memcontrol.c 187.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
57
#include "internal.h"
G
Glauber Costa 已提交
58
#include <net/sock.h>
M
Michal Hocko 已提交
59
#include <net/ip.h>
G
Glauber Costa 已提交
60
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
61

62 63
#include <asm/uaccess.h>

64 65
#include <trace/events/vmscan.h>

66
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 68
EXPORT_SYMBOL(mem_cgroup_subsys);

69
#define MEM_CGROUP_RECLAIM_RETRIES	5
70
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
71

A
Andrew Morton 已提交
72
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
73
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74
int do_swap_account __read_mostly;
75 76

/* for remember boot option*/
A
Andrew Morton 已提交
77
#ifdef CONFIG_MEMCG_SWAP_ENABLED
78 79 80 81 82
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

83
#else
84
#define do_swap_account		0
85 86 87
#endif


88 89 90
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
91
	"rss_huge",
92
	"mapped_file",
93
	"writeback",
94 95 96
	"swap",
};

97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

112 113 114 115 116 117 118 119
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

120 121 122 123 124 125 126 127
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
128
	MEM_CGROUP_TARGET_SOFTLIMIT,
129
	MEM_CGROUP_TARGET_NUMAINFO,
130 131
	MEM_CGROUP_NTARGETS,
};
132 133 134
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
135

136
struct mem_cgroup_stat_cpu {
137
	long count[MEM_CGROUP_STAT_NSTATS];
138
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
139
	unsigned long nr_page_events;
140
	unsigned long targets[MEM_CGROUP_NTARGETS];
141 142
};

143
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
144 145 146 147
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
148
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
149 150
	unsigned long last_dead_count;

151 152 153 154
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

155 156 157 158
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
159
	struct lruvec		lruvec;
160
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
161

162 163
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

164 165 166 167
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
168
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
169
						/* use container_of	   */
170 171 172 173 174 175
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

196 197 198 199 200
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
201
/* For threshold */
202
struct mem_cgroup_threshold_ary {
203
	/* An array index points to threshold just below or equal to usage. */
204
	int current_threshold;
205 206 207 208 209
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
210 211 212 213 214 215 216 217 218 219 220 221

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
222 223 224 225 226
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
227

228 229
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
230

B
Balbir Singh 已提交
231 232 233 234 235 236 237
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
238 239 240
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
241 242 243 244 245 246 247
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
248

249 250 251
	/* vmpressure notifications */
	struct vmpressure vmpressure;

252 253 254 255
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
256

257 258 259 260
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
261 262 263 264
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
265
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
266 267 268

	bool		oom_lock;
	atomic_t	under_oom;
269
	atomic_t	oom_wakeups;
270

271
	int	swappiness;
272 273
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
274

275 276 277
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

278 279 280 281
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
282
	struct mem_cgroup_thresholds thresholds;
283

284
	/* thresholds for mem+swap usage. RCU-protected */
285
	struct mem_cgroup_thresholds memsw_thresholds;
286

K
KAMEZAWA Hiroyuki 已提交
287 288
	/* For oom notifier event fd */
	struct list_head oom_notify;
289

290 291 292 293
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
294
	unsigned long move_charge_at_immigrate;
295 296 297 298
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
299 300
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
301
	/*
302
	 * percpu counter.
303
	 */
304
	struct mem_cgroup_stat_cpu __percpu *stat;
305 306 307 308 309 310
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
311

M
Michal Hocko 已提交
312
	atomic_t	dead_count;
M
Michal Hocko 已提交
313
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
314 315
	struct tcp_memcontrol tcp_mem;
#endif
316 317 318 319 320 321 322 323
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
324 325 326 327 328 329 330

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
331

332 333
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
334 335
};

336 337 338 339 340 341
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

342 343 344
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
345
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
346
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
347 348
};

349 350 351
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
352 353 354 355 356 357

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
358 359 360 361 362 363

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

364 365 366 367 368
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

369 370 371 372 373
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

374 375
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
376 377 378 379 380
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
381 382 383 384 385 386 387 388 389
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
390 391
#endif

392 393
/* Stuffs for move charges at task migration. */
/*
394 395
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
396 397
 */
enum move_type {
398
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
399
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
400 401 402
	NR_MOVE_TYPE,
};

403 404
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
405
	spinlock_t	  lock; /* for from, to */
406 407
	struct mem_cgroup *from;
	struct mem_cgroup *to;
408
	unsigned long immigrate_flags;
409
	unsigned long precharge;
410
	unsigned long moved_charge;
411
	unsigned long moved_swap;
412 413 414
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
415
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
416 417
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
418

D
Daisuke Nishimura 已提交
419 420
static bool move_anon(void)
{
421
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
422 423
}

424 425
static bool move_file(void)
{
426
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
427 428
}

429 430 431 432
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
433
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
434
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
435

436 437
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
438
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
439
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
440
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
441 442 443
	NR_CHARGE_TYPE,
};

444
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
445 446 447 448
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
449
	_KMEM,
G
Glauber Costa 已提交
450 451
};

452 453
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
454
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
455 456
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
457

458 459 460 461 462 463 464 465
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

466 467 468 469 470 471 472
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

473 474
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
475
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
476 477
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

496 497 498 499 500
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
501
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
502
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
503 504 505

void sock_update_memcg(struct sock *sk)
{
506
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
507
		struct mem_cgroup *memcg;
508
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
509 510 511

		BUG_ON(!sk->sk_prot->proto_cgroup);

512 513 514 515 516 517 518 519 520 521
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
522
			css_get(&sk->sk_cgrp->memcg->css);
523 524 525
			return;
		}

G
Glauber Costa 已提交
526 527
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
528
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
529 530
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
531
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
532 533 534 535 536 537 538 539
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
540
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
541 542 543
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
544
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
545 546
	}
}
G
Glauber Costa 已提交
547 548 549 550 551 552 553 554 555

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
556

557 558 559 560 561 562 563 564 565 566 567 568
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

569
#ifdef CONFIG_MEMCG_KMEM
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
588 589
int memcg_limited_groups_array_size;

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

605 606 607 608 609 610
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
611
struct static_key memcg_kmem_enabled_key;
612
EXPORT_SYMBOL(memcg_kmem_enabled_key);
613 614 615

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
616
	if (memcg_kmem_is_active(memcg)) {
617
		static_key_slow_dec(&memcg_kmem_enabled_key);
618 619
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
620 621 622 623 624
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
625 626 627 628 629 630 631 632 633 634 635 636 637
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

638
static void drain_all_stock_async(struct mem_cgroup *memcg);
639

640
static struct mem_cgroup_per_zone *
641
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
642
{
643
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
644
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
645 646
}

647
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
648
{
649
	return &memcg->css;
650 651
}

652
static struct mem_cgroup_per_zone *
653
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
654
{
655 656
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
657

658
	return mem_cgroup_zoneinfo(memcg, nid, zid);
659 660
}

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
	mctz = soft_limit_tree_from_page(page);

	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node(node) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
838
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
839
				 enum mem_cgroup_stat_index idx)
840
{
841
	long val = 0;
842 843
	int cpu;

844 845
	get_online_cpus();
	for_each_online_cpu(cpu)
846
		val += per_cpu(memcg->stat->count[idx], cpu);
847
#ifdef CONFIG_HOTPLUG_CPU
848 849 850
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
851 852
#endif
	put_online_cpus();
853 854 855
	return val;
}

856
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
857 858 859
					 bool charge)
{
	int val = (charge) ? 1 : -1;
860
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
861 862
}

863
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
864 865 866 867 868
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

869
	get_online_cpus();
870
	for_each_online_cpu(cpu)
871
		val += per_cpu(memcg->stat->events[idx], cpu);
872
#ifdef CONFIG_HOTPLUG_CPU
873 874 875
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
876
#endif
877
	put_online_cpus();
878 879 880
	return val;
}

881
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
882
					 struct page *page,
883
					 bool anon, int nr_pages)
884
{
885 886
	preempt_disable();

887 888 889 890 891 892
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
893
				nr_pages);
894
	else
895
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
896
				nr_pages);
897

898 899 900 901
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

902 903
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
904
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
905
	else {
906
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
907 908
		nr_pages = -nr_pages; /* for event */
	}
909

910
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
911

912
	preempt_enable();
913 914
}

915
unsigned long
916
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
917 918 919 920 921 922 923 924
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
925
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
926
			unsigned int lru_mask)
927 928
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
929
	enum lru_list lru;
930 931
	unsigned long ret = 0;

932
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
933

H
Hugh Dickins 已提交
934 935 936
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
937 938 939 940 941
	}
	return ret;
}

static unsigned long
942
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
943 944
			int nid, unsigned int lru_mask)
{
945 946 947
	u64 total = 0;
	int zid;

948
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
949 950
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
951

952 953
	return total;
}
954

955
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
956
			unsigned int lru_mask)
957
{
958
	int nid;
959 960
	u64 total = 0;

961
	for_each_node_state(nid, N_MEMORY)
962
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
963
	return total;
964 965
}

966 967
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
968 969 970
{
	unsigned long val, next;

971
	val = __this_cpu_read(memcg->stat->nr_page_events);
972
	next = __this_cpu_read(memcg->stat->targets[target]);
973
	/* from time_after() in jiffies.h */
974 975 976 977 978
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
979 980 981
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
982 983 984 985 986 987 988 989
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
990
	}
991
	return false;
992 993 994 995 996 997
}

/*
 * Check events in order.
 *
 */
998
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
999
{
1000
	preempt_disable();
1001
	/* threshold event is triggered in finer grain than soft limit */
1002 1003
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1004
		bool do_softlimit;
1005
		bool do_numainfo __maybe_unused;
1006

1007 1008
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1009 1010 1011 1012 1013 1014
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1015
		mem_cgroup_threshold(memcg);
1016 1017
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1018
#if MAX_NUMNODES > 1
1019
		if (unlikely(do_numainfo))
1020
			atomic_inc(&memcg->numainfo_events);
1021
#endif
1022 1023
	} else
		preempt_enable();
1024 1025
}

1026
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1027
{
1028 1029 1030 1031 1032 1033 1034 1035
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1036
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1037 1038
}

1039
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1040
{
1041
	struct mem_cgroup *memcg = NULL;
1042 1043 1044

	if (!mm)
		return NULL;
1045 1046 1047 1048 1049 1050 1051
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1052 1053
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1054
			break;
1055
	} while (!css_tryget(&memcg->css));
1056
	rcu_read_unlock();
1057
	return memcg;
1058 1059
}

1060 1061 1062 1063 1064 1065 1066
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1067
		struct mem_cgroup *last_visited)
1068
{
1069
	struct cgroup_subsys_state *prev_css, *next_css;
1070

1071
	prev_css = last_visited ? &last_visited->css : NULL;
1072
skip_node:
1073
	next_css = css_next_descendant_pre(prev_css, &root->css);
1074 1075 1076 1077 1078 1079 1080 1081

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
1082 1083 1084
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

1085 1086 1087
		if (css_tryget(&mem->css))
			return mem;
		else {
1088
			prev_css = next_css;
1089 1090 1091 1092 1093 1094 1095
			goto skip_node;
		}
	}

	return NULL;
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1165
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1166
				   struct mem_cgroup *prev,
1167
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1168
{
1169
	struct mem_cgroup *memcg = NULL;
1170
	struct mem_cgroup *last_visited = NULL;
1171

1172 1173
	if (mem_cgroup_disabled())
		return NULL;
1174

1175 1176
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1177

1178
	if (prev && !reclaim)
1179
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1180

1181 1182
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1183
			goto out_css_put;
1184
		return root;
1185
	}
K
KAMEZAWA Hiroyuki 已提交
1186

1187
	rcu_read_lock();
1188
	while (!memcg) {
1189
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1190
		int uninitialized_var(seq);
1191

1192 1193 1194 1195 1196 1197 1198
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1199
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1200
				iter->last_visited = NULL;
1201 1202
				goto out_unlock;
			}
M
Michal Hocko 已提交
1203

1204
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1205
		}
K
KAMEZAWA Hiroyuki 已提交
1206

1207
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1208

1209
		if (reclaim) {
1210
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1211

M
Michal Hocko 已提交
1212
			if (!memcg)
1213 1214 1215 1216
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1217

1218
		if (prev && !memcg)
1219
			goto out_unlock;
1220
	}
1221 1222
out_unlock:
	rcu_read_unlock();
1223 1224 1225 1226
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1227
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1228
}
K
KAMEZAWA Hiroyuki 已提交
1229

1230 1231 1232 1233 1234 1235 1236
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1237 1238 1239 1240 1241 1242
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1243

1244 1245 1246 1247 1248 1249
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1250
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1251
	     iter != NULL;				\
1252
	     iter = mem_cgroup_iter(root, iter, NULL))
1253

1254
#define for_each_mem_cgroup(iter)			\
1255
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1256
	     iter != NULL;				\
1257
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1258

1259
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1260
{
1261
	struct mem_cgroup *memcg;
1262 1263

	rcu_read_lock();
1264 1265
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1266 1267 1268 1269
		goto out;

	switch (idx) {
	case PGFAULT:
1270 1271 1272 1273
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1274 1275 1276 1277 1278 1279 1280
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1281
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1282

1283 1284 1285
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1286
 * @memcg: memcg of the wanted lruvec
1287 1288 1289 1290 1291 1292 1293 1294 1295
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1296
	struct lruvec *lruvec;
1297

1298 1299 1300 1301
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1302 1303

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1314 1315
}

K
KAMEZAWA Hiroyuki 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1329

1330
/**
1331
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1332
 * @page: the page
1333
 * @zone: zone of the page
1334
 */
1335
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1336 1337
{
	struct mem_cgroup_per_zone *mz;
1338 1339
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1340
	struct lruvec *lruvec;
1341

1342 1343 1344 1345
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1346

K
KAMEZAWA Hiroyuki 已提交
1347
	pc = lookup_page_cgroup(page);
1348
	memcg = pc->mem_cgroup;
1349 1350

	/*
1351
	 * Surreptitiously switch any uncharged offlist page to root:
1352 1353 1354 1355 1356 1357 1358
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1359
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1360 1361
		pc->mem_cgroup = memcg = root_mem_cgroup;

1362
	mz = page_cgroup_zoneinfo(memcg, page);
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1373
}
1374

1375
/**
1376 1377 1378 1379
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1380
 *
1381 1382
 * This function must be called when a page is added to or removed from an
 * lru list.
1383
 */
1384 1385
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1386 1387
{
	struct mem_cgroup_per_zone *mz;
1388
	unsigned long *lru_size;
1389 1390 1391 1392

	if (mem_cgroup_disabled())
		return;

1393 1394 1395 1396
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1397
}
1398

1399
/*
1400
 * Checks whether given mem is same or in the root_mem_cgroup's
1401 1402
 * hierarchy subtree
 */
1403 1404
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1405
{
1406 1407
	if (root_memcg == memcg)
		return true;
1408
	if (!root_memcg->use_hierarchy || !memcg)
1409
		return false;
1410 1411 1412 1413 1414 1415 1416 1417
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1418
	rcu_read_lock();
1419
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1420 1421
	rcu_read_unlock();
	return ret;
1422 1423
}

1424 1425
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1426
{
1427
	struct mem_cgroup *curr = NULL;
1428
	struct task_struct *p;
1429
	bool ret;
1430

1431
	p = find_lock_task_mm(task);
1432 1433 1434 1435 1436 1437 1438 1439 1440
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1441
		rcu_read_lock();
1442 1443 1444
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1445
		rcu_read_unlock();
1446
	}
1447
	if (!curr)
1448
		return false;
1449
	/*
1450
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1451
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1452 1453
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1454
	 */
1455
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1456
	css_put(&curr->css);
1457 1458 1459
	return ret;
}

1460
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1461
{
1462
	unsigned long inactive_ratio;
1463
	unsigned long inactive;
1464
	unsigned long active;
1465
	unsigned long gb;
1466

1467 1468
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1469

1470 1471 1472 1473 1474 1475
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1476
	return inactive * inactive_ratio < active;
1477 1478
}

1479 1480 1481
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1482
/**
1483
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1484
 * @memcg: the memory cgroup
1485
 *
1486
 * Returns the maximum amount of memory @mem can be charged with, in
1487
 * pages.
1488
 */
1489
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1490
{
1491 1492
	unsigned long long margin;

1493
	margin = res_counter_margin(&memcg->res);
1494
	if (do_swap_account)
1495
		margin = min(margin, res_counter_margin(&memcg->memsw));
1496
	return margin >> PAGE_SHIFT;
1497 1498
}

1499
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1500 1501
{
	/* root ? */
T
Tejun Heo 已提交
1502
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1503 1504
		return vm_swappiness;

1505
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1506 1507
}

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1522 1523 1524 1525

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1526
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1527
{
1528
	atomic_inc(&memcg_moving);
1529
	atomic_inc(&memcg->moving_account);
1530 1531 1532
	synchronize_rcu();
}

1533
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1534
{
1535 1536 1537 1538
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1539 1540
	if (memcg) {
		atomic_dec(&memcg_moving);
1541
		atomic_dec(&memcg->moving_account);
1542
	}
1543
}
1544

1545 1546 1547
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1548 1549
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1550 1551 1552 1553 1554 1555 1556
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1557
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1558 1559
{
	VM_BUG_ON(!rcu_read_lock_held());
1560
	return atomic_read(&memcg->moving_account) > 0;
1561
}
1562

1563
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1564
{
1565 1566
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1567
	bool ret = false;
1568 1569 1570 1571 1572 1573 1574 1575 1576
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1577

1578 1579
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1580 1581
unlock:
	spin_unlock(&mc.lock);
1582 1583 1584
	return ret;
}

1585
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1586 1587
{
	if (mc.moving_task && current != mc.moving_task) {
1588
		if (mem_cgroup_under_move(memcg)) {
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1601 1602 1603 1604
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1605
 * see mem_cgroup_stolen(), too.
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1619
#define K(x) ((x) << (PAGE_SHIFT-10))
1620
/**
1621
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1639 1640
	struct mem_cgroup *iter;
	unsigned int i;
1641

1642
	if (!p)
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1661
	pr_info("Task in %s killed", memcg_name);
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1674
	pr_cont(" as a result of limit of %s\n", memcg_name);
1675 1676
done:

1677
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1678 1679 1680
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1681
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1682 1683 1684
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1685
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1686 1687 1688
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1713 1714
}

1715 1716 1717 1718
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1719
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1720 1721
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1722 1723
	struct mem_cgroup *iter;

1724
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1725
		num++;
1726 1727 1728
	return num;
}

D
David Rientjes 已提交
1729 1730 1731
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1732
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1733 1734 1735
{
	u64 limit;

1736 1737
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1738
	/*
1739
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1740
	 */
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1755 1756
}

1757 1758
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1759 1760 1761 1762 1763 1764 1765
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1766
	/*
1767 1768 1769
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1770
	 */
1771
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1772 1773 1774 1775 1776
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1777 1778
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1779
		struct css_task_iter it;
1780 1781
		struct task_struct *task;

1782 1783
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1796
				css_task_iter_end(&it);
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1813
		css_task_iter_end(&it);
1814 1815 1816 1817 1818 1819 1820 1821 1822
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1859 1860
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1861
 * @memcg: the target memcg
1862 1863 1864 1865 1866 1867 1868
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1869
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1870 1871
		int nid, bool noswap)
{
1872
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1873 1874 1875
		return true;
	if (noswap || !total_swap_pages)
		return false;
1876
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1877 1878 1879 1880
		return true;
	return false;

}
1881
#if MAX_NUMNODES > 1
1882 1883 1884 1885 1886 1887 1888

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1889
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1890 1891
{
	int nid;
1892 1893 1894 1895
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1896
	if (!atomic_read(&memcg->numainfo_events))
1897
		return;
1898
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1899 1900 1901
		return;

	/* make a nodemask where this memcg uses memory from */
1902
	memcg->scan_nodes = node_states[N_MEMORY];
1903

1904
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1905

1906 1907
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1908
	}
1909

1910 1911
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1926
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1927 1928 1929
{
	int node;

1930 1931
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1932

1933
	node = next_node(node, memcg->scan_nodes);
1934
	if (node == MAX_NUMNODES)
1935
		node = first_node(memcg->scan_nodes);
1936 1937 1938 1939 1940 1941 1942 1943 1944
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1945
	memcg->last_scanned_node = node;
1946 1947 1948
	return node;
}

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1984
#else
1985
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1986 1987 1988
{
	return 0;
}
1989

1990 1991 1992 1993
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
1994 1995
#endif

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2044
	}
2045 2046
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2047 2048
}

2049 2050
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2051 2052 2053 2054
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2055
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2056
{
2057
	struct mem_cgroup *iter, *failed = NULL;
2058

2059 2060
	spin_lock(&memcg_oom_lock);

2061
	for_each_mem_cgroup_tree(iter, memcg) {
2062
		if (iter->oom_lock) {
2063 2064 2065 2066 2067
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2068 2069
			mem_cgroup_iter_break(memcg, iter);
			break;
2070 2071
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2072
	}
K
KAMEZAWA Hiroyuki 已提交
2073

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2085 2086
		}
	}
2087 2088 2089 2090

	spin_unlock(&memcg_oom_lock);

	return !failed;
2091
}
2092

2093
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2094
{
K
KAMEZAWA Hiroyuki 已提交
2095 2096
	struct mem_cgroup *iter;

2097
	spin_lock(&memcg_oom_lock);
2098
	for_each_mem_cgroup_tree(iter, memcg)
2099
		iter->oom_lock = false;
2100
	spin_unlock(&memcg_oom_lock);
2101 2102
}

2103
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2104 2105 2106
{
	struct mem_cgroup *iter;

2107
	for_each_mem_cgroup_tree(iter, memcg)
2108 2109 2110
		atomic_inc(&iter->under_oom);
}

2111
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2112 2113 2114
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2115 2116 2117 2118 2119
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2120
	for_each_mem_cgroup_tree(iter, memcg)
2121
		atomic_add_unless(&iter->under_oom, -1, 0);
2122 2123
}

K
KAMEZAWA Hiroyuki 已提交
2124 2125
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2126
struct oom_wait_info {
2127
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2128 2129 2130 2131 2132 2133
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2134 2135
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2136 2137 2138
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2139
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2140 2141

	/*
2142
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2143 2144
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2145 2146
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2147 2148 2149 2150
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2151
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2152
{
2153
	atomic_inc(&memcg->oom_wakeups);
2154 2155
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2156 2157
}

2158
static void memcg_oom_recover(struct mem_cgroup *memcg)
2159
{
2160 2161
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2162 2163
}

K
KAMEZAWA Hiroyuki 已提交
2164
/*
2165
 * try to call OOM killer
K
KAMEZAWA Hiroyuki 已提交
2166
 */
2167
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2168
{
2169
	bool locked;
2170
	int wakeups;
K
KAMEZAWA Hiroyuki 已提交
2171

2172 2173 2174 2175
	if (!current->memcg_oom.may_oom)
		return;

	current->memcg_oom.in_memcg_oom = 1;
2176

K
KAMEZAWA Hiroyuki 已提交
2177
	/*
2178 2179 2180 2181 2182
	 * As with any blocking lock, a contender needs to start
	 * listening for wakeups before attempting the trylock,
	 * otherwise it can miss the wakeup from the unlock and sleep
	 * indefinitely.  This is just open-coded because our locking
	 * is so particular to memcg hierarchies.
K
KAMEZAWA Hiroyuki 已提交
2183
	 */
2184
	wakeups = atomic_read(&memcg->oom_wakeups);
2185 2186 2187 2188
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

2189
	if (locked)
2190
		mem_cgroup_oom_notify(memcg);
K
KAMEZAWA Hiroyuki 已提交
2191

2192 2193
	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
2194
		mem_cgroup_out_of_memory(memcg, mask, order);
2195 2196 2197 2198 2199 2200 2201
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
2202
	} else {
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
		/*
		 * A system call can just return -ENOMEM, but if this
		 * is a page fault and somebody else is handling the
		 * OOM already, we need to sleep on the OOM waitqueue
		 * for this memcg until the situation is resolved.
		 * Which can take some time because it might be
		 * handled by a userspace task.
		 *
		 * However, this is the charge context, which means
		 * that we may sit on a large call stack and hold
		 * various filesystem locks, the mmap_sem etc. and we
		 * don't want the OOM handler to deadlock on them
		 * while we sit here and wait.  Store the current OOM
		 * context in the task_struct, then return -ENOMEM.
		 * At the end of the page fault handler, with the
		 * stack unwound, pagefault_out_of_memory() will check
		 * back with us by calling
		 * mem_cgroup_oom_synchronize(), possibly putting the
		 * task to sleep.
		 */
		current->memcg_oom.oom_locked = locked;
		current->memcg_oom.wakeups = wakeups;
		css_get(&memcg->css);
		current->memcg_oom.wait_on_memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2227
	}
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
 *
 * This has to be called at the end of a page fault if the the memcg
 * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
 *
 * Memcg supports userspace OOM handling, so failed allocations must
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
 * the end of the page fault to put the task to sleep and clean up the
 * OOM state.
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
 * finalized, %false otherwise.
 */
bool mem_cgroup_oom_synchronize(void)
{
	struct oom_wait_info owait;
	struct mem_cgroup *memcg;

	/* OOM is global, do not handle */
	if (!current->memcg_oom.in_memcg_oom)
		return false;

	/*
	 * We invoked the OOM killer but there is a chance that a kill
	 * did not free up any charges.  Everybody else might already
	 * be sleeping, so restart the fault and keep the rampage
	 * going until some charges are released.
	 */
	memcg = current->memcg_oom.wait_on_memcg;
	if (!memcg)
		goto out;

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		goto out_memcg;

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2274

2275 2276 2277 2278 2279 2280 2281 2282
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	/* Only sleep if we didn't miss any wakeups since OOM */
	if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
		schedule();
	finish_wait(&memcg_oom_waitq, &owait.wait);
out_memcg:
	mem_cgroup_unmark_under_oom(memcg);
	if (current->memcg_oom.oom_locked) {
2283 2284 2285 2286 2287 2288 2289 2290
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2291 2292 2293 2294
	css_put(&memcg->css);
	current->memcg_oom.wait_on_memcg = NULL;
out:
	current->memcg_oom.in_memcg_oom = 0;
K
KAMEZAWA Hiroyuki 已提交
2295
	return true;
2296 2297
}

2298 2299 2300
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2318 2319
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2320
 */
2321

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2335
	 * need to take move_lock_mem_cgroup(). Because we already hold
2336
	 * rcu_read_lock(), any calls to move_account will be delayed until
2337
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2338
	 */
2339
	if (!mem_cgroup_stolen(memcg))
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2357
	 * should take move_lock_mem_cgroup().
2358 2359 2360 2361
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2362
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2363
				 enum mem_cgroup_stat_index idx, int val)
2364
{
2365
	struct mem_cgroup *memcg;
2366
	struct page_cgroup *pc = lookup_page_cgroup(page);
2367
	unsigned long uninitialized_var(flags);
2368

2369
	if (mem_cgroup_disabled())
2370
		return;
2371

2372
	VM_BUG_ON(!rcu_read_lock_held());
2373 2374
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2375
		return;
2376

2377
	this_cpu_add(memcg->stat->count[idx], val);
2378
}
2379

2380 2381 2382 2383
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2384
#define CHARGE_BATCH	32U
2385 2386
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2387
	unsigned int nr_pages;
2388
	struct work_struct work;
2389
	unsigned long flags;
2390
#define FLUSHING_CACHED_CHARGE	0
2391 2392
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2393
static DEFINE_MUTEX(percpu_charge_mutex);
2394

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2405
 */
2406
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2407 2408 2409 2410
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2411 2412 2413
	if (nr_pages > CHARGE_BATCH)
		return false;

2414
	stock = &get_cpu_var(memcg_stock);
2415 2416
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2430 2431 2432 2433
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2434
		if (do_swap_account)
2435 2436
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2449
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2450 2451
}

2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2463 2464
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2465
 * This will be consumed by consume_stock() function, later.
2466
 */
2467
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2468 2469 2470
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2471
	if (stock->cached != memcg) { /* reset if necessary */
2472
		drain_stock(stock);
2473
		stock->cached = memcg;
2474
	}
2475
	stock->nr_pages += nr_pages;
2476 2477 2478 2479
	put_cpu_var(memcg_stock);
}

/*
2480
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2481 2482
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2483
 */
2484
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2485
{
2486
	int cpu, curcpu;
2487

2488 2489
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2490
	curcpu = get_cpu();
2491 2492
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2493
		struct mem_cgroup *memcg;
2494

2495 2496
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2497
			continue;
2498
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2499
			continue;
2500 2501 2502 2503 2504 2505
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2506
	}
2507
	put_cpu();
2508 2509 2510 2511 2512 2513

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2514
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2515 2516 2517
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2518
	put_online_cpus();
2519 2520 2521 2522 2523 2524 2525 2526
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2527
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2528
{
2529 2530 2531 2532 2533
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2534
	drain_all_stock(root_memcg, false);
2535
	mutex_unlock(&percpu_charge_mutex);
2536 2537 2538
}

/* This is a synchronous drain interface. */
2539
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2540 2541
{
	/* called when force_empty is called */
2542
	mutex_lock(&percpu_charge_mutex);
2543
	drain_all_stock(root_memcg, true);
2544
	mutex_unlock(&percpu_charge_mutex);
2545 2546
}

2547 2548 2549 2550
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2551
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2552 2553 2554
{
	int i;

2555
	spin_lock(&memcg->pcp_counter_lock);
2556
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2557
		long x = per_cpu(memcg->stat->count[i], cpu);
2558

2559 2560
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2561
	}
2562
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2563
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2564

2565 2566
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2567
	}
2568
	spin_unlock(&memcg->pcp_counter_lock);
2569 2570
}

2571
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2572 2573 2574 2575 2576
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2577
	struct mem_cgroup *iter;
2578

2579
	if (action == CPU_ONLINE)
2580 2581
		return NOTIFY_OK;

2582
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2583
		return NOTIFY_OK;
2584

2585
	for_each_mem_cgroup(iter)
2586 2587
		mem_cgroup_drain_pcp_counter(iter, cpu);

2588 2589 2590 2591 2592
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2593 2594 2595 2596 2597 2598 2599 2600 2601

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2602
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2603
				unsigned int nr_pages, unsigned int min_pages,
2604
				bool invoke_oom)
2605
{
2606
	unsigned long csize = nr_pages * PAGE_SIZE;
2607 2608 2609 2610 2611
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2612
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2613 2614 2615 2616

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2617
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2618 2619 2620
		if (likely(!ret))
			return CHARGE_OK;

2621
		res_counter_uncharge(&memcg->res, csize);
2622 2623 2624 2625
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2626 2627 2628 2629
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2630
	if (nr_pages > min_pages)
2631 2632 2633 2634 2635
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2636 2637 2638
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2639
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2640
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2641
		return CHARGE_RETRY;
2642
	/*
2643 2644 2645 2646 2647 2648 2649
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2650
	 */
2651
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2652 2653 2654 2655 2656 2657 2658 2659 2660
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2661 2662
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2663

2664
	return CHARGE_NOMEM;
2665 2666
}

2667
/*
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2687
 */
2688
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2689
				   gfp_t gfp_mask,
2690
				   unsigned int nr_pages,
2691
				   struct mem_cgroup **ptr,
2692
				   bool oom)
2693
{
2694
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2695
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2696
	struct mem_cgroup *memcg = NULL;
2697
	int ret;
2698

K
KAMEZAWA Hiroyuki 已提交
2699 2700 2701 2702 2703 2704 2705 2706
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2707

2708
	/*
2709 2710
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2711
	 * thread group leader migrates. It's possible that mm is not
2712
	 * set, if so charge the root memcg (happens for pagecache usage).
2713
	 */
2714
	if (!*ptr && !mm)
2715
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2716
again:
2717 2718 2719
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2720
			goto done;
2721
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2722
			goto done;
2723
		css_get(&memcg->css);
2724
	} else {
K
KAMEZAWA Hiroyuki 已提交
2725
		struct task_struct *p;
2726

K
KAMEZAWA Hiroyuki 已提交
2727 2728 2729
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2730
		 * Because we don't have task_lock(), "p" can exit.
2731
		 * In that case, "memcg" can point to root or p can be NULL with
2732 2733 2734 2735 2736 2737
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2738
		 */
2739
		memcg = mem_cgroup_from_task(p);
2740 2741 2742
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2743 2744 2745
			rcu_read_unlock();
			goto done;
		}
2746
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2759
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2760 2761 2762 2763 2764
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2765

2766
	do {
2767
		bool invoke_oom = oom && !nr_oom_retries;
2768

2769
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2770
		if (fatal_signal_pending(current)) {
2771
			css_put(&memcg->css);
2772
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2773
		}
2774

2775 2776
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2777 2778 2779 2780
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2781
			batch = nr_pages;
2782 2783
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2784
			goto again;
2785
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2786
			css_put(&memcg->css);
2787 2788
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2789
			if (!oom || invoke_oom) {
2790
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2791
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2792
			}
2793 2794
			nr_oom_retries--;
			break;
2795
		}
2796 2797
	} while (ret != CHARGE_OK);

2798
	if (batch > nr_pages)
2799 2800
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2801
done:
2802
	*ptr = memcg;
2803 2804
	return 0;
nomem:
2805
	*ptr = NULL;
2806
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2807
bypass:
2808 2809
	*ptr = root_mem_cgroup;
	return -EINTR;
2810
}
2811

2812 2813 2814 2815 2816
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2817
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2818
				       unsigned int nr_pages)
2819
{
2820
	if (!mem_cgroup_is_root(memcg)) {
2821 2822
		unsigned long bytes = nr_pages * PAGE_SIZE;

2823
		res_counter_uncharge(&memcg->res, bytes);
2824
		if (do_swap_account)
2825
			res_counter_uncharge(&memcg->memsw, bytes);
2826
	}
2827 2828
}

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2847 2848
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2849 2850 2851
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2863
	return mem_cgroup_from_css(css);
2864 2865
}

2866
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2867
{
2868
	struct mem_cgroup *memcg = NULL;
2869
	struct page_cgroup *pc;
2870
	unsigned short id;
2871 2872
	swp_entry_t ent;

2873 2874 2875
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2876
	lock_page_cgroup(pc);
2877
	if (PageCgroupUsed(pc)) {
2878 2879 2880
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2881
	} else if (PageSwapCache(page)) {
2882
		ent.val = page_private(page);
2883
		id = lookup_swap_cgroup_id(ent);
2884
		rcu_read_lock();
2885 2886 2887
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2888
		rcu_read_unlock();
2889
	}
2890
	unlock_page_cgroup(pc);
2891
	return memcg;
2892 2893
}

2894
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2895
				       struct page *page,
2896
				       unsigned int nr_pages,
2897 2898
				       enum charge_type ctype,
				       bool lrucare)
2899
{
2900
	struct page_cgroup *pc = lookup_page_cgroup(page);
2901
	struct zone *uninitialized_var(zone);
2902
	struct lruvec *lruvec;
2903
	bool was_on_lru = false;
2904
	bool anon;
2905

2906
	lock_page_cgroup(pc);
2907
	VM_BUG_ON(PageCgroupUsed(pc));
2908 2909 2910 2911
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2912 2913 2914 2915 2916 2917 2918 2919 2920

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2921
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2922
			ClearPageLRU(page);
2923
			del_page_from_lru_list(page, lruvec, page_lru(page));
2924 2925 2926 2927
			was_on_lru = true;
		}
	}

2928
	pc->mem_cgroup = memcg;
2929 2930 2931 2932 2933 2934
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2935
	 */
K
KAMEZAWA Hiroyuki 已提交
2936
	smp_wmb();
2937
	SetPageCgroupUsed(pc);
2938

2939 2940
	if (lrucare) {
		if (was_on_lru) {
2941
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2942 2943
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2944
			add_page_to_lru_list(page, lruvec, page_lru(page));
2945 2946 2947 2948
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2949
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2950 2951 2952 2953
		anon = true;
	else
		anon = false;

2954
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2955
	unlock_page_cgroup(pc);
2956

2957
	/*
2958 2959 2960
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2961
	 */
2962
	memcg_check_events(memcg, page);
2963
}
2964

2965 2966
static DEFINE_MUTEX(set_limit_mutex);

2967 2968 2969 2970 2971 2972 2973
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2987
#ifdef CONFIG_SLABINFO
2988 2989
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2990
{
2991
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3061 3062 3063 3064 3065

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3066 3067 3068 3069 3070 3071 3072 3073
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3074
	if (memcg_kmem_test_and_clear_dead(memcg))
3075
		css_put(&memcg->css);
3076 3077
}

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3161 3162
static void kmem_cache_destroy_work_func(struct work_struct *w);

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3174
		size += offsetof(struct memcg_cache_params, memcg_caches);
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3214 3215
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3216
{
3217
	size_t size;
3218 3219 3220 3221

	if (!memcg_kmem_enabled())
		return 0;

3222 3223
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3224
		size += memcg_limited_groups_array_size * sizeof(void *);
3225 3226
	} else
		size = sizeof(struct memcg_cache_params);
3227

3228 3229 3230 3231
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3232
	if (memcg) {
3233
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3234
		s->memcg_params->root_cache = root_cache;
3235 3236
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3237 3238 3239
	} else
		s->memcg_params->is_root_cache = true;

3240 3241 3242 3243 3244
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3269
	css_put(&memcg->css);
3270
out:
3271 3272 3273
	kfree(s->memcg_params);
}

3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3305 3306 3307 3308 3309 3310 3311 3312 3313
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3335 3336 3337 3338 3339 3340 3341 3342
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3363 3364 3365 3366 3367 3368 3369
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3370 3371 3372 3373 3374 3375 3376 3377 3378
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3379

3380 3381 3382
/*
 * Called with memcg_cache_mutex held
 */
3383 3384 3385 3386
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3387
	static char *tmp_name = NULL;
3388

3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3407

3408
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3409
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3410

3411 3412 3413
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3429 3430
	if (new_cachep) {
		css_put(&memcg->css);
3431
		goto out;
3432
	}
3433 3434 3435 3436

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3437
		css_put(&memcg->css);
3438 3439 3440
		goto out;
	}

G
Glauber Costa 已提交
3441
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3493
		cancel_work_sync(&c->memcg_params->destroy);
3494 3495 3496 3497 3498
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3499 3500 3501 3502 3503 3504
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3534 3535
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3536 3537 3538 3539
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3540 3541
	if (cw == NULL) {
		css_put(&memcg->css);
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3592 3593 3594
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3595 3596 3597 3598
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3599
		goto out;
3600 3601 3602 3603 3604 3605 3606 3607

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3608 3609 3610
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3611 3612
	}

3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3640 3641 3642
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3679 3680 3681
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3766 3767 3768 3769
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3770 3771
#endif /* CONFIG_MEMCG_KMEM */

3772 3773
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3774
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3775 3776
/*
 * Because tail pages are not marked as "used", set it. We're under
3777 3778 3779
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3780
 */
3781
void mem_cgroup_split_huge_fixup(struct page *head)
3782 3783
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3784
	struct page_cgroup *pc;
3785
	struct mem_cgroup *memcg;
3786
	int i;
3787

3788 3789
	if (mem_cgroup_disabled())
		return;
3790 3791

	memcg = head_pc->mem_cgroup;
3792 3793
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3794
		pc->mem_cgroup = memcg;
3795 3796 3797
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3798 3799
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3800
}
3801
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3802

3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
static inline
void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
					struct mem_cgroup *to,
					unsigned int nr_pages,
					enum mem_cgroup_stat_index idx)
{
	/* Update stat data for mem_cgroup */
	preempt_disable();
	WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
	__this_cpu_add(from->stat->count[idx], -nr_pages);
	__this_cpu_add(to->stat->count[idx], nr_pages);
	preempt_enable();
}

3817
/**
3818
 * mem_cgroup_move_account - move account of the page
3819
 * @page: the page
3820
 * @nr_pages: number of regular pages (>1 for huge pages)
3821 3822 3823 3824 3825
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3826
 * - page is not on LRU (isolate_page() is useful.)
3827
 * - compound_lock is held when nr_pages > 1
3828
 *
3829 3830
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3831
 */
3832 3833 3834 3835
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3836
				   struct mem_cgroup *to)
3837
{
3838 3839
	unsigned long flags;
	int ret;
3840
	bool anon = PageAnon(page);
3841

3842
	VM_BUG_ON(from == to);
3843
	VM_BUG_ON(PageLRU(page));
3844 3845 3846 3847 3848 3849 3850
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3851
	if (nr_pages > 1 && !PageTransHuge(page))
3852 3853 3854 3855 3856 3857 3858 3859
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3860
	move_lock_mem_cgroup(from, &flags);
3861

3862 3863 3864 3865 3866 3867 3868 3869
	if (!anon && page_mapped(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_FILE_MAPPED);

	if (PageWriteback(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_WRITEBACK);

3870
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3871

3872
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3873
	pc->mem_cgroup = to;
3874
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3875
	move_unlock_mem_cgroup(from, &flags);
3876 3877
	ret = 0;
unlock:
3878
	unlock_page_cgroup(pc);
3879 3880 3881
	/*
	 * check events
	 */
3882 3883
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3884
out:
3885 3886 3887
	return ret;
}

3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3908
 */
3909 3910
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3911
				  struct mem_cgroup *child)
3912 3913
{
	struct mem_cgroup *parent;
3914
	unsigned int nr_pages;
3915
	unsigned long uninitialized_var(flags);
3916 3917
	int ret;

3918
	VM_BUG_ON(mem_cgroup_is_root(child));
3919

3920 3921 3922 3923 3924
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3925

3926
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3927

3928 3929 3930 3931 3932 3933
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3934

3935 3936
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3937
		flags = compound_lock_irqsave(page);
3938
	}
3939

3940
	ret = mem_cgroup_move_account(page, nr_pages,
3941
				pc, child, parent);
3942 3943
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3944

3945
	if (nr_pages > 1)
3946
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3947
	putback_lru_page(page);
3948
put:
3949
	put_page(page);
3950
out:
3951 3952 3953
	return ret;
}

3954 3955 3956 3957 3958 3959 3960
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3961
				gfp_t gfp_mask, enum charge_type ctype)
3962
{
3963
	struct mem_cgroup *memcg = NULL;
3964
	unsigned int nr_pages = 1;
3965
	bool oom = true;
3966
	int ret;
A
Andrea Arcangeli 已提交
3967

A
Andrea Arcangeli 已提交
3968
	if (PageTransHuge(page)) {
3969
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3970
		VM_BUG_ON(!PageTransHuge(page));
3971 3972 3973 3974 3975
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3976
	}
3977

3978
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3979
	if (ret == -ENOMEM)
3980
		return ret;
3981
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3982 3983 3984
	return 0;
}

3985 3986
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3987
{
3988
	if (mem_cgroup_disabled())
3989
		return 0;
3990 3991 3992
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3993
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3994
					MEM_CGROUP_CHARGE_TYPE_ANON);
3995 3996
}

3997 3998 3999
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
4000
 * struct page_cgroup is acquired. This refcnt will be consumed by
4001 4002
 * "commit()" or removed by "cancel()"
 */
4003 4004 4005 4006
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
4007
{
4008
	struct mem_cgroup *memcg;
4009
	struct page_cgroup *pc;
4010
	int ret;
4011

4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
4022 4023
	if (!do_swap_account)
		goto charge_cur_mm;
4024 4025
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
4026
		goto charge_cur_mm;
4027 4028
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4029
	css_put(&memcg->css);
4030 4031
	if (ret == -EINTR)
		ret = 0;
4032
	return ret;
4033
charge_cur_mm:
4034 4035 4036 4037
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
4038 4039
}

4040 4041 4042 4043 4044 4045
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
4060 4061 4062
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

4063 4064 4065 4066 4067 4068 4069 4070 4071
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4072
static void
4073
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4074
					enum charge_type ctype)
4075
{
4076
	if (mem_cgroup_disabled())
4077
		return;
4078
	if (!memcg)
4079
		return;
4080

4081
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4082 4083 4084
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4085 4086 4087
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4088
	 */
4089
	if (do_swap_account && PageSwapCache(page)) {
4090
		swp_entry_t ent = {.val = page_private(page)};
4091
		mem_cgroup_uncharge_swap(ent);
4092
	}
4093 4094
}

4095 4096
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4097
{
4098
	__mem_cgroup_commit_charge_swapin(page, memcg,
4099
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4100 4101
}

4102 4103
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4104
{
4105 4106 4107 4108
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4109
	if (mem_cgroup_disabled())
4110 4111 4112 4113 4114 4115 4116
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4117 4118
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4119 4120 4121 4122
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4123 4124
}

4125
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4126 4127
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4128 4129 4130
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4131

4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4143
		batch->memcg = memcg;
4144 4145
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4146
	 * In those cases, all pages freed continuously can be expected to be in
4147 4148 4149 4150 4151 4152 4153 4154
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4155
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4156 4157
		goto direct_uncharge;

4158 4159 4160 4161 4162
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4163
	if (batch->memcg != memcg)
4164 4165
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4166
	batch->nr_pages++;
4167
	if (uncharge_memsw)
4168
		batch->memsw_nr_pages++;
4169 4170
	return;
direct_uncharge:
4171
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4172
	if (uncharge_memsw)
4173 4174 4175
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4176
}
4177

4178
/*
4179
 * uncharge if !page_mapped(page)
4180
 */
4181
static struct mem_cgroup *
4182 4183
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4184
{
4185
	struct mem_cgroup *memcg = NULL;
4186 4187
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4188
	bool anon;
4189

4190
	if (mem_cgroup_disabled())
4191
		return NULL;
4192

A
Andrea Arcangeli 已提交
4193
	if (PageTransHuge(page)) {
4194
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4195 4196
		VM_BUG_ON(!PageTransHuge(page));
	}
4197
	/*
4198
	 * Check if our page_cgroup is valid
4199
	 */
4200
	pc = lookup_page_cgroup(page);
4201
	if (unlikely(!PageCgroupUsed(pc)))
4202
		return NULL;
4203

4204
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4205

4206
	memcg = pc->mem_cgroup;
4207

K
KAMEZAWA Hiroyuki 已提交
4208 4209 4210
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4211 4212
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4213
	switch (ctype) {
4214
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4215 4216 4217 4218 4219
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4220 4221
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4222
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4223
		/* See mem_cgroup_prepare_migration() */
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4245
	}
K
KAMEZAWA Hiroyuki 已提交
4246

4247
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4248

4249
	ClearPageCgroupUsed(pc);
4250 4251 4252 4253 4254 4255
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4256

4257
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4258
	/*
4259
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4260
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4261
	 */
4262
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4263
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4264
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4265
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4266
	}
4267 4268 4269 4270 4271 4272
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4273
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4274

4275
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4276 4277 4278

unlock_out:
	unlock_page_cgroup(pc);
4279
	return NULL;
4280 4281
}

4282 4283
void mem_cgroup_uncharge_page(struct page *page)
{
4284 4285 4286
	/* early check. */
	if (page_mapped(page))
		return;
4287
	VM_BUG_ON(page->mapping && !PageAnon(page));
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4300 4301
	if (PageSwapCache(page))
		return;
4302
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4303 4304 4305 4306 4307
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4308
	VM_BUG_ON(page->mapping);
4309
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4310 4311
}

4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4326 4327
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4348 4349 4350 4351 4352 4353
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4354
	memcg_oom_recover(batch->memcg);
4355 4356 4357 4358
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4359
#ifdef CONFIG_SWAP
4360
/*
4361
 * called after __delete_from_swap_cache() and drop "page" account.
4362 4363
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4364 4365
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4366 4367
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4368 4369 4370 4371 4372
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4373
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4374

K
KAMEZAWA Hiroyuki 已提交
4375 4376
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4377
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4378 4379
	 */
	if (do_swap_account && swapout && memcg)
4380
		swap_cgroup_record(ent, css_id(&memcg->css));
4381
}
4382
#endif
4383

A
Andrew Morton 已提交
4384
#ifdef CONFIG_MEMCG_SWAP
4385 4386 4387 4388 4389
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4390
{
4391
	struct mem_cgroup *memcg;
4392
	unsigned short id;
4393 4394 4395 4396

	if (!do_swap_account)
		return;

4397 4398 4399
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4400
	if (memcg) {
4401 4402 4403 4404
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4405
		if (!mem_cgroup_is_root(memcg))
4406
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4407
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4408
		css_put(&memcg->css);
4409
	}
4410
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4411
}
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4428
				struct mem_cgroup *from, struct mem_cgroup *to)
4429 4430 4431 4432 4433 4434 4435 4436
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4437
		mem_cgroup_swap_statistics(to, true);
4438
		/*
4439 4440 4441
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4442 4443 4444 4445 4446 4447
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4448
		 */
L
Li Zefan 已提交
4449
		css_get(&to->css);
4450 4451 4452 4453 4454 4455
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4456
				struct mem_cgroup *from, struct mem_cgroup *to)
4457 4458 4459
{
	return -EINVAL;
}
4460
#endif
K
KAMEZAWA Hiroyuki 已提交
4461

4462
/*
4463 4464
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4465
 */
4466 4467
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4468
{
4469
	struct mem_cgroup *memcg = NULL;
4470
	unsigned int nr_pages = 1;
4471
	struct page_cgroup *pc;
4472
	enum charge_type ctype;
4473

4474
	*memcgp = NULL;
4475

4476
	if (mem_cgroup_disabled())
4477
		return;
4478

4479 4480 4481
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4482 4483 4484
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4485 4486
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4518
	}
4519
	unlock_page_cgroup(pc);
4520 4521 4522 4523
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4524
	if (!memcg)
4525
		return;
4526

4527
	*memcgp = memcg;
4528 4529 4530 4531 4532 4533 4534
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4535
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4536
	else
4537
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4538 4539 4540 4541 4542
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4543
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4544
}
4545

4546
/* remove redundant charge if migration failed*/
4547
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4548
	struct page *oldpage, struct page *newpage, bool migration_ok)
4549
{
4550
	struct page *used, *unused;
4551
	struct page_cgroup *pc;
4552
	bool anon;
4553

4554
	if (!memcg)
4555
		return;
4556

4557
	if (!migration_ok) {
4558 4559
		used = oldpage;
		unused = newpage;
4560
	} else {
4561
		used = newpage;
4562 4563
		unused = oldpage;
	}
4564
	anon = PageAnon(used);
4565 4566 4567 4568
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4569
	css_put(&memcg->css);
4570
	/*
4571 4572 4573
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4574
	 */
4575 4576 4577 4578 4579
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4580
	/*
4581 4582 4583 4584 4585 4586
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4587
	 */
4588
	if (anon)
4589
		mem_cgroup_uncharge_page(used);
4590
}
4591

4592 4593 4594 4595 4596 4597 4598 4599
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4600
	struct mem_cgroup *memcg = NULL;
4601 4602 4603 4604 4605 4606 4607 4608 4609
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4610 4611
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4612
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4613 4614
		ClearPageCgroupUsed(pc);
	}
4615 4616
	unlock_page_cgroup(pc);

4617 4618 4619 4620 4621 4622
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4623 4624 4625 4626 4627
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4628
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4629 4630
}

4631 4632 4633 4634 4635 4636
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4637 4638 4639 4640 4641
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4661 4662
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4663 4664 4665 4666
	}
}
#endif

4667
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4668
				unsigned long long val)
4669
{
4670
	int retry_count;
4671
	u64 memswlimit, memlimit;
4672
	int ret = 0;
4673 4674
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4675
	int enlarge;
4676 4677 4678 4679 4680 4681 4682 4683 4684

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4685

4686
	enlarge = 0;
4687
	while (retry_count) {
4688 4689 4690 4691
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4692 4693 4694
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4695
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4696 4697 4698 4699 4700 4701
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4702 4703
			break;
		}
4704 4705 4706 4707 4708

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4709
		ret = res_counter_set_limit(&memcg->res, val);
4710 4711 4712 4713 4714 4715
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4716 4717 4718 4719 4720
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4721 4722
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4723 4724
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4725
		if (curusage >= oldusage)
4726 4727 4728
			retry_count--;
		else
			oldusage = curusage;
4729
	}
4730 4731
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4732

4733 4734 4735
	return ret;
}

L
Li Zefan 已提交
4736 4737
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4738
{
4739
	int retry_count;
4740
	u64 memlimit, memswlimit, oldusage, curusage;
4741 4742
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4743
	int enlarge = 0;
4744

4745
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4746
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4747
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4748 4749 4750 4751 4752 4753 4754 4755
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4756
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4757 4758 4759 4760 4761 4762 4763 4764
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4765 4766 4767
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4768
		ret = res_counter_set_limit(&memcg->memsw, val);
4769 4770 4771 4772 4773 4774
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4775 4776 4777 4778 4779
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4780 4781 4782
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4783
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4784
		/* Usage is reduced ? */
4785
		if (curusage >= oldusage)
4786
			retry_count--;
4787 4788
		else
			oldusage = curusage;
4789
	}
4790 4791
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4792 4793 4794
	return ret;
}

4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
		spin_unlock(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

4887 4888 4889 4890 4891 4892 4893
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4894
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4895 4896
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4897
 */
4898
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4899
				int node, int zid, enum lru_list lru)
4900
{
4901
	struct lruvec *lruvec;
4902
	unsigned long flags;
4903
	struct list_head *list;
4904 4905
	struct page *busy;
	struct zone *zone;
4906

K
KAMEZAWA Hiroyuki 已提交
4907
	zone = &NODE_DATA(node)->node_zones[zid];
4908 4909
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4910

4911
	busy = NULL;
4912
	do {
4913
		struct page_cgroup *pc;
4914 4915
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4916
		spin_lock_irqsave(&zone->lru_lock, flags);
4917
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4918
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4919
			break;
4920
		}
4921 4922 4923
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4924
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4925
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4926 4927
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4928
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4929

4930
		pc = lookup_page_cgroup(page);
4931

4932
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4933
			/* found lock contention or "pc" is obsolete. */
4934
			busy = page;
4935 4936 4937
			cond_resched();
		} else
			busy = NULL;
4938
	} while (!list_empty(list));
4939 4940 4941
}

/*
4942 4943
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4944
 * This enables deleting this mem_cgroup.
4945 4946
 *
 * Caller is responsible for holding css reference on the memcg.
4947
 */
4948
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4949
{
4950
	int node, zid;
4951
	u64 usage;
4952

4953
	do {
4954 4955
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4956 4957
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4958
		for_each_node_state(node, N_MEMORY) {
4959
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4960 4961
				enum lru_list lru;
				for_each_lru(lru) {
4962
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4963
							node, zid, lru);
4964
				}
4965
			}
4966
		}
4967 4968
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4969
		cond_resched();
4970

4971
		/*
4972 4973 4974 4975 4976
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4977 4978 4979 4980 4981 4982
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4983 4984 4985
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4986 4987
}

4988 4989 4990 4991 4992 4993 4994
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
4995
	struct cgroup_subsys_state *pos;
4996 4997

	/* bounce at first found */
4998
	css_for_each_child(pos, &memcg->css)
4999 5000 5001 5002 5003
		return true;
	return false;
}

/*
5004 5005
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
5006 5007 5008 5009 5010 5011 5012 5013 5014
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
5025

5026
	/* returns EBUSY if there is a task or if we come here twice. */
5027 5028 5029
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

5030 5031
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
5032
	/* try to free all pages in this cgroup */
5033
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5034
		int progress;
5035

5036 5037 5038
		if (signal_pending(current))
			return -EINTR;

5039
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5040
						false);
5041
		if (!progress) {
5042
			nr_retries--;
5043
			/* maybe some writeback is necessary */
5044
			congestion_wait(BLK_RW_ASYNC, HZ/10);
5045
		}
5046 5047

	}
K
KAMEZAWA Hiroyuki 已提交
5048
	lru_add_drain();
5049 5050 5051
	mem_cgroup_reparent_charges(memcg);

	return 0;
5052 5053
}

5054 5055
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
5056
{
5057
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5058

5059 5060
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
5061
	return mem_cgroup_force_empty(memcg);
5062 5063
}

5064 5065
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
5066
{
5067
	return mem_cgroup_from_css(css)->use_hierarchy;
5068 5069
}

5070 5071
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
5072 5073
{
	int retval = 0;
5074
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5075
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5076

5077
	mutex_lock(&memcg_create_mutex);
5078 5079 5080 5081

	if (memcg->use_hierarchy == val)
		goto out;

5082
	/*
5083
	 * If parent's use_hierarchy is set, we can't make any modifications
5084 5085 5086 5087 5088 5089
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5090
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5091
				(val == 1 || val == 0)) {
5092
		if (!__memcg_has_children(memcg))
5093
			memcg->use_hierarchy = val;
5094 5095 5096 5097
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5098 5099

out:
5100
	mutex_unlock(&memcg_create_mutex);
5101 5102 5103 5104

	return retval;
}

5105

5106
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5107
					       enum mem_cgroup_stat_index idx)
5108
{
K
KAMEZAWA Hiroyuki 已提交
5109
	struct mem_cgroup *iter;
5110
	long val = 0;
5111

5112
	/* Per-cpu values can be negative, use a signed accumulator */
5113
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5114 5115 5116 5117 5118
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5119 5120
}

5121
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5122
{
K
KAMEZAWA Hiroyuki 已提交
5123
	u64 val;
5124

5125
	if (!mem_cgroup_is_root(memcg)) {
5126
		if (!swap)
5127
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5128
		else
5129
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5130 5131
	}

5132 5133 5134 5135
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5136 5137
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5138

K
KAMEZAWA Hiroyuki 已提交
5139
	if (swap)
5140
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5141 5142 5143 5144

	return val << PAGE_SHIFT;
}

5145 5146 5147
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5148
{
5149
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5150
	char str[64];
5151
	u64 val;
G
Glauber Costa 已提交
5152 5153
	int name, len;
	enum res_type type;
5154 5155 5156

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5157

5158 5159
	switch (type) {
	case _MEM:
5160
		if (name == RES_USAGE)
5161
			val = mem_cgroup_usage(memcg, false);
5162
		else
5163
			val = res_counter_read_u64(&memcg->res, name);
5164 5165
		break;
	case _MEMSWAP:
5166
		if (name == RES_USAGE)
5167
			val = mem_cgroup_usage(memcg, true);
5168
		else
5169
			val = res_counter_read_u64(&memcg->memsw, name);
5170
		break;
5171 5172 5173
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5174 5175 5176
	default:
		BUG();
	}
5177 5178 5179

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5180
}
5181

5182
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5183 5184 5185
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
5186
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5199
	mutex_lock(&memcg_create_mutex);
5200
	mutex_lock(&set_limit_mutex);
5201
	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5202
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5203 5204 5205 5206 5207 5208
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5209 5210
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
5211
			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5212 5213
			goto out;
		}
5214 5215 5216 5217 5218 5219
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
5220 5221 5222 5223
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5224
	mutex_unlock(&memcg_create_mutex);
5225 5226 5227 5228
#endif
	return ret;
}

5229
#ifdef CONFIG_MEMCG_KMEM
5230
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5231
{
5232
	int ret = 0;
5233 5234
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5235 5236
		goto out;

5237
	memcg->kmem_account_flags = parent->kmem_account_flags;
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5248 5249 5250 5251
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
5252 5253 5254
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5255 5256 5257 5258
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5259
	memcg_stop_kmem_account();
5260
	ret = memcg_update_cache_sizes(memcg);
5261
	memcg_resume_kmem_account();
5262 5263 5264
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5265
}
5266
#endif /* CONFIG_MEMCG_KMEM */
5267

5268 5269 5270 5271
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5272
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5273
			    const char *buffer)
B
Balbir Singh 已提交
5274
{
5275
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5276 5277
	enum res_type type;
	int name;
5278 5279 5280
	unsigned long long val;
	int ret;

5281 5282
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5283

5284
	switch (name) {
5285
	case RES_LIMIT:
5286 5287 5288 5289
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5290 5291
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5292 5293 5294
		if (ret)
			break;
		if (type == _MEM)
5295
			ret = mem_cgroup_resize_limit(memcg, val);
5296
		else if (type == _MEMSWAP)
5297
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5298
		else if (type == _KMEM)
5299
			ret = memcg_update_kmem_limit(css, val);
5300 5301
		else
			return -EINVAL;
5302
		break;
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5317 5318 5319 5320 5321
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5322 5323
}

5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5334 5335
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5348
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5349
{
5350
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5351 5352
	int name;
	enum res_type type;
5353

5354 5355
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5356

5357
	switch (name) {
5358
	case RES_MAX_USAGE:
5359
		if (type == _MEM)
5360
			res_counter_reset_max(&memcg->res);
5361
		else if (type == _MEMSWAP)
5362
			res_counter_reset_max(&memcg->memsw);
5363 5364 5365 5366
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5367 5368
		break;
	case RES_FAILCNT:
5369
		if (type == _MEM)
5370
			res_counter_reset_failcnt(&memcg->res);
5371
		else if (type == _MEMSWAP)
5372
			res_counter_reset_failcnt(&memcg->memsw);
5373 5374 5375 5376
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5377 5378
		break;
	}
5379

5380
	return 0;
5381 5382
}

5383
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5384 5385
					struct cftype *cft)
{
5386
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5387 5388
}

5389
#ifdef CONFIG_MMU
5390
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5391 5392
					struct cftype *cft, u64 val)
{
5393
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5394 5395 5396

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5397

5398
	/*
5399 5400 5401 5402
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5403
	 */
5404
	memcg->move_charge_at_immigrate = val;
5405 5406
	return 0;
}
5407
#else
5408
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5409 5410 5411 5412 5413
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5414

5415
#ifdef CONFIG_NUMA
5416 5417
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5418 5419 5420 5421
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5422
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5423

5424
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5425
	seq_printf(m, "total=%lu", total_nr);
5426
	for_each_node_state(nid, N_MEMORY) {
5427
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5428 5429 5430 5431
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5432
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5433
	seq_printf(m, "file=%lu", file_nr);
5434
	for_each_node_state(nid, N_MEMORY) {
5435
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5436
				LRU_ALL_FILE);
5437 5438 5439 5440
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5441
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5442
	seq_printf(m, "anon=%lu", anon_nr);
5443
	for_each_node_state(nid, N_MEMORY) {
5444
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5445
				LRU_ALL_ANON);
5446 5447 5448 5449
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5450
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5451
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5452
	for_each_node_state(nid, N_MEMORY) {
5453
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5454
				BIT(LRU_UNEVICTABLE));
5455 5456 5457 5458 5459 5460 5461
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5462 5463 5464 5465 5466
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5467
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5468
				 struct seq_file *m)
5469
{
5470
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5471 5472
	struct mem_cgroup *mi;
	unsigned int i;
5473

5474
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5475
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5476
			continue;
5477 5478
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5479
	}
L
Lee Schermerhorn 已提交
5480

5481 5482 5483 5484 5485 5486 5487 5488
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5489
	/* Hierarchical information */
5490 5491
	{
		unsigned long long limit, memsw_limit;
5492
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5493
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5494
		if (do_swap_account)
5495 5496
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5497
	}
K
KOSAKI Motohiro 已提交
5498

5499 5500 5501
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5502
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5503
			continue;
5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5524
	}
K
KAMEZAWA Hiroyuki 已提交
5525

K
KOSAKI Motohiro 已提交
5526 5527 5528 5529
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5530
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5531 5532 5533 5534 5535
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5536
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5537
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5538

5539 5540 5541 5542
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5543
			}
5544 5545 5546 5547
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5548 5549 5550
	}
#endif

5551 5552 5553
	return 0;
}

5554 5555
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5556
{
5557
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5558

5559
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5560 5561
}

5562 5563
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5564
{
5565
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5566
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5567

T
Tejun Heo 已提交
5568
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5569 5570
		return -EINVAL;

5571
	mutex_lock(&memcg_create_mutex);
5572

K
KOSAKI Motohiro 已提交
5573
	/* If under hierarchy, only empty-root can set this value */
5574
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5575
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5576
		return -EINVAL;
5577
	}
K
KOSAKI Motohiro 已提交
5578 5579 5580

	memcg->swappiness = val;

5581
	mutex_unlock(&memcg_create_mutex);
5582

K
KOSAKI Motohiro 已提交
5583 5584 5585
	return 0;
}

5586 5587 5588 5589 5590 5591 5592 5593
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5594
		t = rcu_dereference(memcg->thresholds.primary);
5595
	else
5596
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5597 5598 5599 5600 5601 5602 5603

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5604
	 * current_threshold points to threshold just below or equal to usage.
5605 5606 5607
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5608
	i = t->current_threshold;
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5632
	t->current_threshold = i - 1;
5633 5634 5635 5636 5637 5638
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5639 5640 5641 5642 5643 5644 5645
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5646 5647 5648 5649 5650 5651 5652
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5653 5654 5655 5656 5657 5658 5659
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5660 5661
}

5662
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5663 5664 5665
{
	struct mem_cgroup_eventfd_list *ev;

5666
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5667 5668 5669 5670
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5671
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5672
{
K
KAMEZAWA Hiroyuki 已提交
5673 5674
	struct mem_cgroup *iter;

5675
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5676
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5677 5678
}

5679
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5680
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5681
{
5682
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5683 5684
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5685
	enum res_type type = MEMFILE_TYPE(cft->private);
5686
	u64 threshold, usage;
5687
	int i, size, ret;
5688 5689 5690 5691 5692 5693

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5694

5695
	if (type == _MEM)
5696
		thresholds = &memcg->thresholds;
5697
	else if (type == _MEMSWAP)
5698
		thresholds = &memcg->memsw_thresholds;
5699 5700 5701 5702 5703 5704
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5705
	if (thresholds->primary)
5706 5707
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5708
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5709 5710

	/* Allocate memory for new array of thresholds */
5711
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5712
			GFP_KERNEL);
5713
	if (!new) {
5714 5715 5716
		ret = -ENOMEM;
		goto unlock;
	}
5717
	new->size = size;
5718 5719

	/* Copy thresholds (if any) to new array */
5720 5721
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5722
				sizeof(struct mem_cgroup_threshold));
5723 5724
	}

5725
	/* Add new threshold */
5726 5727
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5728 5729

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5730
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5731 5732 5733
			compare_thresholds, NULL);

	/* Find current threshold */
5734
	new->current_threshold = -1;
5735
	for (i = 0; i < size; i++) {
5736
		if (new->entries[i].threshold <= usage) {
5737
			/*
5738 5739
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5740 5741
			 * it here.
			 */
5742
			++new->current_threshold;
5743 5744
		} else
			break;
5745 5746
	}

5747 5748 5749 5750 5751
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5752

5753
	/* To be sure that nobody uses thresholds */
5754 5755 5756 5757 5758 5759 5760 5761
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5762
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5763
	struct cftype *cft, struct eventfd_ctx *eventfd)
5764
{
5765
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5766 5767
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5768
	enum res_type type = MEMFILE_TYPE(cft->private);
5769
	u64 usage;
5770
	int i, j, size;
5771 5772 5773

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5774
		thresholds = &memcg->thresholds;
5775
	else if (type == _MEMSWAP)
5776
		thresholds = &memcg->memsw_thresholds;
5777 5778 5779
	else
		BUG();

5780 5781 5782
	if (!thresholds->primary)
		goto unlock;

5783 5784 5785 5786 5787 5788
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5789 5790 5791
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5792 5793 5794
			size++;
	}

5795
	new = thresholds->spare;
5796

5797 5798
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5799 5800
		kfree(new);
		new = NULL;
5801
		goto swap_buffers;
5802 5803
	}

5804
	new->size = size;
5805 5806

	/* Copy thresholds and find current threshold */
5807 5808 5809
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5810 5811
			continue;

5812
		new->entries[j] = thresholds->primary->entries[i];
5813
		if (new->entries[j].threshold <= usage) {
5814
			/*
5815
			 * new->current_threshold will not be used
5816 5817 5818
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5819
			++new->current_threshold;
5820 5821 5822 5823
		}
		j++;
	}

5824
swap_buffers:
5825 5826
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5827 5828 5829 5830 5831 5832
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5833
	rcu_assign_pointer(thresholds->primary, new);
5834

5835
	/* To be sure that nobody uses thresholds */
5836
	synchronize_rcu();
5837
unlock:
5838 5839
	mutex_unlock(&memcg->thresholds_lock);
}
5840

5841
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5842 5843
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5844
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5845
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5846
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5847 5848 5849 5850 5851 5852

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5853
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5854 5855 5856 5857 5858

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5859
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5860
		eventfd_signal(eventfd, 1);
5861
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5862 5863 5864 5865

	return 0;
}

5866
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5867 5868
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5869
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5870
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5871
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5872 5873 5874

	BUG_ON(type != _OOM_TYPE);

5875
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5876

5877
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5878 5879 5880 5881 5882 5883
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5884
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5885 5886
}

5887
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5888 5889
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5890
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5891

5892
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5893

5894
	if (atomic_read(&memcg->under_oom))
5895 5896 5897 5898 5899 5900
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5901
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5902 5903
	struct cftype *cft, u64 val)
{
5904
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5905
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5906 5907

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5908
	if (!parent || !((val == 0) || (val == 1)))
5909 5910
		return -EINVAL;

5911
	mutex_lock(&memcg_create_mutex);
5912
	/* oom-kill-disable is a flag for subhierarchy. */
5913
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5914
		mutex_unlock(&memcg_create_mutex);
5915 5916
		return -EINVAL;
	}
5917
	memcg->oom_kill_disable = val;
5918
	if (!val)
5919
		memcg_oom_recover(memcg);
5920
	mutex_unlock(&memcg_create_mutex);
5921 5922 5923
	return 0;
}

A
Andrew Morton 已提交
5924
#ifdef CONFIG_MEMCG_KMEM
5925
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5926
{
5927 5928
	int ret;

5929
	memcg->kmemcg_id = -1;
5930 5931 5932
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5933

5934
	return mem_cgroup_sockets_init(memcg, ss);
5935
}
5936

5937
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5938
{
5939
	mem_cgroup_sockets_destroy(memcg);
5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5966 5967 5968 5969 5970 5971 5972

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5973
		css_put(&memcg->css);
G
Glauber Costa 已提交
5974
}
5975
#else
5976
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5977 5978 5979
{
	return 0;
}
G
Glauber Costa 已提交
5980

5981 5982 5983 5984 5985
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5986 5987
{
}
5988 5989
#endif

B
Balbir Singh 已提交
5990 5991
static struct cftype mem_cgroup_files[] = {
	{
5992
		.name = "usage_in_bytes",
5993
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5994
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5995 5996
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5997
	},
5998 5999
	{
		.name = "max_usage_in_bytes",
6000
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6001
		.trigger = mem_cgroup_reset,
6002
		.read = mem_cgroup_read,
6003
	},
B
Balbir Singh 已提交
6004
	{
6005
		.name = "limit_in_bytes",
6006
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6007
		.write_string = mem_cgroup_write,
6008
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
6009
	},
6010 6011 6012 6013
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
6014
		.read = mem_cgroup_read,
6015
	},
B
Balbir Singh 已提交
6016 6017
	{
		.name = "failcnt",
6018
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6019
		.trigger = mem_cgroup_reset,
6020
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
6021
	},
6022 6023
	{
		.name = "stat",
6024
		.read_seq_string = memcg_stat_show,
6025
	},
6026 6027 6028 6029
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
6030 6031
	{
		.name = "use_hierarchy",
6032
		.flags = CFTYPE_INSANE,
6033 6034 6035
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
6036 6037 6038 6039 6040
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
6041 6042 6043 6044 6045
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
6046 6047
	{
		.name = "oom_control",
6048 6049
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6050 6051 6052 6053
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6054 6055 6056 6057 6058
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
6059 6060 6061
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6062
		.read_seq_string = memcg_numa_stat_show,
6063 6064
	},
#endif
6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
6089 6090 6091 6092 6093 6094
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
6095
#endif
6096
	{ },	/* terminate */
6097
};
6098

6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
6129
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6130 6131
{
	struct mem_cgroup_per_node *pn;
6132
	struct mem_cgroup_per_zone *mz;
6133
	int zone, tmp = node;
6134 6135 6136 6137 6138 6139 6140 6141
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6142 6143
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6144
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6145 6146
	if (!pn)
		return 1;
6147 6148 6149

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6150
		lruvec_init(&mz->lruvec);
6151 6152
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6153
		mz->memcg = memcg;
6154
	}
6155
	memcg->nodeinfo[node] = pn;
6156 6157 6158
	return 0;
}

6159
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6160
{
6161
	kfree(memcg->nodeinfo[node]);
6162 6163
}

6164 6165
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6166
	struct mem_cgroup *memcg;
6167
	size_t size = memcg_size();
6168

6169
	/* Can be very big if nr_node_ids is very big */
6170
	if (size < PAGE_SIZE)
6171
		memcg = kzalloc(size, GFP_KERNEL);
6172
	else
6173
		memcg = vzalloc(size);
6174

6175
	if (!memcg)
6176 6177
		return NULL;

6178 6179
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6180
		goto out_free;
6181 6182
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6183 6184 6185

out_free:
	if (size < PAGE_SIZE)
6186
		kfree(memcg);
6187
	else
6188
		vfree(memcg);
6189
	return NULL;
6190 6191
}

6192
/*
6193 6194 6195 6196 6197 6198 6199 6200
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6201
 */
6202 6203

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6204
{
6205
	int node;
6206
	size_t size = memcg_size();
6207

6208
	mem_cgroup_remove_from_trees(memcg);
6209 6210 6211 6212 6213 6214 6215
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6227
	disarm_static_keys(memcg);
6228 6229 6230 6231
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6232
}
6233

6234 6235 6236
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6237
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6238
{
6239
	if (!memcg->res.parent)
6240
		return NULL;
6241
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6242
}
G
Glauber Costa 已提交
6243
EXPORT_SYMBOL(parent_mem_cgroup);
6244

6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6268
static struct cgroup_subsys_state * __ref
6269
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6270
{
6271
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6272
	long error = -ENOMEM;
6273
	int node;
B
Balbir Singh 已提交
6274

6275 6276
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6277
		return ERR_PTR(error);
6278

B
Bob Liu 已提交
6279
	for_each_node(node)
6280
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6281
			goto free_out;
6282

6283
	/* root ? */
6284
	if (parent_css == NULL) {
6285
		root_mem_cgroup = memcg;
6286 6287 6288
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6289
	}
6290

6291 6292 6293 6294 6295
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6296
	vmpressure_init(&memcg->vmpressure);
6297 6298 6299 6300 6301 6302 6303 6304 6305

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6306
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6307
{
6308 6309
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6310 6311
	int error = 0;

T
Tejun Heo 已提交
6312
	if (!parent)
6313 6314
		return 0;

6315
	mutex_lock(&memcg_create_mutex);
6316 6317 6318 6319 6320 6321

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6322 6323
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6324
		res_counter_init(&memcg->kmem, &parent->kmem);
6325

6326
		/*
6327 6328
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6329
		 */
6330
	} else {
6331 6332
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6333
		res_counter_init(&memcg->kmem, NULL);
6334 6335 6336 6337 6338
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6339
		if (parent != root_mem_cgroup)
6340
			mem_cgroup_subsys.broken_hierarchy = true;
6341
	}
6342 6343

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6344
	mutex_unlock(&memcg_create_mutex);
6345
	return error;
B
Balbir Singh 已提交
6346 6347
}

M
Michal Hocko 已提交
6348 6349 6350 6351 6352 6353 6354 6355
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6356
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6357 6358 6359 6360 6361 6362

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6363
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6364 6365
}

6366
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6367
{
6368
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6369

6370 6371
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6372
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6373
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6374
	mem_cgroup_destroy_all_caches(memcg);
6375
	vmpressure_cleanup(&memcg->vmpressure);
6376 6377
}

6378
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6379
{
6380
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6381

6382
	memcg_destroy_kmem(memcg);
6383
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6384 6385
}

6386
#ifdef CONFIG_MMU
6387
/* Handlers for move charge at task migration. */
6388 6389
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6390
{
6391 6392
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6393
	struct mem_cgroup *memcg = mc.to;
6394

6395
	if (mem_cgroup_is_root(memcg)) {
6396 6397 6398 6399 6400 6401 6402 6403
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6404
		 * "memcg" cannot be under rmdir() because we've already checked
6405 6406 6407 6408
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6409
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6410
			goto one_by_one;
6411
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6412
						PAGE_SIZE * count, &dummy)) {
6413
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6430 6431
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6432
		if (ret)
6433
			/* mem_cgroup_clear_mc() will do uncharge later */
6434
			return ret;
6435 6436
		mc.precharge++;
	}
6437 6438 6439 6440
	return ret;
}

/**
6441
 * get_mctgt_type - get target type of moving charge
6442 6443 6444
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6445
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6446 6447 6448 6449 6450 6451
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6452 6453 6454
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6455 6456 6457 6458 6459
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6460
	swp_entry_t	ent;
6461 6462 6463
};

enum mc_target_type {
6464
	MC_TARGET_NONE = 0,
6465
	MC_TARGET_PAGE,
6466
	MC_TARGET_SWAP,
6467 6468
};

D
Daisuke Nishimura 已提交
6469 6470
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6471
{
D
Daisuke Nishimura 已提交
6472
	struct page *page = vm_normal_page(vma, addr, ptent);
6473

D
Daisuke Nishimura 已提交
6474 6475 6476 6477
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6478
		if (!move_anon())
D
Daisuke Nishimura 已提交
6479
			return NULL;
6480 6481
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6482 6483 6484 6485 6486 6487 6488
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6489
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6490 6491 6492 6493 6494 6495 6496 6497
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6498 6499 6500 6501
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6502
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6503 6504 6505 6506 6507
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6508 6509 6510 6511 6512 6513 6514
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6515

6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6535 6536 6537 6538 6539 6540
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6541
		if (do_swap_account)
6542
			*entry = swap;
6543
		page = find_get_page(swap_address_space(swap), swap.val);
6544
	}
6545
#endif
6546 6547 6548
	return page;
}

6549
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6550 6551 6552 6553
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6554
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6555 6556 6557 6558 6559 6560
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6561 6562
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6563 6564

	if (!page && !ent.val)
6565
		return ret;
6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6581 6582
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6583
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6584 6585 6586
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6587 6588 6589 6590
	}
	return ret;
}

6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6626 6627 6628 6629 6630 6631 6632 6633
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6634 6635 6636 6637
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6638
		return 0;
6639
	}
6640

6641 6642
	if (pmd_trans_unstable(pmd))
		return 0;
6643 6644
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6645
		if (get_mctgt_type(vma, addr, *pte, NULL))
6646 6647 6648 6649
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6650 6651 6652
	return 0;
}

6653 6654 6655 6656 6657
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6658
	down_read(&mm->mmap_sem);
6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6670
	up_read(&mm->mmap_sem);
6671 6672 6673 6674 6675 6676 6677 6678 6679

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6680 6681 6682 6683 6684
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6685 6686
}

6687 6688
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6689
{
6690 6691
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6692
	int i;
6693

6694
	/* we must uncharge all the leftover precharges from mc.to */
6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6706
	}
6707 6708 6709 6710 6711 6712
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6713 6714 6715

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6716 6717 6718 6719 6720 6721 6722 6723 6724

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6725
		/* we've already done css_get(mc.to) */
6726 6727
		mc.moved_swap = 0;
	}
6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6743
	spin_lock(&mc.lock);
6744 6745
	mc.from = NULL;
	mc.to = NULL;
6746
	spin_unlock(&mc.lock);
6747
	mem_cgroup_end_move(from);
6748 6749
}

6750
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6751
				 struct cgroup_taskset *tset)
6752
{
6753
	struct task_struct *p = cgroup_taskset_first(tset);
6754
	int ret = 0;
6755
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6756
	unsigned long move_charge_at_immigrate;
6757

6758 6759 6760 6761 6762 6763 6764
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6765 6766 6767
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6768
		VM_BUG_ON(from == memcg);
6769 6770 6771 6772 6773

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6774 6775 6776 6777
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6778
			VM_BUG_ON(mc.moved_charge);
6779
			VM_BUG_ON(mc.moved_swap);
6780
			mem_cgroup_start_move(from);
6781
			spin_lock(&mc.lock);
6782
			mc.from = from;
6783
			mc.to = memcg;
6784
			mc.immigrate_flags = move_charge_at_immigrate;
6785
			spin_unlock(&mc.lock);
6786
			/* We set mc.moving_task later */
6787 6788 6789 6790

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6791 6792
		}
		mmput(mm);
6793 6794 6795 6796
	}
	return ret;
}

6797
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6798
				     struct cgroup_taskset *tset)
6799
{
6800
	mem_cgroup_clear_mc();
6801 6802
}

6803 6804 6805
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6806
{
6807 6808 6809 6810
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6811 6812 6813 6814
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6815

6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6827
		if (mc.precharge < HPAGE_PMD_NR) {
6828 6829 6830 6831 6832 6833 6834 6835 6836
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6837
							pc, mc.from, mc.to)) {
6838 6839 6840 6841 6842 6843 6844 6845
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6846
		return 0;
6847 6848
	}

6849 6850
	if (pmd_trans_unstable(pmd))
		return 0;
6851 6852 6853 6854
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6855
		swp_entry_t ent;
6856 6857 6858 6859

		if (!mc.precharge)
			break;

6860
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6861 6862 6863 6864 6865
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6866
			if (!mem_cgroup_move_account(page, 1, pc,
6867
						     mc.from, mc.to)) {
6868
				mc.precharge--;
6869 6870
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6871 6872
			}
			putback_lru_page(page);
6873
put:			/* get_mctgt_type() gets the page */
6874 6875
			put_page(page);
			break;
6876 6877
		case MC_TARGET_SWAP:
			ent = target.ent;
6878
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6879
				mc.precharge--;
6880 6881 6882
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6883
			break;
6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6898
		ret = mem_cgroup_do_precharge(1);
6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6942
	up_read(&mm->mmap_sem);
6943 6944
}

6945
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6946
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6947
{
6948
	struct task_struct *p = cgroup_taskset_first(tset);
6949
	struct mm_struct *mm = get_task_mm(p);
6950 6951

	if (mm) {
6952 6953
		if (mc.to)
			mem_cgroup_move_charge(mm);
6954 6955
		mmput(mm);
	}
6956 6957
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6958
}
6959
#else	/* !CONFIG_MMU */
6960
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6961
				 struct cgroup_taskset *tset)
6962 6963 6964
{
	return 0;
}
6965
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6966
				     struct cgroup_taskset *tset)
6967 6968
{
}
6969
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6970
				 struct cgroup_taskset *tset)
6971 6972 6973
{
}
#endif
B
Balbir Singh 已提交
6974

6975 6976 6977 6978
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6979
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6980 6981 6982 6983 6984 6985
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6986 6987
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6988 6989
}

B
Balbir Singh 已提交
6990 6991 6992
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6993
	.css_alloc = mem_cgroup_css_alloc,
6994
	.css_online = mem_cgroup_css_online,
6995 6996
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6997 6998
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6999
	.attach = mem_cgroup_move_task,
7000
	.bind = mem_cgroup_bind,
7001
	.base_cftypes = mem_cgroup_files,
7002
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
7003
	.use_id = 1,
B
Balbir Singh 已提交
7004
};
7005

A
Andrew Morton 已提交
7006
#ifdef CONFIG_MEMCG_SWAP
7007 7008
static int __init enable_swap_account(char *s)
{
7009
	if (!strcmp(s, "1"))
7010
		really_do_swap_account = 1;
7011
	else if (!strcmp(s, "0"))
7012 7013 7014
		really_do_swap_account = 0;
	return 1;
}
7015
__setup("swapaccount=", enable_swap_account);
7016

7017 7018
static void __init memsw_file_init(void)
{
7019 7020 7021 7022 7023 7024 7025 7026 7027
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
7028
}
7029

7030
#else
7031
static void __init enable_swap_cgroup(void)
7032 7033
{
}
7034
#endif
7035 7036

/*
7037 7038 7039 7040 7041 7042
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7043 7044 7045 7046
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7047
	enable_swap_cgroup();
7048
	mem_cgroup_soft_limit_tree_init();
7049
	memcg_stock_init();
7050 7051 7052
	return 0;
}
subsys_initcall(mem_cgroup_init);