memcontrol.c 182.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
95
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
96
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
97
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 99 100
	MEM_CGROUP_STAT_NSTATS,
};

101 102 103 104 105 106 107
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

108 109 110
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
111 112
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
113 114
	MEM_CGROUP_EVENTS_NSTATS,
};
115 116 117 118 119 120 121 122

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

123 124 125 126 127 128 129 130
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

131 132 133 134 135 136 137 138 139
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
140
	MEM_CGROUP_TARGET_NUMAINFO,
141 142
	MEM_CGROUP_NTARGETS,
};
143 144 145
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
146

147
struct mem_cgroup_stat_cpu {
148
	long count[MEM_CGROUP_STAT_NSTATS];
149
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
150
	unsigned long nr_page_events;
151
	unsigned long targets[MEM_CGROUP_NTARGETS];
152 153
};

154
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
155 156 157 158
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
159
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
160 161
	unsigned long last_dead_count;

162 163 164 165
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

166 167 168 169
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
170
	struct lruvec		lruvec;
171
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
172

173 174
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

175 176 177 178
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
179
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
180
						/* use container_of	   */
181 182 183 184 185 186 187
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
188
	struct mem_cgroup_per_node *nodeinfo[0];
189 190
};

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

211 212 213 214 215
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
216
/* For threshold */
217
struct mem_cgroup_threshold_ary {
218
	/* An array index points to threshold just below or equal to usage. */
219
	int current_threshold;
220 221 222 223 224
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
225 226 227 228 229 230 231 232 233 234 235 236

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
237 238 239 240 241
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
242

243 244
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
245

B
Balbir Singh 已提交
246 247 248 249 250 251 252
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
253 254 255
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
256 257 258 259 260 261 262
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
281 282
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
283 284 285 286
		 */
		struct work_struct work_freeing;
	};

287 288 289 290
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
291 292 293 294
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
295
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
296 297 298 299

	bool		oom_lock;
	atomic_t	under_oom;

300
	atomic_t	refcnt;
301

302
	int	swappiness;
303 304
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
305

306 307 308
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

309 310 311 312
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
313
	struct mem_cgroup_thresholds thresholds;
314

315
	/* thresholds for mem+swap usage. RCU-protected */
316
	struct mem_cgroup_thresholds memsw_thresholds;
317

K
KAMEZAWA Hiroyuki 已提交
318 319
	/* For oom notifier event fd */
	struct list_head oom_notify;
320

321 322 323 324 325
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
326 327 328 329
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
330 331
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
332
	/*
333
	 * percpu counter.
334
	 */
335
	struct mem_cgroup_stat_cpu __percpu *stat;
336 337 338 339 340 341
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
342

M
Michal Hocko 已提交
343
	atomic_t	dead_count;
M
Michal Hocko 已提交
344
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
345 346
	struct tcp_memcontrol tcp_mem;
#endif
347 348 349 350 351 352 353 354
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 *
	 * WARNING: This has to be the last element of the struct. Don't
	 * add new fields after this point.
	 */
	struct mem_cgroup_lru_info info;
B
Balbir Singh 已提交
370 371
};

372 373 374 375 376 377
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

378 379 380
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
381
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
382
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
383 384
};

385 386 387
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
388 389 390 391 392 393

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
394 395 396 397 398 399

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

400 401 402 403 404
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

405 406 407 408 409
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

410 411 412 413 414 415 416 417 418 419 420
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
421 422
#endif

423 424
/* Stuffs for move charges at task migration. */
/*
425 426
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
427 428
 */
enum move_type {
429
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
430
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
431 432 433
	NR_MOVE_TYPE,
};

434 435
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
436
	spinlock_t	  lock; /* for from, to */
437 438
	struct mem_cgroup *from;
	struct mem_cgroup *to;
439
	unsigned long immigrate_flags;
440
	unsigned long precharge;
441
	unsigned long moved_charge;
442
	unsigned long moved_swap;
443 444 445
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
446
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
447 448
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
449

D
Daisuke Nishimura 已提交
450 451
static bool move_anon(void)
{
452
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
453 454
}

455 456
static bool move_file(void)
{
457
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
458 459
}

460 461 462 463
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
464 465
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
466

467 468
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
469
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
470
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
471
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
472 473 474
	NR_CHARGE_TYPE,
};

475
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
476 477 478 479
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
480
	_KMEM,
G
Glauber Costa 已提交
481 482
};

483 484
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
485
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
486 487
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
488

489 490 491 492 493 494 495 496
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

497 498 499 500 501 502 503
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

504 505
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
506

507 508 509 510 511 512
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

513 514 515 516 517
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
518
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
519
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
520 521 522

void sock_update_memcg(struct sock *sk)
{
523
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
524
		struct mem_cgroup *memcg;
525
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
526 527 528

		BUG_ON(!sk->sk_prot->proto_cgroup);

529 530 531 532 533 534 535 536 537 538 539 540 541 542
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
543 544
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
545 546
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
547
			mem_cgroup_get(memcg);
548
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
549 550 551 552 553 554 555 556
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
557
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
558 559 560 561 562 563
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
564 565 566 567 568 569 570 571 572

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
573

574 575 576 577 578 579 580 581 582 583 584 585
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

586
#ifdef CONFIG_MEMCG_KMEM
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
605 606
int memcg_limited_groups_array_size;

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

622 623 624 625 626 627
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
628
struct static_key memcg_kmem_enabled_key;
629
EXPORT_SYMBOL(memcg_kmem_enabled_key);
630 631 632

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
633
	if (memcg_kmem_is_active(memcg)) {
634
		static_key_slow_dec(&memcg_kmem_enabled_key);
635 636
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
637 638 639 640 641
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
642 643 644 645 646 647 648 649 650 651 652 653 654
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

655
static void drain_all_stock_async(struct mem_cgroup *memcg);
656

657
static struct mem_cgroup_per_zone *
658
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
659
{
660
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
661
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
662 663
}

664
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
665
{
666
	return &memcg->css;
667 668
}

669
static struct mem_cgroup_per_zone *
670
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
671
{
672 673
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
674

675
	return mem_cgroup_zoneinfo(memcg, nid, zid);
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
694
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
695
				struct mem_cgroup_per_zone *mz,
696 697
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
698 699 700 701 702 703 704 705
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

706 707 708
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
725 726 727
}

static void
728
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
729 730 731 732 733 734 735 736 737
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

738
static void
739
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
740 741 742 743
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
744
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
745 746 747 748
	spin_unlock(&mctz->lock);
}


749
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
750
{
751
	unsigned long long excess;
752 753
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
754 755
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
756 757 758
	mctz = soft_limit_tree_from_page(page);

	/*
759 760
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
761
	 */
762 763 764
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
765 766 767 768
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
769
		if (excess || mz->on_tree) {
770 771 772
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
773
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
774
			/*
775 776
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
777
			 */
778
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
779 780
			spin_unlock(&mctz->lock);
		}
781 782 783
	}
}

784
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
785 786 787 788 789
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
790
	for_each_node(node) {
791
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
792
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
793
			mctz = soft_limit_tree_node_zone(node, zone);
794
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
795 796 797 798
		}
	}
}

799 800 801 802
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
803
	struct mem_cgroup_per_zone *mz;
804 805

retry:
806
	mz = NULL;
807 808 809 810 811 812 813 814 815 816
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
817 818 819
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
855
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
856
				 enum mem_cgroup_stat_index idx)
857
{
858
	long val = 0;
859 860
	int cpu;

861 862
	get_online_cpus();
	for_each_online_cpu(cpu)
863
		val += per_cpu(memcg->stat->count[idx], cpu);
864
#ifdef CONFIG_HOTPLUG_CPU
865 866 867
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
868 869
#endif
	put_online_cpus();
870 871 872
	return val;
}

873
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
874 875 876
					 bool charge)
{
	int val = (charge) ? 1 : -1;
877
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
878 879
}

880
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
881 882 883 884 885 886
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
887
		val += per_cpu(memcg->stat->events[idx], cpu);
888
#ifdef CONFIG_HOTPLUG_CPU
889 890 891
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
892 893 894 895
#endif
	return val;
}

896
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
897
					 bool anon, int nr_pages)
898
{
899 900
	preempt_disable();

901 902 903 904 905 906
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
907
				nr_pages);
908
	else
909
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
910
				nr_pages);
911

912 913
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
914
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
915
	else {
916
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
917 918
		nr_pages = -nr_pages; /* for event */
	}
919

920
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
921

922
	preempt_enable();
923 924
}

925
unsigned long
926
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
927 928 929 930 931 932 933 934
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
935
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
936
			unsigned int lru_mask)
937 938
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
939
	enum lru_list lru;
940 941
	unsigned long ret = 0;

942
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
943

H
Hugh Dickins 已提交
944 945 946
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
947 948 949 950 951
	}
	return ret;
}

static unsigned long
952
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
953 954
			int nid, unsigned int lru_mask)
{
955 956 957
	u64 total = 0;
	int zid;

958
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
959 960
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
961

962 963
	return total;
}
964

965
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
966
			unsigned int lru_mask)
967
{
968
	int nid;
969 970
	u64 total = 0;

971
	for_each_node_state(nid, N_MEMORY)
972
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
973
	return total;
974 975
}

976 977
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
978 979 980
{
	unsigned long val, next;

981
	val = __this_cpu_read(memcg->stat->nr_page_events);
982
	next = __this_cpu_read(memcg->stat->targets[target]);
983
	/* from time_after() in jiffies.h */
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1000
	}
1001
	return false;
1002 1003 1004 1005 1006 1007
}

/*
 * Check events in order.
 *
 */
1008
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1009
{
1010
	preempt_disable();
1011
	/* threshold event is triggered in finer grain than soft limit */
1012 1013
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1014 1015
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
1016 1017 1018 1019 1020 1021 1022 1023 1024

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1025
		mem_cgroup_threshold(memcg);
1026
		if (unlikely(do_softlimit))
1027
			mem_cgroup_update_tree(memcg, page);
1028
#if MAX_NUMNODES > 1
1029
		if (unlikely(do_numainfo))
1030
			atomic_inc(&memcg->numainfo_events);
1031
#endif
1032 1033
	} else
		preempt_enable();
1034 1035
}

G
Glauber Costa 已提交
1036
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
1037
{
1038 1039
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
1040 1041
}

1042
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1043
{
1044 1045 1046 1047 1048 1049 1050 1051
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1052
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1053 1054
}

1055
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1056
{
1057
	struct mem_cgroup *memcg = NULL;
1058 1059 1060

	if (!mm)
		return NULL;
1061 1062 1063 1064 1065 1066 1067
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1068 1069
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1070
			break;
1071
	} while (!css_tryget(&memcg->css));
1072
	rcu_read_unlock();
1073
	return memcg;
1074 1075
}

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1096
{
1097
	struct mem_cgroup *memcg = NULL;
1098
	struct mem_cgroup *last_visited = NULL;
M
Michal Hocko 已提交
1099
	unsigned long uninitialized_var(dead_count);
1100

1101 1102 1103
	if (mem_cgroup_disabled())
		return NULL;

1104 1105
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1106

1107
	if (prev && !reclaim)
1108
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1109

1110 1111
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1112
			goto out_css_put;
1113 1114
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1115

1116
	rcu_read_lock();
1117
	while (!memcg) {
1118
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1119

1120 1121 1122 1123 1124 1125 1126
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1127 1128
			last_visited = iter->last_visited;
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1129
				iter->last_visited = NULL;
1130 1131
				goto out_unlock;
			}
M
Michal Hocko 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

			/*
			 * If the dead_count mismatches, a destruction
			 * has happened or is happening concurrently.
			 * If the dead_count matches, a destruction
			 * might still happen concurrently, but since
			 * we checked under RCU, that destruction
			 * won't free the object until we release the
			 * RCU reader lock.  Thus, the dead_count
			 * check verifies the pointer is still valid,
			 * css_tryget() verifies the cgroup pointed to
			 * is alive.
			 */
			dead_count = atomic_read(&root->dead_count);
			smp_rmb();
			last_visited = iter->last_visited;
			if (last_visited) {
				if ((dead_count != iter->last_dead_count) ||
					!css_tryget(&last_visited->css)) {
					last_visited = NULL;
				}
			}
1154
		}
K
KAMEZAWA Hiroyuki 已提交
1155

1156 1157 1158 1159 1160
		/*
		 * Root is not visited by cgroup iterators so it needs an
		 * explicit visit.
		 */
		if (!last_visited) {
M
Michal Hocko 已提交
1161
			memcg = root;
1162 1163 1164 1165 1166
		} else {
			struct cgroup *prev_cgroup, *next_cgroup;

			prev_cgroup = (last_visited == root) ? NULL
				: last_visited->css.cgroup;
M
Michal Hocko 已提交
1167 1168 1169
skip_node:
			next_cgroup = cgroup_next_descendant_pre(
					prev_cgroup, root->css.cgroup);
1170

M
Michal Hocko 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
			/*
			 * Even if we found a group we have to make sure it is
			 * alive. css && !memcg means that the groups should be
			 * skipped and we should continue the tree walk.
			 * last_visited css is safe to use because it is
			 * protected by css_get and the tree walk is rcu safe.
			 */
			if (next_cgroup) {
				struct mem_cgroup *mem = mem_cgroup_from_cont(
						next_cgroup);
				if (css_tryget(&mem->css))
					memcg = mem;
				else {
					prev_cgroup = next_cgroup;
					goto skip_node;
				}
			}
		}
K
KAMEZAWA Hiroyuki 已提交
1189

1190
		if (reclaim) {
1191 1192 1193
			if (last_visited)
				css_put(&last_visited->css);

M
Michal Hocko 已提交
1194
			iter->last_visited = memcg;
M
Michal Hocko 已提交
1195 1196
			smp_wmb();
			iter->last_dead_count = dead_count;
1197

M
Michal Hocko 已提交
1198
			if (!memcg)
1199 1200 1201 1202
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1203

M
Michal Hocko 已提交
1204
		if (prev && !memcg)
1205
			goto out_unlock;
1206
	}
1207 1208
out_unlock:
	rcu_read_unlock();
1209 1210 1211 1212
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1213
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1214
}
K
KAMEZAWA Hiroyuki 已提交
1215

1216 1217 1218 1219 1220 1221 1222
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1223 1224 1225 1226 1227 1228
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1229

1230 1231 1232 1233 1234 1235
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1236
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1237
	     iter != NULL;				\
1238
	     iter = mem_cgroup_iter(root, iter, NULL))
1239

1240
#define for_each_mem_cgroup(iter)			\
1241
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1242
	     iter != NULL;				\
1243
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1244

1245
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1246
{
1247
	struct mem_cgroup *memcg;
1248 1249

	rcu_read_lock();
1250 1251
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1252 1253 1254 1255
		goto out;

	switch (idx) {
	case PGFAULT:
1256 1257 1258 1259
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1260 1261 1262 1263 1264 1265 1266
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1267
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1268

1269 1270 1271
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1272
 * @memcg: memcg of the wanted lruvec
1273 1274 1275 1276 1277 1278 1279 1280 1281
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1282
	struct lruvec *lruvec;
1283

1284 1285 1286 1287
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1288 1289

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1300 1301
}

K
KAMEZAWA Hiroyuki 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1315

1316
/**
1317
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1318
 * @page: the page
1319
 * @zone: zone of the page
1320
 */
1321
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1322 1323
{
	struct mem_cgroup_per_zone *mz;
1324 1325
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1326
	struct lruvec *lruvec;
1327

1328 1329 1330 1331
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1332

K
KAMEZAWA Hiroyuki 已提交
1333
	pc = lookup_page_cgroup(page);
1334
	memcg = pc->mem_cgroup;
1335 1336

	/*
1337
	 * Surreptitiously switch any uncharged offlist page to root:
1338 1339 1340 1341 1342 1343 1344
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1345
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1346 1347
		pc->mem_cgroup = memcg = root_mem_cgroup;

1348
	mz = page_cgroup_zoneinfo(memcg, page);
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1359
}
1360

1361
/**
1362 1363 1364 1365
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1366
 *
1367 1368
 * This function must be called when a page is added to or removed from an
 * lru list.
1369
 */
1370 1371
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1372 1373
{
	struct mem_cgroup_per_zone *mz;
1374
	unsigned long *lru_size;
1375 1376 1377 1378

	if (mem_cgroup_disabled())
		return;

1379 1380 1381 1382
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1383
}
1384

1385
/*
1386
 * Checks whether given mem is same or in the root_mem_cgroup's
1387 1388
 * hierarchy subtree
 */
1389 1390
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1391
{
1392 1393
	if (root_memcg == memcg)
		return true;
1394
	if (!root_memcg->use_hierarchy || !memcg)
1395
		return false;
1396 1397 1398 1399 1400 1401 1402 1403
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1404
	rcu_read_lock();
1405
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1406 1407
	rcu_read_unlock();
	return ret;
1408 1409
}

1410
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1411 1412
{
	int ret;
1413
	struct mem_cgroup *curr = NULL;
1414
	struct task_struct *p;
1415

1416
	p = find_lock_task_mm(task);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1432 1433
	if (!curr)
		return 0;
1434
	/*
1435
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1436
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1437 1438
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1439
	 */
1440
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1441
	css_put(&curr->css);
1442 1443 1444
	return ret;
}

1445
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1446
{
1447
	unsigned long inactive_ratio;
1448
	unsigned long inactive;
1449
	unsigned long active;
1450
	unsigned long gb;
1451

1452 1453
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1454

1455 1456 1457 1458 1459 1460
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1461
	return inactive * inactive_ratio < active;
1462 1463
}

1464 1465 1466
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1467
/**
1468
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1469
 * @memcg: the memory cgroup
1470
 *
1471
 * Returns the maximum amount of memory @mem can be charged with, in
1472
 * pages.
1473
 */
1474
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1475
{
1476 1477
	unsigned long long margin;

1478
	margin = res_counter_margin(&memcg->res);
1479
	if (do_swap_account)
1480
		margin = min(margin, res_counter_margin(&memcg->memsw));
1481
	return margin >> PAGE_SHIFT;
1482 1483
}

1484
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1485 1486 1487 1488 1489 1490 1491
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1492
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1493 1494
}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1509 1510 1511 1512

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1513
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1514
{
1515
	atomic_inc(&memcg_moving);
1516
	atomic_inc(&memcg->moving_account);
1517 1518 1519
	synchronize_rcu();
}

1520
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1521
{
1522 1523 1524 1525
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1526 1527
	if (memcg) {
		atomic_dec(&memcg_moving);
1528
		atomic_dec(&memcg->moving_account);
1529
	}
1530
}
1531

1532 1533 1534
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1535 1536
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1537 1538 1539 1540 1541 1542 1543
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1544
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1545 1546
{
	VM_BUG_ON(!rcu_read_lock_held());
1547
	return atomic_read(&memcg->moving_account) > 0;
1548
}
1549

1550
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1551
{
1552 1553
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1554
	bool ret = false;
1555 1556 1557 1558 1559 1560 1561 1562 1563
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1564

1565 1566
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1567 1568
unlock:
	spin_unlock(&mc.lock);
1569 1570 1571
	return ret;
}

1572
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1573 1574
{
	if (mc.moving_task && current != mc.moving_task) {
1575
		if (mem_cgroup_under_move(memcg)) {
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1588 1589 1590 1591
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1592
 * see mem_cgroup_stolen(), too.
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1606
#define K(x) ((x) << (PAGE_SHIFT-10))
1607
/**
1608
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1626 1627
	struct mem_cgroup *iter;
	unsigned int i;
1628

1629
	if (!p)
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1648
	pr_info("Task in %s killed", memcg_name);
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1661
	pr_cont(" as a result of limit of %s\n", memcg_name);
1662 1663
done:

1664
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1665 1666 1667
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1668
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1669 1670 1671
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1672
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1673 1674 1675
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1700 1701
}

1702 1703 1704 1705
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1706
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1707 1708
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1709 1710
	struct mem_cgroup *iter;

1711
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1712
		num++;
1713 1714 1715
	return num;
}

D
David Rientjes 已提交
1716 1717 1718
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1719
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1720 1721 1722
{
	u64 limit;

1723 1724
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1725
	/*
1726
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1727
	 */
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1742 1743
}

1744 1745
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1746 1747 1748 1749 1750 1751 1752
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1847 1848
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1849
 * @memcg: the target memcg
1850 1851 1852 1853 1854 1855 1856
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1857
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1858 1859
		int nid, bool noswap)
{
1860
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1861 1862 1863
		return true;
	if (noswap || !total_swap_pages)
		return false;
1864
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1865 1866 1867 1868
		return true;
	return false;

}
1869 1870 1871 1872 1873 1874 1875 1876
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1877
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1878 1879
{
	int nid;
1880 1881 1882 1883
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1884
	if (!atomic_read(&memcg->numainfo_events))
1885
		return;
1886
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1887 1888 1889
		return;

	/* make a nodemask where this memcg uses memory from */
1890
	memcg->scan_nodes = node_states[N_MEMORY];
1891

1892
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1893

1894 1895
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1896
	}
1897

1898 1899
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1914
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1915 1916 1917
{
	int node;

1918 1919
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1920

1921
	node = next_node(node, memcg->scan_nodes);
1922
	if (node == MAX_NUMNODES)
1923
		node = first_node(memcg->scan_nodes);
1924 1925 1926 1927 1928 1929 1930 1931 1932
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1933
	memcg->last_scanned_node = node;
1934 1935 1936
	return node;
}

1937 1938 1939 1940 1941 1942
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1943
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1944 1945 1946 1947 1948 1949 1950
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1951 1952
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1953
		     nid < MAX_NUMNODES;
1954
		     nid = next_node(nid, memcg->scan_nodes)) {
1955

1956
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1957 1958 1959 1960 1961 1962
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1963
	for_each_node_state(nid, N_MEMORY) {
1964
		if (node_isset(nid, memcg->scan_nodes))
1965
			continue;
1966
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1967 1968 1969 1970 1971
			return true;
	}
	return false;
}

1972
#else
1973
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1974 1975 1976
{
	return 0;
}
1977

1978
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1979
{
1980
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1981
}
1982 1983
#endif

1984 1985 1986 1987
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1988
{
1989
	struct mem_cgroup *victim = NULL;
1990
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1991
	int loop = 0;
1992
	unsigned long excess;
1993
	unsigned long nr_scanned;
1994 1995 1996 1997
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1998

1999
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
2000

2001
	while (1) {
2002
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2003
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
2004
			loop++;
2005 2006 2007 2008 2009 2010
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
2011
				if (!total)
2012 2013
					break;
				/*
L
Lucas De Marchi 已提交
2014
				 * We want to do more targeted reclaim.
2015 2016 2017 2018 2019
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
2020
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2021 2022
					break;
			}
2023
			continue;
2024
		}
2025
		if (!mem_cgroup_reclaimable(victim, false))
2026
			continue;
2027 2028 2029 2030
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
2031
			break;
2032
	}
2033
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
2034
	return total;
2035 2036
}

K
KAMEZAWA Hiroyuki 已提交
2037 2038 2039
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
2040
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
2041
 */
2042
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2043
{
2044
	struct mem_cgroup *iter, *failed = NULL;
2045

2046
	for_each_mem_cgroup_tree(iter, memcg) {
2047
		if (iter->oom_lock) {
2048 2049 2050 2051 2052
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2053 2054
			mem_cgroup_iter_break(memcg, iter);
			break;
2055 2056
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2057
	}
K
KAMEZAWA Hiroyuki 已提交
2058

2059
	if (!failed)
2060
		return true;
2061 2062 2063 2064 2065

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
2066
	for_each_mem_cgroup_tree(iter, memcg) {
2067
		if (iter == failed) {
2068 2069
			mem_cgroup_iter_break(memcg, iter);
			break;
2070 2071 2072
		}
		iter->oom_lock = false;
	}
2073
	return false;
2074
}
2075

2076
/*
2077
 * Has to be called with memcg_oom_lock
2078
 */
2079
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2080
{
K
KAMEZAWA Hiroyuki 已提交
2081 2082
	struct mem_cgroup *iter;

2083
	for_each_mem_cgroup_tree(iter, memcg)
2084 2085 2086 2087
		iter->oom_lock = false;
	return 0;
}

2088
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2089 2090 2091
{
	struct mem_cgroup *iter;

2092
	for_each_mem_cgroup_tree(iter, memcg)
2093 2094 2095
		atomic_inc(&iter->under_oom);
}

2096
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2097 2098 2099
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2100 2101 2102 2103 2104
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2105
	for_each_mem_cgroup_tree(iter, memcg)
2106
		atomic_add_unless(&iter->under_oom, -1, 0);
2107 2108
}

2109
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2110 2111
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2112
struct oom_wait_info {
2113
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2114 2115 2116 2117 2118 2119
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2120 2121
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2122 2123 2124
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2125
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2126 2127

	/*
2128
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2129 2130
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2131 2132
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2133 2134 2135 2136
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2137
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2138
{
2139 2140
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2141 2142
}

2143
static void memcg_oom_recover(struct mem_cgroup *memcg)
2144
{
2145 2146
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2147 2148
}

K
KAMEZAWA Hiroyuki 已提交
2149 2150 2151
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2152 2153
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2154
{
K
KAMEZAWA Hiroyuki 已提交
2155
	struct oom_wait_info owait;
2156
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2157

2158
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2159 2160 2161 2162
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2163
	need_to_kill = true;
2164
	mem_cgroup_mark_under_oom(memcg);
2165

2166
	/* At first, try to OOM lock hierarchy under memcg.*/
2167
	spin_lock(&memcg_oom_lock);
2168
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2169 2170 2171 2172 2173
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2174
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2175
	if (!locked || memcg->oom_kill_disable)
2176 2177
		need_to_kill = false;
	if (locked)
2178
		mem_cgroup_oom_notify(memcg);
2179
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2180

2181 2182
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2183
		mem_cgroup_out_of_memory(memcg, mask, order);
2184
	} else {
K
KAMEZAWA Hiroyuki 已提交
2185
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2186
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2187
	}
2188
	spin_lock(&memcg_oom_lock);
2189
	if (locked)
2190 2191
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2192
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2193

2194
	mem_cgroup_unmark_under_oom(memcg);
2195

K
KAMEZAWA Hiroyuki 已提交
2196 2197 2198
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2199
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2200
	return true;
2201 2202
}

2203 2204 2205
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2223 2224
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2225
 */
2226

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2240
	 * need to take move_lock_mem_cgroup(). Because we already hold
2241
	 * rcu_read_lock(), any calls to move_account will be delayed until
2242
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2243
	 */
2244
	if (!mem_cgroup_stolen(memcg))
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2262
	 * should take move_lock_mem_cgroup().
2263 2264 2265 2266
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2267 2268
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2269
{
2270
	struct mem_cgroup *memcg;
2271
	struct page_cgroup *pc = lookup_page_cgroup(page);
2272
	unsigned long uninitialized_var(flags);
2273

2274
	if (mem_cgroup_disabled())
2275
		return;
2276

2277 2278
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2279
		return;
2280 2281

	switch (idx) {
2282 2283
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2284 2285 2286
		break;
	default:
		BUG();
2287
	}
2288

2289
	this_cpu_add(memcg->stat->count[idx], val);
2290
}
2291

2292 2293 2294 2295
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2296
#define CHARGE_BATCH	32U
2297 2298
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2299
	unsigned int nr_pages;
2300
	struct work_struct work;
2301
	unsigned long flags;
2302
#define FLUSHING_CACHED_CHARGE	0
2303 2304
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2305
static DEFINE_MUTEX(percpu_charge_mutex);
2306

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2317
 */
2318
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2319 2320 2321 2322
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2323 2324 2325
	if (nr_pages > CHARGE_BATCH)
		return false;

2326
	stock = &get_cpu_var(memcg_stock);
2327 2328
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2342 2343 2344 2345
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2346
		if (do_swap_account)
2347 2348
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2361
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2362 2363
}

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2375 2376
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2377
 * This will be consumed by consume_stock() function, later.
2378
 */
2379
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2380 2381 2382
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2383
	if (stock->cached != memcg) { /* reset if necessary */
2384
		drain_stock(stock);
2385
		stock->cached = memcg;
2386
	}
2387
	stock->nr_pages += nr_pages;
2388 2389 2390 2391
	put_cpu_var(memcg_stock);
}

/*
2392
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2393 2394
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2395
 */
2396
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2397
{
2398
	int cpu, curcpu;
2399

2400 2401
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2402
	curcpu = get_cpu();
2403 2404
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2405
		struct mem_cgroup *memcg;
2406

2407 2408
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2409
			continue;
2410
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2411
			continue;
2412 2413 2414 2415 2416 2417
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2418
	}
2419
	put_cpu();
2420 2421 2422 2423 2424 2425

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2426
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2427 2428 2429
			flush_work(&stock->work);
	}
out:
2430
 	put_online_cpus();
2431 2432 2433 2434 2435 2436 2437 2438
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2439
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2440
{
2441 2442 2443 2444 2445
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2446
	drain_all_stock(root_memcg, false);
2447
	mutex_unlock(&percpu_charge_mutex);
2448 2449 2450
}

/* This is a synchronous drain interface. */
2451
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2452 2453
{
	/* called when force_empty is called */
2454
	mutex_lock(&percpu_charge_mutex);
2455
	drain_all_stock(root_memcg, true);
2456
	mutex_unlock(&percpu_charge_mutex);
2457 2458
}

2459 2460 2461 2462
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2463
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2464 2465 2466
{
	int i;

2467
	spin_lock(&memcg->pcp_counter_lock);
2468
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2469
		long x = per_cpu(memcg->stat->count[i], cpu);
2470

2471 2472
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2473
	}
2474
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2475
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2476

2477 2478
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2479
	}
2480
	spin_unlock(&memcg->pcp_counter_lock);
2481 2482 2483
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2484 2485 2486 2487 2488
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2489
	struct mem_cgroup *iter;
2490

2491
	if (action == CPU_ONLINE)
2492 2493
		return NOTIFY_OK;

2494
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2495
		return NOTIFY_OK;
2496

2497
	for_each_mem_cgroup(iter)
2498 2499
		mem_cgroup_drain_pcp_counter(iter, cpu);

2500 2501 2502 2503 2504
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2515
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2516 2517
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2518
{
2519
	unsigned long csize = nr_pages * PAGE_SIZE;
2520 2521 2522 2523 2524
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2525
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2526 2527 2528 2529

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2530
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2531 2532 2533
		if (likely(!ret))
			return CHARGE_OK;

2534
		res_counter_uncharge(&memcg->res, csize);
2535 2536 2537 2538
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2539 2540 2541 2542
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2543
	if (nr_pages > min_pages)
2544 2545 2546 2547 2548
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2549 2550 2551
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2552
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2553
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2554
		return CHARGE_RETRY;
2555
	/*
2556 2557 2558 2559 2560 2561 2562
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2563
	 */
2564
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2578
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2579 2580 2581 2582 2583
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2584
/*
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2604
 */
2605
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2606
				   gfp_t gfp_mask,
2607
				   unsigned int nr_pages,
2608
				   struct mem_cgroup **ptr,
2609
				   bool oom)
2610
{
2611
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2612
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2613
	struct mem_cgroup *memcg = NULL;
2614
	int ret;
2615

K
KAMEZAWA Hiroyuki 已提交
2616 2617 2618 2619 2620 2621 2622 2623
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2624

2625
	/*
2626 2627
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2628
	 * thread group leader migrates. It's possible that mm is not
2629
	 * set, if so charge the root memcg (happens for pagecache usage).
2630
	 */
2631
	if (!*ptr && !mm)
2632
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2633
again:
2634 2635 2636
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2637
			goto done;
2638
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2639
			goto done;
2640
		css_get(&memcg->css);
2641
	} else {
K
KAMEZAWA Hiroyuki 已提交
2642
		struct task_struct *p;
2643

K
KAMEZAWA Hiroyuki 已提交
2644 2645 2646
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2647
		 * Because we don't have task_lock(), "p" can exit.
2648
		 * In that case, "memcg" can point to root or p can be NULL with
2649 2650 2651 2652 2653 2654
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2655
		 */
2656
		memcg = mem_cgroup_from_task(p);
2657 2658 2659
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2660 2661 2662
			rcu_read_unlock();
			goto done;
		}
2663
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2676
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2677 2678 2679 2680 2681
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2682

2683 2684
	do {
		bool oom_check;
2685

2686
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2687
		if (fatal_signal_pending(current)) {
2688
			css_put(&memcg->css);
2689
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2690
		}
2691

2692 2693 2694 2695
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2696
		}
2697

2698 2699
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2700 2701 2702 2703
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2704
			batch = nr_pages;
2705 2706
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2707
			goto again;
2708
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2709
			css_put(&memcg->css);
2710 2711
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2712
			if (!oom) {
2713
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2714
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2715
			}
2716 2717 2718 2719
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2720
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2721
			goto bypass;
2722
		}
2723 2724
	} while (ret != CHARGE_OK);

2725
	if (batch > nr_pages)
2726 2727
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2728
done:
2729
	*ptr = memcg;
2730 2731
	return 0;
nomem:
2732
	*ptr = NULL;
2733
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2734
bypass:
2735 2736
	*ptr = root_mem_cgroup;
	return -EINTR;
2737
}
2738

2739 2740 2741 2742 2743
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2744
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2745
				       unsigned int nr_pages)
2746
{
2747
	if (!mem_cgroup_is_root(memcg)) {
2748 2749
		unsigned long bytes = nr_pages * PAGE_SIZE;

2750
		res_counter_uncharge(&memcg->res, bytes);
2751
		if (do_swap_account)
2752
			res_counter_uncharge(&memcg->memsw, bytes);
2753
	}
2754 2755
}

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2774 2775
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2776 2777 2778
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2790
	return mem_cgroup_from_css(css);
2791 2792
}

2793
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2794
{
2795
	struct mem_cgroup *memcg = NULL;
2796
	struct page_cgroup *pc;
2797
	unsigned short id;
2798 2799
	swp_entry_t ent;

2800 2801 2802
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2803
	lock_page_cgroup(pc);
2804
	if (PageCgroupUsed(pc)) {
2805 2806 2807
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2808
	} else if (PageSwapCache(page)) {
2809
		ent.val = page_private(page);
2810
		id = lookup_swap_cgroup_id(ent);
2811
		rcu_read_lock();
2812 2813 2814
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2815
		rcu_read_unlock();
2816
	}
2817
	unlock_page_cgroup(pc);
2818
	return memcg;
2819 2820
}

2821
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2822
				       struct page *page,
2823
				       unsigned int nr_pages,
2824 2825
				       enum charge_type ctype,
				       bool lrucare)
2826
{
2827
	struct page_cgroup *pc = lookup_page_cgroup(page);
2828
	struct zone *uninitialized_var(zone);
2829
	struct lruvec *lruvec;
2830
	bool was_on_lru = false;
2831
	bool anon;
2832

2833
	lock_page_cgroup(pc);
2834
	VM_BUG_ON(PageCgroupUsed(pc));
2835 2836 2837 2838
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2839 2840 2841 2842 2843 2844 2845 2846 2847

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2848
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2849
			ClearPageLRU(page);
2850
			del_page_from_lru_list(page, lruvec, page_lru(page));
2851 2852 2853 2854
			was_on_lru = true;
		}
	}

2855
	pc->mem_cgroup = memcg;
2856 2857 2858 2859 2860 2861 2862
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2863
	smp_wmb();
2864
	SetPageCgroupUsed(pc);
2865

2866 2867
	if (lrucare) {
		if (was_on_lru) {
2868
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2869 2870
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2871
			add_page_to_lru_list(page, lruvec, page_lru(page));
2872 2873 2874 2875
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2876
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2877 2878 2879 2880 2881
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2882
	unlock_page_cgroup(pc);
2883

2884 2885 2886 2887 2888
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2889
	memcg_check_events(memcg, page);
2890
}
2891

2892 2893
static DEFINE_MUTEX(set_limit_mutex);

2894 2895 2896 2897 2898 2899 2900
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
#ifdef CONFIG_SLABINFO
static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
					struct seq_file *m)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2988 2989 2990 2991 2992 2993 2994

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
2995 2996
}

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3080 3081
static void kmem_cache_destroy_work_func(struct work_struct *w);

3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

3101 3102
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3135 3136
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3137 3138 3139 3140 3141 3142
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

3143 3144 3145
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

3146 3147 3148 3149
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

3150 3151
	INIT_WORK(&s->memcg_params->destroy,
			kmem_cache_destroy_work_func);
G
Glauber Costa 已提交
3152
	if (memcg) {
3153
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3154
		s->memcg_params->root_cache = root_cache;
3155 3156 3157
	} else
		s->memcg_params->is_root_cache = true;

3158 3159 3160 3161 3162
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;
	mem_cgroup_put(memcg);

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

out:
3189 3190 3191
	kfree(s->memcg_params);
}

3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3223 3224 3225 3226 3227 3228 3229 3230 3231
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3253 3254 3255 3256 3257 3258 3259 3260
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3281 3282 3283 3284 3285 3286 3287
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
{
	char *name;
	struct dentry *dentry;

	rcu_read_lock();
	dentry = rcu_dereference(memcg->css.cgroup->dentry);
	rcu_read_unlock();

	BUG_ON(dentry == NULL);

	name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), dentry->d_name.name);

	return name;
}

static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	char *name;
	struct kmem_cache *new;

	name = memcg_cache_name(memcg, s);
	if (!name)
		return NULL;

	new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
G
Glauber Costa 已提交
3316
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3317

3318 3319 3320
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
	kfree(name);
	return new;
}

/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
	if (new_cachep)
		goto out;

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
		goto out;
	}

	mem_cgroup_get(memcg);
G
Glauber Costa 已提交
3356
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3408
		cancel_work_sync(&c->memcg_params->destroy);
3409 3410 3411 3412 3413
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3414 3415 3416 3417 3418 3419
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	/* Drop the reference gotten when we enqueued. */
	css_put(&cw->memcg->css);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 * Called with rcu_read_lock.
 */
3452 3453
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
	if (cw == NULL)
		return;

	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css)) {
		kfree(cw);
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3514 3515 3516
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
	rcu_read_unlock();

	if (!memcg_can_account_kmem(memcg))
		return cachep;

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
	if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
		/*
		 * If we are in a safe context (can wait, and not in interrupt
		 * context), we could be be predictable and return right away.
		 * This would guarantee that the allocation being performed
		 * already belongs in the new cache.
		 *
		 * However, there are some clashes that can arrive from locking.
		 * For instance, because we acquire the slab_mutex while doing
		 * kmem_cache_dup, this means no further allocation could happen
		 * with the slab_mutex held.
		 *
		 * Also, because cache creation issue get_online_cpus(), this
		 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
		 * that ends up reversed during cpu hotplug. (cpuset allocates
		 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
		 * better to defer everything.
		 */
		memcg_create_cache_enqueue(memcg, cachep);
		return cachep;
	}

	return cachep->memcg_params->memcg_caches[idx];
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3652 3653 3654 3655
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3656 3657
#endif /* CONFIG_MEMCG_KMEM */

3658 3659
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3660
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3661 3662
/*
 * Because tail pages are not marked as "used", set it. We're under
3663 3664 3665
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3666
 */
3667
void mem_cgroup_split_huge_fixup(struct page *head)
3668 3669
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3670 3671
	struct page_cgroup *pc;
	int i;
3672

3673 3674
	if (mem_cgroup_disabled())
		return;
3675 3676 3677 3678 3679 3680
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3681
}
3682
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3683

3684
/**
3685
 * mem_cgroup_move_account - move account of the page
3686
 * @page: the page
3687
 * @nr_pages: number of regular pages (>1 for huge pages)
3688 3689 3690 3691 3692
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3693
 * - page is not on LRU (isolate_page() is useful.)
3694
 * - compound_lock is held when nr_pages > 1
3695
 *
3696 3697
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3698
 */
3699 3700 3701 3702
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3703
				   struct mem_cgroup *to)
3704
{
3705 3706
	unsigned long flags;
	int ret;
3707
	bool anon = PageAnon(page);
3708

3709
	VM_BUG_ON(from == to);
3710
	VM_BUG_ON(PageLRU(page));
3711 3712 3713 3714 3715 3716 3717
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3718
	if (nr_pages > 1 && !PageTransHuge(page))
3719 3720 3721 3722 3723 3724 3725 3726
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3727
	move_lock_mem_cgroup(from, &flags);
3728

3729
	if (!anon && page_mapped(page)) {
3730 3731 3732 3733 3734
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3735
	}
3736
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
3737

3738
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3739
	pc->mem_cgroup = to;
3740
	mem_cgroup_charge_statistics(to, anon, nr_pages);
3741
	move_unlock_mem_cgroup(from, &flags);
3742 3743
	ret = 0;
unlock:
3744
	unlock_page_cgroup(pc);
3745 3746 3747
	/*
	 * check events
	 */
3748 3749
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3750
out:
3751 3752 3753
	return ret;
}

3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3774
 */
3775 3776
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3777
				  struct mem_cgroup *child)
3778 3779
{
	struct mem_cgroup *parent;
3780
	unsigned int nr_pages;
3781
	unsigned long uninitialized_var(flags);
3782 3783
	int ret;

3784
	VM_BUG_ON(mem_cgroup_is_root(child));
3785

3786 3787 3788 3789 3790
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3791

3792
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3793

3794 3795 3796 3797 3798 3799
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3800

3801 3802
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3803
		flags = compound_lock_irqsave(page);
3804
	}
3805

3806
	ret = mem_cgroup_move_account(page, nr_pages,
3807
				pc, child, parent);
3808 3809
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3810

3811
	if (nr_pages > 1)
3812
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3813
	putback_lru_page(page);
3814
put:
3815
	put_page(page);
3816
out:
3817 3818 3819
	return ret;
}

3820 3821 3822 3823 3824 3825 3826
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3827
				gfp_t gfp_mask, enum charge_type ctype)
3828
{
3829
	struct mem_cgroup *memcg = NULL;
3830
	unsigned int nr_pages = 1;
3831
	bool oom = true;
3832
	int ret;
A
Andrea Arcangeli 已提交
3833

A
Andrea Arcangeli 已提交
3834
	if (PageTransHuge(page)) {
3835
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3836
		VM_BUG_ON(!PageTransHuge(page));
3837 3838 3839 3840 3841
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3842
	}
3843

3844
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3845
	if (ret == -ENOMEM)
3846
		return ret;
3847
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3848 3849 3850
	return 0;
}

3851 3852
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3853
{
3854
	if (mem_cgroup_disabled())
3855
		return 0;
3856 3857 3858
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3859
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3860
					MEM_CGROUP_CHARGE_TYPE_ANON);
3861 3862
}

3863 3864 3865
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3866
 * struct page_cgroup is acquired. This refcnt will be consumed by
3867 3868
 * "commit()" or removed by "cancel()"
 */
3869 3870 3871 3872
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3873
{
3874
	struct mem_cgroup *memcg;
3875
	struct page_cgroup *pc;
3876
	int ret;
3877

3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3888 3889
	if (!do_swap_account)
		goto charge_cur_mm;
3890 3891
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3892
		goto charge_cur_mm;
3893 3894
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3895
	css_put(&memcg->css);
3896 3897
	if (ret == -EINTR)
		ret = 0;
3898
	return ret;
3899
charge_cur_mm:
3900 3901 3902 3903
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3904 3905
}

3906 3907 3908 3909 3910 3911
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3926 3927 3928
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3929 3930 3931 3932 3933 3934 3935 3936 3937
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3938
static void
3939
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3940
					enum charge_type ctype)
3941
{
3942
	if (mem_cgroup_disabled())
3943
		return;
3944
	if (!memcg)
3945
		return;
3946

3947
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3948 3949 3950
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3951 3952 3953
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3954
	 */
3955
	if (do_swap_account && PageSwapCache(page)) {
3956
		swp_entry_t ent = {.val = page_private(page)};
3957
		mem_cgroup_uncharge_swap(ent);
3958
	}
3959 3960
}

3961 3962
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3963
{
3964
	__mem_cgroup_commit_charge_swapin(page, memcg,
3965
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3966 3967
}

3968 3969
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3970
{
3971 3972 3973 3974
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3975
	if (mem_cgroup_disabled())
3976 3977 3978 3979 3980 3981 3982
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3983 3984
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3985 3986 3987 3988
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3989 3990
}

3991
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3992 3993
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3994 3995 3996
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3997

3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4009
		batch->memcg = memcg;
4010 4011
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4012
	 * In those cases, all pages freed continuously can be expected to be in
4013 4014 4015 4016 4017 4018 4019 4020
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4021
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4022 4023
		goto direct_uncharge;

4024 4025 4026 4027 4028
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4029
	if (batch->memcg != memcg)
4030 4031
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4032
	batch->nr_pages++;
4033
	if (uncharge_memsw)
4034
		batch->memsw_nr_pages++;
4035 4036
	return;
direct_uncharge:
4037
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4038
	if (uncharge_memsw)
4039 4040 4041
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4042
}
4043

4044
/*
4045
 * uncharge if !page_mapped(page)
4046
 */
4047
static struct mem_cgroup *
4048 4049
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4050
{
4051
	struct mem_cgroup *memcg = NULL;
4052 4053
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4054
	bool anon;
4055

4056
	if (mem_cgroup_disabled())
4057
		return NULL;
4058

4059
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
4060

A
Andrea Arcangeli 已提交
4061
	if (PageTransHuge(page)) {
4062
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4063 4064
		VM_BUG_ON(!PageTransHuge(page));
	}
4065
	/*
4066
	 * Check if our page_cgroup is valid
4067
	 */
4068
	pc = lookup_page_cgroup(page);
4069
	if (unlikely(!PageCgroupUsed(pc)))
4070
		return NULL;
4071

4072
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4073

4074
	memcg = pc->mem_cgroup;
4075

K
KAMEZAWA Hiroyuki 已提交
4076 4077 4078
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4079 4080
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4081
	switch (ctype) {
4082
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4083 4084 4085 4086 4087
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4088 4089
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4090
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4091
		/* See mem_cgroup_prepare_migration() */
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4113
	}
K
KAMEZAWA Hiroyuki 已提交
4114

4115
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4116

4117
	ClearPageCgroupUsed(pc);
4118 4119 4120 4121 4122 4123
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4124

4125
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4126
	/*
4127
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
4128 4129
	 * will never be freed.
	 */
4130
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4131
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4132 4133
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
4134
	}
4135 4136 4137 4138 4139 4140
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4141
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4142

4143
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4144 4145 4146

unlock_out:
	unlock_page_cgroup(pc);
4147
	return NULL;
4148 4149
}

4150 4151
void mem_cgroup_uncharge_page(struct page *page)
{
4152 4153 4154
	/* early check. */
	if (page_mapped(page))
		return;
4155
	VM_BUG_ON(page->mapping && !PageAnon(page));
4156 4157
	if (PageSwapCache(page))
		return;
4158
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4159 4160 4161 4162 4163
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4164
	VM_BUG_ON(page->mapping);
4165
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4166 4167
}

4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4182 4183
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4204 4205 4206 4207 4208 4209
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4210
	memcg_oom_recover(batch->memcg);
4211 4212 4213 4214
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4215
#ifdef CONFIG_SWAP
4216
/*
4217
 * called after __delete_from_swap_cache() and drop "page" account.
4218 4219
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4220 4221
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4222 4223
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4224 4225 4226 4227 4228
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4229
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4230

K
KAMEZAWA Hiroyuki 已提交
4231 4232 4233 4234 4235
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
4236
		swap_cgroup_record(ent, css_id(&memcg->css));
4237
}
4238
#endif
4239

A
Andrew Morton 已提交
4240
#ifdef CONFIG_MEMCG_SWAP
4241 4242 4243 4244 4245
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4246
{
4247
	struct mem_cgroup *memcg;
4248
	unsigned short id;
4249 4250 4251 4252

	if (!do_swap_account)
		return;

4253 4254 4255
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4256
	if (memcg) {
4257 4258 4259 4260
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4261
		if (!mem_cgroup_is_root(memcg))
4262
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4263
		mem_cgroup_swap_statistics(memcg, false);
4264 4265
		mem_cgroup_put(memcg);
	}
4266
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4267
}
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4284
				struct mem_cgroup *from, struct mem_cgroup *to)
4285 4286 4287 4288 4289 4290 4291 4292
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4293
		mem_cgroup_swap_statistics(to, true);
4294
		/*
4295 4296 4297 4298 4299 4300
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
4301 4302 4303 4304 4305 4306 4307 4308
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4309
				struct mem_cgroup *from, struct mem_cgroup *to)
4310 4311 4312
{
	return -EINVAL;
}
4313
#endif
K
KAMEZAWA Hiroyuki 已提交
4314

4315
/*
4316 4317
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4318
 */
4319 4320
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4321
{
4322
	struct mem_cgroup *memcg = NULL;
4323
	unsigned int nr_pages = 1;
4324
	struct page_cgroup *pc;
4325
	enum charge_type ctype;
4326

4327
	*memcgp = NULL;
4328

4329
	if (mem_cgroup_disabled())
4330
		return;
4331

4332 4333 4334
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4335 4336 4337
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4338 4339
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4371
	}
4372
	unlock_page_cgroup(pc);
4373 4374 4375 4376
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4377
	if (!memcg)
4378
		return;
4379

4380
	*memcgp = memcg;
4381 4382 4383 4384 4385 4386 4387
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4388
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4389
	else
4390
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4391 4392 4393 4394 4395
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4396
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4397
}
4398

4399
/* remove redundant charge if migration failed*/
4400
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4401
	struct page *oldpage, struct page *newpage, bool migration_ok)
4402
{
4403
	struct page *used, *unused;
4404
	struct page_cgroup *pc;
4405
	bool anon;
4406

4407
	if (!memcg)
4408
		return;
4409

4410
	if (!migration_ok) {
4411 4412
		used = oldpage;
		unused = newpage;
4413
	} else {
4414
		used = newpage;
4415 4416
		unused = oldpage;
	}
4417
	anon = PageAnon(used);
4418 4419 4420 4421
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4422
	css_put(&memcg->css);
4423
	/*
4424 4425 4426
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4427
	 */
4428 4429 4430 4431 4432
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4433
	/*
4434 4435 4436 4437 4438 4439
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4440
	 */
4441
	if (anon)
4442
		mem_cgroup_uncharge_page(used);
4443
}
4444

4445 4446 4447 4448 4449 4450 4451 4452
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4453
	struct mem_cgroup *memcg = NULL;
4454 4455 4456 4457 4458 4459 4460 4461 4462
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4463 4464 4465 4466 4467
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
4468 4469
	unlock_page_cgroup(pc);

4470 4471 4472 4473 4474 4475
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4476 4477 4478 4479 4480
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4481
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4482 4483
}

4484 4485 4486 4487 4488 4489
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4490 4491 4492 4493 4494
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4514 4515
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4516 4517 4518 4519
	}
}
#endif

4520
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4521
				unsigned long long val)
4522
{
4523
	int retry_count;
4524
	u64 memswlimit, memlimit;
4525
	int ret = 0;
4526 4527
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4528
	int enlarge;
4529 4530 4531 4532 4533 4534 4535 4536 4537

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4538

4539
	enlarge = 0;
4540
	while (retry_count) {
4541 4542 4543 4544
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4545 4546 4547
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4548
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4549 4550 4551 4552 4553 4554
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4555 4556
			break;
		}
4557 4558 4559 4560 4561

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4562
		ret = res_counter_set_limit(&memcg->res, val);
4563 4564 4565 4566 4567 4568
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4569 4570 4571 4572 4573
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4574 4575
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4576 4577 4578 4579 4580 4581
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4582
	}
4583 4584
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4585

4586 4587 4588
	return ret;
}

L
Li Zefan 已提交
4589 4590
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4591
{
4592
	int retry_count;
4593
	u64 memlimit, memswlimit, oldusage, curusage;
4594 4595
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4596
	int enlarge = 0;
4597

4598 4599 4600
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4601 4602 4603 4604 4605 4606 4607 4608
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4609
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4610 4611 4612 4613 4614 4615 4616 4617
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4618 4619 4620
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4621
		ret = res_counter_set_limit(&memcg->memsw, val);
4622 4623 4624 4625 4626 4627
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4628 4629 4630 4631 4632
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4633 4634 4635
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4636
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4637
		/* Usage is reduced ? */
4638
		if (curusage >= oldusage)
4639
			retry_count--;
4640 4641
		else
			oldusage = curusage;
4642
	}
4643 4644
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4645 4646 4647
	return ret;
}

4648
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4649 4650
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4651 4652 4653 4654 4655 4656
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4657
	unsigned long long excess;
4658
	unsigned long nr_scanned;
4659 4660 4661 4662

	if (order > 0)
		return 0;

4663
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4677
		nr_scanned = 0;
4678
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4679
						    gfp_mask, &nr_scanned);
4680
		nr_reclaimed += reclaimed;
4681
		*total_scanned += nr_scanned;
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4704
				if (next_mz == mz)
4705
					css_put(&next_mz->memcg->css);
4706
				else /* next_mz == NULL or other memcg */
4707 4708 4709
					break;
			} while (1);
		}
4710 4711
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4712 4713 4714 4715 4716 4717 4718 4719
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4720
		/* If excess == 0, no tree ops */
4721
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4722
		spin_unlock(&mctz->lock);
4723
		css_put(&mz->memcg->css);
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4736
		css_put(&next_mz->memcg->css);
4737 4738 4739
	return nr_reclaimed;
}

4740 4741 4742 4743 4744 4745 4746
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4747
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4748 4749
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4750
 */
4751
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4752
				int node, int zid, enum lru_list lru)
4753
{
4754
	struct lruvec *lruvec;
4755
	unsigned long flags;
4756
	struct list_head *list;
4757 4758
	struct page *busy;
	struct zone *zone;
4759

K
KAMEZAWA Hiroyuki 已提交
4760
	zone = &NODE_DATA(node)->node_zones[zid];
4761 4762
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4763

4764
	busy = NULL;
4765
	do {
4766
		struct page_cgroup *pc;
4767 4768
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4769
		spin_lock_irqsave(&zone->lru_lock, flags);
4770
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4771
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4772
			break;
4773
		}
4774 4775 4776
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4777
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4778
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4779 4780
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4781
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4782

4783
		pc = lookup_page_cgroup(page);
4784

4785
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4786
			/* found lock contention or "pc" is obsolete. */
4787
			busy = page;
4788 4789 4790
			cond_resched();
		} else
			busy = NULL;
4791
	} while (!list_empty(list));
4792 4793 4794
}

/*
4795 4796
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4797
 * This enables deleting this mem_cgroup.
4798 4799
 *
 * Caller is responsible for holding css reference on the memcg.
4800
 */
4801
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4802
{
4803
	int node, zid;
4804
	u64 usage;
4805

4806
	do {
4807 4808
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4809 4810
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4811
		for_each_node_state(node, N_MEMORY) {
4812
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4813 4814
				enum lru_list lru;
				for_each_lru(lru) {
4815
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4816
							node, zid, lru);
4817
				}
4818
			}
4819
		}
4820 4821
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4822
		cond_resched();
4823

4824
		/*
4825 4826 4827 4828 4829
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4830 4831 4832 4833 4834 4835
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4836 4837 4838
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4839 4840
}

4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
	struct cgroup *pos;

	/* bounce at first found */
	cgroup_for_each_child(pos, memcg->css.cgroup)
		return true;
	return false;
}

/*
4857 4858
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4859 4860 4861 4862 4863 4864 4865 4866 4867
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4878

4879
	/* returns EBUSY if there is a task or if we come here twice. */
4880 4881 4882
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4883 4884
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4885
	/* try to free all pages in this cgroup */
4886
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4887
		int progress;
4888

4889 4890 4891
		if (signal_pending(current))
			return -EINTR;

4892
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4893
						false);
4894
		if (!progress) {
4895
			nr_retries--;
4896
			/* maybe some writeback is necessary */
4897
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4898
		}
4899 4900

	}
K
KAMEZAWA Hiroyuki 已提交
4901
	lru_add_drain();
4902 4903 4904
	mem_cgroup_reparent_charges(memcg);

	return 0;
4905 4906
}

4907
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4908
{
4909 4910 4911
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

4912 4913
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4914 4915 4916 4917 4918
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
4919 4920 4921
}


4922 4923 4924 4925 4926 4927 4928 4929 4930
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
4931
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4932
	struct cgroup *parent = cont->parent;
4933
	struct mem_cgroup *parent_memcg = NULL;
4934 4935

	if (parent)
4936
		parent_memcg = mem_cgroup_from_cont(parent);
4937

4938
	mutex_lock(&memcg_create_mutex);
4939 4940 4941 4942

	if (memcg->use_hierarchy == val)
		goto out;

4943
	/*
4944
	 * If parent's use_hierarchy is set, we can't make any modifications
4945 4946 4947 4948 4949 4950
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4951
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4952
				(val == 1 || val == 0)) {
4953
		if (!__memcg_has_children(memcg))
4954
			memcg->use_hierarchy = val;
4955 4956 4957 4958
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4959 4960

out:
4961
	mutex_unlock(&memcg_create_mutex);
4962 4963 4964 4965

	return retval;
}

4966

4967
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4968
					       enum mem_cgroup_stat_index idx)
4969
{
K
KAMEZAWA Hiroyuki 已提交
4970
	struct mem_cgroup *iter;
4971
	long val = 0;
4972

4973
	/* Per-cpu values can be negative, use a signed accumulator */
4974
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4975 4976 4977 4978 4979
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4980 4981
}

4982
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4983
{
K
KAMEZAWA Hiroyuki 已提交
4984
	u64 val;
4985

4986
	if (!mem_cgroup_is_root(memcg)) {
4987
		if (!swap)
4988
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4989
		else
4990
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4991 4992
	}

4993 4994
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4995

K
KAMEZAWA Hiroyuki 已提交
4996
	if (swap)
4997
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4998 4999 5000 5001

	return val << PAGE_SHIFT;
}

5002 5003 5004
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5005
{
5006
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5007
	char str[64];
5008
	u64 val;
G
Glauber Costa 已提交
5009 5010
	int name, len;
	enum res_type type;
5011 5012 5013

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5014 5015 5016 5017

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5018 5019
	switch (type) {
	case _MEM:
5020
		if (name == RES_USAGE)
5021
			val = mem_cgroup_usage(memcg, false);
5022
		else
5023
			val = res_counter_read_u64(&memcg->res, name);
5024 5025
		break;
	case _MEMSWAP:
5026
		if (name == RES_USAGE)
5027
			val = mem_cgroup_usage(memcg, true);
5028
		else
5029
			val = res_counter_read_u64(&memcg->memsw, name);
5030
		break;
5031 5032 5033
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5034 5035 5036
	default:
		BUG();
	}
5037 5038 5039

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5040
}
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5059
	mutex_lock(&memcg_create_mutex);
5060 5061
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5062
		if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5063 5064 5065 5066 5067 5068
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5069 5070 5071 5072 5073
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
5074 5075 5076 5077 5078 5079 5080
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);

5081 5082 5083 5084 5085 5086 5087
		/*
		 * kmem charges can outlive the cgroup. In the case of slab
		 * pages, for instance, a page contain objects from various
		 * processes, so it is unfeasible to migrate them away. We
		 * need to reference count the memcg because of that.
		 */
		mem_cgroup_get(memcg);
5088 5089 5090 5091
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5092
	mutex_unlock(&memcg_create_mutex);
5093 5094 5095 5096
#endif
	return ret;
}

5097
#ifdef CONFIG_MEMCG_KMEM
5098
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5099
{
5100
	int ret = 0;
5101 5102
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5103 5104
		goto out;

5105
	memcg->kmem_account_flags = parent->kmem_account_flags;
5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
	 * destroy(), called if we fail, will issue static_key_slow_inc() and
	 * mem_cgroup_put() if kmem is enabled. We have to either call them
	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
	 * this more consistent, since it always leads to the same destroy path
	 */
	mem_cgroup_get(memcg);
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
	ret = memcg_update_cache_sizes(memcg);
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5133
}
5134
#endif /* CONFIG_MEMCG_KMEM */
5135

5136 5137 5138 5139
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5140 5141
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
5142
{
5143
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5144 5145
	enum res_type type;
	int name;
5146 5147 5148
	unsigned long long val;
	int ret;

5149 5150
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5151 5152 5153 5154

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5155
	switch (name) {
5156
	case RES_LIMIT:
5157 5158 5159 5160
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5161 5162
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5163 5164 5165
		if (ret)
			break;
		if (type == _MEM)
5166
			ret = mem_cgroup_resize_limit(memcg, val);
5167
		else if (type == _MEMSWAP)
5168
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5169 5170 5171 5172
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
5173
		break;
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5188 5189 5190 5191 5192
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5193 5194
}

5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5222
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5223
{
5224
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5225 5226
	int name;
	enum res_type type;
5227

5228 5229
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5230 5231 5232 5233

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5234
	switch (name) {
5235
	case RES_MAX_USAGE:
5236
		if (type == _MEM)
5237
			res_counter_reset_max(&memcg->res);
5238
		else if (type == _MEMSWAP)
5239
			res_counter_reset_max(&memcg->memsw);
5240 5241 5242 5243
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5244 5245
		break;
	case RES_FAILCNT:
5246
		if (type == _MEM)
5247
			res_counter_reset_failcnt(&memcg->res);
5248
		else if (type == _MEMSWAP)
5249
			res_counter_reset_failcnt(&memcg->memsw);
5250 5251 5252 5253
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5254 5255
		break;
	}
5256

5257
	return 0;
5258 5259
}

5260 5261 5262 5263 5264 5265
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

5266
#ifdef CONFIG_MMU
5267 5268 5269
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
5270
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5271 5272 5273

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5274

5275
	/*
5276 5277 5278 5279
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5280
	 */
5281
	memcg->move_charge_at_immigrate = val;
5282 5283
	return 0;
}
5284 5285 5286 5287 5288 5289 5290
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5291

5292
#ifdef CONFIG_NUMA
5293
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5294
				      struct seq_file *m)
5295 5296 5297 5298
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5299
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5300

5301
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5302
	seq_printf(m, "total=%lu", total_nr);
5303
	for_each_node_state(nid, N_MEMORY) {
5304
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5305 5306 5307 5308
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5309
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5310
	seq_printf(m, "file=%lu", file_nr);
5311
	for_each_node_state(nid, N_MEMORY) {
5312
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5313
				LRU_ALL_FILE);
5314 5315 5316 5317
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5318
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5319
	seq_printf(m, "anon=%lu", anon_nr);
5320
	for_each_node_state(nid, N_MEMORY) {
5321
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5322
				LRU_ALL_ANON);
5323 5324 5325 5326
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5327
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5328
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5329
	for_each_node_state(nid, N_MEMORY) {
5330
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5331
				BIT(LRU_UNEVICTABLE));
5332 5333 5334 5335 5336 5337 5338
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5339 5340 5341 5342 5343
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5344
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5345
				 struct seq_file *m)
5346
{
5347
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5348 5349
	struct mem_cgroup *mi;
	unsigned int i;
5350

5351
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5352
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5353
			continue;
5354 5355
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5356
	}
L
Lee Schermerhorn 已提交
5357

5358 5359 5360 5361 5362 5363 5364 5365
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5366
	/* Hierarchical information */
5367 5368
	{
		unsigned long long limit, memsw_limit;
5369
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5370
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5371
		if (do_swap_account)
5372 5373
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5374
	}
K
KOSAKI Motohiro 已提交
5375

5376 5377 5378
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5379
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5380
			continue;
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5401
	}
K
KAMEZAWA Hiroyuki 已提交
5402

K
KOSAKI Motohiro 已提交
5403 5404 5405 5406
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5407
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5408 5409 5410 5411 5412
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5413
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5414
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5415

5416 5417 5418 5419
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5420
			}
5421 5422 5423 5424
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5425 5426 5427
	}
#endif

5428 5429 5430
	return 0;
}

K
KOSAKI Motohiro 已提交
5431 5432 5433 5434
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

5435
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5436 5437 5438 5439 5440 5441 5442
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
5443

K
KOSAKI Motohiro 已提交
5444 5445 5446 5447 5448 5449 5450
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
5451

5452
	mutex_lock(&memcg_create_mutex);
5453

K
KOSAKI Motohiro 已提交
5454
	/* If under hierarchy, only empty-root can set this value */
5455
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5456
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5457
		return -EINVAL;
5458
	}
K
KOSAKI Motohiro 已提交
5459 5460 5461

	memcg->swappiness = val;

5462
	mutex_unlock(&memcg_create_mutex);
5463

K
KOSAKI Motohiro 已提交
5464 5465 5466
	return 0;
}

5467 5468 5469 5470 5471 5472 5473 5474
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5475
		t = rcu_dereference(memcg->thresholds.primary);
5476
	else
5477
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5478 5479 5480 5481 5482 5483 5484

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5485
	 * current_threshold points to threshold just below or equal to usage.
5486 5487 5488
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5489
	i = t->current_threshold;
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5513
	t->current_threshold = i - 1;
5514 5515 5516 5517 5518 5519
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5520 5521 5522 5523 5524 5525 5526
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5537
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5538 5539 5540
{
	struct mem_cgroup_eventfd_list *ev;

5541
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5542 5543 5544 5545
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5546
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5547
{
K
KAMEZAWA Hiroyuki 已提交
5548 5549
	struct mem_cgroup *iter;

5550
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5551
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5552 5553 5554 5555
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5556 5557
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5558 5559
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5560
	enum res_type type = MEMFILE_TYPE(cft->private);
5561
	u64 threshold, usage;
5562
	int i, size, ret;
5563 5564 5565 5566 5567 5568

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5569

5570
	if (type == _MEM)
5571
		thresholds = &memcg->thresholds;
5572
	else if (type == _MEMSWAP)
5573
		thresholds = &memcg->memsw_thresholds;
5574 5575 5576 5577 5578 5579
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5580
	if (thresholds->primary)
5581 5582
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5583
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5584 5585

	/* Allocate memory for new array of thresholds */
5586
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5587
			GFP_KERNEL);
5588
	if (!new) {
5589 5590 5591
		ret = -ENOMEM;
		goto unlock;
	}
5592
	new->size = size;
5593 5594

	/* Copy thresholds (if any) to new array */
5595 5596
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5597
				sizeof(struct mem_cgroup_threshold));
5598 5599
	}

5600
	/* Add new threshold */
5601 5602
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5603 5604

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5605
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5606 5607 5608
			compare_thresholds, NULL);

	/* Find current threshold */
5609
	new->current_threshold = -1;
5610
	for (i = 0; i < size; i++) {
5611
		if (new->entries[i].threshold <= usage) {
5612
			/*
5613 5614
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5615 5616
			 * it here.
			 */
5617
			++new->current_threshold;
5618 5619
		} else
			break;
5620 5621
	}

5622 5623 5624 5625 5626
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5627

5628
	/* To be sure that nobody uses thresholds */
5629 5630 5631 5632 5633 5634 5635 5636
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5637
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5638
	struct cftype *cft, struct eventfd_ctx *eventfd)
5639 5640
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5641 5642
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5643
	enum res_type type = MEMFILE_TYPE(cft->private);
5644
	u64 usage;
5645
	int i, j, size;
5646 5647 5648

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5649
		thresholds = &memcg->thresholds;
5650
	else if (type == _MEMSWAP)
5651
		thresholds = &memcg->memsw_thresholds;
5652 5653 5654
	else
		BUG();

5655 5656 5657
	if (!thresholds->primary)
		goto unlock;

5658 5659 5660 5661 5662 5663
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5664 5665 5666
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5667 5668 5669
			size++;
	}

5670
	new = thresholds->spare;
5671

5672 5673
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5674 5675
		kfree(new);
		new = NULL;
5676
		goto swap_buffers;
5677 5678
	}

5679
	new->size = size;
5680 5681

	/* Copy thresholds and find current threshold */
5682 5683 5684
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5685 5686
			continue;

5687
		new->entries[j] = thresholds->primary->entries[i];
5688
		if (new->entries[j].threshold <= usage) {
5689
			/*
5690
			 * new->current_threshold will not be used
5691 5692 5693
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5694
			++new->current_threshold;
5695 5696 5697 5698
		}
		j++;
	}

5699
swap_buffers:
5700 5701
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5702 5703 5704 5705 5706 5707
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5708
	rcu_assign_pointer(thresholds->primary, new);
5709

5710
	/* To be sure that nobody uses thresholds */
5711
	synchronize_rcu();
5712
unlock:
5713 5714
	mutex_unlock(&memcg->thresholds_lock);
}
5715

K
KAMEZAWA Hiroyuki 已提交
5716 5717 5718 5719 5720
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5721
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5722 5723 5724 5725 5726 5727

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5728
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5729 5730 5731 5732 5733

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5734
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5735
		eventfd_signal(eventfd, 1);
5736
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5737 5738 5739 5740

	return 0;
}

5741
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5742 5743
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5744
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
5745
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5746
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5747 5748 5749

	BUG_ON(type != _OOM_TYPE);

5750
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5751

5752
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5753 5754 5755 5756 5757 5758
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5759
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5760 5761
}

5762 5763 5764
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5765
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5766

5767
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5768

5769
	if (atomic_read(&memcg->under_oom))
5770 5771 5772 5773 5774 5775 5776 5777 5778
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
5779
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5780 5781 5782 5783 5784 5785 5786 5787
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

5788
	mutex_lock(&memcg_create_mutex);
5789
	/* oom-kill-disable is a flag for subhierarchy. */
5790
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5791
		mutex_unlock(&memcg_create_mutex);
5792 5793
		return -EINVAL;
	}
5794
	memcg->oom_kill_disable = val;
5795
	if (!val)
5796
		memcg_oom_recover(memcg);
5797
	mutex_unlock(&memcg_create_mutex);
5798 5799 5800
	return 0;
}

A
Andrew Morton 已提交
5801
#ifdef CONFIG_MEMCG_KMEM
5802
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5803
{
5804 5805
	int ret;

5806
	memcg->kmemcg_id = -1;
5807 5808 5809
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5810

5811
	return mem_cgroup_sockets_init(memcg, ss);
5812 5813
};

5814
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5815
{
5816
	mem_cgroup_sockets_destroy(memcg);
5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	/*
	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
	 * path here, being careful not to race with memcg_uncharge_kmem: it is
	 * possible that the charges went down to 0 between mark_dead and the
	 * res_counter read, so in that case, we don't need the put
	 */
	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
G
Glauber Costa 已提交
5831
}
5832
#else
5833
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5834 5835 5836
{
	return 0;
}
G
Glauber Costa 已提交
5837

5838
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5839 5840
{
}
5841 5842
#endif

B
Balbir Singh 已提交
5843 5844
static struct cftype mem_cgroup_files[] = {
	{
5845
		.name = "usage_in_bytes",
5846
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5847
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5848 5849
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5850
	},
5851 5852
	{
		.name = "max_usage_in_bytes",
5853
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5854
		.trigger = mem_cgroup_reset,
5855
		.read = mem_cgroup_read,
5856
	},
B
Balbir Singh 已提交
5857
	{
5858
		.name = "limit_in_bytes",
5859
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5860
		.write_string = mem_cgroup_write,
5861
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5862
	},
5863 5864 5865 5866
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5867
		.read = mem_cgroup_read,
5868
	},
B
Balbir Singh 已提交
5869 5870
	{
		.name = "failcnt",
5871
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5872
		.trigger = mem_cgroup_reset,
5873
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5874
	},
5875 5876
	{
		.name = "stat",
5877
		.read_seq_string = memcg_stat_show,
5878
	},
5879 5880 5881 5882
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5883 5884 5885 5886 5887
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5888 5889 5890 5891 5892
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5893 5894 5895 5896 5897
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5898 5899
	{
		.name = "oom_control",
5900 5901
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5902 5903 5904 5905
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5906 5907 5908
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5909
		.read_seq_string = memcg_numa_stat_show,
5910 5911
	},
#endif
5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5936 5937 5938 5939 5940 5941
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5942
#endif
5943
	{ },	/* terminate */
5944
};
5945

5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
5976
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5977 5978
{
	struct mem_cgroup_per_node *pn;
5979
	struct mem_cgroup_per_zone *mz;
5980
	int zone, tmp = node;
5981 5982 5983 5984 5985 5986 5987 5988
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5989 5990
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5991
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5992 5993
	if (!pn)
		return 1;
5994 5995 5996

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5997
		lruvec_init(&mz->lruvec);
5998
		mz->usage_in_excess = 0;
5999
		mz->on_tree = false;
6000
		mz->memcg = memcg;
6001
	}
6002
	memcg->info.nodeinfo[node] = pn;
6003 6004 6005
	return 0;
}

6006
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6007
{
6008
	kfree(memcg->info.nodeinfo[node]);
6009 6010
}

6011 6012
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6013
	struct mem_cgroup *memcg;
6014
	size_t size = memcg_size();
6015

6016
	/* Can be very big if nr_node_ids is very big */
6017
	if (size < PAGE_SIZE)
6018
		memcg = kzalloc(size, GFP_KERNEL);
6019
	else
6020
		memcg = vzalloc(size);
6021

6022
	if (!memcg)
6023 6024
		return NULL;

6025 6026
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6027
		goto out_free;
6028 6029
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6030 6031 6032

out_free:
	if (size < PAGE_SIZE)
6033
		kfree(memcg);
6034
	else
6035
		vfree(memcg);
6036
	return NULL;
6037 6038
}

6039
/*
6040 6041 6042 6043 6044 6045 6046 6047
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6048
 */
6049 6050

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6051
{
6052
	int node;
6053
	size_t size = memcg_size();
6054

6055 6056 6057 6058 6059 6060 6061 6062
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6074
	disarm_static_keys(memcg);
6075 6076 6077 6078
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6079
}
6080

6081

6082
/*
6083 6084 6085
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
6086
 */
6087
static void free_work(struct work_struct *work)
6088
{
6089
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6090

6091 6092 6093
	memcg = container_of(work, struct mem_cgroup, work_freeing);
	__mem_cgroup_free(memcg);
}
K
KAMEZAWA Hiroyuki 已提交
6094

6095 6096 6097
static void free_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6098

6099 6100 6101
	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, free_work);
	schedule_work(&memcg->work_freeing);
6102 6103
}

6104
static void mem_cgroup_get(struct mem_cgroup *memcg)
6105
{
6106
	atomic_inc(&memcg->refcnt);
6107 6108
}

6109
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6110
{
6111 6112
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6113
		call_rcu(&memcg->rcu_freeing, free_rcu);
6114 6115 6116
		if (parent)
			mem_cgroup_put(parent);
	}
6117 6118
}

6119
static void mem_cgroup_put(struct mem_cgroup *memcg)
6120
{
6121
	__mem_cgroup_put(memcg, 1);
6122 6123
}

6124 6125 6126
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6127
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6128
{
6129
	if (!memcg->res.parent)
6130
		return NULL;
6131
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6132
}
G
Glauber Costa 已提交
6133
EXPORT_SYMBOL(parent_mem_cgroup);
6134

6135
static void __init mem_cgroup_soft_limit_tree_init(void)
6136 6137 6138 6139 6140
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6141
	for_each_node(node) {
6142 6143 6144 6145
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6146
		BUG_ON(!rtpn);
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6158
static struct cgroup_subsys_state * __ref
6159
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
6160
{
6161
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6162
	long error = -ENOMEM;
6163
	int node;
B
Balbir Singh 已提交
6164

6165 6166
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6167
		return ERR_PTR(error);
6168

B
Bob Liu 已提交
6169
	for_each_node(node)
6170
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6171
			goto free_out;
6172

6173
	/* root ? */
6174
	if (cont->parent == NULL) {
6175
		root_mem_cgroup = memcg;
6176 6177 6178
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6179
	}
6180

6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
mem_cgroup_css_online(struct cgroup *cont)
{
	struct mem_cgroup *memcg, *parent;
	int error = 0;

	if (!cont->parent)
		return 0;

6204
	mutex_lock(&memcg_create_mutex);
6205 6206 6207 6208 6209 6210 6211 6212
	memcg = mem_cgroup_from_cont(cont);
	parent = mem_cgroup_from_cont(cont->parent);

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6213 6214
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6215
		res_counter_init(&memcg->kmem, &parent->kmem);
6216

6217 6218 6219 6220 6221 6222 6223
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
6224
	} else {
6225 6226
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6227
		res_counter_init(&memcg->kmem, NULL);
6228 6229 6230 6231 6232
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6233
		if (parent != root_mem_cgroup)
6234
			mem_cgroup_subsys.broken_hierarchy = true;
6235
	}
6236 6237

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6238
	mutex_unlock(&memcg_create_mutex);
6239 6240 6241 6242 6243 6244 6245
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
6246 6247
		if (parent->use_hierarchy)
			mem_cgroup_put(parent);
6248
	}
6249
	return error;
B
Balbir Singh 已提交
6250 6251
}

M
Michal Hocko 已提交
6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
		atomic_inc(&parent->dead_count);

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
		atomic_inc(&root_mem_cgroup->dead_count);
}

6270
static void mem_cgroup_css_offline(struct cgroup *cont)
6271
{
6272
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6273

M
Michal Hocko 已提交
6274
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6275
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6276
	mem_cgroup_destroy_all_caches(memcg);
6277 6278
}

6279
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
6280
{
6281
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6282

6283
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
6284

6285
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
6286 6287
}

6288
#ifdef CONFIG_MMU
6289
/* Handlers for move charge at task migration. */
6290 6291
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6292
{
6293 6294
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6295
	struct mem_cgroup *memcg = mc.to;
6296

6297
	if (mem_cgroup_is_root(memcg)) {
6298 6299 6300 6301 6302 6303 6304 6305
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6306
		 * "memcg" cannot be under rmdir() because we've already checked
6307 6308 6309 6310
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6311
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6312
			goto one_by_one;
6313
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6314
						PAGE_SIZE * count, &dummy)) {
6315
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6332 6333
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6334
		if (ret)
6335
			/* mem_cgroup_clear_mc() will do uncharge later */
6336
			return ret;
6337 6338
		mc.precharge++;
	}
6339 6340 6341 6342
	return ret;
}

/**
6343
 * get_mctgt_type - get target type of moving charge
6344 6345 6346
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6347
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6348 6349 6350 6351 6352 6353
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6354 6355 6356
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6357 6358 6359 6360 6361
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6362
	swp_entry_t	ent;
6363 6364 6365
};

enum mc_target_type {
6366
	MC_TARGET_NONE = 0,
6367
	MC_TARGET_PAGE,
6368
	MC_TARGET_SWAP,
6369 6370
};

D
Daisuke Nishimura 已提交
6371 6372
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6373
{
D
Daisuke Nishimura 已提交
6374
	struct page *page = vm_normal_page(vma, addr, ptent);
6375

D
Daisuke Nishimura 已提交
6376 6377 6378 6379
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6380
		if (!move_anon())
D
Daisuke Nishimura 已提交
6381
			return NULL;
6382 6383
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6384 6385 6386 6387 6388 6389 6390
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6391
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6392 6393 6394 6395 6396 6397 6398 6399
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6400 6401 6402 6403
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6404
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6405 6406 6407 6408 6409
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6410 6411 6412 6413 6414 6415 6416
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6417

6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6437 6438 6439 6440 6441 6442
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6443
		if (do_swap_account)
6444
			*entry = swap;
6445
		page = find_get_page(swap_address_space(swap), swap.val);
6446
	}
6447
#endif
6448 6449 6450
	return page;
}

6451
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6452 6453 6454 6455
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6456
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6457 6458 6459 6460 6461 6462
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6463 6464
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6465 6466

	if (!page && !ent.val)
6467
		return ret;
6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6483 6484
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6485
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6486 6487 6488
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6489 6490 6491 6492
	}
	return ret;
}

6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6528 6529 6530 6531 6532 6533 6534 6535
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6536 6537 6538 6539
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6540
		return 0;
6541
	}
6542

6543 6544
	if (pmd_trans_unstable(pmd))
		return 0;
6545 6546
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6547
		if (get_mctgt_type(vma, addr, *pte, NULL))
6548 6549 6550 6551
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6552 6553 6554
	return 0;
}

6555 6556 6557 6558 6559
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6560
	down_read(&mm->mmap_sem);
6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6572
	up_read(&mm->mmap_sem);
6573 6574 6575 6576 6577 6578 6579 6580 6581

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6582 6583 6584 6585 6586
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6587 6588
}

6589 6590
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6591
{
6592 6593 6594
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

6595
	/* we must uncharge all the leftover precharges from mc.to */
6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6607
	}
6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6642
	spin_lock(&mc.lock);
6643 6644
	mc.from = NULL;
	mc.to = NULL;
6645
	spin_unlock(&mc.lock);
6646
	mem_cgroup_end_move(from);
6647 6648
}

6649 6650
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6651
{
6652
	struct task_struct *p = cgroup_taskset_first(tset);
6653
	int ret = 0;
6654
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6655
	unsigned long move_charge_at_immigrate;
6656

6657 6658 6659 6660 6661 6662 6663
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6664 6665 6666
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6667
		VM_BUG_ON(from == memcg);
6668 6669 6670 6671 6672

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6673 6674 6675 6676
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6677
			VM_BUG_ON(mc.moved_charge);
6678
			VM_BUG_ON(mc.moved_swap);
6679
			mem_cgroup_start_move(from);
6680
			spin_lock(&mc.lock);
6681
			mc.from = from;
6682
			mc.to = memcg;
6683
			mc.immigrate_flags = move_charge_at_immigrate;
6684
			spin_unlock(&mc.lock);
6685
			/* We set mc.moving_task later */
6686 6687 6688 6689

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6690 6691
		}
		mmput(mm);
6692 6693 6694 6695
	}
	return ret;
}

6696 6697
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6698
{
6699
	mem_cgroup_clear_mc();
6700 6701
}

6702 6703 6704
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6705
{
6706 6707 6708 6709
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6710 6711 6712 6713
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6714

6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6726
		if (mc.precharge < HPAGE_PMD_NR) {
6727 6728 6729 6730 6731 6732 6733 6734 6735
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6736
							pc, mc.from, mc.to)) {
6737 6738 6739 6740 6741 6742 6743 6744
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6745
		return 0;
6746 6747
	}

6748 6749
	if (pmd_trans_unstable(pmd))
		return 0;
6750 6751 6752 6753
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6754
		swp_entry_t ent;
6755 6756 6757 6758

		if (!mc.precharge)
			break;

6759
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6760 6761 6762 6763 6764
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6765
			if (!mem_cgroup_move_account(page, 1, pc,
6766
						     mc.from, mc.to)) {
6767
				mc.precharge--;
6768 6769
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6770 6771
			}
			putback_lru_page(page);
6772
put:			/* get_mctgt_type() gets the page */
6773 6774
			put_page(page);
			break;
6775 6776
		case MC_TARGET_SWAP:
			ent = target.ent;
6777
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6778
				mc.precharge--;
6779 6780 6781
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6782
			break;
6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6797
		ret = mem_cgroup_do_precharge(1);
6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6841
	up_read(&mm->mmap_sem);
6842 6843
}

6844 6845
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6846
{
6847
	struct task_struct *p = cgroup_taskset_first(tset);
6848
	struct mm_struct *mm = get_task_mm(p);
6849 6850

	if (mm) {
6851 6852
		if (mc.to)
			mem_cgroup_move_charge(mm);
6853 6854
		mmput(mm);
	}
6855 6856
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6857
}
6858
#else	/* !CONFIG_MMU */
6859 6860
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6861 6862 6863
{
	return 0;
}
6864 6865
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6866 6867
{
}
6868 6869
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
6870 6871 6872
{
}
#endif
B
Balbir Singh 已提交
6873

B
Balbir Singh 已提交
6874 6875 6876
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6877
	.css_alloc = mem_cgroup_css_alloc,
6878
	.css_online = mem_cgroup_css_online,
6879 6880
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6881 6882
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6883
	.attach = mem_cgroup_move_task,
6884
	.base_cftypes = mem_cgroup_files,
6885
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6886
	.use_id = 1,
B
Balbir Singh 已提交
6887
};
6888

A
Andrew Morton 已提交
6889
#ifdef CONFIG_MEMCG_SWAP
6890 6891 6892
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6893
	if (!strcmp(s, "1"))
6894
		really_do_swap_account = 1;
6895
	else if (!strcmp(s, "0"))
6896 6897 6898
		really_do_swap_account = 0;
	return 1;
}
6899
__setup("swapaccount=", enable_swap_account);
6900

6901 6902
static void __init memsw_file_init(void)
{
6903 6904 6905 6906 6907 6908 6909 6910 6911
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6912
}
6913

6914
#else
6915
static void __init enable_swap_cgroup(void)
6916 6917
{
}
6918
#endif
6919 6920

/*
6921 6922 6923 6924 6925 6926
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6927 6928 6929 6930
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6931
	enable_swap_cgroup();
6932
	mem_cgroup_soft_limit_tree_init();
6933
	memcg_stock_init();
6934 6935 6936
	return 0;
}
subsys_initcall(mem_cgroup_init);