memcontrol.c 87.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
K
KAMEZAWA Hiroyuki 已提交
24
#include <linux/pagemap.h>
25
#include <linux/smp.h>
26
#include <linux/page-flags.h>
27
#include <linux/backing-dev.h>
28 29
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
30
#include <linux/limits.h>
31
#include <linux/mutex.h>
32
#include <linux/rbtree.h>
33
#include <linux/slab.h>
34 35 36
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
37
#include <linux/seq_file.h>
38
#include <linux/vmalloc.h>
39
#include <linux/mm_inline.h>
40
#include <linux/page_cgroup.h>
41
#include <linux/cpu.h>
K
KAMEZAWA Hiroyuki 已提交
42
#include "internal.h"
B
Balbir Singh 已提交
43

44 45
#include <asm/uaccess.h>

46 47
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
48
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
49

50
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
51
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
52 53 54 55 56 57
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

58
#define SOFTLIMIT_EVENTS_THRESH (1000)
59

60 61 62 63 64 65 66 67
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
68
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
69
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
70 71
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
72
	MEM_CGROUP_STAT_EVENTS,	/* sum of pagein + pageout for internal use */
73
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
74 75 76 77 78 79 80 81 82

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
83
	struct mem_cgroup_stat_cpu cpustat[0];
84 85
};

86 87 88 89 90 91 92 93 94 95 96 97 98 99
static inline void
__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	stat->count[idx] = 0;
}

static inline s64
__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	return stat->count[idx];
}

100 101 102
/*
 * For accounting under irq disable, no need for increment preempt count.
 */
103
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
104 105
		enum mem_cgroup_stat_index idx, int val)
{
106
	stat->count[idx] += val;
107 108 109 110 111 112 113 114 115 116 117 118
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

K
KAMEZAWA Hiroyuki 已提交
119 120 121 122 123 124 125 126 127
static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
{
	s64 ret;

	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
	return ret;
}

128 129 130 131
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
132 133 134
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
135 136
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
137 138

	struct zone_reclaim_stat reclaim_stat;
139 140 141 142
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
143 144
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
145 146 147 148 149 150 151 152 153 154 155 156
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

B
Balbir Singh 已提交
177 178 179 180 181 182 183
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
184 185 186
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
187 188 189 190 191 192 193
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
194 195 196 197
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
198 199 200 201
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
202
	struct mem_cgroup_lru_info info;
203

K
KOSAKI Motohiro 已提交
204 205 206 207 208
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

209
	int	prev_priority;	/* for recording reclaim priority */
210 211

	/*
212
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
213
	 * reclaimed from.
214
	 */
K
KAMEZAWA Hiroyuki 已提交
215
	int last_scanned_child;
216 217 218 219
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
220
	unsigned long	last_oom_jiffies;
221
	atomic_t	refcnt;
222

K
KOSAKI Motohiro 已提交
223 224
	unsigned int	swappiness;

225 226 227
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

228 229 230 231 232 233
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;

234
	/*
235
	 * statistics. This must be placed at the end of memcg.
236 237
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
238 239
};

240 241 242 243 244 245 246 247 248
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
	NR_MOVE_TYPE,
};

249 250 251 252 253 254 255
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

256 257 258
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
259
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
260
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
261
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
262
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
263 264 265
	NR_CHARGE_TYPE,
};

266 267 268 269
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
270 271
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
272

273 274 275 276 277 278 279
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

280 281 282 283 284 285 286
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
287 288
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
289

290 291
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
292
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
293
static void drain_all_stock_async(void);
294

295 296 297 298 299 300
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

301 302 303 304 305
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
335
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
336
				struct mem_cgroup_per_zone *mz,
337 338
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
339 340 341 342 343 344 345 346
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

347 348 349
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
366 367 368 369 370 371 372 373 374 375 376 377 378
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

379 380 381 382 383 384
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
385
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
	spin_unlock(&mctz->lock);
}

static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
{
	bool ret = false;
	int cpu;
	s64 val;
	struct mem_cgroup_stat_cpu *cpustat;

	cpu = get_cpu();
	cpustat = &mem->stat.cpustat[cpu];
	val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
	if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
		__mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
		ret = true;
	}
	put_cpu();
	return ret;
}

static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
409
	unsigned long long excess;
410 411
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
412 413
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
414 415 416
	mctz = soft_limit_tree_from_page(page);

	/*
417 418
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
419
	 */
420 421
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
422
		excess = res_counter_soft_limit_excess(&mem->res);
423 424 425 426
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
427
		if (excess || mz->on_tree) {
428 429 430 431 432
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
433 434
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
435
			 */
436
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
437 438
			spin_unlock(&mctz->lock);
		}
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

457 458 459 460 461 462 463 464 465
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
466
	struct mem_cgroup_per_zone *mz;
467 468

retry:
469
	mz = NULL;
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

499 500 501 502 503 504 505 506 507 508 509 510 511
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu = get_cpu();

	cpustat = &stat->cpustat[cpu];
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
	put_cpu();
}

512 513 514
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
515
{
516
	int val = (charge) ? 1 : -1;
517
	struct mem_cgroup_stat *stat = &mem->stat;
518
	struct mem_cgroup_stat_cpu *cpustat;
K
KAMEZAWA Hiroyuki 已提交
519
	int cpu = get_cpu();
520

K
KAMEZAWA Hiroyuki 已提交
521
	cpustat = &stat->cpustat[cpu];
522
	if (PageCgroupCache(pc))
523
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
524
	else
525
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
526 527

	if (charge)
528
		__mem_cgroup_stat_add_safe(cpustat,
529 530
				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
	else
531
		__mem_cgroup_stat_add_safe(cpustat,
532
				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
533
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
K
KAMEZAWA Hiroyuki 已提交
534
	put_cpu();
535 536
}

K
KAMEZAWA Hiroyuki 已提交
537
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
538
					enum lru_list idx)
539 540 541 542 543 544 545 546 547 548 549
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
550 551
}

552
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
553 554 555 556 557 558
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

559
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
560
{
561 562 563 564 565 566 567 568
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

569 570 571 572
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

573 574 575
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
576 577 578

	if (!mm)
		return NULL;
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

629 630 631 632 633
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
647

K
KAMEZAWA Hiroyuki 已提交
648 649 650 651
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
652

653
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
654 655 656
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
657
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
658
		return;
659
	VM_BUG_ON(!pc->mem_cgroup);
660 661 662 663
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
664
	mz = page_cgroup_zoneinfo(pc);
665
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
666 667 668
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
669 670
	list_del_init(&pc->lru);
	return;
671 672
}

K
KAMEZAWA Hiroyuki 已提交
673
void mem_cgroup_del_lru(struct page *page)
674
{
K
KAMEZAWA Hiroyuki 已提交
675 676
	mem_cgroup_del_lru_list(page, page_lru(page));
}
677

K
KAMEZAWA Hiroyuki 已提交
678 679 680 681
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
682

683
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
684
		return;
685

K
KAMEZAWA Hiroyuki 已提交
686
	pc = lookup_page_cgroup(page);
687 688 689 690
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
691
	smp_rmb();
692 693
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
694 695 696
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
697 698
}

K
KAMEZAWA Hiroyuki 已提交
699
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
700
{
K
KAMEZAWA Hiroyuki 已提交
701 702
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
703

704
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
705 706
		return;
	pc = lookup_page_cgroup(page);
707
	VM_BUG_ON(PageCgroupAcctLRU(pc));
708 709 710 711
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
712 713
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
714
		return;
715

K
KAMEZAWA Hiroyuki 已提交
716
	mz = page_cgroup_zoneinfo(pc);
717
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
718 719 720
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
721 722
	list_add(&pc->lru, &mz->lists[lru]);
}
723

K
KAMEZAWA Hiroyuki 已提交
724
/*
725 726 727 728 729
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
730
 */
731
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
732
{
733 734 735 736 737 738 739 740 741 742 743 744
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
745 746
}

747 748 749 750 751 752 753 754
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
755
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
756 757 758 759 760
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
761 762 763
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
764
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
765 766 767
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
768 769
}

770 771 772
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
773
	struct mem_cgroup *curr = NULL;
774 775

	task_lock(task);
776 777 778
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
779
	task_unlock(task);
780 781
	if (!curr)
		return 0;
782 783 784 785 786 787 788
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
789 790 791 792
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
793 794 795
	return ret;
}

796 797 798 799 800
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
801 802 803 804 805 806 807
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
808 809 810 811
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
812
	spin_lock(&mem->reclaim_param_lock);
813 814
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
815
	spin_unlock(&mem->reclaim_param_lock);
816 817 818 819
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
820
	spin_lock(&mem->reclaim_param_lock);
821
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
822
	spin_unlock(&mem->reclaim_param_lock);
823 824
}

825
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
826 827 828
{
	unsigned long active;
	unsigned long inactive;
829 830
	unsigned long gb;
	unsigned long inactive_ratio;
831

K
KAMEZAWA Hiroyuki 已提交
832 833
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
834

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
862 863 864 865 866
		return 1;

	return 0;
}

867 868 869 870 871 872 873 874 875 876 877
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

878 879 880 881 882 883 884 885 886 887 888
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
909 910 911 912 913 914 915 916
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
917 918 919 920 921 922 923
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

924 925 926 927 928
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
929
					int active, int file)
930 931 932 933 934 935
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
936
	struct page_cgroup *pc, *tmp;
937 938 939
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
940
	int lru = LRU_FILE * file + active;
941
	int ret;
942

943
	BUG_ON(!mem_cont);
944
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
945
	src = &mz->lists[lru];
946

947 948
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
949
		if (scan >= nr_to_scan)
950
			break;
K
KAMEZAWA Hiroyuki 已提交
951 952

		page = pc->page;
953 954
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
955
		if (unlikely(!PageLRU(page)))
956 957
			continue;

H
Hugh Dickins 已提交
958
		scan++;
959 960 961
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
962
			list_move(&page->lru, dst);
963
			mem_cgroup_del_lru(page);
964
			nr_taken++;
965 966 967 968 969 970 971
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
972 973 974 975 976 977 978
		}
	}

	*scanned = scan;
	return nr_taken;
}

979 980 981
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

982 983 984 985 986 987 988 989 990 991 992 993
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1010 1011 1012 1013 1014 1015
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

/**
 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1037
	if (!memcg || !p)
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

1095
/*
K
KAMEZAWA Hiroyuki 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1138 1139
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1140 1141 1142
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1143 1144
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1145 1146
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1147
						struct zone *zone,
1148 1149
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1150
{
K
KAMEZAWA Hiroyuki 已提交
1151 1152 1153
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1154 1155
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1156 1157
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1158

1159 1160 1161 1162
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1163
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1164
		victim = mem_cgroup_select_victim(root_mem);
1165
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1166
			loop++;
1167 1168
			if (loop >= 1)
				drain_all_stock_async();
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
K
KAMEZAWA Hiroyuki 已提交
1192 1193 1194
		if (!mem_cgroup_local_usage(&victim->stat)) {
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1195 1196
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1197
		/* we use swappiness of local cgroup */
1198 1199 1200 1201 1202 1203 1204
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
				noswap, get_swappiness(victim), zone,
				zone->zone_pgdat->node_id);
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1205
		css_put(&victim->css);
1206 1207 1208 1209 1210 1211 1212
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1213
		total += ret;
1214 1215 1216 1217
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1218
			return 1 + total;
1219
	}
K
KAMEZAWA Hiroyuki 已提交
1220
	return total;
1221 1222
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
bool mem_cgroup_oom_called(struct task_struct *task)
{
	bool ret = false;
	struct mem_cgroup *mem;
	struct mm_struct *mm;

	rcu_read_lock();
	mm = task->mm;
	if (!mm)
		mm = &init_mm;
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
		ret = true;
	rcu_read_unlock();
	return ret;
}
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
{
	mem->last_oom_jiffies = jiffies;
	return 0;
}

static void record_last_oom(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
}

1251 1252 1253 1254
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
1255
void mem_cgroup_update_file_mapped(struct page *page, int val)
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
{
	struct mem_cgroup *mem;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
	if (!mem)
		goto done;

	if (!PageCgroupUsed(pc))
		goto done;

	/*
	 * Preemption is already disabled, we don't need get_cpu()
	 */
	cpu = smp_processor_id();
	stat = &mem->stat;
	cpustat = &stat->cpustat[cpu];

1282
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED, val);
1283 1284 1285
done:
	unlock_page_cgroup(pc);
}
1286

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
 * This will be consumed by consumt_stock() function, later.
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

	if (action != CPU_DEAD)
		return NOTIFY_OK;
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1414 1415 1416
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1417
 */
1418
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1419
			gfp_t gfp_mask, struct mem_cgroup **memcg,
1420
			bool oom, struct page *page)
1421
{
1422
	struct mem_cgroup *mem, *mem_over_limit;
1423
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1424
	struct res_counter *fail_res;
1425
	int csize = CHARGE_SIZE;
1426 1427 1428 1429 1430 1431 1432

	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
		/* Don't account this! */
		*memcg = NULL;
		return 0;
	}

1433
	/*
1434 1435
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1436 1437 1438
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1439 1440 1441
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
1442
		*memcg = mem;
1443
	} else {
1444
		css_get(&mem->css);
1445
	}
1446 1447 1448
	if (unlikely(!mem))
		return 0;

1449
	VM_BUG_ON(css_is_removed(&mem->css));
1450 1451
	if (mem_cgroup_is_root(mem))
		goto done;
1452

1453
	while (1) {
1454
		int ret = 0;
1455
		unsigned long flags = 0;
1456

1457 1458 1459 1460
		if (consume_stock(mem))
			goto charged;

		ret = res_counter_charge(&mem->res, csize, &fail_res);
1461 1462 1463
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1464
			ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1465 1466 1467
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
1468
			res_counter_uncharge(&mem->res, csize);
1469
			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1470 1471 1472 1473 1474 1475 1476
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1477 1478 1479 1480 1481
		/* reduce request size and retry */
		if (csize > PAGE_SIZE) {
			csize = PAGE_SIZE;
			continue;
		}
1482
		if (!(gfp_mask & __GFP_WAIT))
1483
			goto nomem;
1484

1485 1486
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
						gfp_mask, flags);
1487 1488
		if (ret)
			continue;
1489 1490

		/*
1491 1492 1493 1494 1495
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1496
		 *
1497
		 */
1498 1499
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1500 1501

		if (!nr_retries--) {
1502
			if (oom) {
1503
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1504
				record_last_oom(mem_over_limit);
1505
			}
1506
			goto nomem;
1507
		}
1508
	}
1509 1510 1511
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
charged:
1512
	/*
1513 1514
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
1515
	 */
1516 1517
	if (mem_cgroup_soft_limit_check(mem))
		mem_cgroup_update_tree(mem, page);
1518
done:
1519 1520 1521 1522 1523
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
}
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	if (!mem_cgroup_is_root(mem)) {
		res_counter_uncharge(&mem->res, PAGE_SIZE);
		if (do_swap_account)
			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
	}
	css_put(&mem->css);
}

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1559
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1560
{
1561
	struct mem_cgroup *mem = NULL;
1562
	struct page_cgroup *pc;
1563
	unsigned short id;
1564 1565
	swp_entry_t ent;

1566 1567 1568
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
1569
	lock_page_cgroup(pc);
1570
	if (PageCgroupUsed(pc)) {
1571
		mem = pc->mem_cgroup;
1572 1573
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
1574
	} else if (PageSwapCache(page)) {
1575
		ent.val = page_private(page);
1576 1577 1578 1579 1580 1581
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1582
	}
1583
	unlock_page_cgroup(pc);
1584 1585 1586
	return mem;
}

1587
/*
1588
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1599 1600 1601 1602

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1603
		mem_cgroup_cancel_charge(mem);
1604
		return;
1605
	}
1606

1607
	pc->mem_cgroup = mem;
1608 1609 1610 1611 1612 1613 1614
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1615
	smp_wmb();
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1629

K
KAMEZAWA Hiroyuki 已提交
1630
	mem_cgroup_charge_statistics(mem, pc, true);
1631 1632

	unlock_page_cgroup(pc);
1633
}
1634

1635
/**
1636
 * __mem_cgroup_move_account - move account of the page
1637 1638 1639 1640 1641
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1642
 * - page is not on LRU (isolate_page() is useful.)
1643
 * - the pc is locked, used, and ->mem_cgroup points to @from.
1644 1645 1646 1647 1648
 *
 * This function does "uncharge" from old cgroup but doesn't do "charge" to
 * new cgroup. It should be done by a caller.
 */

1649
static void __mem_cgroup_move_account(struct page_cgroup *pc,
1650 1651
	struct mem_cgroup *from, struct mem_cgroup *to)
{
1652 1653 1654 1655
	struct page *page;
	int cpu;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
1656 1657

	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1658
	VM_BUG_ON(PageLRU(pc->page));
1659 1660 1661
	VM_BUG_ON(!PageCgroupLocked(pc));
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
1662

1663
	if (!mem_cgroup_is_root(from))
1664
		res_counter_uncharge(&from->res, PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
1665
	mem_cgroup_charge_statistics(from, pc, false);
1666 1667

	page = pc->page;
1668
	if (page_mapped(page) && !PageAnon(page)) {
1669 1670 1671 1672
		cpu = smp_processor_id();
		/* Update mapped_file data for mem_cgroup "from" */
		stat = &from->stat;
		cpustat = &stat->cpustat[cpu];
1673
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
1674 1675 1676 1677 1678
						-1);

		/* Update mapped_file data for mem_cgroup "to" */
		stat = &to->stat;
		cpustat = &stat->cpustat[cpu];
1679
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
1680 1681 1682
						1);
	}

1683
	if (do_swap_account && !mem_cgroup_is_root(from))
1684
		res_counter_uncharge(&from->memsw, PAGE_SIZE);
1685 1686 1687
	css_put(&from->css);

	css_get(&to->css);
K
KAMEZAWA Hiroyuki 已提交
1688 1689
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
1690 1691 1692 1693 1694 1695
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
	 * this function is just force_empty() and it's garanteed that
	 * "to" is never removed. So, we don't check rmdir status here.
	 */
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
				struct mem_cgroup *from, struct mem_cgroup *to)
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
		__mem_cgroup_move_account(pc, from, to);
		ret = 0;
	}
	unlock_page_cgroup(pc);
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1723
	struct page *page = pc->page;
1724 1725 1726 1727 1728 1729 1730 1731 1732
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

1733 1734 1735 1736 1737
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
1738

1739
	parent = mem_cgroup_from_cont(pcg);
1740
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1741
	if (ret || !parent)
1742
		goto put_back;
1743 1744

	ret = mem_cgroup_move_account(pc, child, parent);
1745 1746 1747 1748 1749
	if (!ret)
		css_put(&parent->css);	/* drop extra refcnt by try_charge() */
	else
		mem_cgroup_cancel_charge(parent);	/* does css_put */
put_back:
K
KAMEZAWA Hiroyuki 已提交
1750
	putback_lru_page(page);
1751
put:
1752
	put_page(page);
1753
out:
1754 1755 1756
	return ret;
}

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1778
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1779
	if (ret || !mem)
1780 1781 1782
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1783 1784 1785
	return 0;
}

1786 1787
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1788
{
1789
	if (mem_cgroup_disabled())
1790
		return 0;
1791 1792
	if (PageCompound(page))
		return 0;
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
1804
	return mem_cgroup_charge_common(page, mm, gfp_mask,
1805
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1806 1807
}

D
Daisuke Nishimura 已提交
1808 1809 1810 1811
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

1812 1813
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
1814
{
1815 1816 1817
	struct mem_cgroup *mem = NULL;
	int ret;

1818
	if (mem_cgroup_disabled())
1819
		return 0;
1820 1821
	if (PageCompound(page))
		return 0;
1822 1823 1824 1825 1826 1827 1828 1829
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
1830 1831
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
1832 1833 1834 1835
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

1836 1837 1838 1839 1840 1841 1842

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
1843 1844
			return 0;
		}
1845
		unlock_page_cgroup(pc);
1846 1847
	}

1848
	if (unlikely(!mm && !mem))
1849
		mm = &init_mm;
1850

1851 1852
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
1853
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1854

D
Daisuke Nishimura 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1864 1865

	return ret;
1866 1867
}

1868 1869 1870
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
1871
 * struct page_cgroup is acquired. This refcnt will be consumed by
1872 1873
 * "commit()" or removed by "cancel()"
 */
1874 1875 1876 1877 1878
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
1879
	int ret;
1880

1881
	if (mem_cgroup_disabled())
1882 1883 1884 1885 1886 1887
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
1888 1889 1890
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
1891 1892
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
1893
		goto charge_cur_mm;
1894
	mem = try_get_mem_cgroup_from_page(page);
1895 1896
	if (!mem)
		goto charge_cur_mm;
1897
	*ptr = mem;
1898
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1899 1900 1901
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
1902 1903 1904
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
1905
	return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1906 1907
}

D
Daisuke Nishimura 已提交
1908 1909 1910
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
1911 1912 1913
{
	struct page_cgroup *pc;

1914
	if (mem_cgroup_disabled())
1915 1916 1917
		return;
	if (!ptr)
		return;
1918
	cgroup_exclude_rmdir(&ptr->css);
1919
	pc = lookup_page_cgroup(page);
1920
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
1921
	__mem_cgroup_commit_charge(ptr, pc, ctype);
1922
	mem_cgroup_lru_add_after_commit_swapcache(page);
1923 1924 1925
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
1926 1927 1928
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
1929
	 */
1930
	if (do_swap_account && PageSwapCache(page)) {
1931
		swp_entry_t ent = {.val = page_private(page)};
1932
		unsigned short id;
1933
		struct mem_cgroup *memcg;
1934 1935 1936 1937

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
1938
		if (memcg) {
1939 1940 1941 1942
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
1943
			if (!mem_cgroup_is_root(memcg))
1944
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1945
			mem_cgroup_swap_statistics(memcg, false);
1946 1947
			mem_cgroup_put(memcg);
		}
1948
		rcu_read_unlock();
1949
	}
1950 1951 1952 1953 1954 1955
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
1956 1957
}

D
Daisuke Nishimura 已提交
1958 1959 1960 1961 1962 1963
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

1964 1965
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
1966
	if (mem_cgroup_disabled())
1967 1968 1969
		return;
	if (!mem)
		return;
1970
	mem_cgroup_cancel_charge(mem);
1971 1972
}

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */
	if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
	return;
}
2017

2018
/*
2019
 * uncharge if !page_mapped(page)
2020
 */
2021
static struct mem_cgroup *
2022
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2023
{
H
Hugh Dickins 已提交
2024
	struct page_cgroup *pc;
2025
	struct mem_cgroup *mem = NULL;
2026
	struct mem_cgroup_per_zone *mz;
2027

2028
	if (mem_cgroup_disabled())
2029
		return NULL;
2030

K
KAMEZAWA Hiroyuki 已提交
2031
	if (PageSwapCache(page))
2032
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2033

2034
	/*
2035
	 * Check if our page_cgroup is valid
2036
	 */
2037 2038
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2039
		return NULL;
2040

2041
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2042

2043 2044
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2045 2046 2047 2048 2049
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2050
	case MEM_CGROUP_CHARGE_TYPE_DROP:
K
KAMEZAWA Hiroyuki 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2063
	}
K
KAMEZAWA Hiroyuki 已提交
2064

2065 2066
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2067 2068
	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		mem_cgroup_swap_statistics(mem, true);
K
KAMEZAWA Hiroyuki 已提交
2069
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2070

2071
	ClearPageCgroupUsed(pc);
2072 2073 2074 2075 2076 2077
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2078

2079
	mz = page_cgroup_zoneinfo(pc);
2080
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
2081

2082
	if (mem_cgroup_soft_limit_check(mem))
2083
		mem_cgroup_update_tree(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2084 2085 2086
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
2087

2088
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2089 2090 2091

unlock_out:
	unlock_page_cgroup(pc);
2092
	return NULL;
2093 2094
}

2095 2096
void mem_cgroup_uncharge_page(struct page *page)
{
2097 2098 2099 2100 2101
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2102 2103 2104 2105 2106 2107
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2108
	VM_BUG_ON(page->mapping);
2109 2110 2111
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2156
#ifdef CONFIG_SWAP
2157
/*
2158
 * called after __delete_from_swap_cache() and drop "page" account.
2159 2160
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2161 2162
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2163 2164
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2165 2166 2167 2168 2169 2170
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2171 2172

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
2173
	if (do_swap_account && swapout && memcg) {
2174
		swap_cgroup_record(ent, css_id(&memcg->css));
2175 2176
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
2177
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
2178
		css_put(&memcg->css);
2179
}
2180
#endif
2181 2182 2183 2184 2185 2186 2187

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2188
{
2189
	struct mem_cgroup *memcg;
2190
	unsigned short id;
2191 2192 2193 2194

	if (!do_swap_account)
		return;

2195 2196 2197
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2198
	if (memcg) {
2199 2200 2201 2202
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2203
		if (!mem_cgroup_is_root(memcg))
2204
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2205
		mem_cgroup_swap_statistics(memcg, false);
2206 2207
		mem_cgroup_put(memcg);
	}
2208
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2209
}
2210
#endif
K
KAMEZAWA Hiroyuki 已提交
2211

2212
/*
2213 2214
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2215
 */
2216
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2217 2218
{
	struct page_cgroup *pc;
2219 2220
	struct mem_cgroup *mem = NULL;
	int ret = 0;
2221

2222
	if (mem_cgroup_disabled())
2223 2224
		return 0;

2225 2226 2227
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2228 2229 2230
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
2231
	unlock_page_cgroup(pc);
2232

2233
	if (mem) {
2234 2235
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
						page);
2236 2237
		css_put(&mem->css);
	}
2238
	*ptr = mem;
2239
	return ret;
2240
}
2241

2242
/* remove redundant charge if migration failed*/
2243 2244
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
2245
{
2246 2247 2248 2249 2250 2251
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;
2252
	cgroup_exclude_rmdir(&mem->css);
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
2270
	if (unused)
2271 2272 2273
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
2274
	/*
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
2289
	 */
2290 2291
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
2292 2293 2294 2295 2296 2297
	/*
	 * At migration, we may charge account against cgroup which has no tasks
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2298
}
2299

2300
/*
2301 2302 2303 2304 2305 2306
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2307
 */
2308
int mem_cgroup_shmem_charge_fallback(struct page *page,
2309 2310
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2311
{
2312
	struct mem_cgroup *mem = NULL;
2313
	int ret;
2314

2315
	if (mem_cgroup_disabled())
2316
		return 0;
2317

2318 2319 2320
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2321

2322
	return ret;
2323 2324
}

2325 2326
static DEFINE_MUTEX(set_limit_mutex);

2327
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2328
				unsigned long long val)
2329
{
2330
	int retry_count;
2331
	u64 memswlimit;
2332
	int ret = 0;
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2344

2345
	while (retry_count) {
2346 2347 2348 2349
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2360 2361
			break;
		}
2362
		ret = res_counter_set_limit(&memcg->res, val);
2363 2364 2365 2366 2367 2368
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2369 2370 2371 2372 2373
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2374
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2375
						MEM_CGROUP_RECLAIM_SHRINK);
2376 2377 2378 2379 2380 2381
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2382
	}
2383

2384 2385 2386
	return ret;
}

L
Li Zefan 已提交
2387 2388
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2389
{
2390
	int retry_count;
2391
	u64 memlimit, oldusage, curusage;
2392 2393
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2394

2395 2396 2397
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
2416 2417 2418 2419 2420 2421
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2422 2423 2424 2425 2426
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2427
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2428 2429
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2430
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2431
		/* Usage is reduced ? */
2432
		if (curusage >= oldusage)
2433
			retry_count--;
2434 2435
		else
			oldusage = curusage;
2436 2437 2438 2439
	}
	return ret;
}

2440 2441 2442 2443 2444 2445 2446 2447 2448
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask, int nid,
						int zid)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2449
	unsigned long long excess;
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(nid, zid);
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2502
		excess = res_counter_soft_limit_excess(&mz->mem->res);
2503 2504 2505 2506 2507 2508 2509 2510
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
2511 2512
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2531 2532 2533 2534
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2535
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2536
				int node, int zid, enum lru_list lru)
2537
{
K
KAMEZAWA Hiroyuki 已提交
2538 2539
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2540
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2541
	unsigned long flags, loop;
2542
	struct list_head *list;
2543
	int ret = 0;
2544

K
KAMEZAWA Hiroyuki 已提交
2545 2546
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2547
	list = &mz->lists[lru];
2548

2549 2550 2551 2552 2553 2554
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2555
		spin_lock_irqsave(&zone->lru_lock, flags);
2556
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2557
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2558
			break;
2559 2560 2561 2562
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
2563
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
2564
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2565 2566
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2567
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2568

K
KAMEZAWA Hiroyuki 已提交
2569
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2570
		if (ret == -ENOMEM)
2571
			break;
2572 2573 2574 2575 2576 2577 2578

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2579
	}
K
KAMEZAWA Hiroyuki 已提交
2580

2581 2582 2583
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2584 2585 2586 2587 2588 2589
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2590
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2591
{
2592 2593 2594
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2595
	struct cgroup *cgrp = mem->css.cgroup;
2596

2597
	css_get(&mem->css);
2598 2599

	shrink = 0;
2600 2601 2602
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2603
move_account:
2604
	do {
2605
		ret = -EBUSY;
2606 2607 2608 2609
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
2610
			goto out;
2611 2612
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
2613
		drain_all_stock_sync();
2614
		ret = 0;
2615
		for_each_node_state(node, N_HIGH_MEMORY) {
2616
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2617
				enum lru_list l;
2618 2619
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
2620
							node, zid, l);
2621 2622 2623
					if (ret)
						break;
				}
2624
			}
2625 2626 2627 2628 2629 2630
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
2631
		cond_resched();
2632 2633
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
2634 2635 2636
out:
	css_put(&mem->css);
	return ret;
2637 2638

try_to_free:
2639 2640
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2641 2642 2643
		ret = -EBUSY;
		goto out;
	}
2644 2645
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2646 2647 2648 2649
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
2650 2651 2652 2653 2654

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
2655 2656
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
2657
		if (!progress) {
2658
			nr_retries--;
2659
			/* maybe some writeback is necessary */
2660
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2661
		}
2662 2663

	}
K
KAMEZAWA Hiroyuki 已提交
2664
	lru_add_drain();
2665
	/* try move_account...there may be some *locked* pages. */
2666
	goto move_account;
2667 2668
}

2669 2670 2671 2672 2673 2674
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
2693
	 * If parent's use_hierarchy is set, we can't make any modifications
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
	d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

2737
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
2738
{
2739
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2740
	u64 idx_val, val;
2741 2742 2743 2744 2745 2746
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_CACHE, &idx_val);
			val = idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_RSS, &idx_val);
			val += idx_val;
			val <<= PAGE_SHIFT;
		} else
			val = res_counter_read_u64(&mem->res, name);
2757 2758
		break;
	case _MEMSWAP:
2759 2760 2761 2762 2763 2764 2765 2766 2767
		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_CACHE, &idx_val);
			val = idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_RSS, &idx_val);
			val += idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
2768
			val += idx_val;
2769 2770 2771
			val <<= PAGE_SHIFT;
		} else
			val = res_counter_read_u64(&mem->memsw, name);
2772 2773 2774 2775 2776 2777
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
2778
}
2779 2780 2781 2782
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2783 2784
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
2785
{
2786
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2787
	int type, name;
2788 2789 2790
	unsigned long long val;
	int ret;

2791 2792 2793
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
2794
	case RES_LIMIT:
2795 2796 2797 2798
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2799 2800
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
2801 2802 2803
		if (ret)
			break;
		if (type == _MEM)
2804
			ret = mem_cgroup_resize_limit(memcg, val);
2805 2806
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2807
		break;
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
2822 2823 2824 2825 2826
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
2827 2828
}

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

2857
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2858 2859
{
	struct mem_cgroup *mem;
2860
	int type, name;
2861 2862

	mem = mem_cgroup_from_cont(cont);
2863 2864 2865
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
2866
	case RES_MAX_USAGE:
2867 2868 2869 2870
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
2871 2872
		break;
	case RES_FAILCNT:
2873 2874 2875 2876
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
2877 2878
		break;
	}
2879

2880
	return 0;
2881 2882
}

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
2908 2909 2910 2911 2912

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
2913
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
2914 2915
	MCS_PGPGIN,
	MCS_PGPGOUT,
2916
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
2927 2928
};

K
KAMEZAWA Hiroyuki 已提交
2929 2930 2931 2932 2933 2934
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
2935
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
2936 2937
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
2938
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	s->stat[MCS_RSS] += val * PAGE_SIZE;
2957 2958
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_FILE_MAPPED);
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
2959 2960 2961 2962
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
	s->stat[MCS_PGPGIN] += val;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
	s->stat[MCS_PGPGOUT] += val;
2963 2964 2965 2966
	if (do_swap_account) {
		val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

2988 2989
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
2990 2991
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
2992
	struct mcs_total_stat mystat;
2993 2994
	int i;

K
KAMEZAWA Hiroyuki 已提交
2995 2996
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
2997

2998 2999 3000
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3001
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3002
	}
L
Lee Schermerhorn 已提交
3003

K
KAMEZAWA Hiroyuki 已提交
3004
	/* Hierarchical information */
3005 3006 3007 3008 3009 3010 3011
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3012

K
KAMEZAWA Hiroyuki 已提交
3013 3014
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3015 3016 3017
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3018
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3019
	}
K
KAMEZAWA Hiroyuki 已提交
3020

K
KOSAKI Motohiro 已提交
3021
#ifdef CONFIG_DEBUG_VM
3022
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3050 3051 3052
	return 0;
}

K
KOSAKI Motohiro 已提交
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3065

K
KOSAKI Motohiro 已提交
3066 3067 3068 3069 3070 3071 3072
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3073 3074 3075

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3076 3077
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3078 3079
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3080
		return -EINVAL;
3081
	}
K
KOSAKI Motohiro 已提交
3082 3083 3084 3085 3086

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3087 3088
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3089 3090 3091
	return 0;
}

3092

B
Balbir Singh 已提交
3093 3094
static struct cftype mem_cgroup_files[] = {
	{
3095
		.name = "usage_in_bytes",
3096
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3097
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3098
	},
3099 3100
	{
		.name = "max_usage_in_bytes",
3101
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3102
		.trigger = mem_cgroup_reset,
3103 3104
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3105
	{
3106
		.name = "limit_in_bytes",
3107
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3108
		.write_string = mem_cgroup_write,
3109
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3110
	},
3111 3112 3113 3114 3115 3116
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3117 3118
	{
		.name = "failcnt",
3119
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3120
		.trigger = mem_cgroup_reset,
3121
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3122
	},
3123 3124
	{
		.name = "stat",
3125
		.read_map = mem_control_stat_show,
3126
	},
3127 3128 3129 3130
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
3131 3132 3133 3134 3135
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
3136 3137 3138 3139 3140
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3141 3142 3143 3144 3145
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
B
Balbir Singh 已提交
3146 3147
};

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

3189 3190 3191
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
3192
	struct mem_cgroup_per_zone *mz;
3193
	enum lru_list l;
3194
	int zone, tmp = node;
3195 3196 3197 3198 3199 3200 3201 3202
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
3203 3204 3205
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3206 3207
	if (!pn)
		return 1;
3208

3209 3210
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
3211 3212 3213

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
3214 3215
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
3216
		mz->usage_in_excess = 0;
3217 3218
		mz->on_tree = false;
		mz->mem = mem;
3219
	}
3220 3221 3222
	return 0;
}

3223 3224 3225 3226 3227
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

3228 3229 3230 3231 3232 3233
static int mem_cgroup_size(void)
{
	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
	return sizeof(struct mem_cgroup) + cpustat_size;
}

3234 3235 3236
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
3237
	int size = mem_cgroup_size();
3238

3239 3240
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
3241
	else
3242
		mem = vmalloc(size);
3243 3244

	if (mem)
3245
		memset(mem, 0, size);
3246 3247 3248
	return mem;
}

3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

3260
static void __mem_cgroup_free(struct mem_cgroup *mem)
3261
{
K
KAMEZAWA Hiroyuki 已提交
3262 3263
	int node;

3264
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
3265 3266
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
3267 3268 3269
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

3270
	if (mem_cgroup_size() < PAGE_SIZE)
3271 3272 3273 3274 3275
		kfree(mem);
	else
		vfree(mem);
}

3276 3277 3278 3279 3280 3281 3282
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

static void mem_cgroup_put(struct mem_cgroup *mem)
{
3283 3284
	if (atomic_dec_and_test(&mem->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3285
		__mem_cgroup_free(mem);
3286 3287 3288
		if (parent)
			mem_cgroup_put(parent);
	}
3289 3290
}

3291 3292 3293 3294 3295 3296 3297 3298 3299
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
3300

3301 3302 3303
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
3304
	if (!mem_cgroup_disabled() && really_do_swap_account)
3305 3306 3307 3308 3309 3310 3311 3312
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
3338
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
3339 3340
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
3341
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
3342
	long error = -ENOMEM;
3343
	int node;
B
Balbir Singh 已提交
3344

3345 3346
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
3347
		return ERR_PTR(error);
3348

3349 3350 3351
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
3352

3353
	/* root ? */
3354
	if (cont->parent == NULL) {
3355
		int cpu;
3356
		enable_swap_cgroup();
3357
		parent = NULL;
3358
		root_mem_cgroup = mem;
3359 3360
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
3361 3362 3363 3364 3365 3366
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
		hotcpu_notifier(memcg_stock_cpu_callback, 0);
3367

3368
	} else {
3369
		parent = mem_cgroup_from_cont(cont->parent);
3370 3371
		mem->use_hierarchy = parent->use_hierarchy;
	}
3372

3373 3374 3375
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
3376 3377 3378 3379 3380 3381 3382
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
3383 3384 3385 3386
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
3387
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
3388
	spin_lock_init(&mem->reclaim_param_lock);
3389

K
KOSAKI Motohiro 已提交
3390 3391
	if (parent)
		mem->swappiness = get_swappiness(parent);
3392
	atomic_set(&mem->refcnt, 1);
3393
	mem->move_charge_at_immigrate = 0;
B
Balbir Singh 已提交
3394
	return &mem->css;
3395
free_out:
3396
	__mem_cgroup_free(mem);
3397
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
3398
	return ERR_PTR(error);
B
Balbir Singh 已提交
3399 3400
}

3401
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3402 3403 3404
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3405 3406

	return mem_cgroup_force_empty(mem, false);
3407 3408
}

B
Balbir Singh 已提交
3409 3410 3411
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3412 3413 3414
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
3415 3416 3417 3418 3419
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3420 3421 3422 3423 3424 3425 3426 3427
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
3428 3429
}

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
/* Handlers for move charge at task migration. */
static int mem_cgroup_can_move_charge(void)
{
	return 0;
}

static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;

		/* We move charges only when we move a owner of the mm */
		if (mm->owner == p)
			ret = mem_cgroup_can_move_charge();

		mmput(mm);
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}

static void mem_cgroup_move_charge(void)
{
}

B
Balbir Singh 已提交
3474 3475 3476
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
3477 3478
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
3479
{
3480
	mem_cgroup_move_charge();
B
Balbir Singh 已提交
3481 3482
}

B
Balbir Singh 已提交
3483 3484 3485 3486
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
3487
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
3488 3489
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
3490 3491
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
3492
	.attach = mem_cgroup_move_task,
3493
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
3494
	.use_id = 1,
B
Balbir Singh 已提交
3495
};
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif