memcontrol.c 142.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
B
Balbir Singh 已提交
53

54 55
#include <asm/uaccess.h>

56 57
#include <trace/events/vmscan.h>

58 59
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
60
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
61

62
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
63
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64
int do_swap_account __read_mostly;
65 66 67 68 69 70 71 72

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

73 74 75 76 77
#else
#define do_swap_account		(0)
#endif


78 79 80 81 82 83 84 85
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
86
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
87
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
98 99
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
100 101
	MEM_CGROUP_EVENTS_NSTATS,
};
102 103 104 105 106 107 108 109 110
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
111
	MEM_CGROUP_TARGET_NUMAINFO,
112 113 114 115
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
116
#define NUMAINFO_EVENTS_TARGET	(1024)
117

118
struct mem_cgroup_stat_cpu {
119
	long count[MEM_CGROUP_STAT_NSTATS];
120
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121
	unsigned long targets[MEM_CGROUP_NTARGETS];
122 123
};

124 125 126 127
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
128 129 130
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
131 132
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
133 134

	struct zone_reclaim_stat reclaim_stat;
135 136 137 138
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
139 140
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
141 142 143 144 145 146 147 148 149 150 151 152
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

173 174 175 176 177
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
178
/* For threshold */
179 180
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
181
	int current_threshold;
182 183 184 185 186
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
187 188 189 190 191 192 193 194 195 196 197 198

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
199 200 201 202 203
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
204

205 206
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
207

B
Balbir Singh 已提交
208 209 210 211 212 213 214
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
215 216 217
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
218 219 220 221 222 223 224
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
225 226 227 228
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
229 230 231 232
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
233
	struct mem_cgroup_lru_info info;
234
	/*
235
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
236
	 * reclaimed from.
237
	 */
K
KAMEZAWA Hiroyuki 已提交
238
	int last_scanned_child;
239 240 241
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
242 243
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
244
#endif
245 246 247 248
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
249 250 251 252

	bool		oom_lock;
	atomic_t	under_oom;

253
	atomic_t	refcnt;
254

255
	int	swappiness;
256 257
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
258

259 260 261
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

262 263 264 265
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
266
	struct mem_cgroup_thresholds thresholds;
267

268
	/* thresholds for mem+swap usage. RCU-protected */
269
	struct mem_cgroup_thresholds memsw_thresholds;
270

K
KAMEZAWA Hiroyuki 已提交
271 272
	/* For oom notifier event fd */
	struct list_head oom_notify;
273

274 275 276 277 278
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
279
	/*
280
	 * percpu counter.
281
	 */
282
	struct mem_cgroup_stat_cpu *stat;
283 284 285 286 287 288
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
289 290
};

291 292 293 294 295 296
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
297
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
298
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
299 300 301
	NR_MOVE_TYPE,
};

302 303
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
304
	spinlock_t	  lock; /* for from, to */
305 306 307
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
308
	unsigned long moved_charge;
309
	unsigned long moved_swap;
310 311 312
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
313
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
314 315
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
316

D
Daisuke Nishimura 已提交
317 318 319 320 321 322
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

323 324 325 326 327 328
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

329 330 331 332 333 334 335
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

336 337 338
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
339
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
340
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
341
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
342
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
343 344 345
	NR_CHARGE_TYPE,
};

346 347 348
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
349
#define _OOM_TYPE		(2)
350 351 352
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
353 354
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
355

356 357 358 359 360 361 362
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
363 364
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
365

366 367 368 369
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
static void drain_all_stock_async(struct mem_cgroup *memcg);
370

371
static struct mem_cgroup_per_zone *
372
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
373
{
374
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
375 376
}

377
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
378
{
379
	return &memcg->css;
380 381
}

382
static struct mem_cgroup_per_zone *
383
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
384
{
385 386
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
387

388
	return mem_cgroup_zoneinfo(memcg, nid, zid);
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
407
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
408
				struct mem_cgroup_per_zone *mz,
409 410
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
411 412 413 414 415 416 417 418
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

419 420 421
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
438 439 440
}

static void
441
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
442 443 444 445 446 447 448 449 450
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

451
static void
452
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
453 454 455 456
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
457
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
458 459 460 461
	spin_unlock(&mctz->lock);
}


462
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
463
{
464
	unsigned long long excess;
465 466
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
467 468
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
469 470 471
	mctz = soft_limit_tree_from_page(page);

	/*
472 473
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
474
	 */
475 476 477
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
478 479 480 481
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
482
		if (excess || mz->on_tree) {
483 484 485
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
486
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
487
			/*
488 489
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
490
			 */
491
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
492 493
			spin_unlock(&mctz->lock);
		}
494 495 496
	}
}

497
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
498 499 500 501 502 503 504
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
505
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
506
			mctz = soft_limit_tree_node_zone(node, zone);
507
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
508 509 510 511
		}
	}
}

512 513 514 515
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
516
	struct mem_cgroup_per_zone *mz;
517 518

retry:
519
	mz = NULL;
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
568
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
569
				 enum mem_cgroup_stat_index idx)
570
{
571
	long val = 0;
572 573
	int cpu;

574 575
	get_online_cpus();
	for_each_online_cpu(cpu)
576
		val += per_cpu(memcg->stat->count[idx], cpu);
577
#ifdef CONFIG_HOTPLUG_CPU
578 579 580
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
581 582
#endif
	put_online_cpus();
583 584 585
	return val;
}

586
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
587 588 589
					 bool charge)
{
	int val = (charge) ? 1 : -1;
590
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
591 592
}

593
void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
594
{
595
	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
596 597
}

598
void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
599
{
600
	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
601 602
}

603
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
604 605 606 607 608 609
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
610
		val += per_cpu(memcg->stat->events[idx], cpu);
611
#ifdef CONFIG_HOTPLUG_CPU
612 613 614
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
615 616 617 618
#endif
	return val;
}

619
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
620
					 bool file, int nr_pages)
621
{
622 623
	preempt_disable();

624
	if (file)
625 626
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
				nr_pages);
627
	else
628 629
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
				nr_pages);
630

631 632
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
633
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634
	else {
635
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 637
		nr_pages = -nr_pages; /* for event */
	}
638

639
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
640

641
	preempt_enable();
642 643
}

644
unsigned long
645
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
646
			unsigned int lru_mask)
647 648
{
	struct mem_cgroup_per_zone *mz;
649 650 651
	enum lru_list l;
	unsigned long ret = 0;

652
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
653 654 655 656 657 658 659 660 661

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
662
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
663 664
			int nid, unsigned int lru_mask)
{
665 666 667
	u64 total = 0;
	int zid;

668
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
669 670
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
671

672 673
	return total;
}
674

675
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
676
			unsigned int lru_mask)
677
{
678
	int nid;
679 680
	u64 total = 0;

681
	for_each_node_state(nid, N_HIGH_MEMORY)
682
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
683
	return total;
684 685
}

686
static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
687 688 689
{
	unsigned long val, next;

690 691
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
692 693 694 695
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

696
static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
697
{
698
	unsigned long val, next;
699

700
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
701

702 703 704 705 706 707 708
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
709 710 711
	case MEM_CGROUP_TARGET_NUMAINFO:
		next = val + NUMAINFO_EVENTS_TARGET;
		break;
712 713 714 715
	default:
		return;
	}

716
	__this_cpu_write(memcg->stat->targets[target], next);
717 718 719 720 721 722
}

/*
 * Check events in order.
 *
 */
723
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
724
{
725
	preempt_disable();
726
	/* threshold event is triggered in finer grain than soft limit */
727 728 729 730
	if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
		mem_cgroup_threshold(memcg);
		__mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(memcg,
731
			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
732 733
			mem_cgroup_update_tree(memcg, page);
			__mem_cgroup_target_update(memcg,
734 735 736
						   MEM_CGROUP_TARGET_SOFTLIMIT);
		}
#if MAX_NUMNODES > 1
737
		if (unlikely(__memcg_event_check(memcg,
738
			MEM_CGROUP_TARGET_NUMAINFO))) {
739 740
			atomic_inc(&memcg->numainfo_events);
			__mem_cgroup_target_update(memcg,
741
				MEM_CGROUP_TARGET_NUMAINFO);
742
		}
743
#endif
744
	}
745
	preempt_enable();
746 747
}

748
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
749 750 751 752 753 754
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

755
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
756
{
757 758 759 760 761 762 763 764
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

765 766 767 768
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

769
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
770
{
771
	struct mem_cgroup *memcg = NULL;
772 773 774

	if (!mm)
		return NULL;
775 776 777 778 779 780 781
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
782 783
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
784
			break;
785
	} while (!css_tryget(&memcg->css));
786
	rcu_read_unlock();
787
	return memcg;
788 789
}

K
KAMEZAWA Hiroyuki 已提交
790
/* The caller has to guarantee "mem" exists before calling this */
791
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
792
{
793 794 795
	struct cgroup_subsys_state *css;
	int found;

796
	if (!memcg) /* ROOT cgroup has the smallest ID */
797
		return root_mem_cgroup; /*css_put/get against root is ignored*/
798 799 800
	if (!memcg->use_hierarchy) {
		if (css_tryget(&memcg->css))
			return memcg;
801 802 803 804 805 806 807
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
808
	css = css_get_next(&mem_cgroup_subsys, 1, &memcg->css, &found);
809
	if (css && css_tryget(css))
810
		memcg = container_of(css, struct mem_cgroup, css);
811
	else
812
		memcg = NULL;
813
	rcu_read_unlock();
814
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
815 816 817 818 819 820 821 822 823
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
824 825
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
826
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
827

K
KAMEZAWA Hiroyuki 已提交
828
	css_put(&iter->css);
829 830
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
831
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
832

833 834 835
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
836 837
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
838
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
839 840 841

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
842
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
843
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
844
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
845
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
846
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
847
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
848

K
KAMEZAWA Hiroyuki 已提交
849
	return iter;
K
KAMEZAWA Hiroyuki 已提交
850
}
K
KAMEZAWA Hiroyuki 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

864 865 866
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
867

868
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
869
{
870
	return (memcg == root_mem_cgroup);
871 872
}

873 874
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
875
	struct mem_cgroup *memcg;
876 877 878 879 880

	if (!mm)
		return;

	rcu_read_lock();
881 882
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
883 884 885 886
		goto out;

	switch (idx) {
	case PGMAJFAULT:
887
		mem_cgroup_pgmajfault(memcg, 1);
888 889
		break;
	case PGFAULT:
890
		mem_cgroup_pgfault(memcg, 1);
891 892 893 894 895 896 897 898 899
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
913

K
KAMEZAWA Hiroyuki 已提交
914 915 916 917
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
918

919
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
920 921 922
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
923
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
924
		return;
925
	VM_BUG_ON(!pc->mem_cgroup);
926 927 928 929
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
930
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
931 932
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
933 934 935
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
936
	list_del_init(&pc->lru);
937 938
}

K
KAMEZAWA Hiroyuki 已提交
939
void mem_cgroup_del_lru(struct page *page)
940
{
K
KAMEZAWA Hiroyuki 已提交
941 942
	mem_cgroup_del_lru_list(page, page_lru(page));
}
943

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
966
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
967 968 969
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
970 971 972 973
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
974

975
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
976
		return;
977

K
KAMEZAWA Hiroyuki 已提交
978
	pc = lookup_page_cgroup(page);
979
	/* unused or root page is not rotated. */
980 981 982 983 984
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
985
		return;
986
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
987
	list_move(&pc->lru, &mz->lists[lru]);
988 989
}

K
KAMEZAWA Hiroyuki 已提交
990
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
991
{
K
KAMEZAWA Hiroyuki 已提交
992 993
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
994

995
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
996 997
		return;
	pc = lookup_page_cgroup(page);
998
	VM_BUG_ON(PageCgroupAcctLRU(pc));
999 1000 1001 1002 1003 1004 1005 1006 1007 1008
	/*
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
	 */
	smp_mb();
K
KAMEZAWA Hiroyuki 已提交
1009
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
1010
		return;
1011 1012
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1013
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1014 1015
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1016 1017 1018
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
1019 1020
	list_add(&pc->lru, &mz->lists[lru]);
}
1021

K
KAMEZAWA Hiroyuki 已提交
1022
/*
1023 1024 1025 1026
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1027
 */
1028
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1029
{
1030 1031 1032 1033
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1045 1046 1047 1048 1049 1050 1051 1052
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1053 1054
}

1055
static void mem_cgroup_lru_add_after_commit(struct page *page)
1056 1057 1058 1059
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	/*
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
	 */
	smp_mb();
1070 1071 1072
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1073 1074
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1075
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1076 1077 1078 1079 1080
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1081 1082 1083
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1084
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1085 1086 1087
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1088 1089
}

1090
/*
1091
 * Checks whether given mem is same or in the root_mem_cgroup's
1092 1093
 * hierarchy subtree
 */
1094 1095
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1096
{
1097 1098 1099
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1100 1101 1102 1103 1104
	}

	return true;
}

1105
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1106 1107
{
	int ret;
1108
	struct mem_cgroup *curr = NULL;
1109
	struct task_struct *p;
1110

1111 1112 1113 1114 1115
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1116 1117
	if (!curr)
		return 0;
1118
	/*
1119
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1120
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1121 1122
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1123
	 */
1124
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1125
	css_put(&curr->css);
1126 1127 1128
	return ret;
}

1129
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1130
{
1131 1132 1133
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1134
	unsigned long inactive;
1135
	unsigned long active;
1136
	unsigned long gb;
1137

1138 1139 1140 1141
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1142

1143 1144 1145 1146 1147 1148
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1149
	return inactive * inactive_ratio < active;
1150 1151
}

1152
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1153 1154 1155
{
	unsigned long active;
	unsigned long inactive;
1156 1157
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1158

1159 1160 1161 1162
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1163 1164 1165 1166

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1167 1168 1169
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1170
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1187 1188
	if (!PageCgroupUsed(pc))
		return NULL;
1189 1190
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1191
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1192 1193 1194
	return &mz->reclaim_stat;
}

1195 1196 1197
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
1198 1199
					isolate_mode_t mode,
					struct zone *z,
1200
					struct mem_cgroup *mem_cont,
1201
					int active, int file)
1202 1203 1204 1205 1206 1207
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1208
	struct page_cgroup *pc, *tmp;
1209
	int nid = zone_to_nid(z);
1210 1211
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1212
	int lru = LRU_FILE * file + active;
1213
	int ret;
1214

1215
	BUG_ON(!mem_cont);
1216
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1217
	src = &mz->lists[lru];
1218

1219 1220
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1221
		if (scan >= nr_to_scan)
1222
			break;
K
KAMEZAWA Hiroyuki 已提交
1223

1224 1225
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1226

1227
		page = lookup_cgroup_page(pc);
1228

H
Hugh Dickins 已提交
1229
		if (unlikely(!PageLRU(page)))
1230 1231
			continue;

H
Hugh Dickins 已提交
1232
		scan++;
1233 1234 1235
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1236
			list_move(&page->lru, dst);
1237
			mem_cgroup_del_lru(page);
1238
			nr_taken += hpage_nr_pages(page);
1239 1240 1241 1242 1243 1244 1245
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1246 1247 1248 1249
		}
	}

	*scanned = scan;
1250 1251 1252 1253

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1254 1255 1256
	return nr_taken;
}

1257 1258 1259
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1260
/**
1261 1262
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1263
 *
1264
 * Returns the maximum amount of memory @mem can be charged with, in
1265
 * pages.
1266
 */
1267
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1268
{
1269 1270
	unsigned long long margin;

1271
	margin = res_counter_margin(&memcg->res);
1272
	if (do_swap_account)
1273
		margin = min(margin, res_counter_margin(&memcg->memsw));
1274
	return margin >> PAGE_SHIFT;
1275 1276
}

1277
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1278 1279 1280 1281 1282 1283 1284
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1285
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1286 1287
}

1288
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1289 1290
{
	int cpu;
1291 1292

	get_online_cpus();
1293
	spin_lock(&memcg->pcp_counter_lock);
1294
	for_each_online_cpu(cpu)
1295 1296 1297
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1298
	put_online_cpus();
1299 1300 1301 1302

	synchronize_rcu();
}

1303
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1304 1305 1306
{
	int cpu;

1307
	if (!memcg)
1308
		return;
1309
	get_online_cpus();
1310
	spin_lock(&memcg->pcp_counter_lock);
1311
	for_each_online_cpu(cpu)
1312 1313 1314
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1315
	put_online_cpus();
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1329
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1330 1331
{
	VM_BUG_ON(!rcu_read_lock_held());
1332
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1333
}
1334

1335
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1336
{
1337 1338
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1339
	bool ret = false;
1340 1341 1342 1343 1344 1345 1346 1347 1348
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1349

1350 1351
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1352 1353
unlock:
	spin_unlock(&mc.lock);
1354 1355 1356
	return ret;
}

1357
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1358 1359
{
	if (mc.moving_task && current != mc.moving_task) {
1360
		if (mem_cgroup_under_move(memcg)) {
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1373
/**
1374
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1393
	if (!memcg || !p)
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1440 1441 1442 1443
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1444
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1445 1446
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1447 1448
	struct mem_cgroup *iter;

1449
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1450
		num++;
1451 1452 1453
	return num;
}

D
David Rientjes 已提交
1454 1455 1456 1457 1458 1459 1460 1461
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1462 1463 1464
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1465 1466 1467 1468 1469 1470 1471 1472
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1473
/*
K
KAMEZAWA Hiroyuki 已提交
1474 1475 1476 1477 1478
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
1479
mem_cgroup_select_victim(struct mem_cgroup *root_memcg)
K
KAMEZAWA Hiroyuki 已提交
1480 1481 1482 1483 1484
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

1485 1486 1487
	if (!root_memcg->use_hierarchy) {
		css_get(&root_memcg->css);
		ret = root_memcg;
K
KAMEZAWA Hiroyuki 已提交
1488 1489 1490 1491
	}

	while (!ret) {
		rcu_read_lock();
1492 1493
		nextid = root_memcg->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_memcg->css,
K
KAMEZAWA Hiroyuki 已提交
1494 1495 1496 1497 1498 1499 1500 1501
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
1502
			root_memcg->last_scanned_child = 0;
K
KAMEZAWA Hiroyuki 已提交
1503
		} else
1504
			root_memcg->last_scanned_child = found;
K
KAMEZAWA Hiroyuki 已提交
1505 1506 1507 1508 1509
	}

	return ret;
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1520
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1521 1522
		int nid, bool noswap)
{
1523
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1524 1525 1526
		return true;
	if (noswap || !total_swap_pages)
		return false;
1527
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1528 1529 1530 1531
		return true;
	return false;

}
1532 1533 1534 1535 1536 1537 1538 1539
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1540
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1541 1542
{
	int nid;
1543 1544 1545 1546
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1547
	if (!atomic_read(&memcg->numainfo_events))
1548
		return;
1549
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1550 1551 1552
		return;

	/* make a nodemask where this memcg uses memory from */
1553
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1554 1555 1556

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1557 1558
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1559
	}
1560

1561 1562
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1577
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1578 1579 1580
{
	int node;

1581 1582
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1583

1584
	node = next_node(node, memcg->scan_nodes);
1585
	if (node == MAX_NUMNODES)
1586
		node = first_node(memcg->scan_nodes);
1587 1588 1589 1590 1591 1592 1593 1594 1595
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1596
	memcg->last_scanned_node = node;
1597 1598 1599
	return node;
}

1600 1601 1602 1603 1604 1605
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1606
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1607 1608 1609 1610 1611 1612 1613
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1614 1615
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1616
		     nid < MAX_NUMNODES;
1617
		     nid = next_node(nid, memcg->scan_nodes)) {
1618

1619
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1620 1621 1622 1623 1624 1625 1626
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1627
		if (node_isset(nid, memcg->scan_nodes))
1628
			continue;
1629
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1630 1631 1632 1633 1634
			return true;
	}
	return false;
}

1635
#else
1636
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1637 1638 1639
{
	return 0;
}
1640

1641
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1642
{
1643
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1644
}
1645 1646
#endif

K
KAMEZAWA Hiroyuki 已提交
1647 1648 1649 1650
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1651
 *
1652
 * root_memcg is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1653
 *
1654
 * We give up and return to the caller when we visit root_memcg twice.
K
KAMEZAWA Hiroyuki 已提交
1655
 * (other groups can be removed while we're walking....)
1656 1657
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1658
 */
1659
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_memcg,
1660
						struct zone *zone,
1661
						gfp_t gfp_mask,
1662 1663
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1664
{
K
KAMEZAWA Hiroyuki 已提交
1665 1666 1667
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1668 1669
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1670
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1671
	unsigned long excess;
1672
	unsigned long nr_scanned;
1673

1674
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1675

1676
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1677
	if (!check_soft && !shrink && root_memcg->memsw_is_minimum)
1678 1679
		noswap = true;

1680
	while (1) {
1681 1682
		victim = mem_cgroup_select_victim(root_memcg);
		if (victim == root_memcg) {
K
KAMEZAWA Hiroyuki 已提交
1683
			loop++;
1684 1685 1686 1687 1688 1689 1690
			/*
			 * We are not draining per cpu cached charges during
			 * soft limit reclaim  because global reclaim doesn't
			 * care about charges. It tries to free some memory and
			 * charges will not give any.
			 */
			if (!check_soft && loop >= 1)
1691
				drain_all_stock_async(root_memcg);
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1703
				 * We want to do more targeted reclaim.
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1715
		if (!mem_cgroup_reclaimable(victim, noswap)) {
K
KAMEZAWA Hiroyuki 已提交
1716 1717
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1718 1719
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1720
		/* we use swappiness of local cgroup */
1721
		if (check_soft) {
1722
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1723 1724
				noswap, zone, &nr_scanned);
			*total_scanned += nr_scanned;
1725
		} else
1726
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1727
						noswap);
K
KAMEZAWA Hiroyuki 已提交
1728
		css_put(&victim->css);
1729 1730 1731 1732 1733 1734 1735
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1736
		total += ret;
1737
		if (check_soft) {
1738
			if (!res_counter_soft_limit_excess(&root_memcg->res))
1739
				return total;
1740
		} else if (mem_cgroup_margin(root_memcg))
1741
			return total;
1742
	}
K
KAMEZAWA Hiroyuki 已提交
1743
	return total;
1744 1745
}

K
KAMEZAWA Hiroyuki 已提交
1746 1747 1748
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1749
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1750
 */
1751
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1752
{
1753 1754
	struct mem_cgroup *iter, *failed = NULL;
	bool cond = true;
1755

1756
	for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1757
		if (iter->oom_lock) {
1758 1759 1760 1761 1762 1763
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
			cond = false;
1764 1765
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1766
	}
K
KAMEZAWA Hiroyuki 已提交
1767

1768
	if (!failed)
1769
		return true;
1770 1771 1772 1773 1774 1775

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
	cond = true;
1776
	for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1777 1778 1779 1780 1781 1782
		if (iter == failed) {
			cond = false;
			continue;
		}
		iter->oom_lock = false;
	}
1783
	return false;
1784
}
1785

1786
/*
1787
 * Has to be called with memcg_oom_lock
1788
 */
1789
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1790
{
K
KAMEZAWA Hiroyuki 已提交
1791 1792
	struct mem_cgroup *iter;

1793
	for_each_mem_cgroup_tree(iter, memcg)
1794 1795 1796 1797
		iter->oom_lock = false;
	return 0;
}

1798
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1799 1800 1801
{
	struct mem_cgroup *iter;

1802
	for_each_mem_cgroup_tree(iter, memcg)
1803 1804 1805
		atomic_inc(&iter->under_oom);
}

1806
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1807 1808 1809
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1810 1811 1812 1813 1814
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1815
	for_each_mem_cgroup_tree(iter, memcg)
1816
		atomic_add_unless(&iter->under_oom, -1, 0);
1817 1818
}

1819
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1820 1821
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1822 1823 1824 1825 1826 1827 1828 1829
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1830 1831
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
			  *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1832 1833 1834
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1835
	oom_wait_memcg = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1836 1837 1838 1839 1840

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1841 1842
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1843 1844 1845 1846
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1847
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1848
{
1849 1850
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1851 1852
}

1853
static void memcg_oom_recover(struct mem_cgroup *memcg)
1854
{
1855 1856
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1857 1858
}

K
KAMEZAWA Hiroyuki 已提交
1859 1860 1861
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1862
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1863
{
K
KAMEZAWA Hiroyuki 已提交
1864
	struct oom_wait_info owait;
1865
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1866

1867
	owait.mem = memcg;
K
KAMEZAWA Hiroyuki 已提交
1868 1869 1870 1871
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1872
	need_to_kill = true;
1873
	mem_cgroup_mark_under_oom(memcg);
1874

1875
	/* At first, try to OOM lock hierarchy under memcg.*/
1876
	spin_lock(&memcg_oom_lock);
1877
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1878 1879 1880 1881 1882
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1883
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1884
	if (!locked || memcg->oom_kill_disable)
1885 1886
		need_to_kill = false;
	if (locked)
1887
		mem_cgroup_oom_notify(memcg);
1888
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1889

1890 1891
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1892
		mem_cgroup_out_of_memory(memcg, mask);
1893
	} else {
K
KAMEZAWA Hiroyuki 已提交
1894
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1895
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1896
	}
1897
	spin_lock(&memcg_oom_lock);
1898
	if (locked)
1899 1900
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1901
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1902

1903
	mem_cgroup_unmark_under_oom(memcg);
1904

K
KAMEZAWA Hiroyuki 已提交
1905 1906 1907
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1908
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1909
	return true;
1910 1911
}

1912 1913 1914
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1934
 */
1935

1936 1937
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1938
{
1939
	struct mem_cgroup *memcg;
1940 1941
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1942
	unsigned long uninitialized_var(flags);
1943 1944 1945 1946

	if (unlikely(!pc))
		return;

1947
	rcu_read_lock();
1948 1949
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1950 1951
		goto out;
	/* pc->mem_cgroup is unstable ? */
1952
	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1953
		/* take a lock against to access pc->mem_cgroup */
1954
		move_lock_page_cgroup(pc, &flags);
1955
		need_unlock = true;
1956 1957
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
1958 1959
			goto out;
	}
1960 1961

	switch (idx) {
1962
	case MEMCG_NR_FILE_MAPPED:
1963 1964 1965
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1966
			ClearPageCgroupFileMapped(pc);
1967
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1968 1969 1970
		break;
	default:
		BUG();
1971
	}
1972

1973
	this_cpu_add(memcg->stat->count[idx], val);
1974

1975 1976
out:
	if (unlikely(need_unlock))
1977
		move_unlock_page_cgroup(pc, &flags);
1978 1979
	rcu_read_unlock();
	return;
1980
}
1981
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1982

1983 1984 1985 1986
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1987
#define CHARGE_BATCH	32U
1988 1989
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1990
	unsigned int nr_pages;
1991
	struct work_struct work;
1992 1993
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
1994 1995
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1996
static DEFINE_MUTEX(percpu_charge_mutex);
1997 1998

/*
1999
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2000 2001 2002 2003
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2004
static bool consume_stock(struct mem_cgroup *memcg)
2005 2006 2007 2008 2009
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2010
	if (memcg == stock->cached && stock->nr_pages)
2011
		stock->nr_pages--;
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2025 2026 2027 2028
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2029
		if (do_swap_account)
2030 2031
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2044
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2045 2046 2047 2048
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2049
 * This will be consumed by consume_stock() function, later.
2050
 */
2051
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2052 2053 2054
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2055
	if (stock->cached != memcg) { /* reset if necessary */
2056
		drain_stock(stock);
2057
		stock->cached = memcg;
2058
	}
2059
	stock->nr_pages += nr_pages;
2060 2061 2062 2063
	put_cpu_var(memcg_stock);
}

/*
2064
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2065 2066
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2067
 */
2068
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2069
{
2070
	int cpu, curcpu;
2071

2072 2073
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2074
	curcpu = get_cpu();
2075 2076
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2077
		struct mem_cgroup *memcg;
2078

2079 2080
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2081
			continue;
2082
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2083
			continue;
2084 2085 2086 2087 2088 2089
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2090
	}
2091
	put_cpu();
2092 2093 2094 2095 2096 2097

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2098
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2099 2100 2101
			flush_work(&stock->work);
	}
out:
2102
 	put_online_cpus();
2103 2104 2105 2106 2107 2108 2109 2110
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2111
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2112
{
2113 2114 2115 2116 2117
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2118
	drain_all_stock(root_memcg, false);
2119
	mutex_unlock(&percpu_charge_mutex);
2120 2121 2122
}

/* This is a synchronous drain interface. */
2123
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2124 2125
{
	/* called when force_empty is called */
2126
	mutex_lock(&percpu_charge_mutex);
2127
	drain_all_stock(root_memcg, true);
2128
	mutex_unlock(&percpu_charge_mutex);
2129 2130
}

2131 2132 2133 2134
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2135
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2136 2137 2138
{
	int i;

2139
	spin_lock(&memcg->pcp_counter_lock);
2140
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2141
		long x = per_cpu(memcg->stat->count[i], cpu);
2142

2143 2144
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2145
	}
2146
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2147
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2148

2149 2150
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2151
	}
2152
	/* need to clear ON_MOVE value, works as a kind of lock. */
2153 2154
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2155 2156
}

2157
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2158 2159 2160
{
	int idx = MEM_CGROUP_ON_MOVE;

2161 2162 2163
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2164 2165 2166
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2167 2168 2169 2170 2171
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2172
	struct mem_cgroup *iter;
2173

2174 2175 2176 2177 2178 2179
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2180
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2181
		return NOTIFY_OK;
2182 2183 2184 2185

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2186 2187 2188 2189 2190
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2201
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2202
				unsigned int nr_pages, bool oom_check)
2203
{
2204
	unsigned long csize = nr_pages * PAGE_SIZE;
2205 2206 2207 2208 2209
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2210
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2211 2212 2213 2214

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2215
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2216 2217 2218
		if (likely(!ret))
			return CHARGE_OK;

2219
		res_counter_uncharge(&memcg->res, csize);
2220 2221 2222 2223
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2224
	/*
2225 2226
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2227 2228 2229 2230
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2231
	if (nr_pages == CHARGE_BATCH)
2232 2233 2234 2235 2236 2237
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2238
					      gfp_mask, flags, NULL);
2239
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2240
		return CHARGE_RETRY;
2241
	/*
2242 2243 2244 2245 2246 2247 2248
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2249
	 */
2250
	if (nr_pages == 1 && ret)
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2270 2271 2272
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2273
 */
2274
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2275
				   gfp_t gfp_mask,
2276
				   unsigned int nr_pages,
2277
				   struct mem_cgroup **ptr,
2278
				   bool oom)
2279
{
2280
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2281
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2282
	struct mem_cgroup *memcg = NULL;
2283
	int ret;
2284

K
KAMEZAWA Hiroyuki 已提交
2285 2286 2287 2288 2289 2290 2291 2292
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2293

2294
	/*
2295 2296
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2297 2298 2299
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2300
	if (!*ptr && !mm)
K
KAMEZAWA Hiroyuki 已提交
2301 2302
		goto bypass;
again:
2303 2304 2305 2306
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2307
			goto done;
2308
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2309
			goto done;
2310
		css_get(&memcg->css);
2311
	} else {
K
KAMEZAWA Hiroyuki 已提交
2312
		struct task_struct *p;
2313

K
KAMEZAWA Hiroyuki 已提交
2314 2315 2316
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2317
		 * Because we don't have task_lock(), "p" can exit.
2318
		 * In that case, "memcg" can point to root or p can be NULL with
2319 2320 2321 2322 2323 2324
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2325
		 */
2326 2327
		memcg = mem_cgroup_from_task(p);
		if (!memcg || mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2328 2329 2330
			rcu_read_unlock();
			goto done;
		}
2331
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2344
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2345 2346 2347 2348 2349
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2350

2351 2352
	do {
		bool oom_check;
2353

2354
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2355
		if (fatal_signal_pending(current)) {
2356
			css_put(&memcg->css);
2357
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2358
		}
2359

2360 2361 2362 2363
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2364
		}
2365

2366
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2367 2368 2369 2370
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2371
			batch = nr_pages;
2372 2373
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2374
			goto again;
2375
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2376
			css_put(&memcg->css);
2377 2378
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2379
			if (!oom) {
2380
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2381
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2382
			}
2383 2384 2385 2386
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2387
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2388
			goto bypass;
2389
		}
2390 2391
	} while (ret != CHARGE_OK);

2392
	if (batch > nr_pages)
2393 2394
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2395
done:
2396
	*ptr = memcg;
2397 2398
	return 0;
nomem:
2399
	*ptr = NULL;
2400
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2401
bypass:
2402
	*ptr = NULL;
K
KAMEZAWA Hiroyuki 已提交
2403
	return 0;
2404
}
2405

2406 2407 2408 2409 2410
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2411
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2412
				       unsigned int nr_pages)
2413
{
2414
	if (!mem_cgroup_is_root(memcg)) {
2415 2416
		unsigned long bytes = nr_pages * PAGE_SIZE;

2417
		res_counter_uncharge(&memcg->res, bytes);
2418
		if (do_swap_account)
2419
			res_counter_uncharge(&memcg->memsw, bytes);
2420
	}
2421 2422
}

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2442
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2443
{
2444
	struct mem_cgroup *memcg = NULL;
2445
	struct page_cgroup *pc;
2446
	unsigned short id;
2447 2448
	swp_entry_t ent;

2449 2450 2451
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2452
	lock_page_cgroup(pc);
2453
	if (PageCgroupUsed(pc)) {
2454 2455 2456
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2457
	} else if (PageSwapCache(page)) {
2458
		ent.val = page_private(page);
2459 2460
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
2461 2462 2463
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2464
		rcu_read_unlock();
2465
	}
2466
	unlock_page_cgroup(pc);
2467
	return memcg;
2468 2469
}

2470
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2471
				       struct page *page,
2472
				       unsigned int nr_pages,
2473
				       struct page_cgroup *pc,
2474
				       enum charge_type ctype)
2475
{
2476 2477 2478
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2479
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2480 2481 2482 2483 2484 2485
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2486
	pc->mem_cgroup = memcg;
2487 2488 2489 2490 2491 2492 2493
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2494
	smp_wmb();
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2508

2509
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2510
	unlock_page_cgroup(pc);
2511 2512 2513 2514 2515
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2516
	memcg_check_events(memcg, page);
2517
}
2518

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2533 2534
	if (mem_cgroup_disabled())
		return;
2535
	/*
2536
	 * We have no races with charge/uncharge but will have races with
2537 2538 2539 2540 2541 2542
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2553
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2554 2555
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2556 2557 2558 2559 2560
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2561
/**
2562
 * mem_cgroup_move_account - move account of the page
2563
 * @page: the page
2564
 * @nr_pages: number of regular pages (>1 for huge pages)
2565 2566 2567
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2568
 * @uncharge: whether we should call uncharge and css_put against @from.
2569 2570
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2571
 * - page is not on LRU (isolate_page() is useful.)
2572
 * - compound_lock is held when nr_pages > 1
2573
 *
2574
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2575
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2576 2577
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2578
 */
2579 2580 2581 2582 2583 2584
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2585
{
2586 2587
	unsigned long flags;
	int ret;
2588

2589
	VM_BUG_ON(from == to);
2590
	VM_BUG_ON(PageLRU(page));
2591 2592 2593 2594 2595 2596 2597
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2598
	if (nr_pages > 1 && !PageTransHuge(page))
2599 2600 2601 2602 2603 2604 2605 2606 2607
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2608

2609
	if (PageCgroupFileMapped(pc)) {
2610 2611 2612 2613 2614
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2615
	}
2616
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2617 2618
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2619
		__mem_cgroup_cancel_charge(from, nr_pages);
2620

2621
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2622
	pc->mem_cgroup = to;
2623
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2624 2625 2626
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2627
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2628
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2629
	 * status here.
2630
	 */
2631 2632 2633
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2634
	unlock_page_cgroup(pc);
2635 2636 2637
	/*
	 * check events
	 */
2638 2639
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2640
out:
2641 2642 2643 2644 2645 2646 2647
	return ret;
}

/*
 * move charges to its parent.
 */

2648 2649
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2650 2651 2652 2653 2654 2655
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2656
	unsigned int nr_pages;
2657
	unsigned long uninitialized_var(flags);
2658 2659 2660 2661 2662 2663
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2664 2665 2666 2667 2668
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2669

2670
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2671

2672
	parent = mem_cgroup_from_cont(pcg);
2673
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2674
	if (ret || !parent)
2675
		goto put_back;
2676

2677
	if (nr_pages > 1)
2678 2679
		flags = compound_lock_irqsave(page);

2680
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2681
	if (ret)
2682
		__mem_cgroup_cancel_charge(parent, nr_pages);
2683

2684
	if (nr_pages > 1)
2685
		compound_unlock_irqrestore(page, flags);
2686
put_back:
K
KAMEZAWA Hiroyuki 已提交
2687
	putback_lru_page(page);
2688
put:
2689
	put_page(page);
2690
out:
2691 2692 2693
	return ret;
}

2694 2695 2696 2697 2698 2699 2700
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2701
				gfp_t gfp_mask, enum charge_type ctype)
2702
{
2703
	struct mem_cgroup *memcg = NULL;
2704
	unsigned int nr_pages = 1;
2705
	struct page_cgroup *pc;
2706
	bool oom = true;
2707
	int ret;
A
Andrea Arcangeli 已提交
2708

A
Andrea Arcangeli 已提交
2709
	if (PageTransHuge(page)) {
2710
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2711
		VM_BUG_ON(!PageTransHuge(page));
2712 2713 2714 2715 2716
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2717
	}
2718 2719

	pc = lookup_page_cgroup(page);
2720
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2721

2722 2723
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
	if (ret || !memcg)
2724 2725
		return ret;

2726
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2727 2728 2729
	return 0;
}

2730 2731
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2732
{
2733
	if (mem_cgroup_disabled())
2734
		return 0;
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2746
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2747
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2748 2749
}

D
Daisuke Nishimura 已提交
2750 2751 2752 2753
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2754
static void
2755
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2756 2757 2758 2759 2760 2761 2762 2763 2764
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
2765
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2766 2767 2768 2769
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2770 2771
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2772
{
2773
	struct mem_cgroup *memcg = NULL;
2774 2775
	int ret;

2776
	if (mem_cgroup_disabled())
2777
		return 0;
2778 2779
	if (PageCompound(page))
		return 0;
2780

2781
	if (unlikely(!mm))
2782
		mm = &init_mm;
2783

2784
	if (page_is_file_cache(page)) {
2785 2786
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
		if (ret || !memcg)
2787
			return ret;
2788

2789 2790 2791 2792 2793
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
2794
		__mem_cgroup_commit_charge_lrucare(page, memcg,
2795 2796 2797
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2798 2799
	/* shmem */
	if (PageSwapCache(page)) {
2800
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2801
		if (!ret)
2802
			__mem_cgroup_commit_charge_swapin(page, memcg,
D
Daisuke Nishimura 已提交
2803 2804 2805
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2806
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2807 2808

	return ret;
2809 2810
}

2811 2812 2813
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2814
 * struct page_cgroup is acquired. This refcnt will be consumed by
2815 2816
 * "commit()" or removed by "cancel()"
 */
2817 2818 2819 2820
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
2821
	struct mem_cgroup *memcg;
2822
	int ret;
2823

2824 2825
	*ptr = NULL;

2826
	if (mem_cgroup_disabled())
2827 2828 2829 2830 2831 2832
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2833 2834 2835
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2836 2837
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2838
		goto charge_cur_mm;
2839 2840
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2841
		goto charge_cur_mm;
2842
	*ptr = memcg;
2843
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2844
	css_put(&memcg->css);
2845
	return ret;
2846 2847 2848
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2849
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2850 2851
}

D
Daisuke Nishimura 已提交
2852 2853 2854
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2855
{
2856
	if (mem_cgroup_disabled())
2857 2858 2859
		return;
	if (!ptr)
		return;
2860
	cgroup_exclude_rmdir(&ptr->css);
2861 2862

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2863 2864 2865
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2866 2867 2868
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2869
	 */
2870
	if (do_swap_account && PageSwapCache(page)) {
2871
		swp_entry_t ent = {.val = page_private(page)};
2872
		unsigned short id;
2873
		struct mem_cgroup *memcg;
2874 2875 2876 2877

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2878
		if (memcg) {
2879 2880 2881 2882
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2883
			if (!mem_cgroup_is_root(memcg))
2884
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2885
			mem_cgroup_swap_statistics(memcg, false);
2886 2887
			mem_cgroup_put(memcg);
		}
2888
		rcu_read_unlock();
2889
	}
2890 2891 2892 2893 2894 2895
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2896 2897
}

D
Daisuke Nishimura 已提交
2898 2899 2900 2901 2902 2903
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2904
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2905
{
2906
	if (mem_cgroup_disabled())
2907
		return;
2908
	if (!memcg)
2909
		return;
2910
	__mem_cgroup_cancel_charge(memcg, 1);
2911 2912
}

2913
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2914 2915
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2916 2917 2918
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2919

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2931
		batch->memcg = memcg;
2932 2933
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2934
	 * In those cases, all pages freed continuously can be expected to be in
2935 2936 2937 2938 2939 2940 2941 2942
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2943
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2944 2945
		goto direct_uncharge;

2946 2947 2948 2949 2950
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2951
	if (batch->memcg != memcg)
2952 2953
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2954
	batch->nr_pages++;
2955
	if (uncharge_memsw)
2956
		batch->memsw_nr_pages++;
2957 2958
	return;
direct_uncharge:
2959
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2960
	if (uncharge_memsw)
2961 2962 2963
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2964 2965
	return;
}
2966

2967
/*
2968
 * uncharge if !page_mapped(page)
2969
 */
2970
static struct mem_cgroup *
2971
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2972
{
2973
	struct mem_cgroup *memcg = NULL;
2974 2975
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2976

2977
	if (mem_cgroup_disabled())
2978
		return NULL;
2979

K
KAMEZAWA Hiroyuki 已提交
2980
	if (PageSwapCache(page))
2981
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2982

A
Andrea Arcangeli 已提交
2983
	if (PageTransHuge(page)) {
2984
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2985 2986
		VM_BUG_ON(!PageTransHuge(page));
	}
2987
	/*
2988
	 * Check if our page_cgroup is valid
2989
	 */
2990 2991
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2992
		return NULL;
2993

2994
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2995

2996
	memcg = pc->mem_cgroup;
2997

K
KAMEZAWA Hiroyuki 已提交
2998 2999 3000 3001 3002
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
3003
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3004 3005
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3017
	}
K
KAMEZAWA Hiroyuki 已提交
3018

3019
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3020

3021
	ClearPageCgroupUsed(pc);
3022 3023 3024 3025 3026 3027
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3028

3029
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3030
	/*
3031
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3032 3033
	 * will never be freed.
	 */
3034
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3035
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3036 3037
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3038
	}
3039 3040
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3041

3042
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3043 3044 3045

unlock_out:
	unlock_page_cgroup(pc);
3046
	return NULL;
3047 3048
}

3049 3050
void mem_cgroup_uncharge_page(struct page *page)
{
3051 3052 3053 3054 3055
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3056 3057 3058 3059 3060 3061
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3062
	VM_BUG_ON(page->mapping);
3063 3064 3065
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3080 3081
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3102 3103 3104 3105 3106 3107
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3108
	memcg_oom_recover(batch->memcg);
3109 3110 3111 3112
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3113
#ifdef CONFIG_SWAP
3114
/*
3115
 * called after __delete_from_swap_cache() and drop "page" account.
3116 3117
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3118 3119
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3120 3121
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3122 3123 3124 3125 3126 3127
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3128

K
KAMEZAWA Hiroyuki 已提交
3129 3130 3131 3132 3133
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3134
		swap_cgroup_record(ent, css_id(&memcg->css));
3135
}
3136
#endif
3137 3138 3139 3140 3141 3142 3143

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3144
{
3145
	struct mem_cgroup *memcg;
3146
	unsigned short id;
3147 3148 3149 3150

	if (!do_swap_account)
		return;

3151 3152 3153
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3154
	if (memcg) {
3155 3156 3157 3158
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3159
		if (!mem_cgroup_is_root(memcg))
3160
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3161
		mem_cgroup_swap_statistics(memcg, false);
3162 3163
		mem_cgroup_put(memcg);
	}
3164
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3165
}
3166 3167 3168 3169 3170 3171

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3172
 * @need_fixup: whether we should fixup res_counters and refcounts.
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3183
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3184 3185 3186 3187 3188 3189 3190 3191
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3192
		mem_cgroup_swap_statistics(to, true);
3193
		/*
3194 3195 3196 3197 3198 3199
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3200 3201
		 */
		mem_cgroup_get(to);
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3213 3214 3215 3216 3217 3218
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3219
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3220 3221 3222
{
	return -EINVAL;
}
3223
#endif
K
KAMEZAWA Hiroyuki 已提交
3224

3225
/*
3226 3227
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3228
 */
3229
int mem_cgroup_prepare_migration(struct page *page,
3230
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3231
{
3232
	struct mem_cgroup *memcg = NULL;
3233
	struct page_cgroup *pc;
3234
	enum charge_type ctype;
3235
	int ret = 0;
3236

3237 3238
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3239
	VM_BUG_ON(PageTransHuge(page));
3240
	if (mem_cgroup_disabled())
3241 3242
		return 0;

3243 3244 3245
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3246 3247
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3279
	}
3280
	unlock_page_cgroup(pc);
3281 3282 3283 3284
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3285
	if (!memcg)
3286
		return 0;
3287

3288
	*ptr = memcg;
3289
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3290
	css_put(&memcg->css);/* drop extra refcnt */
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3302
	}
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3316
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3317
	return ret;
3318
}
3319

3320
/* remove redundant charge if migration failed*/
3321
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3322
	struct page *oldpage, struct page *newpage, bool migration_ok)
3323
{
3324
	struct page *used, *unused;
3325 3326
	struct page_cgroup *pc;

3327
	if (!memcg)
3328
		return;
3329
	/* blocks rmdir() */
3330
	cgroup_exclude_rmdir(&memcg->css);
3331
	if (!migration_ok) {
3332 3333
		used = oldpage;
		unused = newpage;
3334
	} else {
3335
		used = newpage;
3336 3337
		unused = oldpage;
	}
3338
	/*
3339 3340 3341
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3342
	 */
3343 3344 3345 3346
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3347

3348 3349
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3350
	/*
3351 3352 3353 3354 3355 3356
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3357
	 */
3358 3359
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3360
	/*
3361 3362
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3363 3364 3365
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3366
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3367
}
3368

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3415 3416
static DEFINE_MUTEX(set_limit_mutex);

3417
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3418
				unsigned long long val)
3419
{
3420
	int retry_count;
3421
	u64 memswlimit, memlimit;
3422
	int ret = 0;
3423 3424
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3425
	int enlarge;
3426 3427 3428 3429 3430 3431 3432 3433 3434

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3435

3436
	enlarge = 0;
3437
	while (retry_count) {
3438 3439 3440 3441
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3442 3443 3444
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3445
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3446 3447 3448 3449 3450 3451
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3452 3453
			break;
		}
3454 3455 3456 3457 3458

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3459
		ret = res_counter_set_limit(&memcg->res, val);
3460 3461 3462 3463 3464 3465
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3466 3467 3468 3469 3470
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3471
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3472 3473
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3474 3475 3476 3477 3478 3479
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3480
	}
3481 3482
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3483

3484 3485 3486
	return ret;
}

L
Li Zefan 已提交
3487 3488
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3489
{
3490
	int retry_count;
3491
	u64 memlimit, memswlimit, oldusage, curusage;
3492 3493
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3494
	int enlarge = 0;
3495

3496 3497 3498
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3499 3500 3501 3502 3503 3504 3505 3506
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3507
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3508 3509 3510 3511 3512 3513 3514 3515
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3516 3517 3518
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3519
		ret = res_counter_set_limit(&memcg->memsw, val);
3520 3521 3522 3523 3524 3525
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3526 3527 3528 3529 3530
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3531
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3532
						MEM_CGROUP_RECLAIM_NOSWAP |
3533 3534
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3535
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3536
		/* Usage is reduced ? */
3537
		if (curusage >= oldusage)
3538
			retry_count--;
3539 3540
		else
			oldusage = curusage;
3541
	}
3542 3543
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3544 3545 3546
	return ret;
}

3547
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3548 3549
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3550 3551 3552 3553 3554 3555
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3556
	unsigned long long excess;
3557
	unsigned long nr_scanned;
3558 3559 3560 3561

	if (order > 0)
		return 0;

3562
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3576
		nr_scanned = 0;
3577 3578
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3579 3580
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3581
		nr_reclaimed += reclaimed;
3582
		*total_scanned += nr_scanned;
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3605
				if (next_mz == mz)
3606
					css_put(&next_mz->mem->css);
3607
				else /* next_mz == NULL or other memcg */
3608 3609 3610 3611
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3612
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3613 3614 3615 3616 3617 3618 3619 3620
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3621 3622
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3641 3642 3643 3644
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3645
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3646
				int node, int zid, enum lru_list lru)
3647
{
K
KAMEZAWA Hiroyuki 已提交
3648 3649
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3650
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3651
	unsigned long flags, loop;
3652
	struct list_head *list;
3653
	int ret = 0;
3654

K
KAMEZAWA Hiroyuki 已提交
3655
	zone = &NODE_DATA(node)->node_zones[zid];
3656
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3657
	list = &mz->lists[lru];
3658

3659 3660 3661 3662 3663
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3664 3665
		struct page *page;

3666
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3667
		spin_lock_irqsave(&zone->lru_lock, flags);
3668
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3669
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3670
			break;
3671 3672 3673 3674
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3675
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3676
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3677 3678
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3679
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3680

3681
		page = lookup_cgroup_page(pc);
3682

3683
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3684
		if (ret == -ENOMEM)
3685
			break;
3686 3687 3688 3689 3690 3691 3692

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3693
	}
K
KAMEZAWA Hiroyuki 已提交
3694

3695 3696 3697
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3698 3699 3700 3701 3702 3703
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3704
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3705
{
3706 3707 3708
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3709
	struct cgroup *cgrp = memcg->css.cgroup;
3710

3711
	css_get(&memcg->css);
3712 3713

	shrink = 0;
3714 3715 3716
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3717
move_account:
3718
	do {
3719
		ret = -EBUSY;
3720 3721 3722 3723
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3724
			goto out;
3725 3726
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3727
		drain_all_stock_sync(memcg);
3728
		ret = 0;
3729
		mem_cgroup_start_move(memcg);
3730
		for_each_node_state(node, N_HIGH_MEMORY) {
3731
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3732
				enum lru_list l;
3733
				for_each_lru(l) {
3734
					ret = mem_cgroup_force_empty_list(memcg,
K
KAMEZAWA Hiroyuki 已提交
3735
							node, zid, l);
3736 3737 3738
					if (ret)
						break;
				}
3739
			}
3740 3741 3742
			if (ret)
				break;
		}
3743 3744
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3745 3746 3747
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3748
		cond_resched();
3749
	/* "ret" should also be checked to ensure all lists are empty. */
3750
	} while (memcg->res.usage > 0 || ret);
3751
out:
3752
	css_put(&memcg->css);
3753
	return ret;
3754 3755

try_to_free:
3756 3757
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3758 3759 3760
		ret = -EBUSY;
		goto out;
	}
3761 3762
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3763 3764
	/* try to free all pages in this cgroup */
	shrink = 1;
3765
	while (nr_retries && memcg->res.usage > 0) {
3766
		int progress;
3767 3768 3769 3770 3771

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3772
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3773
						false);
3774
		if (!progress) {
3775
			nr_retries--;
3776
			/* maybe some writeback is necessary */
3777
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3778
		}
3779 3780

	}
K
KAMEZAWA Hiroyuki 已提交
3781
	lru_add_drain();
3782
	/* try move_account...there may be some *locked* pages. */
3783
	goto move_account;
3784 3785
}

3786 3787 3788 3789 3790 3791
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3792 3793 3794 3795 3796 3797 3798 3799 3800
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3801
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3802
	struct cgroup *parent = cont->parent;
3803
	struct mem_cgroup *parent_memcg = NULL;
3804 3805

	if (parent)
3806
		parent_memcg = mem_cgroup_from_cont(parent);
3807 3808 3809

	cgroup_lock();
	/*
3810
	 * If parent's use_hierarchy is set, we can't make any modifications
3811 3812 3813 3814 3815 3816
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3817
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3818 3819
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3820
			memcg->use_hierarchy = val;
3821 3822 3823 3824 3825 3826 3827 3828 3829
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3830

3831
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3832
					       enum mem_cgroup_stat_index idx)
3833
{
K
KAMEZAWA Hiroyuki 已提交
3834
	struct mem_cgroup *iter;
3835
	long val = 0;
3836

3837
	/* Per-cpu values can be negative, use a signed accumulator */
3838
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3839 3840 3841 3842 3843
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3844 3845
}

3846
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3847
{
K
KAMEZAWA Hiroyuki 已提交
3848
	u64 val;
3849

3850
	if (!mem_cgroup_is_root(memcg)) {
3851
		if (!swap)
3852
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3853
		else
3854
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3855 3856
	}

3857 3858
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3859

K
KAMEZAWA Hiroyuki 已提交
3860
	if (swap)
3861
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3862 3863 3864 3865

	return val << PAGE_SHIFT;
}

3866
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3867
{
3868
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3869
	u64 val;
3870 3871 3872 3873 3874 3875
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3876
		if (name == RES_USAGE)
3877
			val = mem_cgroup_usage(memcg, false);
3878
		else
3879
			val = res_counter_read_u64(&memcg->res, name);
3880 3881
		break;
	case _MEMSWAP:
3882
		if (name == RES_USAGE)
3883
			val = mem_cgroup_usage(memcg, true);
3884
		else
3885
			val = res_counter_read_u64(&memcg->memsw, name);
3886 3887 3888 3889 3890 3891
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3892
}
3893 3894 3895 3896
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3897 3898
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3899
{
3900
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3901
	int type, name;
3902 3903 3904
	unsigned long long val;
	int ret;

3905 3906 3907
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3908
	case RES_LIMIT:
3909 3910 3911 3912
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3913 3914
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3915 3916 3917
		if (ret)
			break;
		if (type == _MEM)
3918
			ret = mem_cgroup_resize_limit(memcg, val);
3919 3920
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3921
		break;
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3936 3937 3938 3939 3940
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3941 3942
}

3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3971
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3972
{
3973
	struct mem_cgroup *memcg;
3974
	int type, name;
3975

3976
	memcg = mem_cgroup_from_cont(cont);
3977 3978 3979
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3980
	case RES_MAX_USAGE:
3981
		if (type == _MEM)
3982
			res_counter_reset_max(&memcg->res);
3983
		else
3984
			res_counter_reset_max(&memcg->memsw);
3985 3986
		break;
	case RES_FAILCNT:
3987
		if (type == _MEM)
3988
			res_counter_reset_failcnt(&memcg->res);
3989
		else
3990
			res_counter_reset_failcnt(&memcg->memsw);
3991 3992
		break;
	}
3993

3994
	return 0;
3995 3996
}

3997 3998 3999 4000 4001 4002
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4003
#ifdef CONFIG_MMU
4004 4005 4006
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4007
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4008 4009 4010 4011 4012 4013 4014 4015 4016

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4017
	memcg->move_charge_at_immigrate = val;
4018 4019 4020 4021
	cgroup_unlock();

	return 0;
}
4022 4023 4024 4025 4026 4027 4028
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4029

K
KAMEZAWA Hiroyuki 已提交
4030 4031 4032 4033 4034

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4035
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4036 4037
	MCS_PGPGIN,
	MCS_PGPGOUT,
4038
	MCS_SWAP,
4039 4040
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4051 4052
};

K
KAMEZAWA Hiroyuki 已提交
4053 4054 4055 4056 4057 4058
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4059
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4060 4061
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4062
	{"swap", "total_swap"},
4063 4064
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4065 4066 4067 4068 4069 4070 4071 4072
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4073
static void
4074
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4075 4076 4077 4078
{
	s64 val;

	/* per cpu stat */
4079
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4080
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4081
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4082
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4083
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4084
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4085
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4086
	s->stat[MCS_PGPGIN] += val;
4087
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4088
	s->stat[MCS_PGPGOUT] += val;
4089
	if (do_swap_account) {
4090
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4091 4092
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4093
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4094
	s->stat[MCS_PGFAULT] += val;
4095
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4096
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4097 4098

	/* per zone stat */
4099
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4100
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4101
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4102
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4103
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4104
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4105
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4106
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4107
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4108 4109 4110 4111
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4112
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4113
{
K
KAMEZAWA Hiroyuki 已提交
4114 4115
	struct mem_cgroup *iter;

4116
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4117
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4118 4119
}

4120 4121 4122 4123 4124 4125 4126 4127 4128
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4129
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4130 4131
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4132
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4133 4134 4135 4136
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4137
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4138 4139
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4140 4141
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4142 4143 4144 4145
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4146
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4147 4148
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4149 4150
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4151 4152 4153 4154
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4155
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4156 4157
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4158 4159
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4160 4161 4162 4163 4164 4165 4166
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4167 4168
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4169 4170
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4171
	struct mcs_total_stat mystat;
4172 4173
	int i;

K
KAMEZAWA Hiroyuki 已提交
4174 4175
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4176

4177

4178 4179 4180
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4181
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4182
	}
L
Lee Schermerhorn 已提交
4183

K
KAMEZAWA Hiroyuki 已提交
4184
	/* Hierarchical information */
4185 4186 4187 4188 4189 4190 4191
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4192

K
KAMEZAWA Hiroyuki 已提交
4193 4194
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4195 4196 4197
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4198
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4199
	}
K
KAMEZAWA Hiroyuki 已提交
4200

K
KOSAKI Motohiro 已提交
4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4228 4229 4230
	return 0;
}

K
KOSAKI Motohiro 已提交
4231 4232 4233 4234
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4235
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4236 4237 4238 4239 4240 4241 4242
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4243

K
KOSAKI Motohiro 已提交
4244 4245 4246 4247 4248 4249 4250
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4251 4252 4253

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4254 4255
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4256 4257
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4258
		return -EINVAL;
4259
	}
K
KOSAKI Motohiro 已提交
4260 4261 4262

	memcg->swappiness = val;

4263 4264
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4265 4266 4267
	return 0;
}

4268 4269 4270 4271 4272 4273 4274 4275
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4276
		t = rcu_dereference(memcg->thresholds.primary);
4277
	else
4278
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4290
	i = t->current_threshold;
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4314
	t->current_threshold = i - 1;
4315 4316 4317 4318 4319 4320
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4321 4322 4323 4324 4325 4326 4327
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4338
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4339 4340 4341
{
	struct mem_cgroup_eventfd_list *ev;

4342
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4343 4344 4345 4346
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4347
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4348
{
K
KAMEZAWA Hiroyuki 已提交
4349 4350
	struct mem_cgroup *iter;

4351
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4352
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4353 4354 4355 4356
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4357 4358
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4359 4360
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4361 4362
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4363
	int i, size, ret;
4364 4365 4366 4367 4368 4369

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4370

4371
	if (type == _MEM)
4372
		thresholds = &memcg->thresholds;
4373
	else if (type == _MEMSWAP)
4374
		thresholds = &memcg->memsw_thresholds;
4375 4376 4377 4378 4379 4380
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4381
	if (thresholds->primary)
4382 4383
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4384
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4385 4386

	/* Allocate memory for new array of thresholds */
4387
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4388
			GFP_KERNEL);
4389
	if (!new) {
4390 4391 4392
		ret = -ENOMEM;
		goto unlock;
	}
4393
	new->size = size;
4394 4395

	/* Copy thresholds (if any) to new array */
4396 4397
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4398
				sizeof(struct mem_cgroup_threshold));
4399 4400
	}

4401
	/* Add new threshold */
4402 4403
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4404 4405

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4406
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4407 4408 4409
			compare_thresholds, NULL);

	/* Find current threshold */
4410
	new->current_threshold = -1;
4411
	for (i = 0; i < size; i++) {
4412
		if (new->entries[i].threshold < usage) {
4413
			/*
4414 4415
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4416 4417
			 * it here.
			 */
4418
			++new->current_threshold;
4419 4420 4421
		}
	}

4422 4423 4424 4425 4426
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4427

4428
	/* To be sure that nobody uses thresholds */
4429 4430 4431 4432 4433 4434 4435 4436
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4437
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4438
	struct cftype *cft, struct eventfd_ctx *eventfd)
4439 4440
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4441 4442
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4443 4444
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4445
	int i, j, size;
4446 4447 4448

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4449
		thresholds = &memcg->thresholds;
4450
	else if (type == _MEMSWAP)
4451
		thresholds = &memcg->memsw_thresholds;
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4467 4468 4469
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4470 4471 4472
			size++;
	}

4473
	new = thresholds->spare;
4474

4475 4476
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4477 4478
		kfree(new);
		new = NULL;
4479
		goto swap_buffers;
4480 4481
	}

4482
	new->size = size;
4483 4484

	/* Copy thresholds and find current threshold */
4485 4486 4487
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4488 4489
			continue;

4490 4491
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4492
			/*
4493
			 * new->current_threshold will not be used
4494 4495 4496
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4497
			++new->current_threshold;
4498 4499 4500 4501
		}
		j++;
	}

4502
swap_buffers:
4503 4504 4505
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4506

4507
	/* To be sure that nobody uses thresholds */
4508 4509 4510 4511
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4512

K
KAMEZAWA Hiroyuki 已提交
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4525
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4526 4527 4528 4529 4530

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4531
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4532
		eventfd_signal(eventfd, 1);
4533
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4534 4535 4536 4537

	return 0;
}

4538
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4539 4540
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4541
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4542 4543 4544 4545 4546
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4547
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4548

4549
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4550 4551 4552 4553 4554 4555
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4556
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4557 4558
}

4559 4560 4561
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4562
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4563

4564
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4565

4566
	if (atomic_read(&memcg->under_oom))
4567 4568 4569 4570 4571 4572 4573 4574 4575
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4576
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4588
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4589 4590 4591
		cgroup_unlock();
		return -EINVAL;
	}
4592
	memcg->oom_kill_disable = val;
4593
	if (!val)
4594
		memcg_oom_recover(memcg);
4595 4596 4597 4598
	cgroup_unlock();
	return 0;
}

4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

B
Balbir Singh 已提交
4615 4616
static struct cftype mem_cgroup_files[] = {
	{
4617
		.name = "usage_in_bytes",
4618
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4619
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4620 4621
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4622
	},
4623 4624
	{
		.name = "max_usage_in_bytes",
4625
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4626
		.trigger = mem_cgroup_reset,
4627 4628
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4629
	{
4630
		.name = "limit_in_bytes",
4631
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4632
		.write_string = mem_cgroup_write,
4633
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4634
	},
4635 4636 4637 4638 4639 4640
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4641 4642
	{
		.name = "failcnt",
4643
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4644
		.trigger = mem_cgroup_reset,
4645
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4646
	},
4647 4648
	{
		.name = "stat",
4649
		.read_map = mem_control_stat_show,
4650
	},
4651 4652 4653 4654
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4655 4656 4657 4658 4659
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4660 4661 4662 4663 4664
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4665 4666 4667 4668 4669
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4670 4671
	{
		.name = "oom_control",
4672 4673
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4674 4675 4676 4677
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4678 4679 4680 4681
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4682
		.mode = S_IRUGO,
4683 4684
	},
#endif
B
Balbir Singh 已提交
4685 4686
};

4687 4688 4689 4690 4691 4692
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4693 4694
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4730
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4731 4732
{
	struct mem_cgroup_per_node *pn;
4733
	struct mem_cgroup_per_zone *mz;
4734
	enum lru_list l;
4735
	int zone, tmp = node;
4736 4737 4738 4739 4740 4741 4742 4743
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4744 4745
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4746
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4747 4748
	if (!pn)
		return 1;
4749 4750 4751

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4752 4753
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4754
		mz->usage_in_excess = 0;
4755
		mz->on_tree = false;
4756
		mz->mem = memcg;
4757
	}
4758
	memcg->info.nodeinfo[node] = pn;
4759 4760 4761
	return 0;
}

4762
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4763
{
4764
	kfree(memcg->info.nodeinfo[node]);
4765 4766
}

4767 4768 4769
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4770
	int size = sizeof(struct mem_cgroup);
4771

4772
	/* Can be very big if MAX_NUMNODES is very big */
4773
	if (size < PAGE_SIZE)
4774
		mem = kzalloc(size, GFP_KERNEL);
4775
	else
4776
		mem = vzalloc(size);
4777

4778 4779 4780
	if (!mem)
		return NULL;

4781
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4782 4783
	if (!mem->stat)
		goto out_free;
4784
	spin_lock_init(&mem->pcp_counter_lock);
4785
	return mem;
4786 4787 4788 4789 4790 4791 4792

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4793 4794
}

4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4806
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4807
{
K
KAMEZAWA Hiroyuki 已提交
4808 4809
	int node;

4810 4811
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4812

K
KAMEZAWA Hiroyuki 已提交
4813
	for_each_node_state(node, N_POSSIBLE)
4814
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4815

4816
	free_percpu(memcg->stat);
4817
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4818
		kfree(memcg);
4819
	else
4820
		vfree(memcg);
4821 4822
}

4823
static void mem_cgroup_get(struct mem_cgroup *memcg)
4824
{
4825
	atomic_inc(&memcg->refcnt);
4826 4827
}

4828
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4829
{
4830 4831 4832
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4833 4834 4835
		if (parent)
			mem_cgroup_put(parent);
	}
4836 4837
}

4838
static void mem_cgroup_put(struct mem_cgroup *memcg)
4839
{
4840
	__mem_cgroup_put(memcg, 1);
4841 4842
}

4843 4844 4845
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
4846
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4847
{
4848
	if (!memcg->res.parent)
4849
		return NULL;
4850
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4851
}
4852

4853 4854 4855
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4856
	if (!mem_cgroup_disabled() && really_do_swap_account)
4857 4858 4859 4860 4861 4862 4863 4864
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4890
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4891 4892
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4893
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4894
	long error = -ENOMEM;
4895
	int node;
B
Balbir Singh 已提交
4896

4897 4898
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4899
		return ERR_PTR(error);
4900

4901
	for_each_node_state(node, N_POSSIBLE)
4902
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4903
			goto free_out;
4904

4905
	/* root ? */
4906
	if (cont->parent == NULL) {
4907
		int cpu;
4908
		enable_swap_cgroup();
4909
		parent = NULL;
4910
		root_mem_cgroup = memcg;
4911 4912
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4913 4914 4915 4916 4917
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4918
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4919
	} else {
4920
		parent = mem_cgroup_from_cont(cont->parent);
4921 4922
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4923
	}
4924

4925
	if (parent && parent->use_hierarchy) {
4926 4927
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4928 4929 4930 4931 4932 4933 4934
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4935
	} else {
4936 4937
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4938
	}
4939 4940 4941
	memcg->last_scanned_child = 0;
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4942

K
KOSAKI Motohiro 已提交
4943
	if (parent)
4944 4945 4946 4947 4948
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
4949
free_out:
4950
	__mem_cgroup_free(memcg);
4951
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4952
	return ERR_PTR(error);
B
Balbir Singh 已提交
4953 4954
}

4955
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4956 4957
					struct cgroup *cont)
{
4958
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4959

4960
	return mem_cgroup_force_empty(memcg, false);
4961 4962
}

B
Balbir Singh 已提交
4963 4964 4965
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4966
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4967

4968
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
4969 4970 4971 4972 4973
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4974 4975 4976 4977 4978 4979 4980 4981
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4982 4983
}

4984
#ifdef CONFIG_MMU
4985
/* Handlers for move charge at task migration. */
4986 4987
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4988
{
4989 4990
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4991
	struct mem_cgroup *memcg = mc.to;
4992

4993
	if (mem_cgroup_is_root(memcg)) {
4994 4995 4996 4997 4998 4999 5000 5001
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5002
		 * "memcg" cannot be under rmdir() because we've already checked
5003 5004 5005 5006
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5007
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5008
			goto one_by_one;
5009
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5010
						PAGE_SIZE * count, &dummy)) {
5011
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5028 5029 5030
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
		if (ret || !memcg)
5031 5032 5033 5034
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5035 5036 5037 5038 5039 5040 5041 5042
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5043
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5044 5045 5046 5047 5048 5049
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5050 5051 5052
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5053 5054 5055 5056 5057
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5058
	swp_entry_t	ent;
5059 5060 5061 5062 5063
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5064
	MC_TARGET_SWAP,
5065 5066
};

D
Daisuke Nishimura 已提交
5067 5068
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5069
{
D
Daisuke Nishimura 已提交
5070
	struct page *page = vm_normal_page(vma, addr, ptent);
5071

D
Daisuke Nishimura 已提交
5072 5073 5074 5075 5076 5077
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5078 5079
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5098 5099
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5100
		return NULL;
5101
	}
D
Daisuke Nishimura 已提交
5102 5103 5104 5105 5106 5107
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5129 5130 5131 5132 5133 5134
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5135
		if (do_swap_account)
5136 5137
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5138
	}
5139
#endif
5140 5141 5142
	return page;
}

D
Daisuke Nishimura 已提交
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5155 5156
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5157 5158 5159

	if (!page && !ent.val)
		return 0;
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5175 5176
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5177 5178 5179 5180
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5193 5194
	split_huge_page_pmd(walk->mm, pmd);

5195 5196 5197 5198 5199 5200 5201
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5202 5203 5204
	return 0;
}

5205 5206 5207 5208 5209
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5210
	down_read(&mm->mmap_sem);
5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5222
	up_read(&mm->mmap_sem);
5223 5224 5225 5226 5227 5228 5229 5230 5231

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5232 5233 5234 5235 5236
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5237 5238
}

5239 5240
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5241
{
5242 5243 5244
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5245
	/* we must uncharge all the leftover precharges from mc.to */
5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5257
	}
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5292
	spin_lock(&mc.lock);
5293 5294
	mc.from = NULL;
	mc.to = NULL;
5295
	spin_unlock(&mc.lock);
5296
	mem_cgroup_end_move(from);
5297 5298
}

5299 5300
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5301
				struct task_struct *p)
5302 5303
{
	int ret = 0;
5304
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5305

5306
	if (memcg->move_charge_at_immigrate) {
5307 5308 5309
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5310
		VM_BUG_ON(from == memcg);
5311 5312 5313 5314 5315

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5316 5317 5318 5319
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5320
			VM_BUG_ON(mc.moved_charge);
5321
			VM_BUG_ON(mc.moved_swap);
5322
			mem_cgroup_start_move(from);
5323
			spin_lock(&mc.lock);
5324
			mc.from = from;
5325
			mc.to = memcg;
5326
			spin_unlock(&mc.lock);
5327
			/* We set mc.moving_task later */
5328 5329 5330 5331

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5332 5333
		}
		mmput(mm);
5334 5335 5336 5337 5338 5339
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5340
				struct task_struct *p)
5341
{
5342
	mem_cgroup_clear_mc();
5343 5344
}

5345 5346 5347
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5348
{
5349 5350 5351 5352 5353
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5354
	split_huge_page_pmd(walk->mm, pmd);
5355 5356 5357 5358 5359 5360 5361 5362
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5363
		swp_entry_t ent;
5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5375 5376
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5377
				mc.precharge--;
5378 5379
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5380 5381 5382 5383 5384
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5385 5386
		case MC_TARGET_SWAP:
			ent = target.ent;
5387 5388
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5389
				mc.precharge--;
5390 5391 5392
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5393
			break;
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5408
		ret = mem_cgroup_do_precharge(1);
5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5452
	up_read(&mm->mmap_sem);
5453 5454
}

B
Balbir Singh 已提交
5455 5456 5457
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5458
				struct task_struct *p)
B
Balbir Singh 已提交
5459
{
5460
	struct mm_struct *mm = get_task_mm(p);
5461 5462

	if (mm) {
5463 5464 5465
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5466 5467
		mmput(mm);
	}
5468 5469
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5470
}
5471 5472 5473
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5474
				struct task_struct *p)
5475 5476 5477 5478 5479
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5480
				struct task_struct *p)
5481 5482 5483 5484 5485
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5486
				struct task_struct *p)
5487 5488 5489
{
}
#endif
B
Balbir Singh 已提交
5490

B
Balbir Singh 已提交
5491 5492 5493 5494
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5495
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5496 5497
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5498 5499
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5500
	.attach = mem_cgroup_move_task,
5501
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5502
	.use_id = 1,
B
Balbir Singh 已提交
5503
};
5504 5505

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5506 5507 5508
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5509
	if (!strcmp(s, "1"))
5510
		really_do_swap_account = 1;
5511
	else if (!strcmp(s, "0"))
5512 5513 5514
		really_do_swap_account = 0;
	return 1;
}
5515
__setup("swapaccount=", enable_swap_account);
5516 5517

#endif