memcontrol.c 146.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75 76 77 78 79
#else
#define do_swap_account		(0)
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 94 95
	MEM_CGROUP_STAT_NSTATS,
};

96 97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111 112
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
113
	MEM_CGROUP_TARGET_NUMAINFO,
114 115 116 117
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
118
#define NUMAINFO_EVENTS_TARGET	(1024)
119

120
struct mem_cgroup_stat_cpu {
121
	long count[MEM_CGROUP_STAT_NSTATS];
122
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123
	unsigned long targets[MEM_CGROUP_NTARGETS];
124 125
};

126 127 128 129
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
130 131 132
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
133 134
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
135 136

	struct zone_reclaim_stat reclaim_stat;
137 138 139 140
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
141 142
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
143 144 145 146 147 148 149 150 151 152 153 154
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

175 176 177 178 179
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
180
/* For threshold */
181 182
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
183
	int current_threshold;
184 185 186 187 188
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
189 190 191 192 193 194 195 196 197 198 199 200

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
201 202 203 204 205
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
206

207 208
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
209

B
Balbir Singh 已提交
210 211 212 213 214 215 216
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
217 218 219
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
220 221 222 223 224 225 226
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
227 228 229 230
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
231 232 233 234
	/*
	 * the counter to account for kmem usage.
	 */
	struct res_counter kmem;
235 236 237 238
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
239
	struct mem_cgroup_lru_info info;
240
	/*
241
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
242
	 * reclaimed from.
243
	 */
K
KAMEZAWA Hiroyuki 已提交
244
	int last_scanned_child;
245 246 247
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
248 249
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
250
#endif
251 252 253 254
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
255 256 257 258

	bool		oom_lock;
	atomic_t	under_oom;

259
	atomic_t	refcnt;
260

261
	int	swappiness;
262 263
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
264

265 266 267
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

268 269 270 271
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
272
	struct mem_cgroup_thresholds thresholds;
273

274
	/* thresholds for mem+swap usage. RCU-protected */
275
	struct mem_cgroup_thresholds memsw_thresholds;
276

K
KAMEZAWA Hiroyuki 已提交
277 278
	/* For oom notifier event fd */
	struct list_head oom_notify;
279

280 281 282 283 284
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
285 286 287 288 289
	/*
	 * Should kernel memory limits be stabilished independently
	 * from user memory ?
	 */
	int		kmem_independent_accounting;
290
	/*
291
	 * percpu counter.
292
	 */
293
	struct mem_cgroup_stat_cpu *stat;
294 295 296 297 298 299
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
300 301 302 303

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
304 305
};

306 307 308 309 310 311
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
312
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
313
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
314 315 316
	NR_MOVE_TYPE,
};

317 318
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
319
	spinlock_t	  lock; /* for from, to */
320 321 322
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
323
	unsigned long moved_charge;
324
	unsigned long moved_swap;
325 326 327
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
328
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
329 330
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
331

D
Daisuke Nishimura 已提交
332 333 334 335 336 337
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

338 339 340 341 342 343
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

344 345 346 347 348 349 350
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

351 352 353
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
354
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
355
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
356
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
357
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
358 359 360
	NR_CHARGE_TYPE,
};

361
/* for encoding cft->private value on file */
362 363 364 365 366 367 368 369

enum mem_type {
	_MEM = 0,
	_MEMSWAP,
	_OOM_TYPE,
	_KMEM,
};

370 371 372
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
373 374
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
375

376 377 378 379 380 381 382
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
383 384
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
385

386 387
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
388 389 390 391 392

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#ifdef CONFIG_INET
#include <net/sock.h>
G
Glauber Costa 已提交
393
#include <net/ip.h>
G
Glauber Costa 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
	/* A socket spends its whole life in the same cgroup */
	if (sk->sk_cgrp) {
		WARN_ON(1);
		return;
	}
	if (static_branch(&memcg_socket_limit_enabled)) {
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
428 429 430 431 432 433 434 435 436

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
437 438 439
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

440
static void drain_all_stock_async(struct mem_cgroup *memcg);
441

442
static struct mem_cgroup_per_zone *
443
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
444
{
445
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
446 447
}

448
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
449
{
450
	return &memcg->css;
451 452
}

453
static struct mem_cgroup_per_zone *
454
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
455
{
456 457
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
458

459
	return mem_cgroup_zoneinfo(memcg, nid, zid);
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
478
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
479
				struct mem_cgroup_per_zone *mz,
480 481
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
482 483 484 485 486 487 488 489
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

490 491 492
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
509 510 511
}

static void
512
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
513 514 515 516 517 518 519 520 521
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

522
static void
523
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
524 525 526 527
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
528
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
529 530 531 532
	spin_unlock(&mctz->lock);
}


533
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
534
{
535
	unsigned long long excess;
536 537
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
538 539
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
540 541 542
	mctz = soft_limit_tree_from_page(page);

	/*
543 544
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
545
	 */
546 547 548
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
549 550 551 552
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
553
		if (excess || mz->on_tree) {
554 555 556
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
557
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
558
			/*
559 560
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
561
			 */
562
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
563 564
			spin_unlock(&mctz->lock);
		}
565 566 567
	}
}

568
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
569 570 571 572 573 574 575
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
576
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
577
			mctz = soft_limit_tree_node_zone(node, zone);
578
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
579 580 581 582
		}
	}
}

583 584 585 586
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
587
	struct mem_cgroup_per_zone *mz;
588 589

retry:
590
	mz = NULL;
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
639
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
640
				 enum mem_cgroup_stat_index idx)
641
{
642
	long val = 0;
643 644
	int cpu;

645 646
	get_online_cpus();
	for_each_online_cpu(cpu)
647
		val += per_cpu(memcg->stat->count[idx], cpu);
648
#ifdef CONFIG_HOTPLUG_CPU
649 650 651
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
652 653
#endif
	put_online_cpus();
654 655 656
	return val;
}

657
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
658 659 660
					 bool charge)
{
	int val = (charge) ? 1 : -1;
661
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
662 663
}

664
void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
665
{
666
	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
667 668
}

669
void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
670
{
671
	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
672 673
}

674
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
675 676 677 678 679 680
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
681
		val += per_cpu(memcg->stat->events[idx], cpu);
682
#ifdef CONFIG_HOTPLUG_CPU
683 684 685
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
686 687 688 689
#endif
	return val;
}

690
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
691
					 bool file, int nr_pages)
692
{
693 694
	preempt_disable();

695
	if (file)
696 697
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
				nr_pages);
698
	else
699 700
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
				nr_pages);
701

702 703
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
704
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
705
	else {
706
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
707 708
		nr_pages = -nr_pages; /* for event */
	}
709

710
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
711

712
	preempt_enable();
713 714
}

715
unsigned long
716
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
717
			unsigned int lru_mask)
718 719
{
	struct mem_cgroup_per_zone *mz;
720 721 722
	enum lru_list l;
	unsigned long ret = 0;

723
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
724 725 726 727 728 729 730 731 732

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
733
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
734 735
			int nid, unsigned int lru_mask)
{
736 737 738
	u64 total = 0;
	int zid;

739
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
740 741
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
742

743 744
	return total;
}
745

746
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
747
			unsigned int lru_mask)
748
{
749
	int nid;
750 751
	u64 total = 0;

752
	for_each_node_state(nid, N_HIGH_MEMORY)
753
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
754
	return total;
755 756
}

757
static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
758 759 760
{
	unsigned long val, next;

761 762
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
763 764 765 766
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

767
static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
768
{
769
	unsigned long val, next;
770

771
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
772

773 774 775 776 777 778 779
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
780 781 782
	case MEM_CGROUP_TARGET_NUMAINFO:
		next = val + NUMAINFO_EVENTS_TARGET;
		break;
783 784 785 786
	default:
		return;
	}

787
	__this_cpu_write(memcg->stat->targets[target], next);
788 789 790 791 792 793
}

/*
 * Check events in order.
 *
 */
794
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
795
{
796
	preempt_disable();
797
	/* threshold event is triggered in finer grain than soft limit */
798 799 800 801
	if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
		mem_cgroup_threshold(memcg);
		__mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(memcg,
802
			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
803 804
			mem_cgroup_update_tree(memcg, page);
			__mem_cgroup_target_update(memcg,
805 806 807
						   MEM_CGROUP_TARGET_SOFTLIMIT);
		}
#if MAX_NUMNODES > 1
808
		if (unlikely(__memcg_event_check(memcg,
809
			MEM_CGROUP_TARGET_NUMAINFO))) {
810 811
			atomic_inc(&memcg->numainfo_events);
			__mem_cgroup_target_update(memcg,
812
				MEM_CGROUP_TARGET_NUMAINFO);
813
		}
814
#endif
815
	}
816
	preempt_enable();
817 818
}

G
Glauber Costa 已提交
819
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
820 821 822 823 824 825
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

826
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
827
{
828 829 830 831 832 833 834 835
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

836 837 838 839
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

840
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
841
{
842
	struct mem_cgroup *memcg = NULL;
843 844 845

	if (!mm)
		return NULL;
846 847 848 849 850 851 852
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
853 854
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
855
			break;
856
	} while (!css_tryget(&memcg->css));
857
	rcu_read_unlock();
858
	return memcg;
859 860
}

K
KAMEZAWA Hiroyuki 已提交
861
/* The caller has to guarantee "mem" exists before calling this */
862
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
863
{
864 865 866
	struct cgroup_subsys_state *css;
	int found;

867
	if (!memcg) /* ROOT cgroup has the smallest ID */
868
		return root_mem_cgroup; /*css_put/get against root is ignored*/
869 870 871
	if (!memcg->use_hierarchy) {
		if (css_tryget(&memcg->css))
			return memcg;
872 873 874 875 876 877 878
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
879
	css = css_get_next(&mem_cgroup_subsys, 1, &memcg->css, &found);
880
	if (css && css_tryget(css))
881
		memcg = container_of(css, struct mem_cgroup, css);
882
	else
883
		memcg = NULL;
884
	rcu_read_unlock();
885
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
886 887 888 889 890 891 892 893 894
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
895 896
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
897
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
898

K
KAMEZAWA Hiroyuki 已提交
899
	css_put(&iter->css);
900 901
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
902
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
903

904 905 906
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
907 908
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
909
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
910 911 912

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
913
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
914
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
915
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
916
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
917
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
918
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
919

K
KAMEZAWA Hiroyuki 已提交
920
	return iter;
K
KAMEZAWA Hiroyuki 已提交
921
}
K
KAMEZAWA Hiroyuki 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

935 936 937
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
938

939
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
940
{
941
	return (memcg == root_mem_cgroup);
942 943
}

944 945
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
946
	struct mem_cgroup *memcg;
947 948 949 950 951

	if (!mm)
		return;

	rcu_read_lock();
952 953
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
954 955 956 957
		goto out;

	switch (idx) {
	case PGMAJFAULT:
958
		mem_cgroup_pgmajfault(memcg, 1);
959 960
		break;
	case PGFAULT:
961
		mem_cgroup_pgfault(memcg, 1);
962 963 964 965 966 967 968 969 970
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
971 972 973 974 975 976 977 978 979 980 981 982 983
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
984

K
KAMEZAWA Hiroyuki 已提交
985 986 987 988
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
989

990
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
991 992 993
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
994
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
995
		return;
996
	VM_BUG_ON(!pc->mem_cgroup);
997 998 999 1000
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
1001
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1002 1003
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1004 1005 1006
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
1007
	list_del_init(&pc->lru);
1008 1009
}

K
KAMEZAWA Hiroyuki 已提交
1010
void mem_cgroup_del_lru(struct page *page)
1011
{
K
KAMEZAWA Hiroyuki 已提交
1012 1013
	mem_cgroup_del_lru_list(page, page_lru(page));
}
1014

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
1037
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1038 1039 1040
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
1041 1042 1043 1044
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
1045

1046
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1047
		return;
1048

K
KAMEZAWA Hiroyuki 已提交
1049
	pc = lookup_page_cgroup(page);
1050
	/* unused or root page is not rotated. */
1051 1052 1053 1054 1055
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
1056
		return;
1057
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
1058
	list_move(&pc->lru, &mz->lists[lru]);
1059 1060
}

K
KAMEZAWA Hiroyuki 已提交
1061
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1062
{
K
KAMEZAWA Hiroyuki 已提交
1063 1064
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
1065

1066
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1067 1068
		return;
	pc = lookup_page_cgroup(page);
1069
	VM_BUG_ON(PageCgroupAcctLRU(pc));
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	/*
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
	 */
	smp_mb();
K
KAMEZAWA Hiroyuki 已提交
1080
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
1081
		return;
1082 1083
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1084
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1085 1086
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1087 1088 1089
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
1090 1091
	list_add(&pc->lru, &mz->lists[lru]);
}
1092

K
KAMEZAWA Hiroyuki 已提交
1093
/*
1094 1095 1096 1097
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1098
 */
1099
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1100
{
1101 1102 1103 1104
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1116 1117 1118 1119 1120 1121 1122 1123
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1124 1125
}

1126
static void mem_cgroup_lru_add_after_commit(struct page *page)
1127 1128 1129 1130
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	/*
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
	 */
	smp_mb();
1141 1142 1143
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1144 1145
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1146
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1147 1148 1149 1150 1151
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1152 1153 1154
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1155
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1156 1157 1158
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1159 1160
}

1161
/*
1162
 * Checks whether given mem is same or in the root_mem_cgroup's
1163 1164
 * hierarchy subtree
 */
1165 1166
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1167
{
1168 1169 1170
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1171 1172 1173 1174 1175
	}

	return true;
}

1176
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1177 1178
{
	int ret;
1179
	struct mem_cgroup *curr = NULL;
1180
	struct task_struct *p;
1181

1182 1183 1184 1185 1186
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1187 1188
	if (!curr)
		return 0;
1189
	/*
1190
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1191
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1192 1193
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1194
	 */
1195
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1196
	css_put(&curr->css);
1197 1198 1199
	return ret;
}

1200
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1201
{
1202 1203 1204
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1205
	unsigned long inactive;
1206
	unsigned long active;
1207
	unsigned long gb;
1208

1209 1210 1211 1212
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1213

1214 1215 1216 1217 1218 1219
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1220
	return inactive * inactive_ratio < active;
1221 1222
}

1223
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1224 1225 1226
{
	unsigned long active;
	unsigned long inactive;
1227 1228
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1229

1230 1231 1232 1233
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1234 1235 1236 1237

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1238 1239 1240
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1241
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1258 1259
	if (!PageCgroupUsed(pc))
		return NULL;
1260 1261
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1262
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1263 1264 1265
	return &mz->reclaim_stat;
}

1266 1267 1268
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
1269 1270
					isolate_mode_t mode,
					struct zone *z,
1271
					struct mem_cgroup *mem_cont,
1272
					int active, int file)
1273 1274 1275 1276 1277 1278
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1279
	struct page_cgroup *pc, *tmp;
1280
	int nid = zone_to_nid(z);
1281 1282
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1283
	int lru = LRU_FILE * file + active;
1284
	int ret;
1285

1286
	BUG_ON(!mem_cont);
1287
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1288
	src = &mz->lists[lru];
1289

1290 1291
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1292
		if (scan >= nr_to_scan)
1293
			break;
K
KAMEZAWA Hiroyuki 已提交
1294

1295 1296
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1297

1298
		page = lookup_cgroup_page(pc);
1299

H
Hugh Dickins 已提交
1300
		if (unlikely(!PageLRU(page)))
1301 1302
			continue;

H
Hugh Dickins 已提交
1303
		scan++;
1304 1305 1306
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1307
			list_move(&page->lru, dst);
1308
			mem_cgroup_del_lru(page);
1309
			nr_taken += hpage_nr_pages(page);
1310 1311 1312 1313 1314 1315 1316
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1317 1318 1319 1320
		}
	}

	*scanned = scan;
1321 1322 1323 1324

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1325 1326 1327
	return nr_taken;
}

1328 1329 1330
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1331
/**
1332 1333
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1334
 *
1335
 * Returns the maximum amount of memory @mem can be charged with, in
1336
 * pages.
1337
 */
1338
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1339
{
1340 1341
	unsigned long long margin;

1342
	margin = res_counter_margin(&memcg->res);
1343
	if (do_swap_account)
1344
		margin = min(margin, res_counter_margin(&memcg->memsw));
1345
	return margin >> PAGE_SHIFT;
1346 1347
}

1348
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1349 1350 1351 1352 1353 1354 1355
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1356
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1357 1358
}

1359
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1360 1361
{
	int cpu;
1362 1363

	get_online_cpus();
1364
	spin_lock(&memcg->pcp_counter_lock);
1365
	for_each_online_cpu(cpu)
1366 1367 1368
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1369
	put_online_cpus();
1370 1371 1372 1373

	synchronize_rcu();
}

1374
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1375 1376 1377
{
	int cpu;

1378
	if (!memcg)
1379
		return;
1380
	get_online_cpus();
1381
	spin_lock(&memcg->pcp_counter_lock);
1382
	for_each_online_cpu(cpu)
1383 1384 1385
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1386
	put_online_cpus();
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1400
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1401 1402
{
	VM_BUG_ON(!rcu_read_lock_held());
1403
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1404
}
1405

1406
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1407
{
1408 1409
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1410
	bool ret = false;
1411 1412 1413 1414 1415 1416 1417 1418 1419
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1420

1421 1422
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1423 1424
unlock:
	spin_unlock(&mc.lock);
1425 1426 1427
	return ret;
}

1428
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1429 1430
{
	if (mc.moving_task && current != mc.moving_task) {
1431
		if (mem_cgroup_under_move(memcg)) {
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1444
/**
1445
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1464
	if (!memcg || !p)
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1511 1512 1513 1514
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1515
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1516 1517
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1518 1519
	struct mem_cgroup *iter;

1520
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1521
		num++;
1522 1523 1524
	return num;
}

D
David Rientjes 已提交
1525 1526 1527 1528 1529 1530 1531 1532
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1533 1534 1535
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1536 1537 1538 1539 1540 1541 1542 1543
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1544
/*
K
KAMEZAWA Hiroyuki 已提交
1545 1546 1547 1548 1549
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
1550
mem_cgroup_select_victim(struct mem_cgroup *root_memcg)
K
KAMEZAWA Hiroyuki 已提交
1551 1552 1553 1554 1555
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

1556 1557 1558
	if (!root_memcg->use_hierarchy) {
		css_get(&root_memcg->css);
		ret = root_memcg;
K
KAMEZAWA Hiroyuki 已提交
1559 1560 1561 1562
	}

	while (!ret) {
		rcu_read_lock();
1563 1564
		nextid = root_memcg->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_memcg->css,
K
KAMEZAWA Hiroyuki 已提交
1565 1566 1567 1568 1569 1570 1571 1572
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
1573
			root_memcg->last_scanned_child = 0;
K
KAMEZAWA Hiroyuki 已提交
1574
		} else
1575
			root_memcg->last_scanned_child = found;
K
KAMEZAWA Hiroyuki 已提交
1576 1577 1578 1579 1580
	}

	return ret;
}

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1591
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1592 1593
		int nid, bool noswap)
{
1594
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1595 1596 1597
		return true;
	if (noswap || !total_swap_pages)
		return false;
1598
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1599 1600 1601 1602
		return true;
	return false;

}
1603 1604 1605 1606 1607 1608 1609 1610
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1611
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1612 1613
{
	int nid;
1614 1615 1616 1617
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1618
	if (!atomic_read(&memcg->numainfo_events))
1619
		return;
1620
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1621 1622 1623
		return;

	/* make a nodemask where this memcg uses memory from */
1624
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1625 1626 1627

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1628 1629
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1630
	}
1631

1632 1633
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1648
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1649 1650 1651
{
	int node;

1652 1653
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1654

1655
	node = next_node(node, memcg->scan_nodes);
1656
	if (node == MAX_NUMNODES)
1657
		node = first_node(memcg->scan_nodes);
1658 1659 1660 1661 1662 1663 1664 1665 1666
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1667
	memcg->last_scanned_node = node;
1668 1669 1670
	return node;
}

1671 1672 1673 1674 1675 1676
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1677
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1678 1679 1680 1681 1682 1683 1684
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1685 1686
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1687
		     nid < MAX_NUMNODES;
1688
		     nid = next_node(nid, memcg->scan_nodes)) {
1689

1690
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1691 1692 1693 1694 1695 1696 1697
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1698
		if (node_isset(nid, memcg->scan_nodes))
1699
			continue;
1700
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1701 1702 1703 1704 1705
			return true;
	}
	return false;
}

1706
#else
1707
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1708 1709 1710
{
	return 0;
}
1711

1712
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1713
{
1714
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1715
}
1716 1717
#endif

K
KAMEZAWA Hiroyuki 已提交
1718 1719 1720 1721
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1722
 *
1723
 * root_memcg is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1724
 *
1725
 * We give up and return to the caller when we visit root_memcg twice.
K
KAMEZAWA Hiroyuki 已提交
1726
 * (other groups can be removed while we're walking....)
1727 1728
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1729
 */
1730
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_memcg,
1731
						struct zone *zone,
1732
						gfp_t gfp_mask,
1733 1734
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1735
{
K
KAMEZAWA Hiroyuki 已提交
1736 1737 1738
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1739 1740
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1741
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1742
	unsigned long excess;
1743
	unsigned long nr_scanned;
1744

1745
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1746

1747
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1748
	if (!check_soft && !shrink && root_memcg->memsw_is_minimum)
1749 1750
		noswap = true;

1751
	while (1) {
1752 1753
		victim = mem_cgroup_select_victim(root_memcg);
		if (victim == root_memcg) {
K
KAMEZAWA Hiroyuki 已提交
1754
			loop++;
1755 1756 1757 1758 1759 1760 1761
			/*
			 * We are not draining per cpu cached charges during
			 * soft limit reclaim  because global reclaim doesn't
			 * care about charges. It tries to free some memory and
			 * charges will not give any.
			 */
			if (!check_soft && loop >= 1)
1762
				drain_all_stock_async(root_memcg);
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1774
				 * We want to do more targeted reclaim.
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1786
		if (!mem_cgroup_reclaimable(victim, noswap)) {
K
KAMEZAWA Hiroyuki 已提交
1787 1788
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1789 1790
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1791
		/* we use swappiness of local cgroup */
1792
		if (check_soft) {
1793
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1794 1795
				noswap, zone, &nr_scanned);
			*total_scanned += nr_scanned;
1796
		} else
1797
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1798
						noswap);
K
KAMEZAWA Hiroyuki 已提交
1799
		css_put(&victim->css);
1800 1801 1802 1803 1804 1805 1806
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1807
		total += ret;
1808
		if (check_soft) {
1809
			if (!res_counter_soft_limit_excess(&root_memcg->res))
1810
				return total;
1811
		} else if (mem_cgroup_margin(root_memcg))
1812
			return total;
1813
	}
K
KAMEZAWA Hiroyuki 已提交
1814
	return total;
1815 1816
}

K
KAMEZAWA Hiroyuki 已提交
1817 1818 1819
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1820
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1821
 */
1822
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1823
{
1824 1825
	struct mem_cgroup *iter, *failed = NULL;
	bool cond = true;
1826

1827
	for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1828
		if (iter->oom_lock) {
1829 1830 1831 1832 1833 1834
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
			cond = false;
1835 1836
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1837
	}
K
KAMEZAWA Hiroyuki 已提交
1838

1839
	if (!failed)
1840
		return true;
1841 1842 1843 1844 1845 1846

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
	cond = true;
1847
	for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1848 1849 1850 1851 1852 1853
		if (iter == failed) {
			cond = false;
			continue;
		}
		iter->oom_lock = false;
	}
1854
	return false;
1855
}
1856

1857
/*
1858
 * Has to be called with memcg_oom_lock
1859
 */
1860
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1861
{
K
KAMEZAWA Hiroyuki 已提交
1862 1863
	struct mem_cgroup *iter;

1864
	for_each_mem_cgroup_tree(iter, memcg)
1865 1866 1867 1868
		iter->oom_lock = false;
	return 0;
}

1869
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1870 1871 1872
{
	struct mem_cgroup *iter;

1873
	for_each_mem_cgroup_tree(iter, memcg)
1874 1875 1876
		atomic_inc(&iter->under_oom);
}

1877
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1878 1879 1880
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1881 1882 1883 1884 1885
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1886
	for_each_mem_cgroup_tree(iter, memcg)
1887
		atomic_add_unless(&iter->under_oom, -1, 0);
1888 1889
}

1890
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1891 1892
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1893 1894 1895 1896 1897 1898 1899 1900
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1901 1902
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
			  *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1903 1904 1905
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1906
	oom_wait_memcg = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1907 1908 1909 1910 1911

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1912 1913
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1914 1915 1916 1917
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1918
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1919
{
1920 1921
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1922 1923
}

1924
static void memcg_oom_recover(struct mem_cgroup *memcg)
1925
{
1926 1927
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1928 1929
}

K
KAMEZAWA Hiroyuki 已提交
1930 1931 1932
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1933
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1934
{
K
KAMEZAWA Hiroyuki 已提交
1935
	struct oom_wait_info owait;
1936
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1937

1938
	owait.mem = memcg;
K
KAMEZAWA Hiroyuki 已提交
1939 1940 1941 1942
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1943
	need_to_kill = true;
1944
	mem_cgroup_mark_under_oom(memcg);
1945

1946
	/* At first, try to OOM lock hierarchy under memcg.*/
1947
	spin_lock(&memcg_oom_lock);
1948
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1949 1950 1951 1952 1953
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1954
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1955
	if (!locked || memcg->oom_kill_disable)
1956 1957
		need_to_kill = false;
	if (locked)
1958
		mem_cgroup_oom_notify(memcg);
1959
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1960

1961 1962
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1963
		mem_cgroup_out_of_memory(memcg, mask);
1964
	} else {
K
KAMEZAWA Hiroyuki 已提交
1965
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1966
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1967
	}
1968
	spin_lock(&memcg_oom_lock);
1969
	if (locked)
1970 1971
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1972
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1973

1974
	mem_cgroup_unmark_under_oom(memcg);
1975

K
KAMEZAWA Hiroyuki 已提交
1976 1977 1978
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1979
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1980
	return true;
1981 1982
}

1983 1984 1985
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
2005
 */
2006

2007 2008
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2009
{
2010
	struct mem_cgroup *memcg;
2011 2012
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
2013
	unsigned long uninitialized_var(flags);
2014 2015 2016 2017

	if (unlikely(!pc))
		return;

2018
	rcu_read_lock();
2019 2020
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2021 2022
		goto out;
	/* pc->mem_cgroup is unstable ? */
2023
	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
2024
		/* take a lock against to access pc->mem_cgroup */
2025
		move_lock_page_cgroup(pc, &flags);
2026
		need_unlock = true;
2027 2028
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
2029 2030
			goto out;
	}
2031 2032

	switch (idx) {
2033
	case MEMCG_NR_FILE_MAPPED:
2034 2035 2036
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
2037
			ClearPageCgroupFileMapped(pc);
2038
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2039 2040 2041
		break;
	default:
		BUG();
2042
	}
2043

2044
	this_cpu_add(memcg->stat->count[idx], val);
2045

2046 2047
out:
	if (unlikely(need_unlock))
2048
		move_unlock_page_cgroup(pc, &flags);
2049 2050
	rcu_read_unlock();
	return;
2051
}
2052
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2053

2054 2055 2056 2057
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2058
#define CHARGE_BATCH	32U
2059 2060
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2061
	unsigned int nr_pages;
2062
	struct work_struct work;
2063 2064
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
2065 2066
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2067
static DEFINE_MUTEX(percpu_charge_mutex);
2068 2069

/*
2070
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2071 2072 2073 2074
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2075
static bool consume_stock(struct mem_cgroup *memcg)
2076 2077 2078 2079 2080
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2081
	if (memcg == stock->cached && stock->nr_pages)
2082
		stock->nr_pages--;
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2096 2097 2098 2099
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2100
		if (do_swap_account)
2101 2102
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2115
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2116 2117 2118 2119
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2120
 * This will be consumed by consume_stock() function, later.
2121
 */
2122
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2123 2124 2125
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2126
	if (stock->cached != memcg) { /* reset if necessary */
2127
		drain_stock(stock);
2128
		stock->cached = memcg;
2129
	}
2130
	stock->nr_pages += nr_pages;
2131 2132 2133 2134
	put_cpu_var(memcg_stock);
}

/*
2135
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2136 2137
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2138
 */
2139
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2140
{
2141
	int cpu, curcpu;
2142

2143 2144
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2145
	curcpu = get_cpu();
2146 2147
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2148
		struct mem_cgroup *memcg;
2149

2150 2151
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2152
			continue;
2153
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2154
			continue;
2155 2156 2157 2158 2159 2160
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2161
	}
2162
	put_cpu();
2163 2164 2165 2166 2167 2168

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2169
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2170 2171 2172
			flush_work(&stock->work);
	}
out:
2173
 	put_online_cpus();
2174 2175 2176 2177 2178 2179 2180 2181
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2182
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2183
{
2184 2185 2186 2187 2188
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2189
	drain_all_stock(root_memcg, false);
2190
	mutex_unlock(&percpu_charge_mutex);
2191 2192 2193
}

/* This is a synchronous drain interface. */
2194
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2195 2196
{
	/* called when force_empty is called */
2197
	mutex_lock(&percpu_charge_mutex);
2198
	drain_all_stock(root_memcg, true);
2199
	mutex_unlock(&percpu_charge_mutex);
2200 2201
}

2202 2203 2204 2205
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2206
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2207 2208 2209
{
	int i;

2210
	spin_lock(&memcg->pcp_counter_lock);
2211
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2212
		long x = per_cpu(memcg->stat->count[i], cpu);
2213

2214 2215
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2216
	}
2217
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2218
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2219

2220 2221
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2222
	}
2223
	/* need to clear ON_MOVE value, works as a kind of lock. */
2224 2225
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2226 2227
}

2228
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2229 2230 2231
{
	int idx = MEM_CGROUP_ON_MOVE;

2232 2233 2234
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2235 2236 2237
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2238 2239 2240 2241 2242
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2243
	struct mem_cgroup *iter;
2244

2245 2246 2247 2248 2249 2250
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2251
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2252
		return NOTIFY_OK;
2253 2254 2255 2256

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2257 2258 2259 2260 2261
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2272
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2273
				unsigned int nr_pages, bool oom_check)
2274
{
2275
	unsigned long csize = nr_pages * PAGE_SIZE;
2276 2277 2278 2279 2280
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2281
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2282 2283 2284 2285

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2286
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2287 2288 2289
		if (likely(!ret))
			return CHARGE_OK;

2290
		res_counter_uncharge(&memcg->res, csize);
2291 2292 2293 2294
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2295
	/*
2296 2297
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2298 2299 2300 2301
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2302
	if (nr_pages == CHARGE_BATCH)
2303 2304 2305 2306 2307 2308
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2309
					      gfp_mask, flags, NULL);
2310
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2311
		return CHARGE_RETRY;
2312
	/*
2313 2314 2315 2316 2317 2318 2319
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2320
	 */
2321
	if (nr_pages == 1 && ret)
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2341 2342 2343
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2344
 */
2345
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2346
				   gfp_t gfp_mask,
2347
				   unsigned int nr_pages,
2348
				   struct mem_cgroup **ptr,
2349
				   bool oom)
2350
{
2351
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2352
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2353
	struct mem_cgroup *memcg = NULL;
2354
	int ret;
2355

K
KAMEZAWA Hiroyuki 已提交
2356 2357 2358 2359 2360 2361 2362 2363
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2364

2365
	/*
2366 2367
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2368 2369 2370
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2371
	if (!*ptr && !mm)
K
KAMEZAWA Hiroyuki 已提交
2372 2373
		goto bypass;
again:
2374 2375 2376 2377
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2378
			goto done;
2379
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2380
			goto done;
2381
		css_get(&memcg->css);
2382
	} else {
K
KAMEZAWA Hiroyuki 已提交
2383
		struct task_struct *p;
2384

K
KAMEZAWA Hiroyuki 已提交
2385 2386 2387
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2388
		 * Because we don't have task_lock(), "p" can exit.
2389
		 * In that case, "memcg" can point to root or p can be NULL with
2390 2391 2392 2393 2394 2395
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2396
		 */
2397 2398
		memcg = mem_cgroup_from_task(p);
		if (!memcg || mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2399 2400 2401
			rcu_read_unlock();
			goto done;
		}
2402
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2415
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2416 2417 2418 2419 2420
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2421

2422 2423
	do {
		bool oom_check;
2424

2425
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2426
		if (fatal_signal_pending(current)) {
2427
			css_put(&memcg->css);
2428
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2429
		}
2430

2431 2432 2433 2434
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2435
		}
2436

2437
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2438 2439 2440 2441
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2442
			batch = nr_pages;
2443 2444
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2445
			goto again;
2446
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2447
			css_put(&memcg->css);
2448 2449
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2450
			if (!oom) {
2451
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2452
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2453
			}
2454 2455 2456 2457
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2458
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2459
			goto bypass;
2460
		}
2461 2462
	} while (ret != CHARGE_OK);

2463
	if (batch > nr_pages)
2464 2465
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2466
done:
2467
	*ptr = memcg;
2468 2469
	return 0;
nomem:
2470
	*ptr = NULL;
2471
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2472
bypass:
2473
	*ptr = NULL;
K
KAMEZAWA Hiroyuki 已提交
2474
	return 0;
2475
}
2476

2477 2478 2479 2480 2481
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2482
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2483
				       unsigned int nr_pages)
2484
{
2485
	if (!mem_cgroup_is_root(memcg)) {
2486 2487
		unsigned long bytes = nr_pages * PAGE_SIZE;

2488
		res_counter_uncharge(&memcg->res, bytes);
2489
		if (do_swap_account)
2490
			res_counter_uncharge(&memcg->memsw, bytes);
2491
	}
2492 2493
}

2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2513
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2514
{
2515
	struct mem_cgroup *memcg = NULL;
2516
	struct page_cgroup *pc;
2517
	unsigned short id;
2518 2519
	swp_entry_t ent;

2520 2521 2522
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2523
	lock_page_cgroup(pc);
2524
	if (PageCgroupUsed(pc)) {
2525 2526 2527
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2528
	} else if (PageSwapCache(page)) {
2529
		ent.val = page_private(page);
2530 2531
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
2532 2533 2534
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2535
		rcu_read_unlock();
2536
	}
2537
	unlock_page_cgroup(pc);
2538
	return memcg;
2539 2540
}

2541
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2542
				       struct page *page,
2543
				       unsigned int nr_pages,
2544
				       struct page_cgroup *pc,
2545
				       enum charge_type ctype)
2546
{
2547 2548 2549
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2550
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2551 2552 2553 2554 2555 2556
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2557
	pc->mem_cgroup = memcg;
2558 2559 2560 2561 2562 2563 2564
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2565
	smp_wmb();
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2579

2580
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2581
	unlock_page_cgroup(pc);
2582 2583 2584 2585 2586
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2587
	memcg_check_events(memcg, page);
2588
}
2589

2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2604 2605
	if (mem_cgroup_disabled())
		return;
2606
	/*
2607
	 * We have no races with charge/uncharge but will have races with
2608 2609 2610 2611 2612 2613
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2624
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2625 2626
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2627 2628 2629 2630 2631
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2632
/**
2633
 * mem_cgroup_move_account - move account of the page
2634
 * @page: the page
2635
 * @nr_pages: number of regular pages (>1 for huge pages)
2636 2637 2638
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2639
 * @uncharge: whether we should call uncharge and css_put against @from.
2640 2641
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2642
 * - page is not on LRU (isolate_page() is useful.)
2643
 * - compound_lock is held when nr_pages > 1
2644
 *
2645
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2646
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2647 2648
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2649
 */
2650 2651 2652 2653 2654 2655
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2656
{
2657 2658
	unsigned long flags;
	int ret;
2659

2660
	VM_BUG_ON(from == to);
2661
	VM_BUG_ON(PageLRU(page));
2662 2663 2664 2665 2666 2667 2668
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2669
	if (nr_pages > 1 && !PageTransHuge(page))
2670 2671 2672 2673 2674 2675 2676 2677 2678
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2679

2680
	if (PageCgroupFileMapped(pc)) {
2681 2682 2683 2684 2685
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2686
	}
2687
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2688 2689
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2690
		__mem_cgroup_cancel_charge(from, nr_pages);
2691

2692
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2693
	pc->mem_cgroup = to;
2694
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2695 2696 2697
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2698
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2699
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2700
	 * status here.
2701
	 */
2702 2703 2704
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2705
	unlock_page_cgroup(pc);
2706 2707 2708
	/*
	 * check events
	 */
2709 2710
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2711
out:
2712 2713 2714 2715 2716 2717 2718
	return ret;
}

/*
 * move charges to its parent.
 */

2719 2720
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2721 2722 2723 2724 2725 2726
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2727
	unsigned int nr_pages;
2728
	unsigned long uninitialized_var(flags);
2729 2730 2731 2732 2733 2734
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2735 2736 2737 2738 2739
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2740

2741
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2742

2743
	parent = mem_cgroup_from_cont(pcg);
2744
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2745
	if (ret || !parent)
2746
		goto put_back;
2747

2748
	if (nr_pages > 1)
2749 2750
		flags = compound_lock_irqsave(page);

2751
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2752
	if (ret)
2753
		__mem_cgroup_cancel_charge(parent, nr_pages);
2754

2755
	if (nr_pages > 1)
2756
		compound_unlock_irqrestore(page, flags);
2757
put_back:
K
KAMEZAWA Hiroyuki 已提交
2758
	putback_lru_page(page);
2759
put:
2760
	put_page(page);
2761
out:
2762 2763 2764
	return ret;
}

2765 2766 2767 2768 2769 2770 2771
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2772
				gfp_t gfp_mask, enum charge_type ctype)
2773
{
2774
	struct mem_cgroup *memcg = NULL;
2775
	unsigned int nr_pages = 1;
2776
	struct page_cgroup *pc;
2777
	bool oom = true;
2778
	int ret;
A
Andrea Arcangeli 已提交
2779

A
Andrea Arcangeli 已提交
2780
	if (PageTransHuge(page)) {
2781
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2782
		VM_BUG_ON(!PageTransHuge(page));
2783 2784 2785 2786 2787
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2788
	}
2789 2790

	pc = lookup_page_cgroup(page);
2791
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2792

2793 2794
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
	if (ret || !memcg)
2795 2796
		return ret;

2797
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2798 2799 2800
	return 0;
}

2801 2802
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2803
{
2804
	if (mem_cgroup_disabled())
2805
		return 0;
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2817
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2818
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2819 2820
}

D
Daisuke Nishimura 已提交
2821 2822 2823 2824
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2825
static void
2826
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2827 2828 2829 2830 2831 2832 2833 2834 2835
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
2836
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2837 2838 2839 2840
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2841 2842
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2843
{
2844
	struct mem_cgroup *memcg = NULL;
2845 2846
	int ret;

2847
	if (mem_cgroup_disabled())
2848
		return 0;
2849 2850
	if (PageCompound(page))
		return 0;
2851

2852
	if (unlikely(!mm))
2853
		mm = &init_mm;
2854

2855
	if (page_is_file_cache(page)) {
2856 2857
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
		if (ret || !memcg)
2858
			return ret;
2859

2860 2861 2862 2863 2864
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
2865
		__mem_cgroup_commit_charge_lrucare(page, memcg,
2866 2867 2868
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2869 2870
	/* shmem */
	if (PageSwapCache(page)) {
2871
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2872
		if (!ret)
2873
			__mem_cgroup_commit_charge_swapin(page, memcg,
D
Daisuke Nishimura 已提交
2874 2875 2876
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2877
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2878 2879

	return ret;
2880 2881
}

2882 2883 2884
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2885
 * struct page_cgroup is acquired. This refcnt will be consumed by
2886 2887
 * "commit()" or removed by "cancel()"
 */
2888 2889 2890 2891
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
2892
	struct mem_cgroup *memcg;
2893
	int ret;
2894

2895 2896
	*ptr = NULL;

2897
	if (mem_cgroup_disabled())
2898 2899 2900 2901 2902 2903
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2904 2905 2906
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2907 2908
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2909
		goto charge_cur_mm;
2910 2911
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2912
		goto charge_cur_mm;
2913
	*ptr = memcg;
2914
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2915
	css_put(&memcg->css);
2916
	return ret;
2917 2918 2919
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2920
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2921 2922
}

D
Daisuke Nishimura 已提交
2923 2924 2925
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2926
{
2927
	if (mem_cgroup_disabled())
2928 2929 2930
		return;
	if (!ptr)
		return;
2931
	cgroup_exclude_rmdir(&ptr->css);
2932 2933

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2934 2935 2936
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2937 2938 2939
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2940
	 */
2941
	if (do_swap_account && PageSwapCache(page)) {
2942
		swp_entry_t ent = {.val = page_private(page)};
2943
		unsigned short id;
2944
		struct mem_cgroup *memcg;
2945 2946 2947 2948

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2949
		if (memcg) {
2950 2951 2952 2953
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2954
			if (!mem_cgroup_is_root(memcg))
2955
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2956
			mem_cgroup_swap_statistics(memcg, false);
2957 2958
			mem_cgroup_put(memcg);
		}
2959
		rcu_read_unlock();
2960
	}
2961 2962 2963 2964 2965 2966
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2967 2968
}

D
Daisuke Nishimura 已提交
2969 2970 2971 2972 2973 2974
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2975
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2976
{
2977
	if (mem_cgroup_disabled())
2978
		return;
2979
	if (!memcg)
2980
		return;
2981
	__mem_cgroup_cancel_charge(memcg, 1);
2982 2983
}

2984
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2985 2986
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2987 2988 2989
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2990

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3002
		batch->memcg = memcg;
3003 3004
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3005
	 * In those cases, all pages freed continuously can be expected to be in
3006 3007 3008 3009 3010 3011 3012 3013
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3014
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3015 3016
		goto direct_uncharge;

3017 3018 3019 3020 3021
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3022
	if (batch->memcg != memcg)
3023 3024
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3025
	batch->nr_pages++;
3026
	if (uncharge_memsw)
3027
		batch->memsw_nr_pages++;
3028 3029
	return;
direct_uncharge:
3030
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3031
	if (uncharge_memsw)
3032 3033 3034
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3035 3036
	return;
}
3037

3038
/*
3039
 * uncharge if !page_mapped(page)
3040
 */
3041
static struct mem_cgroup *
3042
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3043
{
3044
	struct mem_cgroup *memcg = NULL;
3045 3046
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3047

3048
	if (mem_cgroup_disabled())
3049
		return NULL;
3050

K
KAMEZAWA Hiroyuki 已提交
3051
	if (PageSwapCache(page))
3052
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
3053

A
Andrea Arcangeli 已提交
3054
	if (PageTransHuge(page)) {
3055
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3056 3057
		VM_BUG_ON(!PageTransHuge(page));
	}
3058
	/*
3059
	 * Check if our page_cgroup is valid
3060
	 */
3061 3062
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
3063
		return NULL;
3064

3065
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3066

3067
	memcg = pc->mem_cgroup;
3068

K
KAMEZAWA Hiroyuki 已提交
3069 3070 3071 3072 3073
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
3074
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3075 3076
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3088
	}
K
KAMEZAWA Hiroyuki 已提交
3089

3090
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3091

3092
	ClearPageCgroupUsed(pc);
3093 3094 3095 3096 3097 3098
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3099

3100
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3101
	/*
3102
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3103 3104
	 * will never be freed.
	 */
3105
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3106
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3107 3108
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3109
	}
3110 3111
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3112

3113
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3114 3115 3116

unlock_out:
	unlock_page_cgroup(pc);
3117
	return NULL;
3118 3119
}

3120 3121
void mem_cgroup_uncharge_page(struct page *page)
{
3122 3123 3124 3125 3126
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3127 3128 3129 3130 3131 3132
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3133
	VM_BUG_ON(page->mapping);
3134 3135 3136
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3151 3152
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3173 3174 3175 3176 3177 3178
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3179
	memcg_oom_recover(batch->memcg);
3180 3181 3182 3183
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3184
#ifdef CONFIG_SWAP
3185
/*
3186
 * called after __delete_from_swap_cache() and drop "page" account.
3187 3188
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3189 3190
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3191 3192
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3193 3194 3195 3196 3197 3198
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3199

K
KAMEZAWA Hiroyuki 已提交
3200 3201 3202 3203 3204
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3205
		swap_cgroup_record(ent, css_id(&memcg->css));
3206
}
3207
#endif
3208 3209 3210 3211 3212 3213 3214

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3215
{
3216
	struct mem_cgroup *memcg;
3217
	unsigned short id;
3218 3219 3220 3221

	if (!do_swap_account)
		return;

3222 3223 3224
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3225
	if (memcg) {
3226 3227 3228 3229
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3230
		if (!mem_cgroup_is_root(memcg))
3231
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3232
		mem_cgroup_swap_statistics(memcg, false);
3233 3234
		mem_cgroup_put(memcg);
	}
3235
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3236
}
3237 3238 3239 3240 3241 3242

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3243
 * @need_fixup: whether we should fixup res_counters and refcounts.
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3254
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3255 3256 3257 3258 3259 3260 3261 3262
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3263
		mem_cgroup_swap_statistics(to, true);
3264
		/*
3265 3266 3267 3268 3269 3270
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3271 3272
		 */
		mem_cgroup_get(to);
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3284 3285 3286 3287 3288 3289
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3290
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3291 3292 3293
{
	return -EINVAL;
}
3294
#endif
K
KAMEZAWA Hiroyuki 已提交
3295

3296
/*
3297 3298
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3299
 */
3300
int mem_cgroup_prepare_migration(struct page *page,
3301
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3302
{
3303
	struct mem_cgroup *memcg = NULL;
3304
	struct page_cgroup *pc;
3305
	enum charge_type ctype;
3306
	int ret = 0;
3307

3308 3309
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3310
	VM_BUG_ON(PageTransHuge(page));
3311
	if (mem_cgroup_disabled())
3312 3313
		return 0;

3314 3315 3316
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3317 3318
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3350
	}
3351
	unlock_page_cgroup(pc);
3352 3353 3354 3355
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3356
	if (!memcg)
3357
		return 0;
3358

3359
	*ptr = memcg;
3360
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3361
	css_put(&memcg->css);/* drop extra refcnt */
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3373
	}
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3387
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3388
	return ret;
3389
}
3390

3391
/* remove redundant charge if migration failed*/
3392
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3393
	struct page *oldpage, struct page *newpage, bool migration_ok)
3394
{
3395
	struct page *used, *unused;
3396 3397
	struct page_cgroup *pc;

3398
	if (!memcg)
3399
		return;
3400
	/* blocks rmdir() */
3401
	cgroup_exclude_rmdir(&memcg->css);
3402
	if (!migration_ok) {
3403 3404
		used = oldpage;
		unused = newpage;
3405
	} else {
3406
		used = newpage;
3407 3408
		unused = oldpage;
	}
3409
	/*
3410 3411 3412
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3413
	 */
3414 3415 3416 3417
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3418

3419 3420
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3421
	/*
3422 3423 3424 3425 3426 3427
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3428
	 */
3429 3430
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3431
	/*
3432 3433
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3434 3435 3436
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3437
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3438
}
3439

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3486 3487
static DEFINE_MUTEX(set_limit_mutex);

3488
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3489
				unsigned long long val)
3490
{
3491
	int retry_count;
3492
	u64 memswlimit, memlimit;
3493
	int ret = 0;
3494 3495
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3496
	int enlarge;
3497 3498 3499 3500 3501 3502 3503 3504 3505

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3506

3507
	enlarge = 0;
3508
	while (retry_count) {
3509 3510 3511 3512
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3513 3514 3515
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3516
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3517 3518 3519 3520 3521 3522
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3523 3524
			break;
		}
3525 3526 3527 3528 3529

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3530
		ret = res_counter_set_limit(&memcg->res, val);
3531 3532 3533 3534 3535 3536
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3537 3538 3539 3540 3541
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3542
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3543 3544
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3545 3546 3547 3548 3549 3550
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3551
	}
3552 3553
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3554

3555 3556 3557
	return ret;
}

L
Li Zefan 已提交
3558 3559
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3560
{
3561
	int retry_count;
3562
	u64 memlimit, memswlimit, oldusage, curusage;
3563 3564
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3565
	int enlarge = 0;
3566

3567 3568 3569
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3570 3571 3572 3573 3574 3575 3576 3577
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3578
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3579 3580 3581 3582 3583 3584 3585 3586
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3587 3588 3589
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3590
		ret = res_counter_set_limit(&memcg->memsw, val);
3591 3592 3593 3594 3595 3596
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3597 3598 3599 3600 3601
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3602
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3603
						MEM_CGROUP_RECLAIM_NOSWAP |
3604 3605
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3606
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3607
		/* Usage is reduced ? */
3608
		if (curusage >= oldusage)
3609
			retry_count--;
3610 3611
		else
			oldusage = curusage;
3612
	}
3613 3614
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3615 3616 3617
	return ret;
}

3618
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3619 3620
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3621 3622 3623 3624 3625 3626
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3627
	unsigned long long excess;
3628
	unsigned long nr_scanned;
3629 3630 3631 3632

	if (order > 0)
		return 0;

3633
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3647
		nr_scanned = 0;
3648 3649
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3650 3651
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3652
		nr_reclaimed += reclaimed;
3653
		*total_scanned += nr_scanned;
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3676
				if (next_mz == mz)
3677
					css_put(&next_mz->mem->css);
3678
				else /* next_mz == NULL or other memcg */
3679 3680 3681 3682
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3683
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3684 3685 3686 3687 3688 3689 3690 3691
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3692 3693
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3712 3713 3714 3715
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3716
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3717
				int node, int zid, enum lru_list lru)
3718
{
K
KAMEZAWA Hiroyuki 已提交
3719 3720
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3721
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3722
	unsigned long flags, loop;
3723
	struct list_head *list;
3724
	int ret = 0;
3725

K
KAMEZAWA Hiroyuki 已提交
3726
	zone = &NODE_DATA(node)->node_zones[zid];
3727
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3728
	list = &mz->lists[lru];
3729

3730 3731 3732 3733 3734
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3735 3736
		struct page *page;

3737
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3738
		spin_lock_irqsave(&zone->lru_lock, flags);
3739
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3740
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3741
			break;
3742 3743 3744 3745
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3746
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3747
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3748 3749
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3750
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3751

3752
		page = lookup_cgroup_page(pc);
3753

3754
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3755
		if (ret == -ENOMEM)
3756
			break;
3757 3758 3759 3760 3761 3762 3763

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3764
	}
K
KAMEZAWA Hiroyuki 已提交
3765

3766 3767 3768
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3769 3770 3771 3772 3773 3774
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3775
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3776
{
3777 3778 3779
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3780
	struct cgroup *cgrp = memcg->css.cgroup;
3781

3782
	css_get(&memcg->css);
3783 3784

	shrink = 0;
3785 3786 3787
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3788
move_account:
3789
	do {
3790
		ret = -EBUSY;
3791 3792 3793 3794
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3795
			goto out;
3796 3797
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3798
		drain_all_stock_sync(memcg);
3799
		ret = 0;
3800
		mem_cgroup_start_move(memcg);
3801
		for_each_node_state(node, N_HIGH_MEMORY) {
3802
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3803
				enum lru_list l;
3804
				for_each_lru(l) {
3805
					ret = mem_cgroup_force_empty_list(memcg,
K
KAMEZAWA Hiroyuki 已提交
3806
							node, zid, l);
3807 3808 3809
					if (ret)
						break;
				}
3810
			}
3811 3812 3813
			if (ret)
				break;
		}
3814 3815
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3816 3817 3818
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3819
		cond_resched();
3820
	/* "ret" should also be checked to ensure all lists are empty. */
3821
	} while (memcg->res.usage > 0 || ret);
3822
out:
3823
	css_put(&memcg->css);
3824
	return ret;
3825 3826

try_to_free:
3827 3828
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3829 3830 3831
		ret = -EBUSY;
		goto out;
	}
3832 3833
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3834 3835
	/* try to free all pages in this cgroup */
	shrink = 1;
3836
	while (nr_retries && memcg->res.usage > 0) {
3837
		int progress;
3838 3839 3840 3841 3842

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3843
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3844
						false);
3845
		if (!progress) {
3846
			nr_retries--;
3847
			/* maybe some writeback is necessary */
3848
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3849
		}
3850 3851

	}
K
KAMEZAWA Hiroyuki 已提交
3852
	lru_add_drain();
3853
	/* try move_account...there may be some *locked* pages. */
3854
	goto move_account;
3855 3856
}

3857 3858 3859 3860 3861 3862
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3863 3864 3865 3866 3867 3868 3869 3870 3871
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3872
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3873
	struct cgroup *parent = cont->parent;
3874
	struct mem_cgroup *parent_memcg = NULL;
3875 3876

	if (parent)
3877
		parent_memcg = mem_cgroup_from_cont(parent);
3878 3879 3880

	cgroup_lock();
	/*
3881
	 * If parent's use_hierarchy is set, we can't make any modifications
3882 3883 3884 3885 3886 3887
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3888
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3889 3890
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3891
			memcg->use_hierarchy = val;
3892 3893 3894 3895 3896 3897 3898 3899 3900
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3901

3902
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3903
					       enum mem_cgroup_stat_index idx)
3904
{
K
KAMEZAWA Hiroyuki 已提交
3905
	struct mem_cgroup *iter;
3906
	long val = 0;
3907

3908
	/* Per-cpu values can be negative, use a signed accumulator */
3909
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3910 3911 3912 3913 3914
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3915 3916
}

3917
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3918
{
K
KAMEZAWA Hiroyuki 已提交
3919
	u64 val;
3920

3921
	if (!mem_cgroup_is_root(memcg)) {
3922 3923 3924 3925 3926
		val = 0;
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
		if (!memcg->kmem_independent_accounting)
			val = res_counter_read_u64(&memcg->kmem, RES_USAGE);
#endif
3927
		if (!swap)
3928
			val += res_counter_read_u64(&memcg->res, RES_USAGE);
3929
		else
3930 3931 3932
			val += res_counter_read_u64(&memcg->memsw, RES_USAGE);

		return val;
3933 3934
	}

3935 3936
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3937

K
KAMEZAWA Hiroyuki 已提交
3938
	if (swap)
3939
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3940 3941 3942 3943

	return val << PAGE_SHIFT;
}

3944
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3945
{
3946
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3947
	u64 val;
3948 3949 3950 3951 3952 3953
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3954
		if (name == RES_USAGE)
3955
			val = mem_cgroup_usage(memcg, false);
3956
		else
3957
			val = res_counter_read_u64(&memcg->res, name);
3958 3959
		break;
	case _MEMSWAP:
3960
		if (name == RES_USAGE)
3961
			val = mem_cgroup_usage(memcg, true);
3962
		else
3963
			val = res_counter_read_u64(&memcg->memsw, name);
3964
		break;
3965 3966 3967 3968 3969
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
#endif
3970 3971 3972 3973 3974
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3975
}
3976 3977 3978 3979
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3980 3981
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3982
{
3983
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3984
	int type, name;
3985 3986 3987
	unsigned long long val;
	int ret;

3988 3989 3990
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3991
	case RES_LIMIT:
3992 3993 3994 3995
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3996 3997
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3998 3999 4000
		if (ret)
			break;
		if (type == _MEM)
4001
			ret = mem_cgroup_resize_limit(memcg, val);
4002 4003
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4004
		break;
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4019 4020 4021 4022 4023
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4024 4025
}

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

4054
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4055
{
4056
	struct mem_cgroup *memcg;
4057
	int type, name;
4058

4059
	memcg = mem_cgroup_from_cont(cont);
4060 4061 4062
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
4063
	case RES_MAX_USAGE:
4064
		if (type == _MEM)
4065
			res_counter_reset_max(&memcg->res);
4066
		else
4067
			res_counter_reset_max(&memcg->memsw);
4068 4069
		break;
	case RES_FAILCNT:
4070
		if (type == _MEM)
4071
			res_counter_reset_failcnt(&memcg->res);
4072
		else
4073
			res_counter_reset_failcnt(&memcg->memsw);
4074 4075
		break;
	}
4076

4077
	return 0;
4078 4079
}

4080 4081 4082 4083 4084 4085
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4086
#ifdef CONFIG_MMU
4087 4088 4089
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4090
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4091 4092 4093 4094 4095 4096 4097 4098 4099

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4100
	memcg->move_charge_at_immigrate = val;
4101 4102 4103 4104
	cgroup_unlock();

	return 0;
}
4105 4106 4107 4108 4109 4110 4111
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4112

K
KAMEZAWA Hiroyuki 已提交
4113 4114 4115 4116 4117

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4118
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4119 4120
	MCS_PGPGIN,
	MCS_PGPGOUT,
4121
	MCS_SWAP,
4122 4123
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4134 4135
};

K
KAMEZAWA Hiroyuki 已提交
4136 4137 4138 4139 4140 4141
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4142
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4143 4144
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4145
	{"swap", "total_swap"},
4146 4147
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4148 4149 4150 4151 4152 4153 4154 4155
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4156
static void
4157
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4158 4159 4160 4161
{
	s64 val;

	/* per cpu stat */
4162
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4163
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4164
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4165
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4166
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4167
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4168
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4169
	s->stat[MCS_PGPGIN] += val;
4170
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4171
	s->stat[MCS_PGPGOUT] += val;
4172
	if (do_swap_account) {
4173
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4174 4175
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4176
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4177
	s->stat[MCS_PGFAULT] += val;
4178
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4179
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4180 4181

	/* per zone stat */
4182
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4183
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4184
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4185
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4186
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4187
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4188
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4189
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4190
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4191 4192 4193 4194
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4195
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4196
{
K
KAMEZAWA Hiroyuki 已提交
4197 4198
	struct mem_cgroup *iter;

4199
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4200
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4201 4202
}

4203 4204 4205 4206 4207 4208 4209 4210 4211
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4212
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4213 4214
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4215
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4216 4217 4218 4219
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4220
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4221 4222
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4223 4224
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4225 4226 4227 4228
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4229
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4230 4231
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4232 4233
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4234 4235 4236 4237
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4238
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4239 4240
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4241 4242
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4243 4244 4245 4246 4247 4248 4249
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4250 4251
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4252 4253
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4254
	struct mcs_total_stat mystat;
4255 4256
	int i;

K
KAMEZAWA Hiroyuki 已提交
4257 4258
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4259

4260

4261 4262 4263
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4264
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4265
	}
L
Lee Schermerhorn 已提交
4266

K
KAMEZAWA Hiroyuki 已提交
4267
	/* Hierarchical information */
4268 4269 4270 4271 4272 4273 4274
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4275

K
KAMEZAWA Hiroyuki 已提交
4276 4277
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4278 4279 4280
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4281
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4282
	}
K
KAMEZAWA Hiroyuki 已提交
4283

K
KOSAKI Motohiro 已提交
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4311 4312 4313
	return 0;
}

K
KOSAKI Motohiro 已提交
4314 4315 4316 4317
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4318
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4319 4320 4321 4322 4323 4324 4325
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4326

K
KOSAKI Motohiro 已提交
4327 4328 4329 4330 4331 4332 4333
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4334 4335 4336

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4337 4338
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4339 4340
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4341
		return -EINVAL;
4342
	}
K
KOSAKI Motohiro 已提交
4343 4344 4345

	memcg->swappiness = val;

4346 4347
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4348 4349 4350
	return 0;
}

4351 4352 4353 4354 4355 4356 4357 4358
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4359
		t = rcu_dereference(memcg->thresholds.primary);
4360
	else
4361
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4373
	i = t->current_threshold;
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4397
	t->current_threshold = i - 1;
4398 4399 4400 4401 4402 4403
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4404 4405 4406 4407 4408 4409 4410
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4421
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4422 4423 4424
{
	struct mem_cgroup_eventfd_list *ev;

4425
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4426 4427 4428 4429
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4430
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4431
{
K
KAMEZAWA Hiroyuki 已提交
4432 4433
	struct mem_cgroup *iter;

4434
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4435
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4436 4437 4438 4439
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4440 4441
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4442 4443
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4444 4445
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4446
	int i, size, ret;
4447 4448 4449 4450 4451 4452

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4453

4454
	if (type == _MEM)
4455
		thresholds = &memcg->thresholds;
4456
	else if (type == _MEMSWAP)
4457
		thresholds = &memcg->memsw_thresholds;
4458 4459 4460 4461 4462 4463
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4464
	if (thresholds->primary)
4465 4466
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4467
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4468 4469

	/* Allocate memory for new array of thresholds */
4470
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4471
			GFP_KERNEL);
4472
	if (!new) {
4473 4474 4475
		ret = -ENOMEM;
		goto unlock;
	}
4476
	new->size = size;
4477 4478

	/* Copy thresholds (if any) to new array */
4479 4480
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4481
				sizeof(struct mem_cgroup_threshold));
4482 4483
	}

4484
	/* Add new threshold */
4485 4486
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4487 4488

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4489
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4490 4491 4492
			compare_thresholds, NULL);

	/* Find current threshold */
4493
	new->current_threshold = -1;
4494
	for (i = 0; i < size; i++) {
4495
		if (new->entries[i].threshold < usage) {
4496
			/*
4497 4498
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4499 4500
			 * it here.
			 */
4501
			++new->current_threshold;
4502 4503 4504
		}
	}

4505 4506 4507 4508 4509
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4510

4511
	/* To be sure that nobody uses thresholds */
4512 4513 4514 4515 4516 4517 4518 4519
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4520
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4521
	struct cftype *cft, struct eventfd_ctx *eventfd)
4522 4523
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4524 4525
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4526 4527
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4528
	int i, j, size;
4529 4530 4531

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4532
		thresholds = &memcg->thresholds;
4533
	else if (type == _MEMSWAP)
4534
		thresholds = &memcg->memsw_thresholds;
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4550 4551 4552
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4553 4554 4555
			size++;
	}

4556
	new = thresholds->spare;
4557

4558 4559
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4560 4561
		kfree(new);
		new = NULL;
4562
		goto swap_buffers;
4563 4564
	}

4565
	new->size = size;
4566 4567

	/* Copy thresholds and find current threshold */
4568 4569 4570
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4571 4572
			continue;

4573 4574
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4575
			/*
4576
			 * new->current_threshold will not be used
4577 4578 4579
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4580
			++new->current_threshold;
4581 4582 4583 4584
		}
		j++;
	}

4585
swap_buffers:
4586 4587 4588
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4589

4590
	/* To be sure that nobody uses thresholds */
4591 4592 4593 4594
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4595

K
KAMEZAWA Hiroyuki 已提交
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4608
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4609 4610 4611 4612 4613

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4614
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4615
		eventfd_signal(eventfd, 1);
4616
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4617 4618 4619 4620

	return 0;
}

4621
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4622 4623
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4624
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4625 4626 4627 4628 4629
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4630
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4631

4632
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4633 4634 4635 4636 4637 4638
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4639
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4640 4641
}

4642 4643 4644
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4645
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4646

4647
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4648

4649
	if (atomic_read(&memcg->under_oom))
4650 4651 4652 4653 4654 4655 4656 4657 4658
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4659
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4671
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4672 4673 4674
		cgroup_unlock();
		return -EINVAL;
	}
4675
	memcg->oom_kill_disable = val;
4676
	if (!val)
4677
		memcg_oom_recover(memcg);
4678 4679 4680 4681
	cgroup_unlock();
	return 0;
}

4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static u64 kmem_limit_independent_read(struct cgroup *cgroup, struct cftype *cft)
{
	return mem_cgroup_from_cont(cgroup)->kmem_independent_accounting;
}

static int kmem_limit_independent_write(struct cgroup *cgroup, struct cftype *cft,
					u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);

	val = !!val;

	/*
	 * This follows the same hierarchy restrictions than
	 * mem_cgroup_hierarchy_write()
	 */
	if (!parent || !parent->use_hierarchy) {
		if (list_empty(&cgroup->children))
			memcg->kmem_independent_accounting = val;
		else
			return -EBUSY;
	}
	else
		return -EINVAL;

	return 0;
}
static struct cftype kmem_cgroup_files[] = {
	{
		.name = "independent_kmem_limit",
		.read_u64 = kmem_limit_independent_read,
		.write_u64 = kmem_limit_independent_write,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.read_u64 = mem_cgroup_read,
	},
};

static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	int ret = 0;

	ret = cgroup_add_files(cont, ss, kmem_cgroup_files,
			       ARRAY_SIZE(kmem_cgroup_files));
G
Glauber Costa 已提交
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760

	/*
	 * Part of this would be better living in a separate allocation
	 * function, leaving us with just the cgroup tree population work.
	 * We, however, depend on state such as network's proto_list that
	 * is only initialized after cgroup creation. I found the less
	 * cumbersome way to deal with it to defer it all to populate time
	 */
	if (!ret)
		ret = mem_cgroup_sockets_init(cont, ss);
4761 4762 4763
	return ret;
};

G
Glauber Costa 已提交
4764 4765 4766 4767 4768
static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	mem_cgroup_sockets_destroy(cont, ss);
}
4769 4770 4771 4772 4773
#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
G
Glauber Costa 已提交
4774 4775 4776 4777 4778

static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
}
4779 4780
#endif

B
Balbir Singh 已提交
4781 4782
static struct cftype mem_cgroup_files[] = {
	{
4783
		.name = "usage_in_bytes",
4784
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4785
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4786 4787
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4788
	},
4789 4790
	{
		.name = "max_usage_in_bytes",
4791
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4792
		.trigger = mem_cgroup_reset,
4793 4794
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4795
	{
4796
		.name = "limit_in_bytes",
4797
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4798
		.write_string = mem_cgroup_write,
4799
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4800
	},
4801 4802 4803 4804 4805 4806
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4807 4808
	{
		.name = "failcnt",
4809
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4810
		.trigger = mem_cgroup_reset,
4811
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4812
	},
4813 4814
	{
		.name = "stat",
4815
		.read_map = mem_control_stat_show,
4816
	},
4817 4818 4819 4820
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4821 4822 4823 4824 4825
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4826 4827 4828 4829 4830
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4831 4832 4833 4834 4835
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4836 4837
	{
		.name = "oom_control",
4838 4839
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4840 4841 4842 4843
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4844 4845 4846 4847
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4848
		.mode = S_IRUGO,
4849 4850
	},
#endif
B
Balbir Singh 已提交
4851 4852
};

4853 4854 4855 4856 4857 4858
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4859 4860
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4896
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4897 4898
{
	struct mem_cgroup_per_node *pn;
4899
	struct mem_cgroup_per_zone *mz;
4900
	enum lru_list l;
4901
	int zone, tmp = node;
4902 4903 4904 4905 4906 4907 4908 4909
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4910 4911
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4912
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4913 4914
	if (!pn)
		return 1;
4915 4916 4917

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4918 4919
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4920
		mz->usage_in_excess = 0;
4921
		mz->on_tree = false;
4922
		mz->mem = memcg;
4923
	}
4924
	memcg->info.nodeinfo[node] = pn;
4925 4926 4927
	return 0;
}

4928
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4929
{
4930
	kfree(memcg->info.nodeinfo[node]);
4931 4932
}

4933 4934 4935
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4936
	int size = sizeof(struct mem_cgroup);
4937

4938
	/* Can be very big if MAX_NUMNODES is very big */
4939
	if (size < PAGE_SIZE)
4940
		mem = kzalloc(size, GFP_KERNEL);
4941
	else
4942
		mem = vzalloc(size);
4943

4944 4945 4946
	if (!mem)
		return NULL;

4947
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4948 4949
	if (!mem->stat)
		goto out_free;
4950
	spin_lock_init(&mem->pcp_counter_lock);
4951
	return mem;
4952 4953 4954 4955 4956 4957 4958

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4959 4960
}

4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4972
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4973
{
K
KAMEZAWA Hiroyuki 已提交
4974 4975
	int node;

4976 4977
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4978

K
KAMEZAWA Hiroyuki 已提交
4979
	for_each_node_state(node, N_POSSIBLE)
4980
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4981

4982
	free_percpu(memcg->stat);
4983
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4984
		kfree(memcg);
4985
	else
4986
		vfree(memcg);
4987 4988
}

4989
static void mem_cgroup_get(struct mem_cgroup *memcg)
4990
{
4991
	atomic_inc(&memcg->refcnt);
4992 4993
}

4994
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4995
{
4996 4997 4998
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4999 5000 5001
		if (parent)
			mem_cgroup_put(parent);
	}
5002 5003
}

5004
static void mem_cgroup_put(struct mem_cgroup *memcg)
5005
{
5006
	__mem_cgroup_put(memcg, 1);
5007 5008
}

5009 5010 5011
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5012
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5013
{
5014
	if (!memcg->res.parent)
5015
		return NULL;
5016
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5017
}
G
Glauber Costa 已提交
5018
EXPORT_SYMBOL(parent_mem_cgroup);
5019

5020 5021 5022
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
5023
	if (!mem_cgroup_disabled() && really_do_swap_account)
5024 5025 5026 5027 5028 5029 5030 5031
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
5057
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
5058 5059
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
5060
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
5061
	long error = -ENOMEM;
5062
	int node;
B
Balbir Singh 已提交
5063

5064 5065
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5066
		return ERR_PTR(error);
5067

5068
	for_each_node_state(node, N_POSSIBLE)
5069
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5070
			goto free_out;
5071

5072
	/* root ? */
5073
	if (cont->parent == NULL) {
5074
		int cpu;
5075
		enable_swap_cgroup();
5076
		parent = NULL;
5077
		root_mem_cgroup = memcg;
5078 5079
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5080 5081 5082 5083 5084
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5085
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5086
	} else {
5087
		parent = mem_cgroup_from_cont(cont->parent);
5088 5089
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
5090
	}
5091

5092
	if (parent && parent->use_hierarchy) {
5093 5094
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5095
		res_counter_init(&memcg->kmem, &parent->kmem);
5096 5097 5098 5099 5100 5101 5102
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5103
	} else {
5104 5105
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5106
		res_counter_init(&memcg->kmem, NULL);
5107
	}
5108 5109 5110
	memcg->last_scanned_child = 0;
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5111

K
KOSAKI Motohiro 已提交
5112
	if (parent)
5113 5114 5115 5116 5117
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
5118
free_out:
5119
	__mem_cgroup_free(memcg);
5120
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
5121
	return ERR_PTR(error);
B
Balbir Singh 已提交
5122 5123
}

5124
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5125 5126
					struct cgroup *cont)
{
5127
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5128

5129
	return mem_cgroup_force_empty(memcg, false);
5130 5131
}

B
Balbir Singh 已提交
5132 5133 5134
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5135
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5136

G
Glauber Costa 已提交
5137 5138
	kmem_cgroup_destroy(ss, cont);

5139
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5140 5141 5142 5143 5144
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5145 5146 5147 5148 5149 5150 5151
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
5152 5153 5154 5155

	if (!ret)
		ret = register_kmem_files(cont, ss);

5156
	return ret;
B
Balbir Singh 已提交
5157 5158
}

5159
#ifdef CONFIG_MMU
5160
/* Handlers for move charge at task migration. */
5161 5162
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5163
{
5164 5165
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5166
	struct mem_cgroup *memcg = mc.to;
5167

5168
	if (mem_cgroup_is_root(memcg)) {
5169 5170 5171 5172 5173 5174 5175 5176
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5177
		 * "memcg" cannot be under rmdir() because we've already checked
5178 5179 5180 5181
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5182
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5183
			goto one_by_one;
5184
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5185
						PAGE_SIZE * count, &dummy)) {
5186
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5203 5204 5205
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
		if (ret || !memcg)
5206 5207 5208 5209
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5210 5211 5212 5213 5214 5215 5216 5217
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5218
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5219 5220 5221 5222 5223 5224
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5225 5226 5227
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5228 5229 5230 5231 5232
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5233
	swp_entry_t	ent;
5234 5235 5236 5237 5238
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5239
	MC_TARGET_SWAP,
5240 5241
};

D
Daisuke Nishimura 已提交
5242 5243
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5244
{
D
Daisuke Nishimura 已提交
5245
	struct page *page = vm_normal_page(vma, addr, ptent);
5246

D
Daisuke Nishimura 已提交
5247 5248 5249 5250 5251 5252
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5253 5254
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5273 5274
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5275
		return NULL;
5276
	}
D
Daisuke Nishimura 已提交
5277 5278 5279 5280 5281 5282
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5304 5305 5306 5307 5308 5309
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5310
		if (do_swap_account)
5311 5312
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5313
	}
5314
#endif
5315 5316 5317
	return page;
}

D
Daisuke Nishimura 已提交
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5330 5331
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5332 5333 5334

	if (!page && !ent.val)
		return 0;
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5350 5351
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5352 5353 5354 5355
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5368 5369
	split_huge_page_pmd(walk->mm, pmd);

5370 5371 5372 5373 5374 5375 5376
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5377 5378 5379
	return 0;
}

5380 5381 5382 5383 5384
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5385
	down_read(&mm->mmap_sem);
5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5397
	up_read(&mm->mmap_sem);
5398 5399 5400 5401 5402 5403 5404 5405 5406

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5407 5408 5409 5410 5411
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5412 5413
}

5414 5415
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5416
{
5417 5418 5419
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5420
	/* we must uncharge all the leftover precharges from mc.to */
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5432
	}
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5467
	spin_lock(&mc.lock);
5468 5469
	mc.from = NULL;
	mc.to = NULL;
5470
	spin_unlock(&mc.lock);
5471
	mem_cgroup_end_move(from);
5472 5473
}

5474 5475
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5476
				struct task_struct *p)
5477 5478
{
	int ret = 0;
5479
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5480

5481
	if (memcg->move_charge_at_immigrate) {
5482 5483 5484
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5485
		VM_BUG_ON(from == memcg);
5486 5487 5488 5489 5490

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5491 5492 5493 5494
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5495
			VM_BUG_ON(mc.moved_charge);
5496
			VM_BUG_ON(mc.moved_swap);
5497
			mem_cgroup_start_move(from);
5498
			spin_lock(&mc.lock);
5499
			mc.from = from;
5500
			mc.to = memcg;
5501
			spin_unlock(&mc.lock);
5502
			/* We set mc.moving_task later */
5503 5504 5505 5506

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5507 5508
		}
		mmput(mm);
5509 5510 5511 5512 5513 5514
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5515
				struct task_struct *p)
5516
{
5517
	mem_cgroup_clear_mc();
5518 5519
}

5520 5521 5522
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5523
{
5524 5525 5526 5527 5528
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5529
	split_huge_page_pmd(walk->mm, pmd);
5530 5531 5532 5533 5534 5535 5536 5537
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5538
		swp_entry_t ent;
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5550 5551
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5552
				mc.precharge--;
5553 5554
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5555 5556 5557 5558 5559
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5560 5561
		case MC_TARGET_SWAP:
			ent = target.ent;
5562 5563
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5564
				mc.precharge--;
5565 5566 5567
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5568
			break;
5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5583
		ret = mem_cgroup_do_precharge(1);
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5627
	up_read(&mm->mmap_sem);
5628 5629
}

B
Balbir Singh 已提交
5630 5631 5632
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5633
				struct task_struct *p)
B
Balbir Singh 已提交
5634
{
5635
	struct mm_struct *mm = get_task_mm(p);
5636 5637

	if (mm) {
5638 5639 5640
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5641 5642
		mmput(mm);
	}
5643 5644
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5645
}
5646 5647 5648
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5649
				struct task_struct *p)
5650 5651 5652 5653 5654
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5655
				struct task_struct *p)
5656 5657 5658 5659 5660
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5661
				struct task_struct *p)
5662 5663 5664
{
}
#endif
B
Balbir Singh 已提交
5665

B
Balbir Singh 已提交
5666 5667 5668 5669
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5670
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5671 5672
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5673 5674
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5675
	.attach = mem_cgroup_move_task,
5676
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5677
	.use_id = 1,
B
Balbir Singh 已提交
5678
};
5679 5680

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5681 5682 5683
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5684
	if (!strcmp(s, "1"))
5685
		really_do_swap_account = 1;
5686
	else if (!strcmp(s, "0"))
5687 5688 5689
		really_do_swap_account = 0;
	return 1;
}
5690
__setup("swapaccount=", enable_swap_account);
5691 5692

#endif