memcontrol.c 145.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53
#include <net/sock.h>
M
Michal Hocko 已提交
54
#include <net/ip.h>
G
Glauber Costa 已提交
55
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
56

57 58
#include <asm/uaccess.h>

59 60
#include <trace/events/vmscan.h>

61 62
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
63
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
64

A
Andrew Morton 已提交
65
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
66
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
67
int do_swap_account __read_mostly;
68 69

/* for remember boot option*/
A
Andrew Morton 已提交
70
#ifdef CONFIG_MEMCG_SWAP_ENABLED
71 72 73 74 75
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

76
#else
77
#define do_swap_account		0
78 79 80
#endif


81 82 83 84 85 86 87 88
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
89
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
90
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
91
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
92 93 94
	MEM_CGROUP_STAT_NSTATS,
};

95 96 97 98 99 100 101
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

102 103 104
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
105 106
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
107 108
	MEM_CGROUP_EVENTS_NSTATS,
};
109 110 111 112 113 114 115 116

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

117 118 119 120 121 122 123 124 125
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
126
	MEM_CGROUP_TARGET_NUMAINFO,
127 128
	MEM_CGROUP_NTARGETS,
};
129 130 131
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
132

133
struct mem_cgroup_stat_cpu {
134
	long count[MEM_CGROUP_STAT_NSTATS];
135
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
136
	unsigned long nr_page_events;
137
	unsigned long targets[MEM_CGROUP_NTARGETS];
138 139
};

140 141 142 143 144 145 146
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

147 148 149 150
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
151
	struct lruvec		lruvec;
152
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
153

154 155
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

156 157 158 159
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
160
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
161
						/* use container_of	   */
162 163 164 165 166 167 168 169 170 171
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

192 193 194 195 196
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
197
/* For threshold */
198
struct mem_cgroup_threshold_ary {
199
	/* An array index points to threshold just below or equal to usage. */
200
	int current_threshold;
201 202 203 204 205
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
206 207 208 209 210 211 212 213 214 215 216 217

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
218 219 220 221 222
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
223

224 225
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
226

B
Balbir Singh 已提交
227 228 229 230 231 232 233
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
234 235 236
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
237 238 239 240 241 242 243
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
262 263
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
264 265 266 267
		 */
		struct work_struct work_freeing;
	};

268 269 270 271
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
272
	struct mem_cgroup_lru_info info;
273 274 275
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
276 277
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
278
#endif
279 280 281 282
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
283 284 285 286

	bool		oom_lock;
	atomic_t	under_oom;

287
	atomic_t	refcnt;
288

289
	int	swappiness;
290 291
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
292

293 294 295
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

296 297 298 299
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
300
	struct mem_cgroup_thresholds thresholds;
301

302
	/* thresholds for mem+swap usage. RCU-protected */
303
	struct mem_cgroup_thresholds memsw_thresholds;
304

K
KAMEZAWA Hiroyuki 已提交
305 306
	/* For oom notifier event fd */
	struct list_head oom_notify;
307

308 309 310 311 312
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
313 314 315 316
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
317 318
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
319
	/*
320
	 * percpu counter.
321
	 */
322
	struct mem_cgroup_stat_cpu __percpu *stat;
323 324 325 326 327 328
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
329

M
Michal Hocko 已提交
330
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
331 332
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
333 334
};

335 336 337 338 339 340
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
341
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
342
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
343 344 345
	NR_MOVE_TYPE,
};

346 347
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
348
	spinlock_t	  lock; /* for from, to */
349 350 351
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
352
	unsigned long moved_charge;
353
	unsigned long moved_swap;
354 355 356
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
357
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
358 359
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
360

D
Daisuke Nishimura 已提交
361 362 363 364 365 366
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

367 368 369 370 371 372
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

373 374 375 376
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
377 378
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
379

380 381
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
382
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
383
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
384
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
385 386 387
	NR_CHARGE_TYPE,
};

388
/* for encoding cft->private value on file */
389 390 391
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
392 393
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
394
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
395 396
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
397

398 399 400 401 402 403 404 405
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

406 407
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
408

409 410 411 412 413 414
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

415 416 417 418 419
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
420
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
421
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
422 423 424

void sock_update_memcg(struct sock *sk)
{
425
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
426
		struct mem_cgroup *memcg;
427
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
428 429 430

		BUG_ON(!sk->sk_prot->proto_cgroup);

431 432 433 434 435 436 437 438 439 440 441 442 443 444
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
445 446
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
447 448
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
449
			mem_cgroup_get(memcg);
450
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
451 452 453 454 455 456 457 458
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
459
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
460 461 462 463 464 465
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
466 467 468 469 470 471 472 473 474

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
475

476 477 478 479 480 481 482 483 484 485 486 487
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

488
static void drain_all_stock_async(struct mem_cgroup *memcg);
489

490
static struct mem_cgroup_per_zone *
491
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
492
{
493
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
494 495
}

496
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
497
{
498
	return &memcg->css;
499 500
}

501
static struct mem_cgroup_per_zone *
502
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
503
{
504 505
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
506

507
	return mem_cgroup_zoneinfo(memcg, nid, zid);
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
526
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
527
				struct mem_cgroup_per_zone *mz,
528 529
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
530 531 532 533 534 535 536 537
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

538 539 540
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
557 558 559
}

static void
560
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
561 562 563 564 565 566 567 568 569
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

570
static void
571
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
572 573 574 575
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
576
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
577 578 579 580
	spin_unlock(&mctz->lock);
}


581
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
582
{
583
	unsigned long long excess;
584 585
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
586 587
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
588 589 590
	mctz = soft_limit_tree_from_page(page);

	/*
591 592
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
593
	 */
594 595 596
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
597 598 599 600
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
601
		if (excess || mz->on_tree) {
602 603 604
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
605
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
606
			/*
607 608
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
609
			 */
610
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
611 612
			spin_unlock(&mctz->lock);
		}
613 614 615
	}
}

616
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
617 618 619 620 621
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
622
	for_each_node(node) {
623
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
624
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
625
			mctz = soft_limit_tree_node_zone(node, zone);
626
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
627 628 629 630
		}
	}
}

631 632 633 634
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
635
	struct mem_cgroup_per_zone *mz;
636 637

retry:
638
	mz = NULL;
639 640 641 642 643 644 645 646 647 648
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
649 650 651
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
687
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
688
				 enum mem_cgroup_stat_index idx)
689
{
690
	long val = 0;
691 692
	int cpu;

693 694
	get_online_cpus();
	for_each_online_cpu(cpu)
695
		val += per_cpu(memcg->stat->count[idx], cpu);
696
#ifdef CONFIG_HOTPLUG_CPU
697 698 699
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
700 701
#endif
	put_online_cpus();
702 703 704
	return val;
}

705
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
706 707 708
					 bool charge)
{
	int val = (charge) ? 1 : -1;
709
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
710 711
}

712
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
713 714 715 716 717 718
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
719
		val += per_cpu(memcg->stat->events[idx], cpu);
720
#ifdef CONFIG_HOTPLUG_CPU
721 722 723
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
724 725 726 727
#endif
	return val;
}

728
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
729
					 bool anon, int nr_pages)
730
{
731 732
	preempt_disable();

733 734 735 736 737 738
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
739
				nr_pages);
740
	else
741
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
742
				nr_pages);
743

744 745
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
746
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
747
	else {
748
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
749 750
		nr_pages = -nr_pages; /* for event */
	}
751

752
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
753

754
	preempt_enable();
755 756
}

757
unsigned long
758
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
759 760 761 762 763 764 765 766
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
767
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
768
			unsigned int lru_mask)
769 770
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
771
	enum lru_list lru;
772 773
	unsigned long ret = 0;

774
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
775

H
Hugh Dickins 已提交
776 777 778
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
779 780 781 782 783
	}
	return ret;
}

static unsigned long
784
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
785 786
			int nid, unsigned int lru_mask)
{
787 788 789
	u64 total = 0;
	int zid;

790
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
791 792
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
793

794 795
	return total;
}
796

797
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
798
			unsigned int lru_mask)
799
{
800
	int nid;
801 802
	u64 total = 0;

803
	for_each_node_state(nid, N_HIGH_MEMORY)
804
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
805
	return total;
806 807
}

808 809
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
810 811 812
{
	unsigned long val, next;

813
	val = __this_cpu_read(memcg->stat->nr_page_events);
814
	next = __this_cpu_read(memcg->stat->targets[target]);
815
	/* from time_after() in jiffies.h */
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
832
	}
833
	return false;
834 835 836 837 838 839
}

/*
 * Check events in order.
 *
 */
840
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
841
{
842
	preempt_disable();
843
	/* threshold event is triggered in finer grain than soft limit */
844 845
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
846 847
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
848 849 850 851 852 853 854 855 856

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

857
		mem_cgroup_threshold(memcg);
858
		if (unlikely(do_softlimit))
859
			mem_cgroup_update_tree(memcg, page);
860
#if MAX_NUMNODES > 1
861
		if (unlikely(do_numainfo))
862
			atomic_inc(&memcg->numainfo_events);
863
#endif
864 865
	} else
		preempt_enable();
866 867
}

G
Glauber Costa 已提交
868
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
869
{
870 871
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
872 873
}

874
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
875
{
876 877 878 879 880 881 882 883
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

884
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
885 886
}

887
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
888
{
889
	struct mem_cgroup *memcg = NULL;
890 891 892

	if (!mm)
		return NULL;
893 894 895 896 897 898 899
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
900 901
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
902
			break;
903
	} while (!css_tryget(&memcg->css));
904
	rcu_read_unlock();
905
	return memcg;
906 907
}

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
928
{
929 930
	struct mem_cgroup *memcg = NULL;
	int id = 0;
931

932 933 934
	if (mem_cgroup_disabled())
		return NULL;

935 936
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
937

938 939
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
940

941 942
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
943

944 945 946 947 948
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
949

950
	while (!memcg) {
951
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
952
		struct cgroup_subsys_state *css;
953

954 955 956 957 958 959 960 961 962 963 964
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
965

966 967 968 969
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
970
				memcg = mem_cgroup_from_css(css);
971 972
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
973 974
		rcu_read_unlock();

975 976 977 978 979 980 981
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
982 983 984 985 986

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
987
}
K
KAMEZAWA Hiroyuki 已提交
988

989 990 991 992 993 994 995
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
996 997 998 999 1000 1001
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1002

1003 1004 1005 1006 1007 1008
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1009
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1010
	     iter != NULL;				\
1011
	     iter = mem_cgroup_iter(root, iter, NULL))
1012

1013
#define for_each_mem_cgroup(iter)			\
1014
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1015
	     iter != NULL;				\
1016
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1017

1018 1019
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
1020
	struct mem_cgroup *memcg;
1021 1022 1023 1024 1025

	if (!mm)
		return;

	rcu_read_lock();
1026 1027
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1028 1029 1030 1031
		goto out;

	switch (idx) {
	case PGFAULT:
1032 1033 1034 1035
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1036 1037 1038 1039 1040 1041 1042 1043 1044
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

1045 1046 1047
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1048
 * @memcg: memcg of the wanted lruvec
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1079

1080
/**
1081
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1082
 * @page: the page
1083
 * @zone: zone of the page
1084
 */
1085
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1086 1087
{
	struct mem_cgroup_per_zone *mz;
1088 1089
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1090

1091
	if (mem_cgroup_disabled())
1092 1093
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1094
	pc = lookup_page_cgroup(page);
1095
	memcg = pc->mem_cgroup;
1096 1097

	/*
1098
	 * Surreptitiously switch any uncharged offlist page to root:
1099 1100 1101 1102 1103 1104 1105
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1106
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1107 1108
		pc->mem_cgroup = memcg = root_mem_cgroup;

1109 1110
	mz = page_cgroup_zoneinfo(memcg, page);
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1111
}
1112

1113
/**
1114 1115 1116 1117
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1118
 *
1119 1120
 * This function must be called when a page is added to or removed from an
 * lru list.
1121
 */
1122 1123
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1124 1125
{
	struct mem_cgroup_per_zone *mz;
1126
	unsigned long *lru_size;
1127 1128 1129 1130

	if (mem_cgroup_disabled())
		return;

1131 1132 1133 1134
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1135
}
1136

1137
/*
1138
 * Checks whether given mem is same or in the root_mem_cgroup's
1139 1140
 * hierarchy subtree
 */
1141 1142
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1143
{
1144 1145
	if (root_memcg == memcg)
		return true;
1146
	if (!root_memcg->use_hierarchy || !memcg)
1147
		return false;
1148 1149 1150 1151 1152 1153 1154 1155
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1156
	rcu_read_lock();
1157
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1158 1159
	rcu_read_unlock();
	return ret;
1160 1161
}

1162
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1163 1164
{
	int ret;
1165
	struct mem_cgroup *curr = NULL;
1166
	struct task_struct *p;
1167

1168
	p = find_lock_task_mm(task);
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1184 1185
	if (!curr)
		return 0;
1186
	/*
1187
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1188
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1189 1190
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1191
	 */
1192
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1193
	css_put(&curr->css);
1194 1195 1196
	return ret;
}

1197
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1198
{
1199
	unsigned long inactive_ratio;
1200
	unsigned long inactive;
1201
	unsigned long active;
1202
	unsigned long gb;
1203

1204 1205
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1206

1207 1208 1209 1210 1211 1212
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1213
	return inactive * inactive_ratio < active;
1214 1215
}

1216
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1217 1218 1219 1220
{
	unsigned long active;
	unsigned long inactive;

1221 1222
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1223 1224 1225 1226

	return (active > inactive);
}

1227 1228 1229
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1230
/**
1231
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1232
 * @memcg: the memory cgroup
1233
 *
1234
 * Returns the maximum amount of memory @mem can be charged with, in
1235
 * pages.
1236
 */
1237
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1238
{
1239 1240
	unsigned long long margin;

1241
	margin = res_counter_margin(&memcg->res);
1242
	if (do_swap_account)
1243
		margin = min(margin, res_counter_margin(&memcg->memsw));
1244
	return margin >> PAGE_SHIFT;
1245 1246
}

1247
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1248 1249 1250 1251 1252 1253 1254
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1255
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1256 1257
}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1272 1273 1274 1275

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1276
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1277
{
1278
	atomic_inc(&memcg_moving);
1279
	atomic_inc(&memcg->moving_account);
1280 1281 1282
	synchronize_rcu();
}

1283
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1284
{
1285 1286 1287 1288
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1289 1290
	if (memcg) {
		atomic_dec(&memcg_moving);
1291
		atomic_dec(&memcg->moving_account);
1292
	}
1293
}
1294

1295 1296 1297
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1298 1299
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1300 1301 1302 1303 1304 1305 1306
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1307
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1308 1309
{
	VM_BUG_ON(!rcu_read_lock_held());
1310
	return atomic_read(&memcg->moving_account) > 0;
1311
}
1312

1313
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1314
{
1315 1316
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1317
	bool ret = false;
1318 1319 1320 1321 1322 1323 1324 1325 1326
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1327

1328 1329
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1330 1331
unlock:
	spin_unlock(&mc.lock);
1332 1333 1334
	return ret;
}

1335
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1336 1337
{
	if (mc.moving_task && current != mc.moving_task) {
1338
		if (mem_cgroup_under_move(memcg)) {
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1351 1352 1353 1354
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1355
 * see mem_cgroup_stolen(), too.
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1369
/**
1370
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1389
	if (!memcg || !p)
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1435 1436 1437 1438
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1439
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1440 1441
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1442 1443
	struct mem_cgroup *iter;

1444
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1445
		num++;
1446 1447 1448
	return num;
}

D
David Rientjes 已提交
1449 1450 1451
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1452
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1453 1454 1455
{
	u64 limit;

1456 1457
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1458
	/*
1459
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1460
	 */
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1475 1476
}

1477 1478
void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
			      int order)
1479 1480 1481 1482 1483 1484 1485
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1580 1581
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1582
 * @memcg: the target memcg
1583 1584 1585 1586 1587 1588 1589
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1590
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1591 1592
		int nid, bool noswap)
{
1593
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1594 1595 1596
		return true;
	if (noswap || !total_swap_pages)
		return false;
1597
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1598 1599 1600 1601
		return true;
	return false;

}
1602 1603 1604 1605 1606 1607 1608 1609
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1610
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1611 1612
{
	int nid;
1613 1614 1615 1616
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1617
	if (!atomic_read(&memcg->numainfo_events))
1618
		return;
1619
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1620 1621 1622
		return;

	/* make a nodemask where this memcg uses memory from */
1623
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1624 1625 1626

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1627 1628
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1629
	}
1630

1631 1632
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1647
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1648 1649 1650
{
	int node;

1651 1652
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1653

1654
	node = next_node(node, memcg->scan_nodes);
1655
	if (node == MAX_NUMNODES)
1656
		node = first_node(memcg->scan_nodes);
1657 1658 1659 1660 1661 1662 1663 1664 1665
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1666
	memcg->last_scanned_node = node;
1667 1668 1669
	return node;
}

1670 1671 1672 1673 1674 1675
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1676
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1677 1678 1679 1680 1681 1682 1683
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1684 1685
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1686
		     nid < MAX_NUMNODES;
1687
		     nid = next_node(nid, memcg->scan_nodes)) {
1688

1689
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1690 1691 1692 1693 1694 1695 1696
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1697
		if (node_isset(nid, memcg->scan_nodes))
1698
			continue;
1699
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1700 1701 1702 1703 1704
			return true;
	}
	return false;
}

1705
#else
1706
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1707 1708 1709
{
	return 0;
}
1710

1711
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1712
{
1713
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1714
}
1715 1716
#endif

1717 1718 1719 1720
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1721
{
1722
	struct mem_cgroup *victim = NULL;
1723
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1724
	int loop = 0;
1725
	unsigned long excess;
1726
	unsigned long nr_scanned;
1727 1728 1729 1730
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1731

1732
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1733

1734
	while (1) {
1735
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1736
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1737
			loop++;
1738 1739 1740 1741 1742 1743
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1744
				if (!total)
1745 1746
					break;
				/*
L
Lucas De Marchi 已提交
1747
				 * We want to do more targeted reclaim.
1748 1749 1750 1751 1752
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1753
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1754 1755
					break;
			}
1756
			continue;
1757
		}
1758
		if (!mem_cgroup_reclaimable(victim, false))
1759
			continue;
1760 1761 1762 1763
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1764
			break;
1765
	}
1766
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1767
	return total;
1768 1769
}

K
KAMEZAWA Hiroyuki 已提交
1770 1771 1772
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1773
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1774
 */
1775
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1776
{
1777
	struct mem_cgroup *iter, *failed = NULL;
1778

1779
	for_each_mem_cgroup_tree(iter, memcg) {
1780
		if (iter->oom_lock) {
1781 1782 1783 1784 1785
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1786 1787
			mem_cgroup_iter_break(memcg, iter);
			break;
1788 1789
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1790
	}
K
KAMEZAWA Hiroyuki 已提交
1791

1792
	if (!failed)
1793
		return true;
1794 1795 1796 1797 1798

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1799
	for_each_mem_cgroup_tree(iter, memcg) {
1800
		if (iter == failed) {
1801 1802
			mem_cgroup_iter_break(memcg, iter);
			break;
1803 1804 1805
		}
		iter->oom_lock = false;
	}
1806
	return false;
1807
}
1808

1809
/*
1810
 * Has to be called with memcg_oom_lock
1811
 */
1812
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1813
{
K
KAMEZAWA Hiroyuki 已提交
1814 1815
	struct mem_cgroup *iter;

1816
	for_each_mem_cgroup_tree(iter, memcg)
1817 1818 1819 1820
		iter->oom_lock = false;
	return 0;
}

1821
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1822 1823 1824
{
	struct mem_cgroup *iter;

1825
	for_each_mem_cgroup_tree(iter, memcg)
1826 1827 1828
		atomic_inc(&iter->under_oom);
}

1829
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1830 1831 1832
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1833 1834 1835 1836 1837
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1838
	for_each_mem_cgroup_tree(iter, memcg)
1839
		atomic_add_unless(&iter->under_oom, -1, 0);
1840 1841
}

1842
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1843 1844
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1845
struct oom_wait_info {
1846
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1847 1848 1849 1850 1851 1852
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1853 1854
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1855 1856 1857
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1858
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1859 1860

	/*
1861
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1862 1863
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1864 1865
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1866 1867 1868 1869
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1870
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1871
{
1872 1873
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1874 1875
}

1876
static void memcg_oom_recover(struct mem_cgroup *memcg)
1877
{
1878 1879
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1880 1881
}

K
KAMEZAWA Hiroyuki 已提交
1882 1883 1884
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1885 1886
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1887
{
K
KAMEZAWA Hiroyuki 已提交
1888
	struct oom_wait_info owait;
1889
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1890

1891
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1892 1893 1894 1895
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1896
	need_to_kill = true;
1897
	mem_cgroup_mark_under_oom(memcg);
1898

1899
	/* At first, try to OOM lock hierarchy under memcg.*/
1900
	spin_lock(&memcg_oom_lock);
1901
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1902 1903 1904 1905 1906
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1907
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1908
	if (!locked || memcg->oom_kill_disable)
1909 1910
		need_to_kill = false;
	if (locked)
1911
		mem_cgroup_oom_notify(memcg);
1912
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1913

1914 1915
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1916
		mem_cgroup_out_of_memory(memcg, mask, order);
1917
	} else {
K
KAMEZAWA Hiroyuki 已提交
1918
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1919
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1920
	}
1921
	spin_lock(&memcg_oom_lock);
1922
	if (locked)
1923 1924
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1925
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1926

1927
	mem_cgroup_unmark_under_oom(memcg);
1928

K
KAMEZAWA Hiroyuki 已提交
1929 1930 1931
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1932
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1933
	return true;
1934 1935
}

1936 1937 1938
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1956 1957
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1958
 */
1959

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
1973
	 * need to take move_lock_mem_cgroup(). Because we already hold
1974
	 * rcu_read_lock(), any calls to move_account will be delayed until
1975
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1976
	 */
1977
	if (!mem_cgroup_stolen(memcg))
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
1995
	 * should take move_lock_mem_cgroup().
1996 1997 1998 1999
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2000 2001
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2002
{
2003
	struct mem_cgroup *memcg;
2004
	struct page_cgroup *pc = lookup_page_cgroup(page);
2005
	unsigned long uninitialized_var(flags);
2006

2007
	if (mem_cgroup_disabled())
2008
		return;
2009

2010 2011
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2012
		return;
2013 2014

	switch (idx) {
2015 2016
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2017 2018 2019
		break;
	default:
		BUG();
2020
	}
2021

2022
	this_cpu_add(memcg->stat->count[idx], val);
2023
}
2024

2025 2026 2027 2028
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2029
#define CHARGE_BATCH	32U
2030 2031
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2032
	unsigned int nr_pages;
2033
	struct work_struct work;
2034
	unsigned long flags;
2035
#define FLUSHING_CACHED_CHARGE	0
2036 2037
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2038
static DEFINE_MUTEX(percpu_charge_mutex);
2039 2040

/*
2041
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2042 2043 2044 2045
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2046
static bool consume_stock(struct mem_cgroup *memcg)
2047 2048 2049 2050 2051
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2052
	if (memcg == stock->cached && stock->nr_pages)
2053
		stock->nr_pages--;
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2067 2068 2069 2070
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2071
		if (do_swap_account)
2072 2073
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2086
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2087 2088 2089 2090
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2091
 * This will be consumed by consume_stock() function, later.
2092
 */
2093
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2094 2095 2096
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2097
	if (stock->cached != memcg) { /* reset if necessary */
2098
		drain_stock(stock);
2099
		stock->cached = memcg;
2100
	}
2101
	stock->nr_pages += nr_pages;
2102 2103 2104 2105
	put_cpu_var(memcg_stock);
}

/*
2106
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2107 2108
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2109
 */
2110
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2111
{
2112
	int cpu, curcpu;
2113

2114 2115
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2116
	curcpu = get_cpu();
2117 2118
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2119
		struct mem_cgroup *memcg;
2120

2121 2122
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2123
			continue;
2124
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2125
			continue;
2126 2127 2128 2129 2130 2131
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2132
	}
2133
	put_cpu();
2134 2135 2136 2137 2138 2139

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2140
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2141 2142 2143
			flush_work(&stock->work);
	}
out:
2144
 	put_online_cpus();
2145 2146 2147 2148 2149 2150 2151 2152
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2153
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2154
{
2155 2156 2157 2158 2159
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2160
	drain_all_stock(root_memcg, false);
2161
	mutex_unlock(&percpu_charge_mutex);
2162 2163 2164
}

/* This is a synchronous drain interface. */
2165
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2166 2167
{
	/* called when force_empty is called */
2168
	mutex_lock(&percpu_charge_mutex);
2169
	drain_all_stock(root_memcg, true);
2170
	mutex_unlock(&percpu_charge_mutex);
2171 2172
}

2173 2174 2175 2176
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2177
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2178 2179 2180
{
	int i;

2181
	spin_lock(&memcg->pcp_counter_lock);
2182
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2183
		long x = per_cpu(memcg->stat->count[i], cpu);
2184

2185 2186
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2187
	}
2188
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2189
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2190

2191 2192
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2193
	}
2194
	spin_unlock(&memcg->pcp_counter_lock);
2195 2196 2197
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2198 2199 2200 2201 2202
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2203
	struct mem_cgroup *iter;
2204

2205
	if (action == CPU_ONLINE)
2206 2207
		return NOTIFY_OK;

2208
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2209
		return NOTIFY_OK;
2210

2211
	for_each_mem_cgroup(iter)
2212 2213
		mem_cgroup_drain_pcp_counter(iter, cpu);

2214 2215 2216 2217 2218
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2229
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2230
				unsigned int nr_pages, bool oom_check)
2231
{
2232
	unsigned long csize = nr_pages * PAGE_SIZE;
2233 2234 2235 2236 2237
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2238
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2239 2240 2241 2242

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2243
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2244 2245 2246
		if (likely(!ret))
			return CHARGE_OK;

2247
		res_counter_uncharge(&memcg->res, csize);
2248 2249 2250 2251
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2252
	/*
2253 2254
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2255 2256 2257 2258
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2259
	if (nr_pages == CHARGE_BATCH)
2260 2261 2262 2263 2264
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2265
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2266
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2267
		return CHARGE_RETRY;
2268
	/*
2269 2270 2271 2272 2273 2274 2275
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2276
	 */
2277
	if (nr_pages == 1 && ret)
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2291
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2292 2293 2294 2295 2296
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2297
/*
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2317
 */
2318
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2319
				   gfp_t gfp_mask,
2320
				   unsigned int nr_pages,
2321
				   struct mem_cgroup **ptr,
2322
				   bool oom)
2323
{
2324
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2325
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2326
	struct mem_cgroup *memcg = NULL;
2327
	int ret;
2328

K
KAMEZAWA Hiroyuki 已提交
2329 2330 2331 2332 2333 2334 2335 2336
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2337

2338
	/*
2339 2340
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2341
	 * thread group leader migrates. It's possible that mm is not
2342
	 * set, if so charge the root memcg (happens for pagecache usage).
2343
	 */
2344
	if (!*ptr && !mm)
2345
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2346
again:
2347 2348 2349 2350
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2351
			goto done;
2352
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2353
			goto done;
2354
		css_get(&memcg->css);
2355
	} else {
K
KAMEZAWA Hiroyuki 已提交
2356
		struct task_struct *p;
2357

K
KAMEZAWA Hiroyuki 已提交
2358 2359 2360
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2361
		 * Because we don't have task_lock(), "p" can exit.
2362
		 * In that case, "memcg" can point to root or p can be NULL with
2363 2364 2365 2366 2367 2368
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2369
		 */
2370
		memcg = mem_cgroup_from_task(p);
2371 2372 2373
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2374 2375 2376
			rcu_read_unlock();
			goto done;
		}
2377
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2390
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2391 2392 2393 2394 2395
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2396

2397 2398
	do {
		bool oom_check;
2399

2400
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2401
		if (fatal_signal_pending(current)) {
2402
			css_put(&memcg->css);
2403
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2404
		}
2405

2406 2407 2408 2409
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2410
		}
2411

2412
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2413 2414 2415 2416
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2417
			batch = nr_pages;
2418 2419
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2420
			goto again;
2421
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2422
			css_put(&memcg->css);
2423 2424
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2425
			if (!oom) {
2426
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2427
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2428
			}
2429 2430 2431 2432
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2433
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2434
			goto bypass;
2435
		}
2436 2437
	} while (ret != CHARGE_OK);

2438
	if (batch > nr_pages)
2439 2440
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2441
done:
2442
	*ptr = memcg;
2443 2444
	return 0;
nomem:
2445
	*ptr = NULL;
2446
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2447
bypass:
2448 2449
	*ptr = root_mem_cgroup;
	return -EINTR;
2450
}
2451

2452 2453 2454 2455 2456
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2457
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2458
				       unsigned int nr_pages)
2459
{
2460
	if (!mem_cgroup_is_root(memcg)) {
2461 2462
		unsigned long bytes = nr_pages * PAGE_SIZE;

2463
		res_counter_uncharge(&memcg->res, bytes);
2464
		if (do_swap_account)
2465
			res_counter_uncharge(&memcg->memsw, bytes);
2466
	}
2467 2468
}

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2503
	return mem_cgroup_from_css(css);
2504 2505
}

2506
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2507
{
2508
	struct mem_cgroup *memcg = NULL;
2509
	struct page_cgroup *pc;
2510
	unsigned short id;
2511 2512
	swp_entry_t ent;

2513 2514 2515
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2516
	lock_page_cgroup(pc);
2517
	if (PageCgroupUsed(pc)) {
2518 2519 2520
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2521
	} else if (PageSwapCache(page)) {
2522
		ent.val = page_private(page);
2523
		id = lookup_swap_cgroup_id(ent);
2524
		rcu_read_lock();
2525 2526 2527
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2528
		rcu_read_unlock();
2529
	}
2530
	unlock_page_cgroup(pc);
2531
	return memcg;
2532 2533
}

2534
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2535
				       struct page *page,
2536
				       unsigned int nr_pages,
2537 2538
				       enum charge_type ctype,
				       bool lrucare)
2539
{
2540
	struct page_cgroup *pc = lookup_page_cgroup(page);
2541
	struct zone *uninitialized_var(zone);
2542
	struct lruvec *lruvec;
2543
	bool was_on_lru = false;
2544
	bool anon;
2545

2546
	lock_page_cgroup(pc);
2547
	VM_BUG_ON(PageCgroupUsed(pc));
2548 2549 2550 2551
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2552 2553 2554 2555 2556 2557 2558 2559 2560

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2561
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2562
			ClearPageLRU(page);
2563
			del_page_from_lru_list(page, lruvec, page_lru(page));
2564 2565 2566 2567
			was_on_lru = true;
		}
	}

2568
	pc->mem_cgroup = memcg;
2569 2570 2571 2572 2573 2574 2575
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2576
	smp_wmb();
2577
	SetPageCgroupUsed(pc);
2578

2579 2580
	if (lrucare) {
		if (was_on_lru) {
2581
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2582 2583
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2584
			add_page_to_lru_list(page, lruvec, page_lru(page));
2585 2586 2587 2588
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2589
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2590 2591 2592 2593 2594
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2595
	unlock_page_cgroup(pc);
2596

2597 2598 2599 2600 2601
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2602
	memcg_check_events(memcg, page);
2603
}
2604

2605 2606
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2607
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2608 2609
/*
 * Because tail pages are not marked as "used", set it. We're under
2610 2611 2612
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2613
 */
2614
void mem_cgroup_split_huge_fixup(struct page *head)
2615 2616
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2617 2618
	struct page_cgroup *pc;
	int i;
2619

2620 2621
	if (mem_cgroup_disabled())
		return;
2622 2623 2624 2625 2626 2627
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2628
}
2629
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2630

2631
/**
2632
 * mem_cgroup_move_account - move account of the page
2633
 * @page: the page
2634
 * @nr_pages: number of regular pages (>1 for huge pages)
2635 2636 2637 2638 2639
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2640
 * - page is not on LRU (isolate_page() is useful.)
2641
 * - compound_lock is held when nr_pages > 1
2642
 *
2643 2644
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2645
 */
2646 2647 2648 2649
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2650
				   struct mem_cgroup *to)
2651
{
2652 2653
	unsigned long flags;
	int ret;
2654
	bool anon = PageAnon(page);
2655

2656
	VM_BUG_ON(from == to);
2657
	VM_BUG_ON(PageLRU(page));
2658 2659 2660 2661 2662 2663 2664
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2665
	if (nr_pages > 1 && !PageTransHuge(page))
2666 2667 2668 2669 2670 2671 2672 2673
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2674
	move_lock_mem_cgroup(from, &flags);
2675

2676
	if (!anon && page_mapped(page)) {
2677 2678 2679 2680 2681
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2682
	}
2683
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2684

2685
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2686
	pc->mem_cgroup = to;
2687
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2688 2689 2690
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2691
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2692
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2693
	 * status here.
2694
	 */
2695
	move_unlock_mem_cgroup(from, &flags);
2696 2697
	ret = 0;
unlock:
2698
	unlock_page_cgroup(pc);
2699 2700 2701
	/*
	 * check events
	 */
2702 2703
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2704
out:
2705 2706 2707 2708 2709 2710 2711
	return ret;
}

/*
 * move charges to its parent.
 */

2712 2713
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2714
				  struct mem_cgroup *child)
2715 2716
{
	struct mem_cgroup *parent;
2717
	unsigned int nr_pages;
2718
	unsigned long uninitialized_var(flags);
2719 2720 2721
	int ret;

	/* Is ROOT ? */
2722
	if (mem_cgroup_is_root(child))
2723 2724
		return -EINVAL;

2725 2726 2727 2728 2729
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2730

2731
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2732

2733 2734 2735 2736 2737 2738
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
2739

2740
	if (nr_pages > 1)
2741 2742
		flags = compound_lock_irqsave(page);

2743
	ret = mem_cgroup_move_account(page, nr_pages,
2744
				pc, child, parent);
2745 2746
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
2747

2748
	if (nr_pages > 1)
2749
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
2750
	putback_lru_page(page);
2751
put:
2752
	put_page(page);
2753
out:
2754 2755 2756
	return ret;
}

2757 2758 2759 2760 2761 2762 2763
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2764
				gfp_t gfp_mask, enum charge_type ctype)
2765
{
2766
	struct mem_cgroup *memcg = NULL;
2767
	unsigned int nr_pages = 1;
2768
	bool oom = true;
2769
	int ret;
A
Andrea Arcangeli 已提交
2770

A
Andrea Arcangeli 已提交
2771
	if (PageTransHuge(page)) {
2772
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2773
		VM_BUG_ON(!PageTransHuge(page));
2774 2775 2776 2777 2778
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2779
	}
2780

2781
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2782
	if (ret == -ENOMEM)
2783
		return ret;
2784
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2785 2786 2787
	return 0;
}

2788 2789
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2790
{
2791
	if (mem_cgroup_disabled())
2792
		return 0;
2793 2794 2795
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2796
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2797
					MEM_CGROUP_CHARGE_TYPE_ANON);
2798 2799
}

2800 2801 2802
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2803
 * struct page_cgroup is acquired. This refcnt will be consumed by
2804 2805
 * "commit()" or removed by "cancel()"
 */
2806 2807 2808 2809
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
2810
{
2811
	struct mem_cgroup *memcg;
2812
	struct page_cgroup *pc;
2813
	int ret;
2814

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
2825 2826
	if (!do_swap_account)
		goto charge_cur_mm;
2827 2828
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2829
		goto charge_cur_mm;
2830 2831
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2832
	css_put(&memcg->css);
2833 2834
	if (ret == -EINTR)
		ret = 0;
2835
	return ret;
2836
charge_cur_mm:
2837 2838 2839 2840
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2841 2842
}

2843 2844 2845 2846 2847 2848
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
2863 2864 2865
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

2866 2867 2868 2869 2870 2871 2872 2873 2874
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
2875
static void
2876
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2877
					enum charge_type ctype)
2878
{
2879
	if (mem_cgroup_disabled())
2880
		return;
2881
	if (!memcg)
2882
		return;
2883
	cgroup_exclude_rmdir(&memcg->css);
2884

2885
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2886 2887 2888
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2889 2890 2891
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2892
	 */
2893
	if (do_swap_account && PageSwapCache(page)) {
2894
		swp_entry_t ent = {.val = page_private(page)};
2895
		mem_cgroup_uncharge_swap(ent);
2896
	}
2897 2898 2899 2900 2901
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2902
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2903 2904
}

2905 2906
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2907
{
2908
	__mem_cgroup_commit_charge_swapin(page, memcg,
2909
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
2910 2911
}

2912 2913
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2914
{
2915 2916 2917 2918
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

2919
	if (mem_cgroup_disabled())
2920 2921 2922 2923 2924 2925 2926
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
2927 2928
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
2929 2930 2931 2932
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
2933 2934
}

2935
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2936 2937
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2938 2939 2940
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2941

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2953
		batch->memcg = memcg;
2954 2955
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2956
	 * In those cases, all pages freed continuously can be expected to be in
2957 2958 2959 2960 2961 2962 2963 2964
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2965
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2966 2967
		goto direct_uncharge;

2968 2969 2970 2971 2972
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2973
	if (batch->memcg != memcg)
2974 2975
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2976
	batch->nr_pages++;
2977
	if (uncharge_memsw)
2978
		batch->memsw_nr_pages++;
2979 2980
	return;
direct_uncharge:
2981
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2982
	if (uncharge_memsw)
2983 2984 2985
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2986
}
2987

2988
/*
2989
 * uncharge if !page_mapped(page)
2990
 */
2991
static struct mem_cgroup *
2992 2993
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
2994
{
2995
	struct mem_cgroup *memcg = NULL;
2996 2997
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2998
	bool anon;
2999

3000
	if (mem_cgroup_disabled())
3001
		return NULL;
3002

3003
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
3004

A
Andrea Arcangeli 已提交
3005
	if (PageTransHuge(page)) {
3006
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3007 3008
		VM_BUG_ON(!PageTransHuge(page));
	}
3009
	/*
3010
	 * Check if our page_cgroup is valid
3011
	 */
3012
	pc = lookup_page_cgroup(page);
3013
	if (unlikely(!PageCgroupUsed(pc)))
3014
		return NULL;
3015

3016
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3017

3018
	memcg = pc->mem_cgroup;
3019

K
KAMEZAWA Hiroyuki 已提交
3020 3021 3022
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3023 3024
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3025
	switch (ctype) {
3026
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3027 3028 3029 3030 3031
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3032 3033
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3034
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3035
		/* See mem_cgroup_prepare_migration() */
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3057
	}
K
KAMEZAWA Hiroyuki 已提交
3058

3059
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3060

3061
	ClearPageCgroupUsed(pc);
3062 3063 3064 3065 3066 3067
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3068

3069
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3070
	/*
3071
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3072 3073
	 * will never be freed.
	 */
3074
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3075
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3076 3077
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3078
	}
3079 3080 3081 3082 3083 3084
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
3085
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3086

3087
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3088 3089 3090

unlock_out:
	unlock_page_cgroup(pc);
3091
	return NULL;
3092 3093
}

3094 3095
void mem_cgroup_uncharge_page(struct page *page)
{
3096 3097 3098
	/* early check. */
	if (page_mapped(page))
		return;
3099
	VM_BUG_ON(page->mapping && !PageAnon(page));
3100 3101
	if (PageSwapCache(page))
		return;
3102
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3103 3104 3105 3106 3107
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3108
	VM_BUG_ON(page->mapping);
3109
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3110 3111
}

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3126 3127
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3148 3149 3150 3151 3152 3153
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3154
	memcg_oom_recover(batch->memcg);
3155 3156 3157 3158
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3159
#ifdef CONFIG_SWAP
3160
/*
3161
 * called after __delete_from_swap_cache() and drop "page" account.
3162 3163
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3164 3165
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3166 3167
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3168 3169 3170 3171 3172
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

3173
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3174

K
KAMEZAWA Hiroyuki 已提交
3175 3176 3177 3178 3179
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3180
		swap_cgroup_record(ent, css_id(&memcg->css));
3181
}
3182
#endif
3183

A
Andrew Morton 已提交
3184
#ifdef CONFIG_MEMCG_SWAP
3185 3186 3187 3188 3189
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3190
{
3191
	struct mem_cgroup *memcg;
3192
	unsigned short id;
3193 3194 3195 3196

	if (!do_swap_account)
		return;

3197 3198 3199
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3200
	if (memcg) {
3201 3202 3203 3204
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3205
		if (!mem_cgroup_is_root(memcg))
3206
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3207
		mem_cgroup_swap_statistics(memcg, false);
3208 3209
		mem_cgroup_put(memcg);
	}
3210
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3211
}
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3228
				struct mem_cgroup *from, struct mem_cgroup *to)
3229 3230 3231 3232 3233 3234 3235 3236
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3237
		mem_cgroup_swap_statistics(to, true);
3238
		/*
3239 3240 3241 3242 3243 3244
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3245 3246 3247 3248 3249 3250 3251 3252
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3253
				struct mem_cgroup *from, struct mem_cgroup *to)
3254 3255 3256
{
	return -EINVAL;
}
3257
#endif
K
KAMEZAWA Hiroyuki 已提交
3258

3259
/*
3260 3261
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3262
 */
3263 3264
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
3265
{
3266
	struct mem_cgroup *memcg = NULL;
3267
	struct page_cgroup *pc;
3268
	enum charge_type ctype;
3269

3270
	*memcgp = NULL;
3271

A
Andrea Arcangeli 已提交
3272
	VM_BUG_ON(PageTransHuge(page));
3273
	if (mem_cgroup_disabled())
3274
		return;
3275

3276 3277 3278
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3279 3280
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3312
	}
3313
	unlock_page_cgroup(pc);
3314 3315 3316 3317
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3318
	if (!memcg)
3319
		return;
3320

3321
	*memcgp = memcg;
3322 3323 3324 3325 3326 3327 3328
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
3329
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3330
	else
3331
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3332 3333 3334 3335 3336
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
3337
	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3338
}
3339

3340
/* remove redundant charge if migration failed*/
3341
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3342
	struct page *oldpage, struct page *newpage, bool migration_ok)
3343
{
3344
	struct page *used, *unused;
3345
	struct page_cgroup *pc;
3346
	bool anon;
3347

3348
	if (!memcg)
3349
		return;
3350
	/* blocks rmdir() */
3351
	cgroup_exclude_rmdir(&memcg->css);
3352
	if (!migration_ok) {
3353 3354
		used = oldpage;
		unused = newpage;
3355
	} else {
3356
		used = newpage;
3357 3358
		unused = oldpage;
	}
3359
	anon = PageAnon(used);
3360 3361 3362 3363
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
3364
	css_put(&memcg->css);
3365
	/*
3366 3367 3368
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3369
	 */
3370 3371 3372 3373 3374
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

3375
	/*
3376 3377 3378 3379 3380 3381
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3382
	 */
3383
	if (anon)
3384
		mem_cgroup_uncharge_page(used);
3385
	/*
3386 3387
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3388 3389 3390
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3391
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3392
}
3393

3394 3395 3396 3397 3398 3399 3400 3401
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3402
	struct mem_cgroup *memcg = NULL;
3403 3404 3405 3406 3407 3408 3409 3410 3411
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3412 3413 3414 3415 3416
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3417 3418
	unlock_page_cgroup(pc);

3419 3420 3421 3422 3423 3424
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
3425 3426 3427 3428 3429
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3430
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3431 3432
}

3433 3434 3435 3436 3437 3438
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3439 3440 3441 3442 3443
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3463
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3464 3465 3466 3467 3468
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3469 3470
static DEFINE_MUTEX(set_limit_mutex);

3471
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3472
				unsigned long long val)
3473
{
3474
	int retry_count;
3475
	u64 memswlimit, memlimit;
3476
	int ret = 0;
3477 3478
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3479
	int enlarge;
3480 3481 3482 3483 3484 3485 3486 3487 3488

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3489

3490
	enlarge = 0;
3491
	while (retry_count) {
3492 3493 3494 3495
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3496 3497 3498
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3499
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3500 3501 3502 3503 3504 3505
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3506 3507
			break;
		}
3508 3509 3510 3511 3512

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3513
		ret = res_counter_set_limit(&memcg->res, val);
3514 3515 3516 3517 3518 3519
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3520 3521 3522 3523 3524
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3525 3526
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3527 3528 3529 3530 3531 3532
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3533
	}
3534 3535
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3536

3537 3538 3539
	return ret;
}

L
Li Zefan 已提交
3540 3541
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3542
{
3543
	int retry_count;
3544
	u64 memlimit, memswlimit, oldusage, curusage;
3545 3546
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3547
	int enlarge = 0;
3548

3549 3550 3551
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3552 3553 3554 3555 3556 3557 3558 3559
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3560
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3561 3562 3563 3564 3565 3566 3567 3568
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3569 3570 3571
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3572
		ret = res_counter_set_limit(&memcg->memsw, val);
3573 3574 3575 3576 3577 3578
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3579 3580 3581 3582 3583
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3584 3585 3586
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3587
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3588
		/* Usage is reduced ? */
3589
		if (curusage >= oldusage)
3590
			retry_count--;
3591 3592
		else
			oldusage = curusage;
3593
	}
3594 3595
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3596 3597 3598
	return ret;
}

3599
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3600 3601
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3602 3603 3604 3605 3606 3607
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3608
	unsigned long long excess;
3609
	unsigned long nr_scanned;
3610 3611 3612 3613

	if (order > 0)
		return 0;

3614
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3628
		nr_scanned = 0;
3629
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3630
						    gfp_mask, &nr_scanned);
3631
		nr_reclaimed += reclaimed;
3632
		*total_scanned += nr_scanned;
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3655
				if (next_mz == mz)
3656
					css_put(&next_mz->memcg->css);
3657
				else /* next_mz == NULL or other memcg */
3658 3659 3660
					break;
			} while (1);
		}
3661 3662
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3663 3664 3665 3666 3667 3668 3669 3670
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3671
		/* If excess == 0, no tree ops */
3672
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3673
		spin_unlock(&mctz->lock);
3674
		css_put(&mz->memcg->css);
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3687
		css_put(&next_mz->memcg->css);
3688 3689 3690
	return nr_reclaimed;
}

3691
/*
3692 3693 3694 3695
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
 * reclaim the pages page themselves - it just removes the page_cgroups.
 * Returns true if some page_cgroups were not freed, indicating that the caller
 * must retry this operation.
3696
 */
3697
static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3698
				int node, int zid, enum lru_list lru)
3699
{
K
KAMEZAWA Hiroyuki 已提交
3700 3701
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3702
	struct list_head *list;
3703 3704
	struct page *busy;
	struct zone *zone;
3705

K
KAMEZAWA Hiroyuki 已提交
3706
	zone = &NODE_DATA(node)->node_zones[zid];
3707
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3708
	list = &mz->lruvec.lists[lru];
3709

3710
	loop = mz->lru_size[lru];
3711 3712 3713 3714
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3715
		struct page_cgroup *pc;
3716 3717
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3718
		spin_lock_irqsave(&zone->lru_lock, flags);
3719
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3720
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3721
			break;
3722
		}
3723 3724 3725
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3726
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3727
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3728 3729
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3730
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3731

3732
		pc = lookup_page_cgroup(page);
3733

3734
		if (mem_cgroup_move_parent(page, pc, memcg)) {
3735
			/* found lock contention or "pc" is obsolete. */
3736
			busy = page;
3737 3738 3739
			cond_resched();
		} else
			busy = NULL;
3740
	}
3741
	return !list_empty(list);
3742 3743 3744 3745 3746 3747
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3748
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3749
{
3750 3751 3752
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3753
	struct cgroup *cgrp = memcg->css.cgroup;
3754

3755
	css_get(&memcg->css);
3756 3757

	shrink = 0;
3758 3759 3760
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3761
move_account:
3762
	do {
3763
		ret = -EBUSY;
3764 3765
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
3766 3767
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3768
		drain_all_stock_sync(memcg);
3769
		ret = 0;
3770
		mem_cgroup_start_move(memcg);
3771
		for_each_node_state(node, N_HIGH_MEMORY) {
3772
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3773 3774
				enum lru_list lru;
				for_each_lru(lru) {
3775
					ret = mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3776
							node, zid, lru);
3777 3778 3779
					if (ret)
						break;
				}
3780
			}
3781 3782 3783
			if (ret)
				break;
		}
3784 3785
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3786
		cond_resched();
3787
	/* "ret" should also be checked to ensure all lists are empty. */
3788
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3789
out:
3790
	css_put(&memcg->css);
3791
	return ret;
3792 3793

try_to_free:
3794 3795
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3796 3797 3798
		ret = -EBUSY;
		goto out;
	}
3799 3800
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3801 3802
	/* try to free all pages in this cgroup */
	shrink = 1;
3803
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3804
		int progress;
3805 3806 3807 3808 3809

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3810
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3811
						false);
3812
		if (!progress) {
3813
			nr_retries--;
3814
			/* maybe some writeback is necessary */
3815
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3816
		}
3817 3818

	}
K
KAMEZAWA Hiroyuki 已提交
3819
	lru_add_drain();
3820
	/* try move_account...there may be some *locked* pages. */
3821
	goto move_account;
3822 3823
}

3824
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3825 3826 3827 3828 3829
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3830 3831 3832 3833 3834 3835 3836 3837 3838
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3839
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3840
	struct cgroup *parent = cont->parent;
3841
	struct mem_cgroup *parent_memcg = NULL;
3842 3843

	if (parent)
3844
		parent_memcg = mem_cgroup_from_cont(parent);
3845 3846

	cgroup_lock();
3847 3848 3849 3850

	if (memcg->use_hierarchy == val)
		goto out;

3851
	/*
3852
	 * If parent's use_hierarchy is set, we can't make any modifications
3853 3854 3855 3856 3857 3858
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3859
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3860 3861
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3862
			memcg->use_hierarchy = val;
3863 3864 3865 3866
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3867 3868

out:
3869 3870 3871 3872 3873
	cgroup_unlock();

	return retval;
}

3874

3875
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3876
					       enum mem_cgroup_stat_index idx)
3877
{
K
KAMEZAWA Hiroyuki 已提交
3878
	struct mem_cgroup *iter;
3879
	long val = 0;
3880

3881
	/* Per-cpu values can be negative, use a signed accumulator */
3882
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3883 3884 3885 3886 3887
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3888 3889
}

3890
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3891
{
K
KAMEZAWA Hiroyuki 已提交
3892
	u64 val;
3893

3894
	if (!mem_cgroup_is_root(memcg)) {
3895
		if (!swap)
3896
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3897
		else
3898
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3899 3900
	}

3901 3902
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3903

K
KAMEZAWA Hiroyuki 已提交
3904
	if (swap)
3905
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3906 3907 3908 3909

	return val << PAGE_SHIFT;
}

3910 3911 3912
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3913
{
3914
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3915
	char str[64];
3916
	u64 val;
3917
	int type, name, len;
3918 3919 3920

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3921 3922 3923 3924

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3925 3926
	switch (type) {
	case _MEM:
3927
		if (name == RES_USAGE)
3928
			val = mem_cgroup_usage(memcg, false);
3929
		else
3930
			val = res_counter_read_u64(&memcg->res, name);
3931 3932
		break;
	case _MEMSWAP:
3933
		if (name == RES_USAGE)
3934
			val = mem_cgroup_usage(memcg, true);
3935
		else
3936
			val = res_counter_read_u64(&memcg->memsw, name);
3937 3938 3939 3940
		break;
	default:
		BUG();
	}
3941 3942 3943

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3944
}
3945 3946 3947 3948
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3949 3950
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3951
{
3952
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3953
	int type, name;
3954 3955 3956
	unsigned long long val;
	int ret;

3957 3958
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3959 3960 3961 3962

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3963
	switch (name) {
3964
	case RES_LIMIT:
3965 3966 3967 3968
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3969 3970
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3971 3972 3973
		if (ret)
			break;
		if (type == _MEM)
3974
			ret = mem_cgroup_resize_limit(memcg, val);
3975 3976
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3977
		break;
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3992 3993 3994 3995 3996
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3997 3998
}

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4026
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4027
{
4028
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4029
	int type, name;
4030

4031 4032
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4033 4034 4035 4036

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4037
	switch (name) {
4038
	case RES_MAX_USAGE:
4039
		if (type == _MEM)
4040
			res_counter_reset_max(&memcg->res);
4041
		else
4042
			res_counter_reset_max(&memcg->memsw);
4043 4044
		break;
	case RES_FAILCNT:
4045
		if (type == _MEM)
4046
			res_counter_reset_failcnt(&memcg->res);
4047
		else
4048
			res_counter_reset_failcnt(&memcg->memsw);
4049 4050
		break;
	}
4051

4052
	return 0;
4053 4054
}

4055 4056 4057 4058 4059 4060
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4061
#ifdef CONFIG_MMU
4062 4063 4064
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4065
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4066 4067 4068 4069 4070 4071 4072 4073 4074

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4075
	memcg->move_charge_at_immigrate = val;
4076 4077 4078 4079
	cgroup_unlock();

	return 0;
}
4080 4081 4082 4083 4084 4085 4086
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4087

4088
#ifdef CONFIG_NUMA
4089
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4090
				      struct seq_file *m)
4091 4092 4093 4094
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4095
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4096

4097
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4098 4099
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4100
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4101 4102 4103 4104
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4105
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4106 4107
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4108
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4109
				LRU_ALL_FILE);
4110 4111 4112 4113
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4114
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4115 4116
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4117
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4118
				LRU_ALL_ANON);
4119 4120 4121 4122
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4123
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4124 4125
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4126
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4127
				BIT(LRU_UNEVICTABLE));
4128 4129 4130 4131 4132 4133 4134
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4148
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4149
				 struct seq_file *m)
4150
{
4151
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4152 4153
	struct mem_cgroup *mi;
	unsigned int i;
4154

4155
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4156
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4157
			continue;
4158 4159
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4160
	}
L
Lee Schermerhorn 已提交
4161

4162 4163 4164 4165 4166 4167 4168 4169
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4170
	/* Hierarchical information */
4171 4172
	{
		unsigned long long limit, memsw_limit;
4173
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4174
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4175
		if (do_swap_account)
4176 4177
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4178
	}
K
KOSAKI Motohiro 已提交
4179

4180 4181 4182
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4183
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4184
			continue;
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4205
	}
K
KAMEZAWA Hiroyuki 已提交
4206

K
KOSAKI Motohiro 已提交
4207 4208 4209 4210
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4211
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4212 4213 4214 4215 4216
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4217
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4218
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4219

4220 4221 4222 4223
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4224
			}
4225 4226 4227 4228
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4229 4230 4231
	}
#endif

4232 4233 4234
	return 0;
}

K
KOSAKI Motohiro 已提交
4235 4236 4237 4238
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4239
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4240 4241 4242 4243 4244 4245 4246
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4247

K
KOSAKI Motohiro 已提交
4248 4249 4250 4251 4252 4253 4254
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4255 4256 4257

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4258 4259
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4260 4261
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4262
		return -EINVAL;
4263
	}
K
KOSAKI Motohiro 已提交
4264 4265 4266

	memcg->swappiness = val;

4267 4268
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4269 4270 4271
	return 0;
}

4272 4273 4274 4275 4276 4277 4278 4279
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4280
		t = rcu_dereference(memcg->thresholds.primary);
4281
	else
4282
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4283 4284 4285 4286 4287 4288 4289

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4290
	 * current_threshold points to threshold just below or equal to usage.
4291 4292 4293
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4294
	i = t->current_threshold;
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4318
	t->current_threshold = i - 1;
4319 4320 4321 4322 4323 4324
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4325 4326 4327 4328 4329 4330 4331
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4342
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4343 4344 4345
{
	struct mem_cgroup_eventfd_list *ev;

4346
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4347 4348 4349 4350
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4351
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4352
{
K
KAMEZAWA Hiroyuki 已提交
4353 4354
	struct mem_cgroup *iter;

4355
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4356
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4357 4358 4359 4360
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4361 4362
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4363 4364
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4365 4366
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4367
	int i, size, ret;
4368 4369 4370 4371 4372 4373

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4374

4375
	if (type == _MEM)
4376
		thresholds = &memcg->thresholds;
4377
	else if (type == _MEMSWAP)
4378
		thresholds = &memcg->memsw_thresholds;
4379 4380 4381 4382 4383 4384
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4385
	if (thresholds->primary)
4386 4387
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4388
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4389 4390

	/* Allocate memory for new array of thresholds */
4391
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4392
			GFP_KERNEL);
4393
	if (!new) {
4394 4395 4396
		ret = -ENOMEM;
		goto unlock;
	}
4397
	new->size = size;
4398 4399

	/* Copy thresholds (if any) to new array */
4400 4401
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4402
				sizeof(struct mem_cgroup_threshold));
4403 4404
	}

4405
	/* Add new threshold */
4406 4407
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4408 4409

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4410
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4411 4412 4413
			compare_thresholds, NULL);

	/* Find current threshold */
4414
	new->current_threshold = -1;
4415
	for (i = 0; i < size; i++) {
4416
		if (new->entries[i].threshold <= usage) {
4417
			/*
4418 4419
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4420 4421
			 * it here.
			 */
4422
			++new->current_threshold;
4423 4424
		} else
			break;
4425 4426
	}

4427 4428 4429 4430 4431
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4432

4433
	/* To be sure that nobody uses thresholds */
4434 4435 4436 4437 4438 4439 4440 4441
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4442
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4443
	struct cftype *cft, struct eventfd_ctx *eventfd)
4444 4445
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4446 4447
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4448 4449
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4450
	int i, j, size;
4451 4452 4453

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4454
		thresholds = &memcg->thresholds;
4455
	else if (type == _MEMSWAP)
4456
		thresholds = &memcg->memsw_thresholds;
4457 4458 4459
	else
		BUG();

4460 4461 4462
	if (!thresholds->primary)
		goto unlock;

4463 4464 4465 4466 4467 4468
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4469 4470 4471
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4472 4473 4474
			size++;
	}

4475
	new = thresholds->spare;
4476

4477 4478
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4479 4480
		kfree(new);
		new = NULL;
4481
		goto swap_buffers;
4482 4483
	}

4484
	new->size = size;
4485 4486

	/* Copy thresholds and find current threshold */
4487 4488 4489
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4490 4491
			continue;

4492
		new->entries[j] = thresholds->primary->entries[i];
4493
		if (new->entries[j].threshold <= usage) {
4494
			/*
4495
			 * new->current_threshold will not be used
4496 4497 4498
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4499
			++new->current_threshold;
4500 4501 4502 4503
		}
		j++;
	}

4504
swap_buffers:
4505 4506
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4507 4508 4509 4510 4511 4512
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4513
	rcu_assign_pointer(thresholds->primary, new);
4514

4515
	/* To be sure that nobody uses thresholds */
4516
	synchronize_rcu();
4517
unlock:
4518 4519
	mutex_unlock(&memcg->thresholds_lock);
}
4520

K
KAMEZAWA Hiroyuki 已提交
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4533
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4534 4535 4536 4537 4538

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4539
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4540
		eventfd_signal(eventfd, 1);
4541
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4542 4543 4544 4545

	return 0;
}

4546
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4547 4548
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4549
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4550 4551 4552 4553 4554
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4555
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4556

4557
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4558 4559 4560 4561 4562 4563
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4564
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4565 4566
}

4567 4568 4569
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4570
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4571

4572
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4573

4574
	if (atomic_read(&memcg->under_oom))
4575 4576 4577 4578 4579 4580 4581 4582 4583
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4584
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4596
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4597 4598 4599
		cgroup_unlock();
		return -EINVAL;
	}
4600
	memcg->oom_kill_disable = val;
4601
	if (!val)
4602
		memcg_oom_recover(memcg);
4603 4604 4605 4606
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
4607
#ifdef CONFIG_MEMCG_KMEM
4608
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4609
{
4610
	return mem_cgroup_sockets_init(memcg, ss);
4611 4612
};

4613
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4614
{
4615
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4616
}
4617
#else
4618
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4619 4620 4621
{
	return 0;
}
G
Glauber Costa 已提交
4622

4623
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4624 4625
{
}
4626 4627
#endif

B
Balbir Singh 已提交
4628 4629
static struct cftype mem_cgroup_files[] = {
	{
4630
		.name = "usage_in_bytes",
4631
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4632
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4633 4634
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4635
	},
4636 4637
	{
		.name = "max_usage_in_bytes",
4638
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4639
		.trigger = mem_cgroup_reset,
4640
		.read = mem_cgroup_read,
4641
	},
B
Balbir Singh 已提交
4642
	{
4643
		.name = "limit_in_bytes",
4644
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4645
		.write_string = mem_cgroup_write,
4646
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4647
	},
4648 4649 4650 4651
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4652
		.read = mem_cgroup_read,
4653
	},
B
Balbir Singh 已提交
4654 4655
	{
		.name = "failcnt",
4656
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4657
		.trigger = mem_cgroup_reset,
4658
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4659
	},
4660 4661
	{
		.name = "stat",
4662
		.read_seq_string = memcg_stat_show,
4663
	},
4664 4665 4666 4667
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4668 4669 4670 4671 4672
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4673 4674 4675 4676 4677
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4678 4679 4680 4681 4682
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4683 4684
	{
		.name = "oom_control",
4685 4686
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4687 4688 4689 4690
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4691 4692 4693
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4694
		.read_seq_string = memcg_numa_stat_show,
4695 4696
	},
#endif
A
Andrew Morton 已提交
4697
#ifdef CONFIG_MEMCG_SWAP
4698 4699 4700
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4701
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4702 4703
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4704 4705 4706 4707 4708
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4709
		.read = mem_cgroup_read,
4710 4711 4712 4713 4714
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4715
		.read = mem_cgroup_read,
4716 4717 4718 4719 4720
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4721
		.read = mem_cgroup_read,
4722 4723
	},
#endif
4724
	{ },	/* terminate */
4725
};
4726

4727
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4728 4729
{
	struct mem_cgroup_per_node *pn;
4730
	struct mem_cgroup_per_zone *mz;
4731
	int zone, tmp = node;
4732 4733 4734 4735 4736 4737 4738 4739
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4740 4741
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4742
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4743 4744
	if (!pn)
		return 1;
4745 4746 4747

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4748
		lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4749
		mz->usage_in_excess = 0;
4750
		mz->on_tree = false;
4751
		mz->memcg = memcg;
4752
	}
4753
	memcg->info.nodeinfo[node] = pn;
4754 4755 4756
	return 0;
}

4757
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4758
{
4759
	kfree(memcg->info.nodeinfo[node]);
4760 4761
}

4762 4763
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4764
	struct mem_cgroup *memcg;
4765
	int size = sizeof(struct mem_cgroup);
4766

4767
	/* Can be very big if MAX_NUMNODES is very big */
4768
	if (size < PAGE_SIZE)
4769
		memcg = kzalloc(size, GFP_KERNEL);
4770
	else
4771
		memcg = vzalloc(size);
4772

4773
	if (!memcg)
4774 4775
		return NULL;

4776 4777
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4778
		goto out_free;
4779 4780
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4781 4782 4783

out_free:
	if (size < PAGE_SIZE)
4784
		kfree(memcg);
4785
	else
4786
		vfree(memcg);
4787
	return NULL;
4788 4789
}

4790
/*
4791
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4792 4793 4794
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
4795
static void free_work(struct work_struct *work)
4796 4797
{
	struct mem_cgroup *memcg;
4798
	int size = sizeof(struct mem_cgroup);
4799 4800

	memcg = container_of(work, struct mem_cgroup, work_freeing);
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
	disarm_sock_keys(memcg);
4813 4814 4815 4816
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
4817
}
4818 4819

static void free_rcu(struct rcu_head *rcu_head)
4820 4821 4822 4823
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4824
	INIT_WORK(&memcg->work_freeing, free_work);
4825 4826 4827
	schedule_work(&memcg->work_freeing);
}

4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4839
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4840
{
K
KAMEZAWA Hiroyuki 已提交
4841 4842
	int node;

4843 4844
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4845

B
Bob Liu 已提交
4846
	for_each_node(node)
4847
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4848

4849
	free_percpu(memcg->stat);
4850
	call_rcu(&memcg->rcu_freeing, free_rcu);
4851 4852
}

4853
static void mem_cgroup_get(struct mem_cgroup *memcg)
4854
{
4855
	atomic_inc(&memcg->refcnt);
4856 4857
}

4858
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4859
{
4860 4861 4862
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4863 4864 4865
		if (parent)
			mem_cgroup_put(parent);
	}
4866 4867
}

4868
static void mem_cgroup_put(struct mem_cgroup *memcg)
4869
{
4870
	__mem_cgroup_put(memcg, 1);
4871 4872
}

4873 4874 4875
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4876
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4877
{
4878
	if (!memcg->res.parent)
4879
		return NULL;
4880
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4881
}
G
Glauber Costa 已提交
4882
EXPORT_SYMBOL(parent_mem_cgroup);
4883

A
Andrew Morton 已提交
4884
#ifdef CONFIG_MEMCG_SWAP
4885 4886
static void __init enable_swap_cgroup(void)
{
4887
	if (!mem_cgroup_disabled() && really_do_swap_account)
4888 4889 4890 4891 4892 4893 4894 4895
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4896 4897 4898 4899 4900 4901
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4902
	for_each_node(node) {
4903 4904 4905 4906 4907
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4908
			goto err_cleanup;
4909 4910 4911 4912 4913 4914 4915 4916 4917 4918

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4919 4920

err_cleanup:
B
Bob Liu 已提交
4921
	for_each_node(node) {
4922 4923 4924 4925 4926 4927 4928
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4929 4930
}

L
Li Zefan 已提交
4931
static struct cgroup_subsys_state * __ref
4932
mem_cgroup_create(struct cgroup *cont)
B
Balbir Singh 已提交
4933
{
4934
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4935
	long error = -ENOMEM;
4936
	int node;
B
Balbir Singh 已提交
4937

4938 4939
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4940
		return ERR_PTR(error);
4941

B
Bob Liu 已提交
4942
	for_each_node(node)
4943
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4944
			goto free_out;
4945

4946
	/* root ? */
4947
	if (cont->parent == NULL) {
4948
		int cpu;
4949
		enable_swap_cgroup();
4950
		parent = NULL;
4951 4952
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4953
		root_mem_cgroup = memcg;
4954 4955 4956 4957 4958
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4959
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4960
	} else {
4961
		parent = mem_cgroup_from_cont(cont->parent);
4962 4963
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4964
	}
4965

4966
	if (parent && parent->use_hierarchy) {
4967 4968
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4969 4970 4971 4972 4973 4974 4975
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4976
	} else {
4977 4978
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4979 4980 4981 4982 4983 4984 4985
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
		if (parent && parent != root_mem_cgroup)
			mem_cgroup_subsys.broken_hierarchy = true;
4986
	}
4987 4988
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4989

K
KOSAKI Motohiro 已提交
4990
	if (parent)
4991 4992 4993 4994
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
4995
	spin_lock_init(&memcg->move_lock);
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
5007
	return &memcg->css;
5008
free_out:
5009
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5010
	return ERR_PTR(error);
B
Balbir Singh 已提交
5011 5012
}

5013
static int mem_cgroup_pre_destroy(struct cgroup *cont)
5014
{
5015
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5016

5017
	return mem_cgroup_force_empty(memcg, false);
5018 5019
}

5020
static void mem_cgroup_destroy(struct cgroup *cont)
B
Balbir Singh 已提交
5021
{
5022
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5023

5024
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5025

5026
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5027 5028
}

5029
#ifdef CONFIG_MMU
5030
/* Handlers for move charge at task migration. */
5031 5032
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5033
{
5034 5035
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5036
	struct mem_cgroup *memcg = mc.to;
5037

5038
	if (mem_cgroup_is_root(memcg)) {
5039 5040 5041 5042 5043 5044 5045 5046
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5047
		 * "memcg" cannot be under rmdir() because we've already checked
5048 5049 5050 5051
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5052
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5053
			goto one_by_one;
5054
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5055
						PAGE_SIZE * count, &dummy)) {
5056
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5073 5074
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5075
		if (ret)
5076
			/* mem_cgroup_clear_mc() will do uncharge later */
5077
			return ret;
5078 5079
		mc.precharge++;
	}
5080 5081 5082 5083
	return ret;
}

/**
5084
 * get_mctgt_type - get target type of moving charge
5085 5086 5087
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5088
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5089 5090 5091 5092 5093 5094
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5095 5096 5097
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5098 5099 5100 5101 5102
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5103
	swp_entry_t	ent;
5104 5105 5106
};

enum mc_target_type {
5107
	MC_TARGET_NONE = 0,
5108
	MC_TARGET_PAGE,
5109
	MC_TARGET_SWAP,
5110 5111
};

D
Daisuke Nishimura 已提交
5112 5113
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5114
{
D
Daisuke Nishimura 已提交
5115
	struct page *page = vm_normal_page(vma, addr, ptent);
5116

D
Daisuke Nishimura 已提交
5117 5118 5119 5120
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5121
		if (!move_anon())
D
Daisuke Nishimura 已提交
5122
			return NULL;
5123 5124
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5125 5126 5127 5128 5129 5130 5131
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5132
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5133 5134 5135 5136 5137 5138 5139 5140
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5141 5142 5143 5144 5145
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5146 5147 5148 5149 5150
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5151 5152 5153 5154 5155 5156 5157
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5158

5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5178 5179 5180 5181 5182 5183
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5184
		if (do_swap_account)
5185 5186
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5187
	}
5188
#endif
5189 5190 5191
	return page;
}

5192
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5193 5194 5195 5196
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5197
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5198 5199 5200 5201 5202 5203
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5204 5205
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5206 5207

	if (!page && !ent.val)
5208
		return ret;
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5224 5225
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5226
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5227 5228 5229
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5230 5231 5232 5233
	}
	return ret;
}

5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5269 5270 5271 5272 5273 5274 5275 5276
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5277 5278 5279 5280
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5281
		return 0;
5282
	}
5283

5284 5285
	if (pmd_trans_unstable(pmd))
		return 0;
5286 5287
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5288
		if (get_mctgt_type(vma, addr, *pte, NULL))
5289 5290 5291 5292
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5293 5294 5295
	return 0;
}

5296 5297 5298 5299 5300
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5301
	down_read(&mm->mmap_sem);
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5313
	up_read(&mm->mmap_sem);
5314 5315 5316 5317 5318 5319 5320 5321 5322

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5323 5324 5325 5326 5327
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5328 5329
}

5330 5331
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5332
{
5333 5334 5335
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5336
	/* we must uncharge all the leftover precharges from mc.to */
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5348
	}
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5383
	spin_lock(&mc.lock);
5384 5385
	mc.from = NULL;
	mc.to = NULL;
5386
	spin_unlock(&mc.lock);
5387
	mem_cgroup_end_move(from);
5388 5389
}

5390 5391
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5392
{
5393
	struct task_struct *p = cgroup_taskset_first(tset);
5394
	int ret = 0;
5395
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5396

5397
	if (memcg->move_charge_at_immigrate) {
5398 5399 5400
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5401
		VM_BUG_ON(from == memcg);
5402 5403 5404 5405 5406

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5407 5408 5409 5410
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5411
			VM_BUG_ON(mc.moved_charge);
5412
			VM_BUG_ON(mc.moved_swap);
5413
			mem_cgroup_start_move(from);
5414
			spin_lock(&mc.lock);
5415
			mc.from = from;
5416
			mc.to = memcg;
5417
			spin_unlock(&mc.lock);
5418
			/* We set mc.moving_task later */
5419 5420 5421 5422

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5423 5424
		}
		mmput(mm);
5425 5426 5427 5428
	}
	return ret;
}

5429 5430
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5431
{
5432
	mem_cgroup_clear_mc();
5433 5434
}

5435 5436 5437
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5438
{
5439 5440 5441 5442
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5443 5444 5445 5446
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5447

5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5459
		if (mc.precharge < HPAGE_PMD_NR) {
5460 5461 5462 5463 5464 5465 5466 5467 5468
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5469
							pc, mc.from, mc.to)) {
5470 5471 5472 5473 5474 5475 5476 5477
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5478
		return 0;
5479 5480
	}

5481 5482
	if (pmd_trans_unstable(pmd))
		return 0;
5483 5484 5485 5486
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5487
		swp_entry_t ent;
5488 5489 5490 5491

		if (!mc.precharge)
			break;

5492
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5493 5494 5495 5496 5497
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5498
			if (!mem_cgroup_move_account(page, 1, pc,
5499
						     mc.from, mc.to)) {
5500
				mc.precharge--;
5501 5502
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5503 5504
			}
			putback_lru_page(page);
5505
put:			/* get_mctgt_type() gets the page */
5506 5507
			put_page(page);
			break;
5508 5509
		case MC_TARGET_SWAP:
			ent = target.ent;
5510
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5511
				mc.precharge--;
5512 5513 5514
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5515
			break;
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5530
		ret = mem_cgroup_do_precharge(1);
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5574
	up_read(&mm->mmap_sem);
5575 5576
}

5577 5578
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5579
{
5580
	struct task_struct *p = cgroup_taskset_first(tset);
5581
	struct mm_struct *mm = get_task_mm(p);
5582 5583

	if (mm) {
5584 5585
		if (mc.to)
			mem_cgroup_move_charge(mm);
5586 5587
		mmput(mm);
	}
5588 5589
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5590
}
5591
#else	/* !CONFIG_MMU */
5592 5593
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5594 5595 5596
{
	return 0;
}
5597 5598
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5599 5600
{
}
5601 5602
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5603 5604 5605
{
}
#endif
B
Balbir Singh 已提交
5606

B
Balbir Singh 已提交
5607 5608 5609 5610
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5611
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5612
	.destroy = mem_cgroup_destroy,
5613 5614
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5615
	.attach = mem_cgroup_move_task,
5616
	.base_cftypes = mem_cgroup_files,
5617
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5618
	.use_id = 1,
5619
	.__DEPRECATED_clear_css_refs = true,
B
Balbir Singh 已提交
5620
};
5621

A
Andrew Morton 已提交
5622
#ifdef CONFIG_MEMCG_SWAP
5623 5624 5625
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5626
	if (!strcmp(s, "1"))
5627
		really_do_swap_account = 1;
5628
	else if (!strcmp(s, "0"))
5629 5630 5631
		really_do_swap_account = 0;
	return 1;
}
5632
__setup("swapaccount=", enable_swap_account);
5633 5634

#endif