memcontrol.c 109.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include "internal.h"
B
Balbir Singh 已提交
51

52 53
#include <asm/uaccess.h>

54 55
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
56
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
57

58
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
59
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
60 61 62 63 64 65
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

66
#define SOFTLIMIT_EVENTS_THRESH (1000)
67
#define THRESHOLDS_EVENTS_THRESH (100)
68

69 70 71 72 73 74 75 76
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
77
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
78
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
79 80
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
81
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
82 83
	MEM_CGROUP_STAT_SOFTLIMIT, /* decrements on each page in/out.
					used by soft limit implementation */
84 85
	MEM_CGROUP_STAT_THRESHOLDS, /* decrements on each page in/out.
					used by threshold implementation */
86 87 88 89 90 91 92 93 94

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
95
	struct mem_cgroup_stat_cpu cpustat[0];
96 97
};

98
static inline void
99 100
__mem_cgroup_stat_set_safe(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx, s64 val)
101
{
102
	stat->count[idx] = val;
103 104 105 106 107 108 109 110 111
}

static inline s64
__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	return stat->count[idx];
}

112 113 114
/*
 * For accounting under irq disable, no need for increment preempt count.
 */
115
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
116 117
		enum mem_cgroup_stat_index idx, int val)
{
118
	stat->count[idx] += val;
119 120 121 122 123 124 125 126 127 128 129 130
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

K
KAMEZAWA Hiroyuki 已提交
131 132 133 134 135 136 137 138 139
static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
{
	s64 ret;

	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
	return ret;
}

140 141 142 143
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
144 145 146
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
147 148
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
149 150

	struct zone_reclaim_stat reclaim_stat;
151 152 153 154
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
155 156
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
157 158 159 160 161 162 163 164 165 166 167 168
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
	atomic_t current_threshold;
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};

static bool mem_cgroup_threshold_check(struct mem_cgroup *mem);
static void mem_cgroup_threshold(struct mem_cgroup *mem);

B
Balbir Singh 已提交
206 207 208 209 210 211 212
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
213 214 215
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
216 217 218 219 220 221 222
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
223 224 225 226
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
227 228 229 230
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
231
	struct mem_cgroup_lru_info info;
232

K
KOSAKI Motohiro 已提交
233 234 235 236 237
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

238
	int	prev_priority;	/* for recording reclaim priority */
239 240

	/*
241
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
242
	 * reclaimed from.
243
	 */
K
KAMEZAWA Hiroyuki 已提交
244
	int last_scanned_child;
245 246 247 248
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
249
	unsigned long	last_oom_jiffies;
250
	atomic_t	refcnt;
251

K
KOSAKI Motohiro 已提交
252 253
	unsigned int	swappiness;

254 255 256
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

257 258 259 260 261 262 263 264 265
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
	struct mem_cgroup_threshold_ary *thresholds;

	/* thresholds for mem+swap usage. RCU-protected */
	struct mem_cgroup_threshold_ary *memsw_thresholds;

266 267 268 269 270 271
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;

272
	/*
273
	 * statistics. This must be placed at the end of memcg.
274 275
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
276 277
};

278 279 280 281 282 283
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
284
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
285 286 287
	NR_MOVE_TYPE,
};

288 289 290 291 292
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
293
	unsigned long moved_charge;
294
	unsigned long moved_swap;
295 296 297 298 299
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
300

301 302 303 304 305 306 307
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

308 309 310
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
311
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
312
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
313
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
314
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
315 316 317
	NR_CHARGE_TYPE,
};

318 319 320 321
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
322 323
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
324

325 326 327 328 329 330 331
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

332 333 334 335 336 337 338
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
339 340
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
341

342 343
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
344
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
345
static void drain_all_stock_async(void);
346

347 348 349 350 351 352
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

353 354 355 356 357
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
387
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
388
				struct mem_cgroup_per_zone *mz,
389 390
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
391 392 393 394 395 396 397 398
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

399 400 401
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
418 419 420 421 422 423 424 425 426 427 428 429 430
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

431 432 433 434 435 436
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
437
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
438 439 440 441 442 443 444 445 446 447 448 449
	spin_unlock(&mctz->lock);
}

static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
{
	bool ret = false;
	int cpu;
	s64 val;
	struct mem_cgroup_stat_cpu *cpustat;

	cpu = get_cpu();
	cpustat = &mem->stat.cpustat[cpu];
450 451 452 453
	val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_SOFTLIMIT);
	if (unlikely(val < 0)) {
		__mem_cgroup_stat_set_safe(cpustat, MEM_CGROUP_STAT_SOFTLIMIT,
				SOFTLIMIT_EVENTS_THRESH);
454 455 456 457 458 459 460 461
		ret = true;
	}
	put_cpu();
	return ret;
}

static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
462
	unsigned long long excess;
463 464
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
465 466
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
467 468 469
	mctz = soft_limit_tree_from_page(page);

	/*
470 471
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
472
	 */
473 474
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
475
		excess = res_counter_soft_limit_excess(&mem->res);
476 477 478 479
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
480
		if (excess || mz->on_tree) {
481 482 483 484 485
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
486 487
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
488
			 */
489
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
490 491
			spin_unlock(&mctz->lock);
		}
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

510 511 512 513 514 515 516 517 518
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
519
	struct mem_cgroup_per_zone *mz;
520 521

retry:
522
	mz = NULL;
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

552 553 554 555 556 557 558 559 560 561 562 563 564
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu = get_cpu();

	cpustat = &stat->cpustat[cpu];
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
	put_cpu();
}

565 566 567
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
568
{
569
	int val = (charge) ? 1 : -1;
570
	struct mem_cgroup_stat *stat = &mem->stat;
571
	struct mem_cgroup_stat_cpu *cpustat;
K
KAMEZAWA Hiroyuki 已提交
572
	int cpu = get_cpu();
573

K
KAMEZAWA Hiroyuki 已提交
574
	cpustat = &stat->cpustat[cpu];
575
	if (PageCgroupCache(pc))
576
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
577
	else
578
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
579 580

	if (charge)
581
		__mem_cgroup_stat_add_safe(cpustat,
582 583
				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
	else
584
		__mem_cgroup_stat_add_safe(cpustat,
585
				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
586
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SOFTLIMIT, -1);
587 588
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_THRESHOLDS, -1);

K
KAMEZAWA Hiroyuki 已提交
589
	put_cpu();
590 591
}

K
KAMEZAWA Hiroyuki 已提交
592
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
593
					enum lru_list idx)
594 595 596 597 598 599 600 601 602 603 604
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
605 606
}

607
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
608 609 610 611 612 613
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

614
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
615
{
616 617 618 619 620 621 622 623
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

624 625 626 627
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

628 629 630
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
631 632 633

	if (!mm)
		return NULL;
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

684 685 686 687 688
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
689 690 691 692 693 694 695 696 697 698 699 700 701
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
702

K
KAMEZAWA Hiroyuki 已提交
703 704 705 706
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
707

708
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
709 710 711
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
712
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
713
		return;
714
	VM_BUG_ON(!pc->mem_cgroup);
715 716 717 718
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
719
	mz = page_cgroup_zoneinfo(pc);
720
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
721 722 723
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
724 725
	list_del_init(&pc->lru);
	return;
726 727
}

K
KAMEZAWA Hiroyuki 已提交
728
void mem_cgroup_del_lru(struct page *page)
729
{
K
KAMEZAWA Hiroyuki 已提交
730 731
	mem_cgroup_del_lru_list(page, page_lru(page));
}
732

K
KAMEZAWA Hiroyuki 已提交
733 734 735 736
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
737

738
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
739
		return;
740

K
KAMEZAWA Hiroyuki 已提交
741
	pc = lookup_page_cgroup(page);
742 743 744 745
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
746
	smp_rmb();
747 748
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
749 750 751
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
752 753
}

K
KAMEZAWA Hiroyuki 已提交
754
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
755
{
K
KAMEZAWA Hiroyuki 已提交
756 757
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
758

759
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
760 761
		return;
	pc = lookup_page_cgroup(page);
762
	VM_BUG_ON(PageCgroupAcctLRU(pc));
763 764 765 766
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
767 768
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
769
		return;
770

K
KAMEZAWA Hiroyuki 已提交
771
	mz = page_cgroup_zoneinfo(pc);
772
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
773 774 775
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
776 777
	list_add(&pc->lru, &mz->lists[lru]);
}
778

K
KAMEZAWA Hiroyuki 已提交
779
/*
780 781 782 783 784
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
785
 */
786
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
787
{
788 789 790 791 792 793 794 795 796 797 798 799
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
800 801
}

802 803 804 805 806 807 808 809
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
810
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
811 812 813 814 815
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
816 817 818
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
819
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
820 821 822
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
823 824
}

825 826 827
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
828
	struct mem_cgroup *curr = NULL;
829 830

	task_lock(task);
831 832 833
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
834
	task_unlock(task);
835 836
	if (!curr)
		return 0;
837 838 839 840 841 842 843
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
844 845 846 847
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
848 849 850
	return ret;
}

851 852 853 854 855
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
856 857 858 859 860 861 862
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
863 864 865 866
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
867
	spin_lock(&mem->reclaim_param_lock);
868 869
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
870
	spin_unlock(&mem->reclaim_param_lock);
871 872 873 874
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
875
	spin_lock(&mem->reclaim_param_lock);
876
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
877
	spin_unlock(&mem->reclaim_param_lock);
878 879
}

880
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
881 882 883
{
	unsigned long active;
	unsigned long inactive;
884 885
	unsigned long gb;
	unsigned long inactive_ratio;
886

K
KAMEZAWA Hiroyuki 已提交
887 888
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
889

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
917 918 919 920 921
		return 1;

	return 0;
}

922 923 924 925 926 927 928 929 930 931 932
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

933 934 935 936 937 938 939 940 941 942 943
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
964 965 966 967 968 969 970 971
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
972 973 974 975 976 977 978
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

979 980 981 982 983
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
984
					int active, int file)
985 986 987 988 989 990
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
991
	struct page_cgroup *pc, *tmp;
992 993 994
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
995
	int lru = LRU_FILE * file + active;
996
	int ret;
997

998
	BUG_ON(!mem_cont);
999
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1000
	src = &mz->lists[lru];
1001

1002 1003
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1004
		if (scan >= nr_to_scan)
1005
			break;
K
KAMEZAWA Hiroyuki 已提交
1006 1007

		page = pc->page;
1008 1009
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
1010
		if (unlikely(!PageLRU(page)))
1011 1012
			continue;

H
Hugh Dickins 已提交
1013
		scan++;
1014 1015 1016
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1017
			list_move(&page->lru, dst);
1018
			mem_cgroup_del_lru(page);
1019
			nr_taken++;
1020 1021 1022 1023 1024 1025 1026
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1027 1028 1029 1030 1031 1032 1033
		}
	}

	*scanned = scan;
	return nr_taken;
}

1034 1035 1036
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1065 1066 1067 1068 1069 1070
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
1071 1072

/**
1073
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1092
	if (!memcg || !p)
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

1150
/*
K
KAMEZAWA Hiroyuki 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1193 1194
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1195 1196 1197
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1198 1199
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1200 1201
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1202
						struct zone *zone,
1203 1204
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1205
{
K
KAMEZAWA Hiroyuki 已提交
1206 1207 1208
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1209 1210
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1211 1212
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1213

1214 1215 1216 1217
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1218
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1219
		victim = mem_cgroup_select_victim(root_mem);
1220
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1221
			loop++;
1222 1223
			if (loop >= 1)
				drain_all_stock_async();
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
K
KAMEZAWA Hiroyuki 已提交
1247 1248 1249
		if (!mem_cgroup_local_usage(&victim->stat)) {
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1250 1251
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1252
		/* we use swappiness of local cgroup */
1253 1254 1255 1256 1257 1258 1259
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
				noswap, get_swappiness(victim), zone,
				zone->zone_pgdat->node_id);
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1260
		css_put(&victim->css);
1261 1262 1263 1264 1265 1266 1267
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1268
		total += ret;
1269 1270 1271 1272
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1273
			return 1 + total;
1274
	}
K
KAMEZAWA Hiroyuki 已提交
1275
	return total;
1276 1277
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
bool mem_cgroup_oom_called(struct task_struct *task)
{
	bool ret = false;
	struct mem_cgroup *mem;
	struct mm_struct *mm;

	rcu_read_lock();
	mm = task->mm;
	if (!mm)
		mm = &init_mm;
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
		ret = true;
	rcu_read_unlock();
	return ret;
}
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
{
	mem->last_oom_jiffies = jiffies;
	return 0;
}

static void record_last_oom(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
}

1306 1307 1308 1309
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
1310
void mem_cgroup_update_file_mapped(struct page *page, int val)
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
{
	struct mem_cgroup *mem;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
	if (!mem)
		goto done;

	if (!PageCgroupUsed(pc))
		goto done;

	/*
	 * Preemption is already disabled, we don't need get_cpu()
	 */
	cpu = smp_processor_id();
	stat = &mem->stat;
	cpustat = &stat->cpustat[cpu];

1337
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED, val);
1338 1339 1340
done:
	unlock_page_cgroup(pc);
}
1341

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
 * This will be consumed by consumt_stock() function, later.
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

	if (action != CPU_DEAD)
		return NOTIFY_OK;
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1469 1470 1471
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1472
 */
1473
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1474
			gfp_t gfp_mask, struct mem_cgroup **memcg,
1475
			bool oom, struct page *page)
1476
{
1477
	struct mem_cgroup *mem, *mem_over_limit;
1478
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1479
	struct res_counter *fail_res;
1480
	int csize = CHARGE_SIZE;
1481 1482 1483 1484 1485 1486 1487

	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
		/* Don't account this! */
		*memcg = NULL;
		return 0;
	}

1488
	/*
1489 1490
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1491 1492 1493
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1494 1495 1496
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
1497
		*memcg = mem;
1498
	} else {
1499
		css_get(&mem->css);
1500
	}
1501 1502 1503
	if (unlikely(!mem))
		return 0;

1504
	VM_BUG_ON(css_is_removed(&mem->css));
1505 1506
	if (mem_cgroup_is_root(mem))
		goto done;
1507

1508
	while (1) {
1509
		int ret = 0;
1510
		unsigned long flags = 0;
1511

1512 1513 1514 1515
		if (consume_stock(mem))
			goto charged;

		ret = res_counter_charge(&mem->res, csize, &fail_res);
1516 1517 1518
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1519
			ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1520 1521 1522
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
1523
			res_counter_uncharge(&mem->res, csize);
1524
			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1525 1526 1527 1528 1529 1530 1531
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1532 1533 1534 1535 1536
		/* reduce request size and retry */
		if (csize > PAGE_SIZE) {
			csize = PAGE_SIZE;
			continue;
		}
1537
		if (!(gfp_mask & __GFP_WAIT))
1538
			goto nomem;
1539

1540 1541
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
						gfp_mask, flags);
1542 1543
		if (ret)
			continue;
1544 1545

		/*
1546 1547 1548 1549 1550
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1551
		 *
1552
		 */
1553 1554
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
		/* try to avoid oom while someone is moving charge */
		if (mc.moving_task && current != mc.moving_task) {
			struct mem_cgroup *from, *to;
			bool do_continue = false;
			/*
			 * There is a small race that "from" or "to" can be
			 * freed by rmdir, so we use css_tryget().
			 */
			rcu_read_lock();
			from = mc.from;
			to = mc.to;
			if (from && css_tryget(&from->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&from->css,
							&mem_over_limit->css);
				else
					do_continue = (from == mem_over_limit);
				css_put(&from->css);
			}
			if (!do_continue && to && css_tryget(&to->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&to->css,
							&mem_over_limit->css);
				else
					do_continue = (to == mem_over_limit);
				css_put(&to->css);
			}
			rcu_read_unlock();
			if (do_continue) {
				DEFINE_WAIT(wait);
				prepare_to_wait(&mc.waitq, &wait,
							TASK_INTERRUPTIBLE);
				/* moving charge context might have finished. */
				if (mc.moving_task)
					schedule();
				finish_wait(&mc.waitq, &wait);
				continue;
			}
		}

1598
		if (!nr_retries--) {
1599
			if (oom) {
1600
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1601
				record_last_oom(mem_over_limit);
1602
			}
1603
			goto nomem;
1604
		}
1605
	}
1606 1607 1608
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
charged:
1609
	/*
1610 1611
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
1612
	 */
1613
	if (page && mem_cgroup_soft_limit_check(mem))
1614
		mem_cgroup_update_tree(mem, page);
1615
done:
1616 1617
	if (mem_cgroup_threshold_check(mem))
		mem_cgroup_threshold(mem);
1618 1619 1620 1621 1622
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
}
1623

1624 1625 1626 1627 1628
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
1629 1630
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
1631 1632
{
	if (!mem_cgroup_is_root(mem)) {
1633
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1634
		if (do_swap_account)
1635 1636 1637 1638
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_put(&mem->css, (int)count);
1639
	}
1640 1641 1642 1643 1644 1645
	/* we don't need css_put for root */
}

static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	__mem_cgroup_cancel_charge(mem, 1);
1646 1647
}

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1667
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1668
{
1669
	struct mem_cgroup *mem = NULL;
1670
	struct page_cgroup *pc;
1671
	unsigned short id;
1672 1673
	swp_entry_t ent;

1674 1675 1676
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
1677
	lock_page_cgroup(pc);
1678
	if (PageCgroupUsed(pc)) {
1679
		mem = pc->mem_cgroup;
1680 1681
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
1682
	} else if (PageSwapCache(page)) {
1683
		ent.val = page_private(page);
1684 1685 1686 1687 1688 1689
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1690
	}
1691
	unlock_page_cgroup(pc);
1692 1693 1694
	return mem;
}

1695
/*
1696
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1707 1708 1709 1710

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1711
		mem_cgroup_cancel_charge(mem);
1712
		return;
1713
	}
1714

1715
	pc->mem_cgroup = mem;
1716 1717 1718 1719 1720 1721 1722
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1723
	smp_wmb();
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1737

K
KAMEZAWA Hiroyuki 已提交
1738
	mem_cgroup_charge_statistics(mem, pc, true);
1739 1740

	unlock_page_cgroup(pc);
1741
}
1742

1743
/**
1744
 * __mem_cgroup_move_account - move account of the page
1745 1746 1747
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
1748
 * @uncharge: whether we should call uncharge and css_put against @from.
1749 1750
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1751
 * - page is not on LRU (isolate_page() is useful.)
1752
 * - the pc is locked, used, and ->mem_cgroup points to @from.
1753
 *
1754 1755 1756 1757
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
1758 1759
 */

1760
static void __mem_cgroup_move_account(struct page_cgroup *pc,
1761
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1762
{
1763 1764 1765 1766
	struct page *page;
	int cpu;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
1767 1768

	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1769
	VM_BUG_ON(PageLRU(pc->page));
1770 1771 1772
	VM_BUG_ON(!PageCgroupLocked(pc));
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
1773

1774
	page = pc->page;
1775
	if (page_mapped(page) && !PageAnon(page)) {
1776 1777 1778 1779
		cpu = smp_processor_id();
		/* Update mapped_file data for mem_cgroup "from" */
		stat = &from->stat;
		cpustat = &stat->cpustat[cpu];
1780
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
1781 1782 1783 1784 1785
						-1);

		/* Update mapped_file data for mem_cgroup "to" */
		stat = &to->stat;
		cpustat = &stat->cpustat[cpu];
1786
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
1787 1788
						1);
	}
1789 1790 1791 1792
	mem_cgroup_charge_statistics(from, pc, false);
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
		mem_cgroup_cancel_charge(from);
1793

1794
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
1795 1796
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
1797 1798 1799
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
1800 1801 1802
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
1803
	 */
1804 1805 1806 1807 1808 1809 1810
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
1811
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1812 1813 1814 1815
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1816
		__mem_cgroup_move_account(pc, from, to, uncharge);
1817 1818 1819
		ret = 0;
	}
	unlock_page_cgroup(pc);
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1831
	struct page *page = pc->page;
1832 1833 1834 1835 1836 1837 1838 1839 1840
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

1841 1842 1843 1844 1845
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
1846

1847
	parent = mem_cgroup_from_cont(pcg);
1848
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1849
	if (ret || !parent)
1850
		goto put_back;
1851

1852 1853 1854
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
		mem_cgroup_cancel_charge(parent);
1855
put_back:
K
KAMEZAWA Hiroyuki 已提交
1856
	putback_lru_page(page);
1857
put:
1858
	put_page(page);
1859
out:
1860 1861 1862
	return ret;
}

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1884
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1885
	if (ret || !mem)
1886 1887 1888
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1889 1890 1891
	return 0;
}

1892 1893
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1894
{
1895
	if (mem_cgroup_disabled())
1896
		return 0;
1897 1898
	if (PageCompound(page))
		return 0;
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
1910
	return mem_cgroup_charge_common(page, mm, gfp_mask,
1911
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1912 1913
}

D
Daisuke Nishimura 已提交
1914 1915 1916 1917
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

1918 1919
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
1920
{
1921 1922 1923
	struct mem_cgroup *mem = NULL;
	int ret;

1924
	if (mem_cgroup_disabled())
1925
		return 0;
1926 1927
	if (PageCompound(page))
		return 0;
1928 1929 1930 1931 1932 1933 1934 1935
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
1936 1937
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
1938 1939 1940 1941
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

1942 1943 1944 1945 1946 1947 1948

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
1949 1950
			return 0;
		}
1951
		unlock_page_cgroup(pc);
1952 1953
	}

1954
	if (unlikely(!mm && !mem))
1955
		mm = &init_mm;
1956

1957 1958
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
1959
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1960

D
Daisuke Nishimura 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1970 1971

	return ret;
1972 1973
}

1974 1975 1976
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
1977
 * struct page_cgroup is acquired. This refcnt will be consumed by
1978 1979
 * "commit()" or removed by "cancel()"
 */
1980 1981 1982 1983 1984
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
1985
	int ret;
1986

1987
	if (mem_cgroup_disabled())
1988 1989 1990 1991 1992 1993
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
1994 1995 1996
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
1997 1998
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
1999
		goto charge_cur_mm;
2000
	mem = try_get_mem_cgroup_from_page(page);
2001 2002
	if (!mem)
		goto charge_cur_mm;
2003
	*ptr = mem;
2004
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
2005 2006 2007
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
2008 2009 2010
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2011
	return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
2012 2013
}

D
Daisuke Nishimura 已提交
2014 2015 2016
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2017 2018 2019
{
	struct page_cgroup *pc;

2020
	if (mem_cgroup_disabled())
2021 2022 2023
		return;
	if (!ptr)
		return;
2024
	cgroup_exclude_rmdir(&ptr->css);
2025
	pc = lookup_page_cgroup(page);
2026
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
2027
	__mem_cgroup_commit_charge(ptr, pc, ctype);
2028
	mem_cgroup_lru_add_after_commit_swapcache(page);
2029 2030 2031
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2032 2033 2034
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2035
	 */
2036
	if (do_swap_account && PageSwapCache(page)) {
2037
		swp_entry_t ent = {.val = page_private(page)};
2038
		unsigned short id;
2039
		struct mem_cgroup *memcg;
2040 2041 2042 2043

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2044
		if (memcg) {
2045 2046 2047 2048
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2049
			if (!mem_cgroup_is_root(memcg))
2050
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2051
			mem_cgroup_swap_statistics(memcg, false);
2052 2053
			mem_cgroup_put(memcg);
		}
2054
		rcu_read_unlock();
2055
	}
2056 2057 2058 2059 2060 2061
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2062 2063
}

D
Daisuke Nishimura 已提交
2064 2065 2066 2067 2068 2069
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2070 2071
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2072
	if (mem_cgroup_disabled())
2073 2074 2075
		return;
	if (!mem)
		return;
2076
	mem_cgroup_cancel_charge(mem);
2077 2078
}

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */
	if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
	return;
}
2123

2124
/*
2125
 * uncharge if !page_mapped(page)
2126
 */
2127
static struct mem_cgroup *
2128
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2129
{
H
Hugh Dickins 已提交
2130
	struct page_cgroup *pc;
2131
	struct mem_cgroup *mem = NULL;
2132
	struct mem_cgroup_per_zone *mz;
2133

2134
	if (mem_cgroup_disabled())
2135
		return NULL;
2136

K
KAMEZAWA Hiroyuki 已提交
2137
	if (PageSwapCache(page))
2138
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2139

2140
	/*
2141
	 * Check if our page_cgroup is valid
2142
	 */
2143 2144
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2145
		return NULL;
2146

2147
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2148

2149 2150
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2151 2152 2153 2154 2155
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2156
	case MEM_CGROUP_CHARGE_TYPE_DROP:
K
KAMEZAWA Hiroyuki 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2169
	}
K
KAMEZAWA Hiroyuki 已提交
2170

2171 2172
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2173 2174
	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		mem_cgroup_swap_statistics(mem, true);
K
KAMEZAWA Hiroyuki 已提交
2175
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2176

2177
	ClearPageCgroupUsed(pc);
2178 2179 2180 2181 2182 2183
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2184

2185
	mz = page_cgroup_zoneinfo(pc);
2186
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
2187

2188
	if (mem_cgroup_soft_limit_check(mem))
2189
		mem_cgroup_update_tree(mem, page);
2190 2191
	if (mem_cgroup_threshold_check(mem))
		mem_cgroup_threshold(mem);
K
KAMEZAWA Hiroyuki 已提交
2192 2193 2194
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
2195

2196
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2197 2198 2199

unlock_out:
	unlock_page_cgroup(pc);
2200
	return NULL;
2201 2202
}

2203 2204
void mem_cgroup_uncharge_page(struct page *page)
{
2205 2206 2207 2208 2209
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2210 2211 2212 2213 2214 2215
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2216
	VM_BUG_ON(page->mapping);
2217 2218 2219
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2264
#ifdef CONFIG_SWAP
2265
/*
2266
 * called after __delete_from_swap_cache() and drop "page" account.
2267 2268
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2269 2270
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2271 2272
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2273 2274 2275 2276 2277 2278
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2279 2280

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
2281
	if (do_swap_account && swapout && memcg) {
2282
		swap_cgroup_record(ent, css_id(&memcg->css));
2283 2284
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
2285
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
2286
		css_put(&memcg->css);
2287
}
2288
#endif
2289 2290 2291 2292 2293 2294 2295

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2296
{
2297
	struct mem_cgroup *memcg;
2298
	unsigned short id;
2299 2300 2301 2302

	if (!do_swap_account)
		return;

2303 2304 2305
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2306
	if (memcg) {
2307 2308 2309 2310
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2311
		if (!mem_cgroup_is_root(memcg))
2312
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2313
		mem_cgroup_swap_statistics(memcg, false);
2314 2315
		mem_cgroup_put(memcg);
	}
2316
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2317
}
2318 2319 2320 2321 2322 2323

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2324
 * @need_fixup: whether we should fixup res_counters and refcounts.
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2335
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2336 2337 2338 2339 2340 2341 2342 2343
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2344
		mem_cgroup_swap_statistics(to, true);
2345
		/*
2346 2347 2348 2349 2350 2351
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2352 2353
		 */
		mem_cgroup_get(to);
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
			css_put(&to->css);
		}
2366 2367 2368 2369 2370 2371
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2372
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2373 2374 2375
{
	return -EINVAL;
}
2376
#endif
K
KAMEZAWA Hiroyuki 已提交
2377

2378
/*
2379 2380
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2381
 */
2382
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2383 2384
{
	struct page_cgroup *pc;
2385 2386
	struct mem_cgroup *mem = NULL;
	int ret = 0;
2387

2388
	if (mem_cgroup_disabled())
2389 2390
		return 0;

2391 2392 2393
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2394 2395 2396
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
2397
	unlock_page_cgroup(pc);
2398

2399
	if (mem) {
2400 2401
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
						page);
2402 2403
		css_put(&mem->css);
	}
2404
	*ptr = mem;
2405
	return ret;
2406
}
2407

2408
/* remove redundant charge if migration failed*/
2409 2410
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
2411
{
2412 2413 2414 2415 2416 2417
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;
2418
	cgroup_exclude_rmdir(&mem->css);
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
2436
	if (unused)
2437 2438 2439
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
2440
	/*
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
2455
	 */
2456 2457
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
2458 2459 2460 2461 2462 2463
	/*
	 * At migration, we may charge account against cgroup which has no tasks
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2464
}
2465

2466
/*
2467 2468 2469 2470 2471 2472
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2473
 */
2474
int mem_cgroup_shmem_charge_fallback(struct page *page,
2475 2476
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2477
{
2478
	struct mem_cgroup *mem = NULL;
2479
	int ret;
2480

2481
	if (mem_cgroup_disabled())
2482
		return 0;
2483

2484 2485 2486
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2487

2488
	return ret;
2489 2490
}

2491 2492
static DEFINE_MUTEX(set_limit_mutex);

2493
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2494
				unsigned long long val)
2495
{
2496
	int retry_count;
2497
	u64 memswlimit;
2498
	int ret = 0;
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2510

2511
	while (retry_count) {
2512 2513 2514 2515
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2526 2527
			break;
		}
2528
		ret = res_counter_set_limit(&memcg->res, val);
2529 2530 2531 2532 2533 2534
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2535 2536 2537 2538 2539
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2540
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2541
						MEM_CGROUP_RECLAIM_SHRINK);
2542 2543 2544 2545 2546 2547
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2548
	}
2549

2550 2551 2552
	return ret;
}

L
Li Zefan 已提交
2553 2554
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2555
{
2556
	int retry_count;
2557
	u64 memlimit, oldusage, curusage;
2558 2559
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2560

2561 2562 2563
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
2582 2583 2584 2585 2586 2587
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2588 2589 2590 2591 2592
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2593
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2594 2595
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2596
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2597
		/* Usage is reduced ? */
2598
		if (curusage >= oldusage)
2599
			retry_count--;
2600 2601
		else
			oldusage = curusage;
2602 2603 2604 2605
	}
	return ret;
}

2606 2607 2608 2609 2610 2611 2612 2613 2614
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask, int nid,
						int zid)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2615
	unsigned long long excess;
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(nid, zid);
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2668
		excess = res_counter_soft_limit_excess(&mz->mem->res);
2669 2670 2671 2672 2673 2674 2675 2676
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
2677 2678
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2697 2698 2699 2700
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2701
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2702
				int node, int zid, enum lru_list lru)
2703
{
K
KAMEZAWA Hiroyuki 已提交
2704 2705
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2706
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2707
	unsigned long flags, loop;
2708
	struct list_head *list;
2709
	int ret = 0;
2710

K
KAMEZAWA Hiroyuki 已提交
2711 2712
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2713
	list = &mz->lists[lru];
2714

2715 2716 2717 2718 2719 2720
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2721
		spin_lock_irqsave(&zone->lru_lock, flags);
2722
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2723
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2724
			break;
2725 2726 2727 2728
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
2729
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
2730
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2731 2732
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2733
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2734

K
KAMEZAWA Hiroyuki 已提交
2735
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2736
		if (ret == -ENOMEM)
2737
			break;
2738 2739 2740 2741 2742 2743 2744

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2745
	}
K
KAMEZAWA Hiroyuki 已提交
2746

2747 2748 2749
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2750 2751 2752 2753 2754 2755
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2756
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2757
{
2758 2759 2760
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2761
	struct cgroup *cgrp = mem->css.cgroup;
2762

2763
	css_get(&mem->css);
2764 2765

	shrink = 0;
2766 2767 2768
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2769
move_account:
2770
	do {
2771
		ret = -EBUSY;
2772 2773 2774 2775
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
2776
			goto out;
2777 2778
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
2779
		drain_all_stock_sync();
2780
		ret = 0;
2781
		for_each_node_state(node, N_HIGH_MEMORY) {
2782
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2783
				enum lru_list l;
2784 2785
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
2786
							node, zid, l);
2787 2788 2789
					if (ret)
						break;
				}
2790
			}
2791 2792 2793 2794 2795 2796
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
2797
		cond_resched();
2798 2799
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
2800 2801 2802
out:
	css_put(&mem->css);
	return ret;
2803 2804

try_to_free:
2805 2806
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2807 2808 2809
		ret = -EBUSY;
		goto out;
	}
2810 2811
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2812 2813 2814 2815
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
2816 2817 2818 2819 2820

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
2821 2822
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
2823
		if (!progress) {
2824
			nr_retries--;
2825
			/* maybe some writeback is necessary */
2826
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2827
		}
2828 2829

	}
K
KAMEZAWA Hiroyuki 已提交
2830
	lru_add_drain();
2831
	/* try move_account...there may be some *locked* pages. */
2832
	goto move_account;
2833 2834
}

2835 2836 2837 2838 2839 2840
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
2859
	 * If parent's use_hierarchy is set, we can't make any modifications
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
	d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
	u64 idx_val, val;

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
	val = idx_val;
	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
	val += idx_val;

	if (swap) {
		mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
		val += idx_val;
	}

	return val << PAGE_SHIFT;
}

2928
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
2929
{
2930
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2931
	u64 val;
2932 2933 2934 2935 2936 2937
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
2938 2939 2940
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
2941
			val = res_counter_read_u64(&mem->res, name);
2942 2943
		break;
	case _MEMSWAP:
2944 2945 2946
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
2947
			val = res_counter_read_u64(&mem->memsw, name);
2948 2949 2950 2951 2952 2953
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
2954
}
2955 2956 2957 2958
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2959 2960
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
2961
{
2962
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2963
	int type, name;
2964 2965 2966
	unsigned long long val;
	int ret;

2967 2968 2969
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
2970
	case RES_LIMIT:
2971 2972 2973 2974
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2975 2976
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
2977 2978 2979
		if (ret)
			break;
		if (type == _MEM)
2980
			ret = mem_cgroup_resize_limit(memcg, val);
2981 2982
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2983
		break;
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
2998 2999 3000 3001 3002
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3003 3004
}

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3033
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3034 3035
{
	struct mem_cgroup *mem;
3036
	int type, name;
3037 3038

	mem = mem_cgroup_from_cont(cont);
3039 3040 3041
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3042
	case RES_MAX_USAGE:
3043 3044 3045 3046
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3047 3048
		break;
	case RES_FAILCNT:
3049 3050 3051 3052
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3053 3054
		break;
	}
3055

3056
	return 0;
3057 3058
}

3059 3060 3061 3062 3063 3064
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3065
#ifdef CONFIG_MMU
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3084 3085 3086 3087 3088 3089 3090
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3091

K
KAMEZAWA Hiroyuki 已提交
3092 3093 3094 3095 3096

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3097
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3098 3099
	MCS_PGPGIN,
	MCS_PGPGOUT,
3100
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3111 3112
};

K
KAMEZAWA Hiroyuki 已提交
3113 3114 3115 3116 3117 3118
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3119
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3120 3121
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3122
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3141 3142
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_FILE_MAPPED);
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
3143 3144 3145 3146
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
	s->stat[MCS_PGPGIN] += val;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
	s->stat[MCS_PGPGOUT] += val;
3147 3148 3149 3150
	if (do_swap_account) {
		val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

3172 3173
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3174 3175
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3176
	struct mcs_total_stat mystat;
3177 3178
	int i;

K
KAMEZAWA Hiroyuki 已提交
3179 3180
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3181

3182 3183 3184
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3185
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3186
	}
L
Lee Schermerhorn 已提交
3187

K
KAMEZAWA Hiroyuki 已提交
3188
	/* Hierarchical information */
3189 3190 3191 3192 3193 3194 3195
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3196

K
KAMEZAWA Hiroyuki 已提交
3197 3198
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3199 3200 3201
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3202
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3203
	}
K
KAMEZAWA Hiroyuki 已提交
3204

K
KOSAKI Motohiro 已提交
3205
#ifdef CONFIG_DEBUG_VM
3206
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3234 3235 3236
	return 0;
}

K
KOSAKI Motohiro 已提交
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3249

K
KOSAKI Motohiro 已提交
3250 3251 3252 3253 3254 3255 3256
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3257 3258 3259

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3260 3261
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3262 3263
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3264
		return -EINVAL;
3265
	}
K
KOSAKI Motohiro 已提交
3266 3267 3268 3269 3270

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3271 3272
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3273 3274 3275
	return 0;
}

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
static bool mem_cgroup_threshold_check(struct mem_cgroup *mem)
{
	bool ret = false;
	int cpu;
	s64 val;
	struct mem_cgroup_stat_cpu *cpustat;

	cpu = get_cpu();
	cpustat = &mem->stat.cpustat[cpu];
	val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_THRESHOLDS);
	if (unlikely(val < 0)) {
		__mem_cgroup_stat_set_safe(cpustat, MEM_CGROUP_STAT_THRESHOLDS,
				THRESHOLDS_EVENTS_THRESH);
		ret = true;
	}
	put_cpu();
	return ret;
}

static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
		t = rcu_dereference(memcg->thresholds);
	else
		t = rcu_dereference(memcg->memsw_thresholds);

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
	i = atomic_read(&t->current_threshold);

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
	atomic_set(&t->current_threshold, i - 1);
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
	__mem_cgroup_threshold(memcg, false);
	if (do_swap_account)
		__mem_cgroup_threshold(memcg, true);
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

static int mem_cgroup_register_event(struct cgroup *cgrp, struct cftype *cft,
		struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
	int size;
	int i, ret;

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
		thresholds = memcg->thresholds;
	else if (type == _MEMSWAP)
		thresholds = memcg->memsw_thresholds;
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
	if (thresholds)
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	if (thresholds)
		size = thresholds->size + 1;
	else
		size = 1;

	/* Allocate memory for new array of thresholds */
	thresholds_new = kmalloc(sizeof(*thresholds_new) +
			size * sizeof(struct mem_cgroup_threshold),
			GFP_KERNEL);
	if (!thresholds_new) {
		ret = -ENOMEM;
		goto unlock;
	}
	thresholds_new->size = size;

	/* Copy thresholds (if any) to new array */
	if (thresholds)
		memcpy(thresholds_new->entries, thresholds->entries,
				thresholds->size *
				sizeof(struct mem_cgroup_threshold));
	/* Add new threshold */
	thresholds_new->entries[size - 1].eventfd = eventfd;
	thresholds_new->entries[size - 1].threshold = threshold;

	/* Sort thresholds. Registering of new threshold isn't time-critical */
	sort(thresholds_new->entries, size,
			sizeof(struct mem_cgroup_threshold),
			compare_thresholds, NULL);

	/* Find current threshold */
	atomic_set(&thresholds_new->current_threshold, -1);
	for (i = 0; i < size; i++) {
		if (thresholds_new->entries[i].threshold < usage) {
			/*
			 * thresholds_new->current_threshold will not be used
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
			atomic_inc(&thresholds_new->current_threshold);
		}
	}

	/*
	 * We need to increment refcnt to be sure that all thresholds
	 * will be unregistered before calling __mem_cgroup_free()
	 */
	mem_cgroup_get(memcg);

	if (type == _MEM)
		rcu_assign_pointer(memcg->thresholds, thresholds_new);
	else
		rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);

	/* To be sure that nobody uses thresholds before freeing it */
	synchronize_rcu();

	kfree(thresholds);
unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

static int mem_cgroup_unregister_event(struct cgroup *cgrp, struct cftype *cft,
		struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
	int size = 0;
	int i, j, ret;

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
		thresholds = memcg->thresholds;
	else if (type == _MEMSWAP)
		thresholds = memcg->memsw_thresholds;
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
	for (i = 0; i < thresholds->size; i++) {
		if (thresholds->entries[i].eventfd != eventfd)
			size++;
	}

	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
		thresholds_new = NULL;
		goto assign;
	}

	/* Allocate memory for new array of thresholds */
	thresholds_new = kmalloc(sizeof(*thresholds_new) +
			size * sizeof(struct mem_cgroup_threshold),
			GFP_KERNEL);
	if (!thresholds_new) {
		ret = -ENOMEM;
		goto unlock;
	}
	thresholds_new->size = size;

	/* Copy thresholds and find current threshold */
	atomic_set(&thresholds_new->current_threshold, -1);
	for (i = 0, j = 0; i < thresholds->size; i++) {
		if (thresholds->entries[i].eventfd == eventfd)
			continue;

		thresholds_new->entries[j] = thresholds->entries[i];
		if (thresholds_new->entries[j].threshold < usage) {
			/*
			 * thresholds_new->current_threshold will not be used
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
			atomic_inc(&thresholds_new->current_threshold);
		}
		j++;
	}

assign:
	if (type == _MEM)
		rcu_assign_pointer(memcg->thresholds, thresholds_new);
	else
		rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);

	/* To be sure that nobody uses thresholds before freeing it */
	synchronize_rcu();

	for (i = 0; i < thresholds->size - size; i++)
		mem_cgroup_put(memcg);

	kfree(thresholds);
unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}
3539

B
Balbir Singh 已提交
3540 3541
static struct cftype mem_cgroup_files[] = {
	{
3542
		.name = "usage_in_bytes",
3543
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3544
		.read_u64 = mem_cgroup_read,
3545 3546
		.register_event = mem_cgroup_register_event,
		.unregister_event = mem_cgroup_unregister_event,
B
Balbir Singh 已提交
3547
	},
3548 3549
	{
		.name = "max_usage_in_bytes",
3550
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3551
		.trigger = mem_cgroup_reset,
3552 3553
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3554
	{
3555
		.name = "limit_in_bytes",
3556
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3557
		.write_string = mem_cgroup_write,
3558
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3559
	},
3560 3561 3562 3563 3564 3565
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3566 3567
	{
		.name = "failcnt",
3568
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3569
		.trigger = mem_cgroup_reset,
3570
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3571
	},
3572 3573
	{
		.name = "stat",
3574
		.read_map = mem_control_stat_show,
3575
	},
3576 3577 3578 3579
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
3580 3581 3582 3583 3584
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
3585 3586 3587 3588 3589
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3590 3591 3592 3593 3594
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
B
Balbir Singh 已提交
3595 3596
};

3597 3598 3599 3600 3601 3602
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
3603 3604
		.register_event = mem_cgroup_register_event,
		.unregister_event = mem_cgroup_unregister_event,
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

3640 3641 3642
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
3643
	struct mem_cgroup_per_zone *mz;
3644
	enum lru_list l;
3645
	int zone, tmp = node;
3646 3647 3648 3649 3650 3651 3652 3653
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
3654 3655 3656
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3657 3658
	if (!pn)
		return 1;
3659

3660 3661
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
3662 3663 3664

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
3665 3666
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
3667
		mz->usage_in_excess = 0;
3668 3669
		mz->on_tree = false;
		mz->mem = mem;
3670
	}
3671 3672 3673
	return 0;
}

3674 3675 3676 3677 3678
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

3679 3680 3681 3682 3683 3684
static int mem_cgroup_size(void)
{
	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
	return sizeof(struct mem_cgroup) + cpustat_size;
}

3685 3686 3687
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
3688
	int size = mem_cgroup_size();
3689

3690 3691
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
3692
	else
3693
		mem = vmalloc(size);
3694 3695

	if (mem)
3696
		memset(mem, 0, size);
3697 3698 3699
	return mem;
}

3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

3711
static void __mem_cgroup_free(struct mem_cgroup *mem)
3712
{
K
KAMEZAWA Hiroyuki 已提交
3713 3714
	int node;

3715
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
3716 3717
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
3718 3719 3720
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

3721
	if (mem_cgroup_size() < PAGE_SIZE)
3722 3723 3724 3725 3726
		kfree(mem);
	else
		vfree(mem);
}

3727 3728 3729 3730 3731
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

3732
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
3733
{
3734
	if (atomic_sub_and_test(count, &mem->refcnt)) {
3735
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3736
		__mem_cgroup_free(mem);
3737 3738 3739
		if (parent)
			mem_cgroup_put(parent);
	}
3740 3741
}

3742 3743 3744 3745 3746
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

3747 3748 3749 3750 3751 3752 3753 3754 3755
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
3756

3757 3758 3759
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
3760
	if (!mem_cgroup_disabled() && really_do_swap_account)
3761 3762 3763 3764 3765 3766 3767 3768
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
3794
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
3795 3796
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
3797
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
3798
	long error = -ENOMEM;
3799
	int node;
B
Balbir Singh 已提交
3800

3801 3802
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
3803
		return ERR_PTR(error);
3804

3805 3806 3807
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
3808

3809
	/* root ? */
3810
	if (cont->parent == NULL) {
3811
		int cpu;
3812
		enable_swap_cgroup();
3813
		parent = NULL;
3814
		root_mem_cgroup = mem;
3815 3816
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
3817 3818 3819 3820 3821 3822
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
		hotcpu_notifier(memcg_stock_cpu_callback, 0);
3823
	} else {
3824
		parent = mem_cgroup_from_cont(cont->parent);
3825 3826
		mem->use_hierarchy = parent->use_hierarchy;
	}
3827

3828 3829 3830
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
3831 3832 3833 3834 3835 3836 3837
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
3838 3839 3840 3841
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
3842
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
3843
	spin_lock_init(&mem->reclaim_param_lock);
3844

K
KOSAKI Motohiro 已提交
3845 3846
	if (parent)
		mem->swappiness = get_swappiness(parent);
3847
	atomic_set(&mem->refcnt, 1);
3848
	mem->move_charge_at_immigrate = 0;
3849
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
3850
	return &mem->css;
3851
free_out:
3852
	__mem_cgroup_free(mem);
3853
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
3854
	return ERR_PTR(error);
B
Balbir Singh 已提交
3855 3856
}

3857
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3858 3859 3860
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3861 3862

	return mem_cgroup_force_empty(mem, false);
3863 3864
}

B
Balbir Singh 已提交
3865 3866 3867
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3868 3869 3870
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
3871 3872 3873 3874 3875
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3876 3877 3878 3879 3880 3881 3882 3883
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
3884 3885
}

3886
#ifdef CONFIG_MMU
3887
/* Handlers for move charge at task migration. */
3888 3889
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
3890
{
3891 3892
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
3893 3894
	struct mem_cgroup *mem = mc.to;

3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_get(&mem->css, (int)count);
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem,
								false, NULL);
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
3940 3941
	return ret;
}
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
3964 3965 3966 3967 3968 3969

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
3970
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
3971 3972 3973 3974 3975 3976
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
3977 3978 3979
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
3980 3981 3982 3983 3984
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
3985
	swp_entry_t	ent;
3986 3987 3988 3989 3990
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
3991
	MC_TARGET_SWAP,
3992 3993 3994 3995 3996
};

static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
3997
	struct page *page = NULL;
3998 3999
	struct page_cgroup *pc;
	int ret = 0;
4000 4001
	swp_entry_t ent = { .val = 0 };
	int usage_count = 0;
4002 4003 4004
	bool move_anon = test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);

4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
	if (!pte_present(ptent)) {
		/* TODO: handle swap of shmes/tmpfs */
		if (pte_none(ptent) || pte_file(ptent))
			return 0;
		else if (is_swap_pte(ptent)) {
			ent = pte_to_swp_entry(ptent);
			if (!move_anon || non_swap_entry(ent))
				return 0;
			usage_count = mem_cgroup_count_swap_user(ent, &page);
		}
	} else {
		page = vm_normal_page(vma, addr, ptent);
		if (!page || !page_mapped(page))
			return 0;
		/*
		 * TODO: We don't move charges of file(including shmem/tmpfs)
		 * pages for now.
		 */
		if (!move_anon || !PageAnon(page))
			return 0;
		if (!get_page_unless_zero(page))
			return 0;
		usage_count = page_mapcount(page);
	}
	if (usage_count > 1) {
		/*
		 * TODO: We don't move charges of shared(used by multiple
		 * processes) pages for now.
		 */
		if (page)
			put_page(page);
4036
		return 0;
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
	}
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
	/* throught */
	if (ent.val && do_swap_account && !ret &&
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
4057
		if (target)
4058
			target->ent = ent;
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4078 4079 4080
	return 0;
}

4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		/* TODO: We don't move charges of shmem/tmpfs pages for now. */
		if (vma->vm_flags & VM_SHARED)
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
	up_read(&mm->mmap_sem);

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4111
	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4112 4113 4114 4115 4116
}

static void mem_cgroup_clear_mc(void)
{
	/* we must uncharge all the leftover precharges from mc.to */
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4128
	}
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		WARN_ON_ONCE(mc.moved_swap > INT_MAX);
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
			VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
			__css_put(&mc.to->css, mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */

		mc.moved_swap = 0;
	}
4152 4153
	mc.from = NULL;
	mc.to = NULL;
4154 4155
	mc.moving_task = NULL;
	wake_up_all(&mc.waitq);
4156 4157
}

4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4176 4177 4178 4179
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4180
			VM_BUG_ON(mc.moved_charge);
4181
			VM_BUG_ON(mc.moved_swap);
4182
			VM_BUG_ON(mc.moving_task);
4183 4184 4185
			mc.from = from;
			mc.to = mem;
			mc.precharge = 0;
4186
			mc.moved_charge = 0;
4187
			mc.moved_swap = 0;
4188
			mc.moving_task = current;
4189 4190 4191 4192 4193

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
		}
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
		mmput(mm);
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4204
	mem_cgroup_clear_mc();
4205 4206
}

4207 4208 4209
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4210
{
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4224
		swp_entry_t ent;
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4236 4237
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
4238
				mc.precharge--;
4239 4240
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4241 4242 4243 4244 4245
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4246 4247
		case MC_TARGET_SWAP:
			ent = target.ent;
4248 4249
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4250
				mc.precharge--;
4251 4252 4253
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4254
			break;
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4269
		ret = mem_cgroup_do_precharge(1);
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		/* TODO: We don't move charges of shmem/tmpfs pages for now. */
		if (vma->vm_flags & VM_SHARED)
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
	up_read(&mm->mmap_sem);
4305 4306
}

B
Balbir Singh 已提交
4307 4308 4309
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4310 4311
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4312
{
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
	struct mm_struct *mm;

	if (!mc.to)
		/* no need to move charge */
		return;

	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4325 4326
}

B
Balbir Singh 已提交
4327 4328 4329 4330
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
4331
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
4332 4333
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
4334 4335
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
4336
	.attach = mem_cgroup_move_task,
4337
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
4338
	.use_id = 1,
B
Balbir Singh 已提交
4339
};
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif