2354

K
KAMEZAWA Hiroyuki 已提交
2355 2356 2357
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2358
		 * Because we don't have task_lock(), "p" can exit.
2359
		 * In that case, "memcg" can point to root or p can be NULL with
2360 2361 2362 2363 2364 2365
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2366
		 */
2367 2368
		memcg = mem_cgroup_from_task(p);
		if (!memcg || mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2369 2370 2371
			rcu_read_unlock();
			goto done;
		}
2372
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2385
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2386 2387 2388 2389 2390
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2391

2392 2393
	do {
		bool oom_check;
2394

2395
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2396
		if (fatal_signal_pending(current)) {
2397
			css_put(&memcg->css);
2398
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2399
		}
2400

2401 2402 2403 2404
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2405
		}
2406

2407
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2408 2409 2410 2411
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2412
			batch = nr_pages;
2413 2414
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2415
			goto again;
2416
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2417
			css_put(&memcg->css);
2418 2419
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2420
			if (!oom) {
2421
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2422
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2423
			}
2424 2425 2426 2427
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2428
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2429
			goto bypass;
2430
		}
2431 2432
	} while (ret != CHARGE_OK);

2433
	if (batch > nr_pages)
2434 2435
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2436
done:
2437
	*ptr = memcg;
2438 2439
	return 0;
nomem:
2440
	*ptr = NULL;
2441
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2442
bypass:
2443
	*ptr = NULL;
K
KAMEZAWA Hiroyuki 已提交
2444
	return 0;
2445
}
2446

2447 2448 2449 2450 2451
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2452
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2453
				       unsigned int nr_pages)
2454
{
2455
	if (!mem_cgroup_is_root(memcg)) {
2456 2457
		unsigned long bytes = nr_pages * PAGE_SIZE;

2458
		res_counter_uncharge(&memcg->res, bytes);
2459
		if (do_swap_account)
2460
			res_counter_uncharge(&memcg->memsw, bytes);
2461
	}
2462 2463
}

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2483
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2484
{
2485
	struct mem_cgroup *memcg = NULL;
2486
	struct page_cgroup *pc;
2487
	unsigned short id;
2488 2489
	swp_entry_t ent;

2490 2491 2492
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2493
	lock_page_cgroup(pc);
2494
	if (PageCgroupUsed(pc)) {
2495 2496 2497
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2498
	} else if (PageSwapCache(page)) {
2499
		ent.val = page_private(page);
2500 2501
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
2502 2503 2504
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2505
		rcu_read_unlock();
2506
	}
2507
	unlock_page_cgroup(pc);
2508
	return memcg;
2509 2510
}

2511
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2512
				       struct page *page,
2513
				       unsigned int nr_pages,
2514
				       struct page_cgroup *pc,
2515
				       enum charge_type ctype)
2516
{
2517 2518 2519
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2520
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2521 2522 2523 2524 2525 2526
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2527
	pc->mem_cgroup = memcg;
2528 2529 2530 2531 2532 2533 2534
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2535
	smp_wmb();
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2549

2550
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2551
	unlock_page_cgroup(pc);
2552 2553 2554 2555 2556
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2557
	memcg_check_events(memcg, page);
2558
}
2559

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2574 2575
	if (mem_cgroup_disabled())
		return;
2576
	/*
2577
	 * We have no races with charge/uncharge but will have races with
2578 2579 2580 2581 2582 2583
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2594
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2595 2596
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2597 2598 2599 2600 2601
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2602
/**
2603
 * mem_cgroup_move_account - move account of the page
2604
 * @page: the page
2605
 * @nr_pages: number of regular pages (>1 for huge pages)
2606 2607 2608
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2609
 * @uncharge: whether we should call uncharge and css_put against @from.
2610 2611
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2612
 * - page is not on LRU (isolate_page() is useful.)
2613
 * - compound_lock is held when nr_pages > 1
2614
 *
2615
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2616
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2617 2618
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2619
 */
2620 2621 2622 2623 2624 2625
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2626
{
2627 2628
	unsigned long flags;
	int ret;
2629

2630
	VM_BUG_ON(from == to);
2631
	VM_BUG_ON(PageLRU(page));
2632 2633 2634 2635 2636 2637 2638
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2639
	if (nr_pages > 1 && !PageTransHuge(page))
2640 2641 2642 2643 2644 2645 2646 2647 2648
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2649

2650
	if (PageCgroupFileMapped(pc)) {
2651 2652 2653 2654 2655
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2656
	}
2657
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2658 2659
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2660
		__mem_cgroup_cancel_charge(from, nr_pages);
2661

2662
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2663
	pc->mem_cgroup = to;
2664
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2665 2666 2667
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2668
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2669
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2670
	 * status here.
2671
	 */
2672 2673 2674
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2675
	unlock_page_cgroup(pc);
2676 2677 2678
	/*
	 * check events
	 */
2679 2680
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2681
out:
2682 2683 2684 2685 2686 2687 2688
	return ret;
}

/*
 * move charges to its parent.
 */

2689 2690
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2691 2692 2693 2694 2695 2696
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2697
	unsigned int nr_pages;
2698
	unsigned long uninitialized_var(flags);
2699 2700 2701 2702 2703 2704
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2705 2706 2707 2708 2709
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2710

2711
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2712

2713
	parent = mem_cgroup_from_cont(pcg);
2714
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2715
	if (ret || !parent)
2716
		goto put_back;
2717

2718
	if (nr_pages > 1)
2719 2720
		flags = compound_lock_irqsave(page);

2721
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2722
	if (ret)
2723
		__mem_cgroup_cancel_charge(parent, nr_pages);
2724

2725
	if (nr_pages > 1)
2726
		compound_unlock_irqrestore(page, flags);
2727
put_back:
K
KAMEZAWA Hiroyuki 已提交
2728
	putback_lru_page(page);
2729
put:
2730
	put_page(page);
2731
out:
2732 2733 2734
	return ret;
}

2735 2736 2737 2738 2739 2740 2741
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2742
				gfp_t gfp_mask, enum charge_type ctype)
2743
{
2744
	struct mem_cgroup *memcg = NULL;
2745
	unsigned int nr_pages = 1;
2746
	struct page_cgroup *pc;
2747
	bool oom = true;
2748
	int ret;
A
Andrea Arcangeli 已提交
2749

A
Andrea Arcangeli 已提交
2750
	if (PageTransHuge(page)) {
2751
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2752
		VM_BUG_ON(!PageTransHuge(page));
2753 2754 2755 2756 2757
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2758
	}
2759 2760

	pc = lookup_page_cgroup(page);
2761
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2762

2763 2764
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
	if (ret || !memcg)
2765 2766
		return ret;

2767
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2768 2769 2770
	return 0;
}

2771 2772
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2773
{
2774
	if (mem_cgroup_disabled())
2775
		return 0;
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2787
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2788
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2789 2790
}

D
Daisuke Nishimura 已提交
2791 2792 2793 2794
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2795
static void
2796
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2797 2798 2799 2800 2801 2802 2803 2804 2805
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
2806
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2807 2808 2809 2810
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2811 2812
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2813
{
2814
	struct mem_cgroup *memcg = NULL;
2815 2816
	int ret;

2817
	if (mem_cgroup_disabled())
2818
		return 0;
2819 2820
	if (PageCompound(page))
		return 0;
2821

2822
	if (unlikely(!mm))
2823
		mm = &init_mm;
2824

2825
	if (page_is_file_cache(page)) {
2826 2827
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
		if (ret || !memcg)
2828
			return ret;
2829

2830 2831 2832 2833 2834
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
2835
		__mem_cgroup_commit_charge_lrucare(page, memcg,
2836 2837 2838
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2839 2840
	/* shmem */
	if (PageSwapCache(page)) {
2841
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2842
		if (!ret)
2843
			__mem_cgroup_commit_charge_swapin(page, memcg,
D
Daisuke Nishimura 已提交
2844 2845 2846
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2847
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2848 2849

	return ret;
2850 2851
}

2852 2853 2854
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2855
 * struct page_cgroup is acquired. This refcnt will be consumed by
2856 2857
 * "commit()" or removed by "cancel()"
 */
2858 2859 2860 2861
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
2862
	struct mem_cgroup *memcg;
2863
	int ret;
2864

2865 2866
	*ptr = NULL;

2867
	if (mem_cgroup_disabled())
2868 2869 2870 2871 2872 2873
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2874 2875 2876
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2877 2878
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2879
		goto charge_cur_mm;
2880 2881
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2882
		goto charge_cur_mm;
2883
	*ptr = memcg;
2884
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2885
	css_put(&memcg->css);
2886
	return ret;
2887 2888 2889
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2890
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2891 2892
}

D
Daisuke Nishimura 已提交
2893 2894 2895
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2896
{
2897
	if (mem_cgroup_disabled())
2898 2899 2900
		return;
	if (!ptr)
		return;
2901
	cgroup_exclude_rmdir(&ptr->css);
2902 2903

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2904 2905 2906
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2907 2908 2909
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2910
	 */
2911
	if (do_swap_account && PageSwapCache(page)) {
2912
		swp_entry_t ent = {.val = page_private(page)};
2913
		unsigned short id;
2914
		struct mem_cgroup *memcg;
2915 2916 2917 2918

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2919
		if (memcg) {
2920 2921 2922 2923
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2924
			if (!mem_cgroup_is_root(memcg))
2925
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2926
			mem_cgroup_swap_statistics(memcg, false);
2927 2928
			mem_cgroup_put(memcg);
		}
2929
		rcu_read_unlock();
2930
	}
2931 2932 2933 2934 2935 2936
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2937 2938
}

D
Daisuke Nishimura 已提交
2939 2940 2941 2942 2943 2944
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2945
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2946
{
2947
	if (mem_cgroup_disabled())
2948
		return;
2949
	if (!memcg)
2950
		return;
2951
	__mem_cgroup_cancel_charge(memcg, 1);
2952 2953
}

2954
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2955 2956
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2957 2958 2959
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2960

2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2972
		batch->memcg = memcg;
2973 2974
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2975
	 * In those cases, all pages freed continuously can be expected to be in
2976 2977 2978 2979 2980 2981 2982 2983
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2984
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2985 2986
		goto direct_uncharge;

2987 2988 2989 2990 2991
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2992
	if (batch->memcg != memcg)
2993 2994
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2995
	batch->nr_pages++;
2996
	if (uncharge_memsw)
2997
		batch->memsw_nr_pages++;
2998 2999
	return;
direct_uncharge:
3000
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3001
	if (uncharge_memsw)
3002 3003 3004
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3005 3006
	return;
}
3007

3008
/*
3009
 * uncharge if !page_mapped(page)
3010
 */
3011
static struct mem_cgroup *
3012
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3013
{
3014
	struct mem_cgroup *memcg = NULL;
3015 3016
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3017

3018
	if (mem_cgroup_disabled())
3019
		return NULL;
3020

K
KAMEZAWA Hiroyuki 已提交
3021
	if (PageSwapCache(page))
3022
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
3023

A
Andrea Arcangeli 已提交
3024
	if (PageTransHuge(page)) {
3025
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3026 3027
		VM_BUG_ON(!PageTransHuge(page));
	}
3028
	/*
3029
	 * Check if our page_cgroup is valid
3030
	 */
3031 3032
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
3033
		return NULL;
3034

3035
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3036

3037
	memcg = pc->mem_cgroup;
3038

K
KAMEZAWA Hiroyuki 已提交
3039 3040 3041 3042 3043
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
3044
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3045 3046
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3058
	}
K
KAMEZAWA Hiroyuki 已提交
3059

3060
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3061

3062
	ClearPageCgroupUsed(pc);
3063 3064 3065 3066 3067 3068
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3069

3070
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3071
	/*
3072
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3073 3074
	 * will never be freed.
	 */
3075
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3076
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3077 3078
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3079
	}
3080 3081
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3082

3083
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3084 3085 3086

unlock_out:
	unlock_page_cgroup(pc);
3087
	return NULL;
3088 3089
}

3090 3091
void mem_cgroup_uncharge_page(struct page *page)
{
3092 3093 3094 3095 3096
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3097 3098 3099 3100 3101 3102
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3103
	VM_BUG_ON(page->mapping);
3104 3105 3106
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3121 3122
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3143 3144 3145 3146 3147 3148
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3149
	memcg_oom_recover(batch->memcg);
3150 3151 3152 3153
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3154
#ifdef CONFIG_SWAP
3155
/*
3156
 * called after __delete_from_swap_cache() and drop "page" account.
3157 3158
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3159 3160
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3161 3162
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3163 3164 3165 3166 3167 3168
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3169

K
KAMEZAWA Hiroyuki 已提交
3170 3171 3172 3173 3174
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3175
		swap_cgroup_record(ent, css_id(&memcg->css));
3176
}
3177
#endif
3178 3179 3180 3181 3182 3183 3184

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3185
{
3186
	struct mem_cgroup *memcg;
3187
	unsigned short id;
3188 3189 3190 3191

	if (!do_swap_account)
		return;

3192 3193 3194
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3195
	if (memcg) {
3196 3197 3198 3199
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3200
		if (!mem_cgroup_is_root(memcg))
3201
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3202
		mem_cgroup_swap_statistics(memcg, false);
3203 3204
		mem_cgroup_put(memcg);
	}
3205
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3206
}
3207 3208 3209 3210 3211 3212

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3213
 * @need_fixup: whether we should fixup res_counters and refcounts.
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3224
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3225 3226 3227 3228 3229 3230 3231 3232
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3233
		mem_cgroup_swap_statistics(to, true);
3234
		/*
3235 3236 3237 3238 3239 3240
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3241 3242
		 */
		mem_cgroup_get(to);
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3254 3255 3256 3257 3258 3259
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3260
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3261 3262 3263
{
	return -EINVAL;
}
3264
#endif
K
KAMEZAWA Hiroyuki 已提交
3265

3266
/*
3267 3268
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3269
 */
3270
int mem_cgroup_prepare_migration(struct page *page,
3271
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3272
{
3273
	struct mem_cgroup *memcg = NULL;
3274
	struct page_cgroup *pc;
3275
	enum charge_type ctype;
3276
	int ret = 0;
3277

3278 3279
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3280
	VM_BUG_ON(PageTransHuge(page));
3281
	if (mem_cgroup_disabled())
3282 3283
		return 0;

3284 3285 3286
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3287 3288
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3320
	}
3321
	unlock_page_cgroup(pc);
3322 3323 3324 3325
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3326
	if (!memcg)
3327
		return 0;
3328

3329
	*ptr = memcg;
3330
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3331
	css_put(&memcg->css);/* drop extra refcnt */
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3343
	}
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3357
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3358
	return ret;
3359
}
3360

3361
/* remove redundant charge if migration failed*/
3362
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3363
	struct page *oldpage, struct page *newpage, bool migration_ok)
3364
{
3365
	struct page *used, *unused;
3366 3367
	struct page_cgroup *pc;

3368
	if (!memcg)
3369
		return;
3370
	/* blocks rmdir() */
3371
	cgroup_exclude_rmdir(&memcg->css);
3372
	if (!migration_ok) {
3373 3374
		used = oldpage;
		unused = newpage;
3375
	} else {
3376
		used = newpage;
3377 3378
		unused = oldpage;
	}
3379
	/*
3380 3381 3382
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3383
	 */
3384 3385 3386 3387
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3388

3389 3390
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3391
	/*
3392 3393 3394 3395 3396 3397
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3398
	 */
3399 3400
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3401
	/*
3402 3403
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3404 3405 3406
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3407
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3408
}
3409

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
	struct zone *zone;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	unsigned long flags;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
	memcg = pc->mem_cgroup;
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
	ClearPageCgroupUsed(pc);
	unlock_page_cgroup(pc);

	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	zone = page_zone(newpage);
	pc = lookup_page_cgroup(newpage);
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
	spin_lock_irqsave(&zone->lru_lock, flags);
	if (PageLRU(newpage))
		del_page_from_lru_list(zone, newpage, page_lru(newpage));
	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, type);
	if (PageLRU(newpage))
		add_page_to_lru_list(zone, newpage, page_lru(newpage));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}

3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3500 3501
static DEFINE_MUTEX(set_limit_mutex);

3502
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3503
				unsigned long long val)
3504
{
3505
	int retry_count;
3506
	u64 memswlimit, memlimit;
3507
	int ret = 0;
3508 3509
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3510
	int enlarge;
3511 3512 3513 3514 3515 3516 3517 3518 3519

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3520

3521
	enlarge = 0;
3522
	while (retry_count) {
3523 3524 3525 3526
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3527 3528 3529
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3530
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3531 3532 3533 3534 3535 3536
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3537 3538
			break;
		}
3539 3540 3541 3542 3543

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3544
		ret = res_counter_set_limit(&memcg->res, val);
3545 3546 3547 3548 3549 3550
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3551 3552 3553 3554 3555
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3556 3557
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3558 3559 3560 3561 3562 3563
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3564
	}
3565 3566
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3567

3568 3569 3570
	return ret;
}

L
Li Zefan 已提交
3571 3572
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3573
{
3574
	int retry_count;
3575
	u64 memlimit, memswlimit, oldusage, curusage;
3576 3577
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3578
	int enlarge = 0;
3579

3580 3581 3582
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3583 3584 3585 3586 3587 3588 3589 3590
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3591
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3592 3593 3594 3595 3596 3597 3598 3599
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3600 3601 3602
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3603
		ret = res_counter_set_limit(&memcg->memsw, val);
3604 3605 3606 3607 3608 3609
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3610 3611 3612 3613 3614
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3615 3616 3617
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3618
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3619
		/* Usage is reduced ? */
3620
		if (curusage >= oldusage)
3621
			retry_count--;
3622 3623
		else
			oldusage = curusage;
3624
	}
3625 3626
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3627 3628 3629
	return ret;
}

3630
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3631 3632
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3633 3634 3635 3636 3637 3638
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3639
	unsigned long long excess;
3640
	unsigned long nr_scanned;
3641 3642 3643 3644

	if (order > 0)
		return 0;

3645
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3659
		nr_scanned = 0;
3660 3661
		reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
						    gfp_mask, &nr_scanned);
3662
		nr_reclaimed += reclaimed;
3663
		*total_scanned += nr_scanned;
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3686
				if (next_mz == mz)
3687
					css_put(&next_mz->mem->css);
3688
				else /* next_mz == NULL or other memcg */
3689 3690 3691 3692
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3693
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3694 3695 3696 3697 3698 3699 3700 3701
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3702 3703
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3722 3723 3724 3725
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3726
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3727
				int node, int zid, enum lru_list lru)
3728
{
K
KAMEZAWA Hiroyuki 已提交
3729 3730
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3731
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3732
	unsigned long flags, loop;
3733
	struct list_head *list;
3734
	int ret = 0;
3735

K
KAMEZAWA Hiroyuki 已提交
3736
	zone = &NODE_DATA(node)->node_zones[zid];
3737
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3738
	list = &mz->lruvec.lists[lru];
3739

3740 3741 3742 3743 3744
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3745 3746
		struct page *page;

3747
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3748
		spin_lock_irqsave(&zone->lru_lock, flags);
3749
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3750
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3751
			break;
3752 3753 3754 3755
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3756
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3757
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3758 3759
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3760
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3761

3762
		page = lookup_cgroup_page(pc);
3763

3764
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3765
		if (ret == -ENOMEM)
3766
			break;
3767 3768 3769 3770 3771 3772 3773

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3774
	}
K
KAMEZAWA Hiroyuki 已提交
3775

3776 3777 3778
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3779 3780 3781 3782 3783 3784
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3785
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3786
{
3787 3788 3789
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3790
	struct cgroup *cgrp = memcg->css.cgroup;
3791

3792
	css_get(&memcg->css);
3793 3794

	shrink = 0;
3795 3796 3797
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3798
move_account:
3799
	do {
3800
		ret = -EBUSY;
3801 3802 3803 3804
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3805
			goto out;
3806 3807
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3808
		drain_all_stock_sync(memcg);
3809
		ret = 0;
3810
		mem_cgroup_start_move(memcg);
3811
		for_each_node_state(node, N_HIGH_MEMORY) {
3812
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3813
				enum lru_list l;
3814
				for_each_lru(l) {
3815
					ret = mem_cgroup_force_empty_list(memcg,
K
KAMEZAWA Hiroyuki 已提交
3816
							node, zid, l);
3817 3818 3819
					if (ret)
						break;
				}
3820
			}
3821 3822 3823
			if (ret)
				break;
		}
3824 3825
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3826 3827 3828
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3829
		cond_resched();
3830
	/* "ret" should also be checked to ensure all lists are empty. */
3831
	} while (memcg->res.usage > 0 || ret);
3832
out:
3833
	css_put(&memcg->css);
3834
	return ret;
3835 3836

try_to_free:
3837 3838
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3839 3840 3841
		ret = -EBUSY;
		goto out;
	}
3842 3843
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3844 3845
	/* try to free all pages in this cgroup */
	shrink = 1;
3846
	while (nr_retries && memcg->res.usage > 0) {
3847
		int progress;
3848 3849 3850 3851 3852

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3853
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3854
						false);
3855
		if (!progress) {
3856
			nr_retries--;
3857
			/* maybe some writeback is necessary */
3858
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3859
		}
3860 3861

	}
K
KAMEZAWA Hiroyuki 已提交
3862
	lru_add_drain();
3863
	/* try move_account...there may be some *locked* pages. */
3864
	goto move_account;
3865 3866
}

3867 3868 3869 3870 3871 3872
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3873 3874 3875 3876 3877 3878 3879 3880 3881
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3882
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3883
	struct cgroup *parent = cont->parent;
3884
	struct mem_cgroup *parent_memcg = NULL;
3885 3886

	if (parent)
3887
		parent_memcg = mem_cgroup_from_cont(parent);
3888 3889 3890

	cgroup_lock();
	/*
3891
	 * If parent's use_hierarchy is set, we can't make any modifications
3892 3893 3894 3895 3896 3897
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3898
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3899 3900
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3901
			memcg->use_hierarchy = val;
3902 3903 3904 3905 3906 3907 3908 3909 3910
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3911

3912
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3913
					       enum mem_cgroup_stat_index idx)
3914
{
K
KAMEZAWA Hiroyuki 已提交
3915
	struct mem_cgroup *iter;
3916
	long val = 0;
3917

3918
	/* Per-cpu values can be negative, use a signed accumulator */
3919
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3920 3921 3922 3923 3924
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3925 3926
}

3927
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3928
{
K
KAMEZAWA Hiroyuki 已提交
3929
	u64 val;
3930

3931
	if (!mem_cgroup_is_root(memcg)) {
3932
		if (!swap)
3933
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3934
		else
3935
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3936 3937
	}

3938 3939
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3940

K
KAMEZAWA Hiroyuki 已提交
3941
	if (swap)
3942
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3943 3944 3945 3946

	return val << PAGE_SHIFT;
}

3947
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3948
{
3949
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3950
	u64 val;
3951 3952 3953 3954 3955 3956
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3957
		if (name == RES_USAGE)
3958
			val = mem_cgroup_usage(memcg, false);
3959
		else
3960
			val = res_counter_read_u64(&memcg->res, name);
3961 3962
		break;
	case _MEMSWAP:
3963
		if (name == RES_USAGE)
3964
			val = mem_cgroup_usage(memcg, true);
3965
		else
3966
			val = res_counter_read_u64(&memcg->memsw, name);
3967 3968 3969 3970 3971 3972
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3973
}
3974 3975 3976 3977
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3978 3979
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3980
{
3981
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3982
	int type, name;
3983 3984 3985
	unsigned long long val;
	int ret;

3986 3987 3988
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3989
	case RES_LIMIT:
3990 3991 3992 3993
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3994 3995
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3996 3997 3998
		if (ret)
			break;
		if (type == _MEM)
3999
			ret = mem_cgroup_resize_limit(memcg, val);
4000 4001
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4002
		break;
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4017 4018 4019 4020 4021
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4022 4023
}

4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

4052
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4053
{
4054
	struct mem_cgroup *memcg;
4055
	int type, name;
4056

4057
	memcg = mem_cgroup_from_cont(cont);
4058 4059 4060
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
4061
	case RES_MAX_USAGE:
4062
		if (type == _MEM)
4063
			res_counter_reset_max(&memcg->res);
4064
		else
4065
			res_counter_reset_max(&memcg->memsw);
4066 4067
		break;
	case RES_FAILCNT:
4068
		if (type == _MEM)
4069
			res_counter_reset_failcnt(&memcg->res);
4070
		else
4071
			res_counter_reset_failcnt(&memcg->memsw);
4072 4073
		break;
	}
4074

4075
	return 0;
4076 4077
}

4078 4079 4080 4081 4082 4083
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4084
#ifdef CONFIG_MMU
4085 4086 4087
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4088
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4089 4090 4091 4092 4093 4094 4095 4096 4097

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4098
	memcg->move_charge_at_immigrate = val;
4099 4100 4101 4102
	cgroup_unlock();

	return 0;
}
4103 4104 4105 4106 4107 4108 4109
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4110

K
KAMEZAWA Hiroyuki 已提交
4111 4112 4113 4114 4115

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4116
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4117 4118
	MCS_PGPGIN,
	MCS_PGPGOUT,
4119
	MCS_SWAP,
4120 4121
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4132 4133
};

K
KAMEZAWA Hiroyuki 已提交
4134 4135 4136 4137 4138 4139
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4140
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4141 4142
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4143
	{"swap", "total_swap"},
4144 4145
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4146 4147 4148 4149 4150 4151 4152 4153
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4154
static void
4155
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4156 4157 4158 4159
{
	s64 val;

	/* per cpu stat */
4160
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4161
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4162
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4163
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4164
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4165
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4166
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4167
	s->stat[MCS_PGPGIN] += val;
4168
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4169
	s->stat[MCS_PGPGOUT] += val;
4170
	if (do_swap_account) {
4171
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4172 4173
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4174
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4175
	s->stat[MCS_PGFAULT] += val;
4176
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4177
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4178 4179

	/* per zone stat */
4180
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4181
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4182
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4183
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4184
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4185
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4186
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4187
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4188
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4189 4190 4191 4192
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4193
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4194
{
K
KAMEZAWA Hiroyuki 已提交
4195 4196
	struct mem_cgroup *iter;

4197
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4198
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4199 4200
}

4201 4202 4203 4204 4205 4206 4207 4208 4209
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4210
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4211 4212
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4213
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4214 4215 4216 4217
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4218
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4219 4220
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4221 4222
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4223 4224 4225 4226
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4227
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4228 4229
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4230 4231
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4232 4233 4234 4235
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4236
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4237 4238
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4239 4240
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4241 4242 4243 4244 4245 4246 4247
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4248 4249
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4250 4251
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4252
	struct mcs_total_stat mystat;
4253 4254
	int i;

K
KAMEZAWA Hiroyuki 已提交
4255 4256
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4257

4258

4259 4260 4261
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4262
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4263
	}
L
Lee Schermerhorn 已提交
4264

K
KAMEZAWA Hiroyuki 已提交
4265
	/* Hierarchical information */
4266 4267 4268 4269 4270 4271 4272
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4273

K
KAMEZAWA Hiroyuki 已提交
4274 4275
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4276 4277 4278
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4279
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4280
	}
K
KAMEZAWA Hiroyuki 已提交
4281

K
KOSAKI Motohiro 已提交
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4309 4310 4311
	return 0;
}

K
KOSAKI Motohiro 已提交
4312 4313 4314 4315
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4316
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4317 4318 4319 4320 4321 4322 4323
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4324

K
KOSAKI Motohiro 已提交
4325 4326 4327 4328 4329 4330 4331
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4332 4333 4334

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4335 4336
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4337 4338
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4339
		return -EINVAL;
4340
	}
K
KOSAKI Motohiro 已提交
4341 4342 4343

	memcg->swappiness = val;

4344 4345
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4346 4347 4348
	return 0;
}

4349 4350 4351 4352 4353 4354 4355 4356
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4357
		t = rcu_dereference(memcg->thresholds.primary);
4358
	else
4359
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4371
	i = t->current_threshold;
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4395
	t->current_threshold = i - 1;
4396 4397 4398 4399 4400 4401
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4402 4403 4404 4405 4406 4407 4408
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4419
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4420 4421 4422
{
	struct mem_cgroup_eventfd_list *ev;

4423
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4424 4425 4426 4427
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4428
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4429
{
K
KAMEZAWA Hiroyuki 已提交
4430 4431
	struct mem_cgroup *iter;

4432
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4433
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4434 4435 4436 4437
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4438 4439
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4440 4441
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4442 4443
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4444
	int i, size, ret;
4445 4446 4447 4448 4449 4450

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4451

4452
	if (type == _MEM)
4453
		thresholds = &memcg->thresholds;
4454
	else if (type == _MEMSWAP)
4455
		thresholds = &memcg->memsw_thresholds;
4456 4457 4458 4459 4460 4461
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4462
	if (thresholds->primary)
4463 4464
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4465
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4466 4467

	/* Allocate memory for new array of thresholds */
4468
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4469
			GFP_KERNEL);
4470
	if (!new) {
4471 4472 4473
		ret = -ENOMEM;
		goto unlock;
	}
4474
	new->size = size;
4475 4476

	/* Copy thresholds (if any) to new array */
4477 4478
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4479
				sizeof(struct mem_cgroup_threshold));
4480 4481
	}

4482
	/* Add new threshold */
4483 4484
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4485 4486

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4487
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4488 4489 4490
			compare_thresholds, NULL);

	/* Find current threshold */
4491
	new->current_threshold = -1;
4492
	for (i = 0; i < size; i++) {
4493
		if (new->entries[i].threshold < usage) {
4494
			/*
4495 4496
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4497 4498
			 * it here.
			 */
4499
			++new->current_threshold;
4500 4501 4502
		}
	}

4503 4504 4505 4506 4507
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4508

4509
	/* To be sure that nobody uses thresholds */
4510 4511 4512 4513 4514 4515 4516 4517
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4518
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4519
	struct cftype *cft, struct eventfd_ctx *eventfd)
4520 4521
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4522 4523
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4524 4525
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4526
	int i, j, size;
4527 4528 4529

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4530
		thresholds = &memcg->thresholds;
4531
	else if (type == _MEMSWAP)
4532
		thresholds = &memcg->memsw_thresholds;
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4548 4549 4550
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4551 4552 4553
			size++;
	}

4554
	new = thresholds->spare;
4555

4556 4557
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4558 4559
		kfree(new);
		new = NULL;
4560
		goto swap_buffers;
4561 4562
	}

4563
	new->size = size;
4564 4565

	/* Copy thresholds and find current threshold */
4566 4567 4568
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4569 4570
			continue;

4571 4572
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4573
			/*
4574
			 * new->current_threshold will not be used
4575 4576 4577
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4578
			++new->current_threshold;
4579 4580 4581 4582
		}
		j++;
	}

4583
swap_buffers:
4584 4585 4586
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4587

4588
	/* To be sure that nobody uses thresholds */
4589 4590 4591 4592
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4593

K
KAMEZAWA Hiroyuki 已提交
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4606
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4607 4608 4609 4610 4611

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4612
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4613
		eventfd_signal(eventfd, 1);
4614
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4615 4616 4617 4618

	return 0;
}

4619
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4620 4621
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4622
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4623 4624 4625 4626 4627
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4628
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4629

4630
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4631 4632 4633 4634 4635 4636
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4637
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4638 4639
}

4640 4641 4642
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4643
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4644

4645
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4646

4647
	if (atomic_read(&memcg->under_oom))
4648 4649 4650 4651 4652 4653 4654 4655 4656
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4657
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4669
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4670 4671 4672
		cgroup_unlock();
		return -EINVAL;
	}
4673
	memcg->oom_kill_disable = val;
4674
	if (!val)
4675
		memcg_oom_recover(memcg);
4676 4677 4678 4679
	cgroup_unlock();
	return 0;
}

4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4696 4697 4698
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
G
Glauber Costa 已提交
4699 4700 4701 4702 4703 4704 4705
	/*
	 * Part of this would be better living in a separate allocation
	 * function, leaving us with just the cgroup tree population work.
	 * We, however, depend on state such as network's proto_list that
	 * is only initialized after cgroup creation. I found the less
	 * cumbersome way to deal with it to defer it all to populate time
	 */
4706
	return mem_cgroup_sockets_init(cont, ss);
4707 4708
};

G
Glauber Costa 已提交
4709 4710 4711 4712 4713
static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	mem_cgroup_sockets_destroy(cont, ss);
}
4714 4715 4716 4717 4718
#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
G
Glauber Costa 已提交
4719 4720 4721 4722 4723

static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
}
4724 4725
#endif

B
Balbir Singh 已提交
4726 4727
static struct cftype mem_cgroup_files[] = {
	{
4728
		.name = "usage_in_bytes",
4729
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4730
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4731 4732
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4733
	},
4734 4735
	{
		.name = "max_usage_in_bytes",
4736
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4737
		.trigger = mem_cgroup_reset,
4738 4739
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4740
	{
4741
		.name = "limit_in_bytes",
4742
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4743
		.write_string = mem_cgroup_write,
4744
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4745
	},
4746 4747 4748 4749 4750 4751
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4752 4753
	{
		.name = "failcnt",
4754
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4755
		.trigger = mem_cgroup_reset,
4756
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4757
	},
4758 4759
	{
		.name = "stat",
4760
		.read_map = mem_control_stat_show,
4761
	},
4762 4763 4764 4765
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4766 4767 4768 4769 4770
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4771 4772 4773 4774 4775
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4776 4777 4778 4779 4780
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4781 4782
	{
		.name = "oom_control",
4783 4784
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4785 4786 4787 4788
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4789 4790 4791 4792
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4793
		.mode = S_IRUGO,
4794 4795
	},
#endif
B
Balbir Singh 已提交
4796 4797
};

4798 4799 4800 4801 4802 4803
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4804 4805
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4841
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4842 4843
{
	struct mem_cgroup_per_node *pn;
4844
	struct mem_cgroup_per_zone *mz;
4845
	enum lru_list l;
4846
	int zone, tmp = node;
4847 4848 4849 4850 4851 4852 4853 4854
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4855 4856
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4857
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4858 4859
	if (!pn)
		return 1;
4860 4861 4862

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4863
		for_each_lru(l)
4864
			INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4865
		mz->usage_in_excess = 0;
4866
		mz->on_tree = false;
4867
		mz->mem = memcg;
4868
	}
4869
	memcg->info.nodeinfo[node] = pn;
4870 4871 4872
	return 0;
}

4873
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4874
{
4875
	kfree(memcg->info.nodeinfo[node]);
4876 4877
}

4878 4879 4880
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4881
	int size = sizeof(struct mem_cgroup);
4882

4883
	/* Can be very big if MAX_NUMNODES is very big */
4884
	if (size < PAGE_SIZE)
4885
		mem = kzalloc(size, GFP_KERNEL);
4886
	else
4887
		mem = vzalloc(size);
4888

4889 4890 4891
	if (!mem)
		return NULL;

4892
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4893 4894
	if (!mem->stat)
		goto out_free;
4895
	spin_lock_init(&mem->pcp_counter_lock);
4896
	return mem;
4897 4898 4899 4900 4901 4902 4903

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4904 4905
}

4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4917
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4918
{
K
KAMEZAWA Hiroyuki 已提交
4919 4920
	int node;

4921 4922
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4923

K
KAMEZAWA Hiroyuki 已提交
4924
	for_each_node_state(node, N_POSSIBLE)
4925
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4926

4927
	free_percpu(memcg->stat);
4928
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4929
		kfree(memcg);
4930
	else
4931
		vfree(memcg);
4932 4933
}

4934
static void mem_cgroup_get(struct mem_cgroup *memcg)
4935
{
4936
	atomic_inc(&memcg->refcnt);
4937 4938
}

4939
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4940
{
4941 4942 4943
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4944 4945 4946
		if (parent)
			mem_cgroup_put(parent);
	}
4947 4948
}

4949
static void mem_cgroup_put(struct mem_cgroup *memcg)
4950
{
4951
	__mem_cgroup_put(memcg, 1);
4952 4953
}

4954 4955 4956
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4957
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4958
{
4959
	if (!memcg->res.parent)
4960
		return NULL;
4961
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4962
}
G
Glauber Costa 已提交
4963
EXPORT_SYMBOL(parent_mem_cgroup);
4964

4965 4966 4967
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4968
	if (!mem_cgroup_disabled() && really_do_swap_account)
4969 4970 4971 4972 4973 4974 4975 4976
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
5002
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
5003 5004
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
5005
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
5006
	long error = -ENOMEM;
5007
	int node;
B
Balbir Singh 已提交
5008

5009 5010
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5011
		return ERR_PTR(error);
5012

5013
	for_each_node_state(node, N_POSSIBLE)
5014
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5015
			goto free_out;
5016

5017
	/* root ? */
5018
	if (cont->parent == NULL) {
5019
		int cpu;
5020
		enable_swap_cgroup();
5021
		parent = NULL;
5022 5023
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5024
		root_mem_cgroup = memcg;
5025 5026 5027 5028 5029
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5030
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5031
	} else {
5032
		parent = mem_cgroup_from_cont(cont->parent);
5033 5034
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
5035
	}
5036

5037
	if (parent && parent->use_hierarchy) {
5038 5039
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5040 5041 5042 5043 5044 5045 5046
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5047
	} else {
5048 5049
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5050
	}
5051 5052
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5053

K
KOSAKI Motohiro 已提交
5054
	if (parent)
5055 5056 5057 5058 5059
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
5060
free_out:
5061
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5062
	return ERR_PTR(error);
B
Balbir Singh 已提交
5063 5064
}

5065
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5066 5067
					struct cgroup *cont)
{
5068
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5069

5070
	return mem_cgroup_force_empty(memcg, false);
5071 5072
}

B
Balbir Singh 已提交
5073 5074 5075
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5076
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5077

G
Glauber Costa 已提交
5078 5079
	kmem_cgroup_destroy(ss, cont);

5080
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5081 5082 5083 5084 5085
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5086 5087 5088 5089 5090 5091 5092
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
5093 5094 5095 5096

	if (!ret)
		ret = register_kmem_files(cont, ss);

5097
	return ret;
B
Balbir Singh 已提交
5098 5099
}

5100
#ifdef CONFIG_MMU
5101
/* Handlers for move charge at task migration. */
5102 5103
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5104
{
5105 5106
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5107
	struct mem_cgroup *memcg = mc.to;
5108

5109
	if (mem_cgroup_is_root(memcg)) {
5110 5111 5112 5113 5114 5115 5116 5117
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5118
		 * "memcg" cannot be under rmdir() because we've already checked
5119 5120 5121 5122
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5123
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5124
			goto one_by_one;
5125
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5126
						PAGE_SIZE * count, &dummy)) {
5127
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5144 5145 5146
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
		if (ret || !memcg)
5147 5148 5149 5150
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5151 5152 5153 5154 5155 5156 5157 5158
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5159
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5160 5161 5162 5163 5164 5165
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5166 5167 5168
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5169 5170 5171 5172 5173
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5174
	swp_entry_t	ent;
5175 5176 5177 5178 5179
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5180
	MC_TARGET_SWAP,
5181 5182
};

D
Daisuke Nishimura 已提交
5183 5184
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5185
{
D
Daisuke Nishimura 已提交
5186
	struct page *page = vm_normal_page(vma, addr, ptent);
5187

D
Daisuke Nishimura 已提交
5188 5189 5190 5191 5192 5193
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5194 5195
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5214 5215
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5216
		return NULL;
5217
	}
D
Daisuke Nishimura 已提交
5218 5219 5220 5221 5222 5223
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5245 5246 5247 5248 5249 5250
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5251
		if (do_swap_account)
5252 5253
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5254
	}
5255
#endif
5256 5257 5258
	return page;
}

D
Daisuke Nishimura 已提交
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5271 5272
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5273 5274 5275

	if (!page && !ent.val)
		return 0;
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5291 5292
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5293 5294 5295 5296
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5309 5310
	split_huge_page_pmd(walk->mm, pmd);

5311 5312 5313 5314 5315 5316 5317
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5318 5319 5320
	return 0;
}

5321 5322 5323 5324 5325
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5326
	down_read(&mm->mmap_sem);
5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5338
	up_read(&mm->mmap_sem);
5339 5340 5341 5342 5343 5344 5345 5346 5347

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5348 5349 5350 5351 5352
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5353 5354
}

5355 5356
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5357
{
5358 5359 5360
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5361
	/* we must uncharge all the leftover precharges from mc.to */
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5373
	}
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5408
	spin_lock(&mc.lock);
5409 5410
	mc.from = NULL;
	mc.to = NULL;
5411
	spin_unlock(&mc.lock);
5412
	mem_cgroup_end_move(from);
5413 5414
}

5415 5416
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5417
				struct cgroup_taskset *tset)
5418
{
5419
	struct task_struct *p = cgroup_taskset_first(tset);
5420
	int ret = 0;
5421
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5422

5423
	if (memcg->move_charge_at_immigrate) {
5424 5425 5426
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5427
		VM_BUG_ON(from == memcg);
5428 5429 5430 5431 5432

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5433 5434 5435 5436
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5437
			VM_BUG_ON(mc.moved_charge);
5438
			VM_BUG_ON(mc.moved_swap);
5439
			mem_cgroup_start_move(from);
5440
			spin_lock(&mc.lock);
5441
			mc.from = from;
5442
			mc.to = memcg;
5443
			spin_unlock(&mc.lock);
5444
			/* We set mc.moving_task later */
5445 5446 5447 5448

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5449 5450
		}
		mmput(mm);
5451 5452 5453 5454 5455 5456
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5457
				struct cgroup_taskset *tset)
5458
{
5459
	mem_cgroup_clear_mc();
5460 5461
}

5462 5463 5464
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5465
{
5466 5467 5468 5469 5470
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5471
	split_huge_page_pmd(walk->mm, pmd);
5472 5473 5474 5475 5476 5477 5478 5479
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5480
		swp_entry_t ent;
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5492 5493
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5494
				mc.precharge--;
5495 5496
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5497 5498 5499 5500 5501
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5502 5503
		case MC_TARGET_SWAP:
			ent = target.ent;
5504 5505
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5506
				mc.precharge--;
5507 5508 5509
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5510
			break;
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5525
		ret = mem_cgroup_do_precharge(1);
5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5569
	up_read(&mm->mmap_sem);
5570 5571
}

B
Balbir Singh 已提交
5572 5573
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5574
				struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5575
{
5576
	struct task_struct *p = cgroup_taskset_first(tset);
5577
	struct mm_struct *mm = get_task_mm(p);
5578 5579

	if (mm) {
5580 5581 5582
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5583 5584
		mmput(mm);
	}
5585 5586
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5587
}
5588 5589 5590
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5591
				struct cgroup_taskset *tset)
5592 5593 5594 5595 5596
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5597
				struct cgroup_taskset *tset)
5598 5599 5600 5601
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5602
				struct cgroup_taskset *tset)
5603 5604 5605
{
}
#endif
B
Balbir Singh 已提交
5606

B
Balbir Singh 已提交
5607 5608 5609 5610
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5611
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5612 5613
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5614 5615
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5616
	.attach = mem_cgroup_move_task,
5617
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5618
	.use_id = 1,
B
Balbir Singh 已提交
5619
};
5620 5621

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5622 5623 5624
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5625
	if (!strcmp(s, "1"))
5626
		really_do_swap_account = 1;
5627
	else if (!strcmp(s, "0"))
5628 5629 5630
		really_do_swap_account = 0;
	return 1;
}
5631
__setup("swapaccount=", enable_swap_account);
5632 5633

#endif