memcontrol.c 145.0 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63
int do_swap_account __read_mostly;
64 65 66 67 68 69 70 71

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

72 73 74 75 76
#else
#define do_swap_account		(0)
#endif


77 78 79 80 81 82 83 84
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
85
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
86
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
87
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
90 91 92
	MEM_CGROUP_STAT_NSTATS,
};

93 94 95 96
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
97 98
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
99 100
	MEM_CGROUP_EVENTS_NSTATS,
};
101 102 103 104 105 106 107 108 109
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
110
	MEM_CGROUP_TARGET_NUMAINFO,
111 112 113 114
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
115
#define NUMAINFO_EVENTS_TARGET	(1024)
116

117
struct mem_cgroup_stat_cpu {
118
	long count[MEM_CGROUP_STAT_NSTATS];
119
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
120
	unsigned long targets[MEM_CGROUP_NTARGETS];
121 122
};

123 124 125 126
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
127 128 129
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
130 131
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
132 133

	struct zone_reclaim_stat reclaim_stat;
134 135 136 137
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
138 139
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
140 141 142 143 144 145 146 147 148 149 150 151
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

172 173 174 175 176
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
177
/* For threshold */
178 179
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
180
	int current_threshold;
181 182 183 184 185
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
186 187 188 189 190 191 192 193 194 195 196 197

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
198 199 200 201 202
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
203 204

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
205
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
206

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
enum {
	SCAN_BY_LIMIT,
	SCAN_BY_SYSTEM,
	NR_SCAN_CONTEXT,
	SCAN_BY_SHRINK,	/* not recorded now */
};

enum {
	SCAN,
	SCAN_ANON,
	SCAN_FILE,
	ROTATE,
	ROTATE_ANON,
	ROTATE_FILE,
	FREED,
	FREED_ANON,
	FREED_FILE,
	ELAPSED,
	NR_SCANSTATS,
};

struct scanstat {
	spinlock_t	lock;
	unsigned long	stats[NR_SCAN_CONTEXT][NR_SCANSTATS];
	unsigned long	rootstats[NR_SCAN_CONTEXT][NR_SCANSTATS];
};

const char *scanstat_string[NR_SCANSTATS] = {
	"scanned_pages",
	"scanned_anon_pages",
	"scanned_file_pages",
	"rotated_pages",
	"rotated_anon_pages",
	"rotated_file_pages",
	"freed_pages",
	"freed_anon_pages",
	"freed_file_pages",
	"elapsed_ns",
};
#define SCANSTAT_WORD_LIMIT	"_by_limit"
#define SCANSTAT_WORD_SYSTEM	"_by_system"
#define SCANSTAT_WORD_HIERARCHY	"_under_hierarchy"


B
Balbir Singh 已提交
251 252 253 254 255 256 257
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
258 259 260
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
261 262 263 264 265 266 267
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
268 269 270 271
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
272 273 274 275
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
276
	struct mem_cgroup_lru_info info;
277
	/*
278
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
279
	 * reclaimed from.
280
	 */
K
KAMEZAWA Hiroyuki 已提交
281
	int last_scanned_child;
282 283 284
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
285 286
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
287
#endif
288 289 290 291
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
292 293 294 295

	bool		oom_lock;
	atomic_t	under_oom;

296
	atomic_t	refcnt;
297

298
	int	swappiness;
299 300
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
301

302 303 304
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

305 306 307 308
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
309
	struct mem_cgroup_thresholds thresholds;
310

311
	/* thresholds for mem+swap usage. RCU-protected */
312
	struct mem_cgroup_thresholds memsw_thresholds;
313

K
KAMEZAWA Hiroyuki 已提交
314 315
	/* For oom notifier event fd */
	struct list_head oom_notify;
316 317
	/* For recording LRU-scan statistics */
	struct scanstat scanstat;
318 319 320 321 322
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
323
	/*
324
	 * percpu counter.
325
	 */
326
	struct mem_cgroup_stat_cpu *stat;
327 328 329 330 331 332
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
333 334
};

335 336 337 338 339 340
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
341
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
342
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
343 344 345
	NR_MOVE_TYPE,
};

346 347
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
348
	spinlock_t	  lock; /* for from, to */
349 350 351
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
352
	unsigned long moved_charge;
353
	unsigned long moved_swap;
354 355 356
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
357
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
358 359
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
360

D
Daisuke Nishimura 已提交
361 362 363 364 365 366
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

367 368 369 370 371 372
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

373 374 375 376 377 378 379
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

380 381 382
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
383
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
384
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
385
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
386
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
387 388 389
	NR_CHARGE_TYPE,
};

390 391 392
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
393
#define _OOM_TYPE		(2)
394 395 396
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
397 398
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
399

400 401 402 403 404 405 406
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
407 408
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
409

410 411
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
412
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
413
static void drain_all_stock_async(struct mem_cgroup *mem);
414

415 416 417 418 419 420
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

421 422 423 424 425
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

426
static struct mem_cgroup_per_zone *
427
page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
428
{
429 430
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
451
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
452
				struct mem_cgroup_per_zone *mz,
453 454
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
455 456 457 458 459 460 461 462
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

463 464 465
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
482 483 484 485 486 487 488 489 490 491 492 493 494
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

495 496 497 498 499 500
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
501
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
502 503 504 505 506 507
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
508
	unsigned long long excess;
509 510
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
511 512
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
513 514 515
	mctz = soft_limit_tree_from_page(page);

	/*
516 517
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
518
	 */
519 520
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
521
		excess = res_counter_soft_limit_excess(&mem->res);
522 523 524 525
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
526
		if (excess || mz->on_tree) {
527 528 529 530 531
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
532 533
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
534
			 */
535
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
536 537
			spin_unlock(&mctz->lock);
		}
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

556 557 558 559
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
560
	struct mem_cgroup_per_zone *mz;
561 562

retry:
563
	mz = NULL;
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
612 613
static long mem_cgroup_read_stat(struct mem_cgroup *mem,
				 enum mem_cgroup_stat_index idx)
614
{
615
	long val = 0;
616 617
	int cpu;

618 619
	get_online_cpus();
	for_each_online_cpu(cpu)
620
		val += per_cpu(mem->stat->count[idx], cpu);
621 622 623 624 625 626
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
627 628 629
	return val;
}

630 631 632 633
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
634
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
635 636
}

637 638 639 640 641 642 643 644 645 646
void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
}

void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
}

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
		val += per_cpu(mem->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.events[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	return val;
}

663
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
664
					 bool file, int nr_pages)
665
{
666 667
	preempt_disable();

668 669
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
670
	else
671
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
672

673 674
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
675
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
676
	else {
677
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
678 679
		nr_pages = -nr_pages; /* for event */
	}
680

681
	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
682

683
	preempt_enable();
684 685
}

686 687 688
unsigned long
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
			unsigned int lru_mask)
689 690
{
	struct mem_cgroup_per_zone *mz;
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
	enum lru_list l;
	unsigned long ret = 0;

	mz = mem_cgroup_zoneinfo(mem, nid, zid);

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
			int nid, unsigned int lru_mask)
{
707 708 709
	u64 total = 0;
	int zid;

710 711 712
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
		total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);

713 714
	return total;
}
715 716 717

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
			unsigned int lru_mask)
718
{
719
	int nid;
720 721
	u64 total = 0;

722 723
	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
724
	return total;
725 726
}

727 728 729 730 731 732 733 734 735 736 737
static bool __memcg_event_check(struct mem_cgroup *mem, int target)
{
	unsigned long val, next;

	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = this_cpu_read(mem->stat->targets[target]);
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
738
{
739
	unsigned long val, next;
740

741
	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
742

743 744 745 746 747 748 749
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
750 751 752
	case MEM_CGROUP_TARGET_NUMAINFO:
		next = val + NUMAINFO_EVENTS_TARGET;
		break;
753 754 755 756 757
	default:
		return;
	}

	this_cpu_write(mem->stat->targets[target], next);
758 759 760 761 762 763 764 765 766
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
767
	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
768
		mem_cgroup_threshold(mem);
769 770
		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(mem,
771
			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
772
			mem_cgroup_update_tree(mem, page);
773
			__mem_cgroup_target_update(mem,
774 775 776 777 778 779 780 781
						   MEM_CGROUP_TARGET_SOFTLIMIT);
		}
#if MAX_NUMNODES > 1
		if (unlikely(__memcg_event_check(mem,
			MEM_CGROUP_TARGET_NUMAINFO))) {
			atomic_inc(&mem->numainfo_events);
			__mem_cgroup_target_update(mem,
				MEM_CGROUP_TARGET_NUMAINFO);
782
		}
783
#endif
784 785 786
	}
}

787
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
788 789 790 791 792 793
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

794
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
795
{
796 797 798 799 800 801 802 803
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

804 805 806 807
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

808
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
809 810
{
	struct mem_cgroup *mem = NULL;
811 812 813

	if (!mm)
		return NULL;
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
829 830
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
831
{
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
854 855 856 857 858 859 860 861 862
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
863 864
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
865
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
866

K
KAMEZAWA Hiroyuki 已提交
867
	css_put(&iter->css);
868 869
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
870
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
871

872 873 874
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
875 876
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
877
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
878 879 880

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
881
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
882
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
883
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
884
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
885
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
886
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
887

K
KAMEZAWA Hiroyuki 已提交
888
	return iter;
K
KAMEZAWA Hiroyuki 已提交
889
}
K
KAMEZAWA Hiroyuki 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

903 904 905
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
906

907 908 909 910 911
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
	struct mem_cgroup *mem;

	if (!mm)
		return;

	rcu_read_lock();
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!mem))
		goto out;

	switch (idx) {
	case PGMAJFAULT:
		mem_cgroup_pgmajfault(mem, 1);
		break;
	case PGFAULT:
		mem_cgroup_pgfault(mem, 1);
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
939 940 941 942 943 944 945 946 947 948 949 950 951
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
952

K
KAMEZAWA Hiroyuki 已提交
953 954 955 956
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
957

958
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
959 960 961
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
962
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
963
		return;
964
	VM_BUG_ON(!pc->mem_cgroup);
965 966 967 968
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
969
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
970 971
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
972 973 974
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
975
	list_del_init(&pc->lru);
976 977
}

K
KAMEZAWA Hiroyuki 已提交
978
void mem_cgroup_del_lru(struct page *page)
979
{
K
KAMEZAWA Hiroyuki 已提交
980 981
	mem_cgroup_del_lru_list(page, page_lru(page));
}
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
1005
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1006 1007 1008
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
1009 1010 1011 1012
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
1013

1014
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1015
		return;
1016

K
KAMEZAWA Hiroyuki 已提交
1017
	pc = lookup_page_cgroup(page);
1018
	/* unused or root page is not rotated. */
1019 1020 1021 1022 1023
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
1024
		return;
1025
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
1026
	list_move(&pc->lru, &mz->lists[lru]);
1027 1028
}

K
KAMEZAWA Hiroyuki 已提交
1029
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1030
{
K
KAMEZAWA Hiroyuki 已提交
1031 1032
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
1033

1034
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1035 1036
		return;
	pc = lookup_page_cgroup(page);
1037
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
1038
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
1039
		return;
1040 1041
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1042
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1043 1044
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1045 1046 1047
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
1048 1049
	list_add(&pc->lru, &mz->lists[lru]);
}
1050

K
KAMEZAWA Hiroyuki 已提交
1051
/*
1052 1053 1054 1055
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1056
 */
1057
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1058
{
1059 1060 1061 1062
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1074 1075 1076 1077 1078 1079 1080 1081
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1082 1083
}

1084
static void mem_cgroup_lru_add_after_commit(struct page *page)
1085 1086 1087 1088 1089
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1090 1091 1092
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1093 1094
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1095
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1096 1097 1098 1099 1100
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1101 1102 1103
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1104
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1105 1106 1107
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1108 1109
}

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
/*
 * Checks whether given mem is same or in the root_mem's
 * hierarchy subtree
 */
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
		struct mem_cgroup *mem)
{
	if (root_mem != mem) {
		return (root_mem->use_hierarchy &&
			css_is_ancestor(&mem->css, &root_mem->css));
	}

	return true;
}

1125 1126 1127
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
1128
	struct mem_cgroup *curr = NULL;
1129
	struct task_struct *p;
1130

1131 1132 1133 1134 1135
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1136 1137
	if (!curr)
		return 0;
1138 1139 1140 1141 1142 1143
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
1144
	ret = mem_cgroup_same_or_subtree(mem, curr);
1145
	css_put(&curr->css);
1146 1147 1148
	return ret;
}

1149
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1150 1151 1152
{
	unsigned long active;
	unsigned long inactive;
1153 1154
	unsigned long gb;
	unsigned long inactive_ratio;
1155

1156 1157
	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
1186 1187 1188 1189 1190
		return 1;

	return 0;
}

1191 1192 1193 1194 1195
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

1196 1197
	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1198 1199 1200 1201

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1202 1203 1204
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1205
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1222 1223
	if (!PageCgroupUsed(pc))
		return NULL;
1224 1225
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1226
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1227 1228 1229
	return &mz->reclaim_stat;
}

1230 1231 1232 1233 1234
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1235
					int active, int file)
1236 1237 1238 1239 1240 1241
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1242
	struct page_cgroup *pc, *tmp;
1243
	int nid = zone_to_nid(z);
1244 1245
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1246
	int lru = LRU_FILE * file + active;
1247
	int ret;
1248

1249
	BUG_ON(!mem_cont);
1250
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1251
	src = &mz->lists[lru];
1252

1253 1254
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1255
		if (scan >= nr_to_scan)
1256
			break;
K
KAMEZAWA Hiroyuki 已提交
1257

1258 1259
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1260

1261
		page = lookup_cgroup_page(pc);
1262

H
Hugh Dickins 已提交
1263
		if (unlikely(!PageLRU(page)))
1264 1265
			continue;

H
Hugh Dickins 已提交
1266
		scan++;
1267 1268 1269
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1270
			list_move(&page->lru, dst);
1271
			mem_cgroup_del_lru(page);
1272
			nr_taken += hpage_nr_pages(page);
1273 1274 1275 1276 1277 1278 1279
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1280 1281 1282 1283
		}
	}

	*scanned = scan;
1284 1285 1286 1287

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1288 1289 1290
	return nr_taken;
}

1291 1292 1293
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1294
/**
1295 1296
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1297
 *
1298
 * Returns the maximum amount of memory @mem can be charged with, in
1299
 * pages.
1300
 */
1301
static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1302
{
1303 1304 1305 1306 1307
	unsigned long long margin;

	margin = res_counter_margin(&mem->res);
	if (do_swap_account)
		margin = min(margin, res_counter_margin(&mem->memsw));
1308
	return margin >> PAGE_SHIFT;
1309 1310
}

1311
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1312 1313 1314 1315 1316 1317 1318
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1319
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1320 1321
}

1322 1323 1324
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1325 1326 1327 1328

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1329
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1330 1331 1332
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1343 1344 1345
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1346
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1347 1348 1349
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1368 1369 1370

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1371 1372
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1373
	bool ret = false;
1374 1375 1376 1377 1378 1379 1380 1381 1382
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1383 1384 1385

	ret = mem_cgroup_same_or_subtree(mem, from)
		|| mem_cgroup_same_or_subtree(mem, to);
1386 1387
unlock:
	spin_unlock(&mc.lock);
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1407
/**
1408
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1427
	if (!memcg || !p)
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1474 1475 1476 1477 1478 1479 1480
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1481 1482 1483 1484
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1485 1486 1487
	return num;
}

D
David Rientjes 已提交
1488 1489 1490 1491 1492 1493 1494 1495
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1496 1497 1498
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1499 1500 1501 1502 1503 1504 1505 1506
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1507
/*
K
KAMEZAWA Hiroyuki 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
	}

	return ret;
}

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
		int nid, bool noswap)
{
1557
	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1558 1559 1560
		return true;
	if (noswap || !total_swap_pages)
		return false;
1561
	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1562 1563 1564 1565
		return true;
	return false;

}
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
{
	int nid;
1577 1578 1579 1580 1581 1582 1583
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
	if (!atomic_read(&mem->numainfo_events))
		return;
	if (atomic_inc_return(&mem->numainfo_updating) > 1)
1584 1585 1586 1587 1588 1589 1590
		return;

	/* make a nodemask where this memcg uses memory from */
	mem->scan_nodes = node_states[N_HIGH_MEMORY];

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1591 1592
		if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
			node_clear(nid, mem->scan_nodes);
1593
	}
1594 1595 1596

	atomic_set(&mem->numainfo_events, 0);
	atomic_set(&mem->numainfo_updating, 0);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	int node;

	mem_cgroup_may_update_nodemask(mem);
	node = mem->last_scanned_node;

	node = next_node(node, mem->scan_nodes);
	if (node == MAX_NUMNODES)
		node = first_node(mem->scan_nodes);
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

	mem->last_scanned_node = node;
	return node;
}

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(mem->scan_nodes)) {
		for (nid = first_node(mem->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, mem->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
		if (node_isset(nid, mem->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
			return true;
	}
	return false;
}

1669 1670 1671 1672 1673
#else
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	return 0;
}
1674 1675 1676 1677 1678

bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
}
1679 1680
#endif

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
static void __mem_cgroup_record_scanstat(unsigned long *stats,
			   struct memcg_scanrecord *rec)
{

	stats[SCAN] += rec->nr_scanned[0] + rec->nr_scanned[1];
	stats[SCAN_ANON] += rec->nr_scanned[0];
	stats[SCAN_FILE] += rec->nr_scanned[1];

	stats[ROTATE] += rec->nr_rotated[0] + rec->nr_rotated[1];
	stats[ROTATE_ANON] += rec->nr_rotated[0];
	stats[ROTATE_FILE] += rec->nr_rotated[1];

	stats[FREED] += rec->nr_freed[0] + rec->nr_freed[1];
	stats[FREED_ANON] += rec->nr_freed[0];
	stats[FREED_FILE] += rec->nr_freed[1];

	stats[ELAPSED] += rec->elapsed;
}

static void mem_cgroup_record_scanstat(struct memcg_scanrecord *rec)
{
	struct mem_cgroup *mem;
	int context = rec->context;

	if (context >= NR_SCAN_CONTEXT)
		return;

	mem = rec->mem;
	spin_lock(&mem->scanstat.lock);
	__mem_cgroup_record_scanstat(mem->scanstat.stats[context], rec);
	spin_unlock(&mem->scanstat.lock);

	mem = rec->root;
	spin_lock(&mem->scanstat.lock);
	__mem_cgroup_record_scanstat(mem->scanstat.rootstats[context], rec);
	spin_unlock(&mem->scanstat.lock);
}

K
KAMEZAWA Hiroyuki 已提交
1719 1720 1721 1722
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1723 1724
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1725 1726 1727
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1728 1729
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1730 1731
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1732
						struct zone *zone,
1733
						gfp_t gfp_mask,
1734 1735
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1736
{
K
KAMEZAWA Hiroyuki 已提交
1737 1738 1739
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1740 1741
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1742
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1743
	struct memcg_scanrecord rec;
1744
	unsigned long excess;
1745
	unsigned long scanned;
1746 1747

	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1748

1749
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1750
	if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1751 1752
		noswap = true;

1753 1754 1755 1756 1757 1758 1759 1760 1761
	if (shrink)
		rec.context = SCAN_BY_SHRINK;
	else if (check_soft)
		rec.context = SCAN_BY_SYSTEM;
	else
		rec.context = SCAN_BY_LIMIT;

	rec.root = root_mem;

1762
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1763
		victim = mem_cgroup_select_victim(root_mem);
1764
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1765
			loop++;
1766 1767 1768 1769 1770 1771 1772
			/*
			 * We are not draining per cpu cached charges during
			 * soft limit reclaim  because global reclaim doesn't
			 * care about charges. It tries to free some memory and
			 * charges will not give any.
			 */
			if (!check_soft && loop >= 1)
1773
				drain_all_stock_async(root_mem);
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1785
				 * We want to do more targeted reclaim.
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1797
		if (!mem_cgroup_reclaimable(victim, noswap)) {
K
KAMEZAWA Hiroyuki 已提交
1798 1799
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1800 1801
			continue;
		}
1802 1803 1804 1805 1806 1807 1808 1809
		rec.mem = victim;
		rec.nr_scanned[0] = 0;
		rec.nr_scanned[1] = 0;
		rec.nr_rotated[0] = 0;
		rec.nr_rotated[1] = 0;
		rec.nr_freed[0] = 0;
		rec.nr_freed[1] = 0;
		rec.elapsed = 0;
K
KAMEZAWA Hiroyuki 已提交
1810
		/* we use swappiness of local cgroup */
1811
		if (check_soft) {
1812
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1813 1814
				noswap, zone, &rec, &scanned);
			*total_scanned += scanned;
1815
		} else
1816
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1817 1818
						noswap, &rec);
		mem_cgroup_record_scanstat(&rec);
K
KAMEZAWA Hiroyuki 已提交
1819
		css_put(&victim->css);
1820 1821 1822 1823 1824 1825 1826
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1827
		total += ret;
1828
		if (check_soft) {
1829
			if (!res_counter_soft_limit_excess(&root_mem->res))
1830
				return total;
1831
		} else if (mem_cgroup_margin(root_mem))
1832
			return total;
1833
	}
K
KAMEZAWA Hiroyuki 已提交
1834
	return total;
1835 1836
}

K
KAMEZAWA Hiroyuki 已提交
1837 1838 1839
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1840
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1841 1842 1843
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
1844 1845
	struct mem_cgroup *iter, *failed = NULL;
	bool cond = true;
1846

1847
	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1848
		if (iter->oom_lock) {
1849 1850 1851 1852 1853 1854
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
			cond = false;
1855 1856
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1857
	}
K
KAMEZAWA Hiroyuki 已提交
1858

1859
	if (!failed)
1860
		return true;
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
	cond = true;
	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
		if (iter == failed) {
			cond = false;
			continue;
		}
		iter->oom_lock = false;
	}
1874
	return false;
1875
}
1876

1877
/*
1878
 * Has to be called with memcg_oom_lock
1879
 */
K
KAMEZAWA Hiroyuki 已提交
1880
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1881
{
K
KAMEZAWA Hiroyuki 已提交
1882 1883
	struct mem_cgroup *iter;

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	for_each_mem_cgroup_tree(iter, mem)
		iter->oom_lock = false;
	return 0;
}

static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
{
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		atomic_inc(&iter->under_oom);
}

static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1901 1902 1903 1904 1905
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1906
	for_each_mem_cgroup_tree(iter, mem)
1907
		atomic_add_unless(&iter->under_oom, -1, 0);
1908 1909
}

1910
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1911 1912
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1913 1914 1915 1916 1917 1918 1919 1920
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1921 1922
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
			  *oom_wait_mem;
K
KAMEZAWA Hiroyuki 已提交
1923 1924 1925
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1926
	oom_wait_mem = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1927 1928 1929 1930 1931

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1932 1933
	if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
			&& !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
K
KAMEZAWA Hiroyuki 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1944 1945
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1946
	if (mem && atomic_read(&mem->under_oom))
1947 1948 1949
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1950 1951 1952 1953
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1954
{
K
KAMEZAWA Hiroyuki 已提交
1955
	struct oom_wait_info owait;
1956
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1957

K
KAMEZAWA Hiroyuki 已提交
1958 1959 1960 1961 1962
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1963
	need_to_kill = true;
1964 1965
	mem_cgroup_mark_under_oom(mem);

K
KAMEZAWA Hiroyuki 已提交
1966
	/* At first, try to OOM lock hierarchy under mem.*/
1967
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1968 1969 1970 1971 1972 1973
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1974 1975 1976 1977
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1978
		mem_cgroup_oom_notify(mem);
1979
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1980

1981 1982
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1983
		mem_cgroup_out_of_memory(mem, mask);
1984
	} else {
K
KAMEZAWA Hiroyuki 已提交
1985
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1986
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1987
	}
1988
	spin_lock(&memcg_oom_lock);
1989 1990
	if (locked)
		mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1991
	memcg_wakeup_oom(mem);
1992
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1993

1994 1995
	mem_cgroup_unmark_under_oom(mem);

K
KAMEZAWA Hiroyuki 已提交
1996 1997 1998 1999 2000
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
2001 2002
}

2003 2004 2005
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
2025
 */
2026

2027 2028
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2029 2030
{
	struct mem_cgroup *mem;
2031 2032
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
2033
	unsigned long uninitialized_var(flags);
2034 2035 2036 2037

	if (unlikely(!pc))
		return;

2038
	rcu_read_lock();
2039
	mem = pc->mem_cgroup;
2040 2041 2042
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
2043
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
2044
		/* take a lock against to access pc->mem_cgroup */
2045
		move_lock_page_cgroup(pc, &flags);
2046 2047 2048 2049 2050
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
2051 2052

	switch (idx) {
2053
	case MEMCG_NR_FILE_MAPPED:
2054 2055 2056
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
2057
			ClearPageCgroupFileMapped(pc);
2058
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2059 2060 2061
		break;
	default:
		BUG();
2062
	}
2063

2064 2065
	this_cpu_add(mem->stat->count[idx], val);

2066 2067
out:
	if (unlikely(need_unlock))
2068
		move_unlock_page_cgroup(pc, &flags);
2069 2070
	rcu_read_unlock();
	return;
2071
}
2072
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2073

2074 2075 2076 2077
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2078
#define CHARGE_BATCH	32U
2079 2080
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2081
	unsigned int nr_pages;
2082
	struct work_struct work;
2083 2084
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
2085 2086
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2087
static DEFINE_MUTEX(percpu_charge_mutex);
2088 2089

/*
2090
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2101 2102
	if (mem == stock->cached && stock->nr_pages)
		stock->nr_pages--;
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2116 2117 2118 2119
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2120
		if (do_swap_account)
2121 2122
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2135
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2136 2137 2138 2139
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2140
 * This will be consumed by consume_stock() function, later.
2141
 */
2142
static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2143 2144 2145 2146 2147 2148 2149
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
2150
	stock->nr_pages += nr_pages;
2151 2152 2153 2154
	put_cpu_var(memcg_stock);
}

/*
2155 2156 2157
 * Drains all per-CPU charge caches for given root_mem resp. subtree
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2158
 */
2159
static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
2160
{
2161
	int cpu, curcpu;
2162

2163 2164
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2165
	curcpu = get_cpu();
2166 2167
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2168 2169 2170
		struct mem_cgroup *mem;

		mem = stock->cached;
2171
		if (!mem || !stock->nr_pages)
2172
			continue;
2173 2174
		if (!mem_cgroup_same_or_subtree(root_mem, mem))
			continue;
2175 2176 2177 2178 2179 2180
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2181
	}
2182
	put_cpu();
2183 2184 2185 2186 2187 2188

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2189
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2190 2191 2192
			flush_work(&stock->work);
	}
out:
2193
 	put_online_cpus();
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(struct mem_cgroup *root_mem)
{
2204 2205 2206 2207 2208
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2209
	drain_all_stock(root_mem, false);
2210
	mutex_unlock(&percpu_charge_mutex);
2211 2212 2213
}

/* This is a synchronous drain interface. */
2214
static void drain_all_stock_sync(struct mem_cgroup *root_mem)
2215 2216
{
	/* called when force_empty is called */
2217
	mutex_lock(&percpu_charge_mutex);
2218
	drain_all_stock(root_mem, true);
2219
	mutex_unlock(&percpu_charge_mutex);
2220 2221
}

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2232
		long x = per_cpu(mem->stat->count[i], cpu);
2233 2234 2235 2236

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
2237 2238 2239 2240 2241 2242
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long x = per_cpu(mem->stat->events[i], cpu);

		per_cpu(mem->stat->events[i], cpu) = 0;
		mem->nocpu_base.events[i] += x;
	}
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2254 2255 2256 2257
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2258 2259 2260 2261 2262
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2263
	struct mem_cgroup *iter;
2264

2265 2266 2267 2268 2269 2270
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2271
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2272
		return NOTIFY_OK;
2273 2274 2275 2276

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2277 2278 2279 2280 2281
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2292 2293
static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				unsigned int nr_pages, bool oom_check)
2294
{
2295
	unsigned long csize = nr_pages * PAGE_SIZE;
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

2310
		res_counter_uncharge(&mem->res, csize);
2311 2312 2313 2314
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2315
	/*
2316 2317
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2318 2319 2320 2321
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2322
	if (nr_pages == CHARGE_BATCH)
2323 2324 2325 2326 2327 2328
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2329
					      gfp_mask, flags, NULL);
2330
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2331
		return CHARGE_RETRY;
2332
	/*
2333 2334 2335 2336 2337 2338 2339
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2340
	 */
2341
	if (nr_pages == 1 && ret)
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2361 2362 2363
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2364
 */
2365
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2366
				   gfp_t gfp_mask,
2367 2368 2369
				   unsigned int nr_pages,
				   struct mem_cgroup **memcg,
				   bool oom)
2370
{
2371
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2372 2373 2374
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
2375

K
KAMEZAWA Hiroyuki 已提交
2376 2377 2378 2379 2380 2381 2382 2383
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2384

2385
	/*
2386 2387
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2388 2389 2390
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
2391 2392 2393 2394
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
2395
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
2396 2397 2398
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
2399
		if (nr_pages == 1 && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
2400
			goto done;
2401 2402
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
2403
		struct task_struct *p;
2404

K
KAMEZAWA Hiroyuki 已提交
2405 2406 2407
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2408 2409 2410 2411 2412 2413 2414 2415
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2416 2417
		 */
		mem = mem_cgroup_from_task(p);
2418
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2419 2420 2421
			rcu_read_unlock();
			goto done;
		}
2422
		if (nr_pages == 1 && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2441

2442 2443
	do {
		bool oom_check;
2444

2445
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2446 2447
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
2448
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2449
		}
2450

2451 2452 2453 2454
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2455
		}
2456

2457
		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2458 2459 2460 2461
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2462
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2463 2464 2465
			css_put(&mem->css);
			mem = NULL;
			goto again;
2466
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
2467
			css_put(&mem->css);
2468 2469
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2470 2471
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2472
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2473
			}
2474 2475 2476 2477
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2478
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2479
			goto bypass;
2480
		}
2481 2482
	} while (ret != CHARGE_OK);

2483 2484
	if (batch > nr_pages)
		refill_stock(mem, batch - nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2485
	css_put(&mem->css);
2486
done:
K
KAMEZAWA Hiroyuki 已提交
2487
	*memcg = mem;
2488 2489
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2490
	*memcg = NULL;
2491
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2492 2493 2494
bypass:
	*memcg = NULL;
	return 0;
2495
}
2496

2497 2498 2499 2500 2501
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2502
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2503
				       unsigned int nr_pages)
2504 2505
{
	if (!mem_cgroup_is_root(mem)) {
2506 2507 2508
		unsigned long bytes = nr_pages * PAGE_SIZE;

		res_counter_uncharge(&mem->res, bytes);
2509
		if (do_swap_account)
2510
			res_counter_uncharge(&mem->memsw, bytes);
2511
	}
2512 2513
}

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2533
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2534
{
2535
	struct mem_cgroup *mem = NULL;
2536
	struct page_cgroup *pc;
2537
	unsigned short id;
2538 2539
	swp_entry_t ent;

2540 2541 2542
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2543
	lock_page_cgroup(pc);
2544
	if (PageCgroupUsed(pc)) {
2545
		mem = pc->mem_cgroup;
2546 2547
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2548
	} else if (PageSwapCache(page)) {
2549
		ent.val = page_private(page);
2550 2551 2552 2553 2554 2555
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2556
	}
2557
	unlock_page_cgroup(pc);
2558 2559 2560
	return mem;
}

2561
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2562
				       struct page *page,
2563
				       unsigned int nr_pages,
2564
				       struct page_cgroup *pc,
2565
				       enum charge_type ctype)
2566
{
2567 2568 2569
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2570
		__mem_cgroup_cancel_charge(mem, nr_pages);
2571 2572 2573 2574 2575 2576
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2577
	pc->mem_cgroup = mem;
2578 2579 2580 2581 2582 2583 2584
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2585
	smp_wmb();
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2599

2600
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2601
	unlock_page_cgroup(pc);
2602 2603 2604 2605 2606
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2607
	memcg_check_events(mem, page);
2608
}
2609

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2624 2625
	if (mem_cgroup_disabled())
		return;
2626
	/*
2627
	 * We have no races with charge/uncharge but will have races with
2628 2629 2630 2631 2632 2633
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2644
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2645 2646
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2647 2648 2649 2650 2651
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2652
/**
2653
 * mem_cgroup_move_account - move account of the page
2654
 * @page: the page
2655
 * @nr_pages: number of regular pages (>1 for huge pages)
2656 2657 2658
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2659
 * @uncharge: whether we should call uncharge and css_put against @from.
2660 2661
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2662
 * - page is not on LRU (isolate_page() is useful.)
2663
 * - compound_lock is held when nr_pages > 1
2664
 *
2665
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2666
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2667 2668
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2669
 */
2670 2671 2672 2673 2674 2675
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2676
{
2677 2678
	unsigned long flags;
	int ret;
2679

2680
	VM_BUG_ON(from == to);
2681
	VM_BUG_ON(PageLRU(page));
2682 2683 2684 2685 2686 2687 2688
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2689
	if (nr_pages > 1 && !PageTransHuge(page))
2690 2691 2692 2693 2694 2695 2696 2697 2698
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2699

2700
	if (PageCgroupFileMapped(pc)) {
2701 2702 2703 2704 2705
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2706
	}
2707
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2708 2709
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2710
		__mem_cgroup_cancel_charge(from, nr_pages);
2711

2712
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2713
	pc->mem_cgroup = to;
2714
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2715 2716 2717
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2718
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2719
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2720
	 * status here.
2721
	 */
2722 2723 2724
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2725
	unlock_page_cgroup(pc);
2726 2727 2728
	/*
	 * check events
	 */
2729 2730
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2731
out:
2732 2733 2734 2735 2736 2737 2738
	return ret;
}

/*
 * move charges to its parent.
 */

2739 2740
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2741 2742 2743 2744 2745 2746
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2747
	unsigned int nr_pages;
2748
	unsigned long uninitialized_var(flags);
2749 2750 2751 2752 2753 2754
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2755 2756 2757 2758 2759
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2760

2761
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2762

2763
	parent = mem_cgroup_from_cont(pcg);
2764
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2765
	if (ret || !parent)
2766
		goto put_back;
2767

2768
	if (nr_pages > 1)
2769 2770
		flags = compound_lock_irqsave(page);

2771
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2772
	if (ret)
2773
		__mem_cgroup_cancel_charge(parent, nr_pages);
2774

2775
	if (nr_pages > 1)
2776
		compound_unlock_irqrestore(page, flags);
2777
put_back:
K
KAMEZAWA Hiroyuki 已提交
2778
	putback_lru_page(page);
2779
put:
2780
	put_page(page);
2781
out:
2782 2783 2784
	return ret;
}

2785 2786 2787 2788 2789 2790 2791
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2792
				gfp_t gfp_mask, enum charge_type ctype)
2793
{
2794
	struct mem_cgroup *mem = NULL;
2795
	unsigned int nr_pages = 1;
2796
	struct page_cgroup *pc;
2797
	bool oom = true;
2798
	int ret;
A
Andrea Arcangeli 已提交
2799

A
Andrea Arcangeli 已提交
2800
	if (PageTransHuge(page)) {
2801
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2802
		VM_BUG_ON(!PageTransHuge(page));
2803 2804 2805 2806 2807
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2808
	}
2809 2810

	pc = lookup_page_cgroup(page);
2811
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2812

2813
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2814
	if (ret || !mem)
2815 2816
		return ret;

2817
	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2818 2819 2820
	return 0;
}

2821 2822
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2823
{
2824
	if (mem_cgroup_disabled())
2825
		return 0;
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2837
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2838
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2839 2840
}

D
Daisuke Nishimura 已提交
2841 2842 2843 2844
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
static void
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2861 2862
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2863
{
2864
	struct mem_cgroup *mem = NULL;
2865 2866
	int ret;

2867
	if (mem_cgroup_disabled())
2868
		return 0;
2869 2870
	if (PageCompound(page))
		return 0;
2871

2872
	if (unlikely(!mm))
2873
		mm = &init_mm;
2874

2875 2876 2877 2878
	if (page_is_file_cache(page)) {
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
		if (ret || !mem)
			return ret;
2879

2880 2881 2882 2883 2884 2885 2886 2887 2888
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
		__mem_cgroup_commit_charge_lrucare(page, mem,
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2889 2890 2891 2892 2893 2894 2895 2896
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2897
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2898 2899

	return ret;
2900 2901
}

2902 2903 2904
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2905
 * struct page_cgroup is acquired. This refcnt will be consumed by
2906 2907
 * "commit()" or removed by "cancel()"
 */
2908 2909 2910 2911 2912
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2913
	int ret;
2914

2915 2916
	*ptr = NULL;

2917
	if (mem_cgroup_disabled())
2918 2919 2920 2921 2922 2923
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2924 2925 2926
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2927 2928
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2929
		goto charge_cur_mm;
2930
	mem = try_get_mem_cgroup_from_page(page);
2931 2932
	if (!mem)
		goto charge_cur_mm;
2933
	*ptr = mem;
2934
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2935 2936
	css_put(&mem->css);
	return ret;
2937 2938 2939
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2940
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2941 2942
}

D
Daisuke Nishimura 已提交
2943 2944 2945
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2946
{
2947
	if (mem_cgroup_disabled())
2948 2949 2950
		return;
	if (!ptr)
		return;
2951
	cgroup_exclude_rmdir(&ptr->css);
2952 2953

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2954 2955 2956
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2957 2958 2959
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2960
	 */
2961
	if (do_swap_account && PageSwapCache(page)) {
2962
		swp_entry_t ent = {.val = page_private(page)};
2963
		unsigned short id;
2964
		struct mem_cgroup *memcg;
2965 2966 2967 2968

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2969
		if (memcg) {
2970 2971 2972 2973
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2974
			if (!mem_cgroup_is_root(memcg))
2975
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2976
			mem_cgroup_swap_statistics(memcg, false);
2977 2978
			mem_cgroup_put(memcg);
		}
2979
		rcu_read_unlock();
2980
	}
2981 2982 2983 2984 2985 2986
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2987 2988
}

D
Daisuke Nishimura 已提交
2989 2990 2991 2992 2993 2994
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2995 2996
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2997
	if (mem_cgroup_disabled())
2998 2999 3000
		return;
	if (!mem)
		return;
3001
	__mem_cgroup_cancel_charge(mem, 1);
3002 3003
}

3004 3005 3006
static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3007 3008 3009
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3010

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
3023 3024
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3025
	 * In those cases, all pages freed continuously can be expected to be in
3026 3027 3028 3029 3030 3031 3032 3033
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3034
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3035 3036
		goto direct_uncharge;

3037 3038 3039 3040 3041 3042 3043 3044
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3045
	batch->nr_pages++;
3046
	if (uncharge_memsw)
3047
		batch->memsw_nr_pages++;
3048 3049
	return;
direct_uncharge:
3050
	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
3051
	if (uncharge_memsw)
3052
		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
3053 3054
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
3055 3056
	return;
}
3057

3058
/*
3059
 * uncharge if !page_mapped(page)
3060
 */
3061
static struct mem_cgroup *
3062
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3063
{
3064
	struct mem_cgroup *mem = NULL;
3065 3066
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3067

3068
	if (mem_cgroup_disabled())
3069
		return NULL;
3070

K
KAMEZAWA Hiroyuki 已提交
3071
	if (PageSwapCache(page))
3072
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
3073

A
Andrea Arcangeli 已提交
3074
	if (PageTransHuge(page)) {
3075
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3076 3077
		VM_BUG_ON(!PageTransHuge(page));
	}
3078
	/*
3079
	 * Check if our page_cgroup is valid
3080
	 */
3081 3082
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
3083
		return NULL;
3084

3085
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3086

3087 3088
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
3089 3090 3091 3092 3093
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
3094
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3095 3096
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3108
	}
K
KAMEZAWA Hiroyuki 已提交
3109

3110
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3111

3112
	ClearPageCgroupUsed(pc);
3113 3114 3115 3116 3117 3118
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3119

3120
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3121 3122 3123 3124
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
3125
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
3126 3127 3128 3129 3130
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
3131
		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3132

3133
	return mem;
K
KAMEZAWA Hiroyuki 已提交
3134 3135 3136

unlock_out:
	unlock_page_cgroup(pc);
3137
	return NULL;
3138 3139
}

3140 3141
void mem_cgroup_uncharge_page(struct page *page)
{
3142 3143 3144 3145 3146
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3147 3148 3149 3150 3151 3152
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3153
	VM_BUG_ON(page->mapping);
3154 3155 3156
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3171 3172
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3193 3194 3195 3196 3197 3198
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3199
	memcg_oom_recover(batch->memcg);
3200 3201 3202 3203
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3204
#ifdef CONFIG_SWAP
3205
/*
3206
 * called after __delete_from_swap_cache() and drop "page" account.
3207 3208
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3209 3210
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3211 3212
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3213 3214 3215 3216 3217 3218
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3219

K
KAMEZAWA Hiroyuki 已提交
3220 3221 3222 3223 3224
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3225
		swap_cgroup_record(ent, css_id(&memcg->css));
3226
}
3227
#endif
3228 3229 3230 3231 3232 3233 3234

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3235
{
3236
	struct mem_cgroup *memcg;
3237
	unsigned short id;
3238 3239 3240 3241

	if (!do_swap_account)
		return;

3242 3243 3244
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3245
	if (memcg) {
3246 3247 3248 3249
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3250
		if (!mem_cgroup_is_root(memcg))
3251
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3252
		mem_cgroup_swap_statistics(memcg, false);
3253 3254
		mem_cgroup_put(memcg);
	}
3255
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3256
}
3257 3258 3259 3260 3261 3262

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3263
 * @need_fixup: whether we should fixup res_counters and refcounts.
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3274
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3275 3276 3277 3278 3279 3280 3281 3282
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3283
		mem_cgroup_swap_statistics(to, true);
3284
		/*
3285 3286 3287 3288 3289 3290
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3291 3292
		 */
		mem_cgroup_get(to);
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3304 3305 3306 3307 3308 3309
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3310
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3311 3312 3313
{
	return -EINVAL;
}
3314
#endif
K
KAMEZAWA Hiroyuki 已提交
3315

3316
/*
3317 3318
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3319
 */
3320
int mem_cgroup_prepare_migration(struct page *page,
3321
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3322
{
3323
	struct mem_cgroup *mem = NULL;
3324
	struct page_cgroup *pc;
3325
	enum charge_type ctype;
3326
	int ret = 0;
3327

3328 3329
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3330
	VM_BUG_ON(PageTransHuge(page));
3331
	if (mem_cgroup_disabled())
3332 3333
		return 0;

3334 3335 3336
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3337 3338
		mem = pc->mem_cgroup;
		css_get(&mem->css);
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3370
	}
3371
	unlock_page_cgroup(pc);
3372 3373 3374 3375 3376 3377
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
3378

A
Andrea Arcangeli 已提交
3379
	*ptr = mem;
3380
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3393
	}
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3407
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3408
	return ret;
3409
}
3410

3411
/* remove redundant charge if migration failed*/
3412
void mem_cgroup_end_migration(struct mem_cgroup *mem,
3413
	struct page *oldpage, struct page *newpage, bool migration_ok)
3414
{
3415
	struct page *used, *unused;
3416 3417 3418 3419
	struct page_cgroup *pc;

	if (!mem)
		return;
3420
	/* blocks rmdir() */
3421
	cgroup_exclude_rmdir(&mem->css);
3422
	if (!migration_ok) {
3423 3424
		used = oldpage;
		unused = newpage;
3425
	} else {
3426
		used = newpage;
3427 3428
		unused = oldpage;
	}
3429
	/*
3430 3431 3432
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3433
	 */
3434 3435 3436 3437
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3438

3439 3440
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3441
	/*
3442 3443 3444 3445 3446 3447
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3448
	 */
3449 3450
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3451
	/*
3452 3453
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3454 3455 3456 3457
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
3458
}
3459

3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3506 3507
static DEFINE_MUTEX(set_limit_mutex);

3508
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3509
				unsigned long long val)
3510
{
3511
	int retry_count;
3512
	u64 memswlimit, memlimit;
3513
	int ret = 0;
3514 3515
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3516
	int enlarge;
3517 3518 3519 3520 3521 3522 3523 3524 3525

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3526

3527
	enlarge = 0;
3528
	while (retry_count) {
3529 3530 3531 3532
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3543 3544
			break;
		}
3545 3546 3547 3548 3549

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3550
		ret = res_counter_set_limit(&memcg->res, val);
3551 3552 3553 3554 3555 3556
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3557 3558 3559 3560 3561
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3562
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3563 3564
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3565 3566 3567 3568 3569 3570
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3571
	}
3572 3573
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3574

3575 3576 3577
	return ret;
}

L
Li Zefan 已提交
3578 3579
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3580
{
3581
	int retry_count;
3582
	u64 memlimit, memswlimit, oldusage, curusage;
3583 3584
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3585
	int enlarge = 0;
3586

3587 3588 3589
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3607 3608 3609
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3610
		ret = res_counter_set_limit(&memcg->memsw, val);
3611 3612 3613 3614 3615 3616
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3617 3618 3619 3620 3621
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3622
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3623
						MEM_CGROUP_RECLAIM_NOSWAP |
3624 3625
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3626
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3627
		/* Usage is reduced ? */
3628
		if (curusage >= oldusage)
3629
			retry_count--;
3630 3631
		else
			oldusage = curusage;
3632
	}
3633 3634
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3635 3636 3637
	return ret;
}

3638
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3639 3640
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3641 3642 3643 3644 3645 3646
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3647
	unsigned long long excess;
3648
	unsigned long nr_scanned;
3649 3650 3651 3652

	if (order > 0)
		return 0;

3653
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3667
		nr_scanned = 0;
3668 3669
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3670 3671
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3672
		nr_reclaimed += reclaimed;
3673
		*total_scanned += nr_scanned;
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3696
				if (next_mz == mz)
3697
					css_put(&next_mz->mem->css);
3698
				else /* next_mz == NULL or other memcg */
3699 3700 3701 3702
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3703
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3704 3705 3706 3707 3708 3709 3710 3711
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3712 3713
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3732 3733 3734 3735
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3736
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3737
				int node, int zid, enum lru_list lru)
3738
{
K
KAMEZAWA Hiroyuki 已提交
3739 3740
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3741
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3742
	unsigned long flags, loop;
3743
	struct list_head *list;
3744
	int ret = 0;
3745

K
KAMEZAWA Hiroyuki 已提交
3746 3747
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3748
	list = &mz->lists[lru];
3749

3750 3751 3752 3753 3754
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3755 3756
		struct page *page;

3757
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3758
		spin_lock_irqsave(&zone->lru_lock, flags);
3759
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3760
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3761
			break;
3762 3763 3764 3765
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3766
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3767
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3768 3769
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3770
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3771

3772
		page = lookup_cgroup_page(pc);
3773 3774

		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3775
		if (ret == -ENOMEM)
3776
			break;
3777 3778 3779 3780 3781 3782 3783

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3784
	}
K
KAMEZAWA Hiroyuki 已提交
3785

3786 3787 3788
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3789 3790 3791 3792 3793 3794
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3795
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3796
{
3797 3798 3799
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3800
	struct cgroup *cgrp = mem->css.cgroup;
3801

3802
	css_get(&mem->css);
3803 3804

	shrink = 0;
3805 3806 3807
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3808
move_account:
3809
	do {
3810
		ret = -EBUSY;
3811 3812 3813 3814
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3815
			goto out;
3816 3817
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3818
		drain_all_stock_sync(mem);
3819
		ret = 0;
3820
		mem_cgroup_start_move(mem);
3821
		for_each_node_state(node, N_HIGH_MEMORY) {
3822
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3823
				enum lru_list l;
3824 3825
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3826
							node, zid, l);
3827 3828 3829
					if (ret)
						break;
				}
3830
			}
3831 3832 3833
			if (ret)
				break;
		}
3834
		mem_cgroup_end_move(mem);
3835
		memcg_oom_recover(mem);
3836 3837 3838
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3839
		cond_resched();
3840 3841
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3842 3843 3844
out:
	css_put(&mem->css);
	return ret;
3845 3846

try_to_free:
3847 3848
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3849 3850 3851
		ret = -EBUSY;
		goto out;
	}
3852 3853
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3854 3855 3856
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
3857
		struct memcg_scanrecord rec;
3858
		int progress;
3859 3860 3861 3862 3863

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3864 3865 3866
		rec.context = SCAN_BY_SHRINK;
		rec.mem = mem;
		rec.root = mem;
K
KOSAKI Motohiro 已提交
3867
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3868
						false, &rec);
3869
		if (!progress) {
3870
			nr_retries--;
3871
			/* maybe some writeback is necessary */
3872
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3873
		}
3874 3875

	}
K
KAMEZAWA Hiroyuki 已提交
3876
	lru_add_drain();
3877
	/* try move_account...there may be some *locked* pages. */
3878
	goto move_account;
3879 3880
}

3881 3882 3883 3884 3885 3886
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3905
	 * If parent's use_hierarchy is set, we can't make any modifications
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3925

3926 3927
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
					       enum mem_cgroup_stat_index idx)
3928
{
K
KAMEZAWA Hiroyuki 已提交
3929
	struct mem_cgroup *iter;
3930
	long val = 0;
3931

3932
	/* Per-cpu values can be negative, use a signed accumulator */
K
KAMEZAWA Hiroyuki 已提交
3933 3934 3935 3936 3937 3938
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3939 3940
}

3941 3942
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3943
	u64 val;
3944 3945 3946 3947 3948 3949 3950 3951

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

3952 3953
	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3954

K
KAMEZAWA Hiroyuki 已提交
3955
	if (swap)
3956
		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3957 3958 3959 3960

	return val << PAGE_SHIFT;
}

3961
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3962
{
3963
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3964
	u64 val;
3965 3966 3967 3968 3969 3970
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3971 3972 3973
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3974
			val = res_counter_read_u64(&mem->res, name);
3975 3976
		break;
	case _MEMSWAP:
3977 3978 3979
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3980
			val = res_counter_read_u64(&mem->memsw, name);
3981 3982 3983 3984 3985 3986
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3987
}
3988 3989 3990 3991
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3992 3993
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3994
{
3995
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3996
	int type, name;
3997 3998 3999
	unsigned long long val;
	int ret;

4000 4001 4002
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
4003
	case RES_LIMIT:
4004 4005 4006 4007
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4008 4009
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4010 4011 4012
		if (ret)
			break;
		if (type == _MEM)
4013
			ret = mem_cgroup_resize_limit(memcg, val);
4014 4015
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4016
		break;
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4031 4032 4033 4034 4035
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4036 4037
}

4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

4066
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4067 4068
{
	struct mem_cgroup *mem;
4069
	int type, name;
4070 4071

	mem = mem_cgroup_from_cont(cont);
4072 4073 4074
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
4075
	case RES_MAX_USAGE:
4076 4077 4078 4079
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
4080 4081
		break;
	case RES_FAILCNT:
4082 4083 4084 4085
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
4086 4087
		break;
	}
4088

4089
	return 0;
4090 4091
}

4092 4093 4094 4095 4096 4097
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4098
#ifdef CONFIG_MMU
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
4117 4118 4119 4120 4121 4122 4123
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4124

K
KAMEZAWA Hiroyuki 已提交
4125 4126 4127 4128 4129

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4130
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4131 4132
	MCS_PGPGIN,
	MCS_PGPGOUT,
4133
	MCS_SWAP,
4134 4135
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4146 4147
};

K
KAMEZAWA Hiroyuki 已提交
4148 4149 4150 4151 4152 4153
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4154
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4155 4156
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4157
	{"swap", "total_swap"},
4158 4159
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4160 4161 4162 4163 4164 4165 4166 4167
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4168 4169
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4170 4171 4172 4173
{
	s64 val;

	/* per cpu stat */
4174
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4175
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4176
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4177
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4178
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4179
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4180
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4181
	s->stat[MCS_PGPGIN] += val;
4182
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4183
	s->stat[MCS_PGPGOUT] += val;
4184
	if (do_swap_account) {
4185
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4186 4187
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4188 4189 4190 4191
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
	s->stat[MCS_PGFAULT] += val;
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4192 4193

	/* per zone stat */
4194
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4195
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4196
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4197
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4198
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4199
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4200
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4201
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4202
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4203 4204 4205 4206 4207 4208
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
4209 4210 4211 4212
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4213 4214
}

4215 4216 4217 4218 4219 4220 4221 4222 4223
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4224
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4225 4226
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4227
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4228 4229 4230 4231
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4232
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4233 4234
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4235 4236
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4237 4238 4239 4240
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4241
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4242 4243
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4244 4245
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4246 4247 4248 4249
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4250
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4251 4252
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4253 4254
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4255 4256 4257 4258 4259 4260 4261
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4262 4263
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4264 4265
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4266
	struct mcs_total_stat mystat;
4267 4268
	int i;

K
KAMEZAWA Hiroyuki 已提交
4269 4270
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4271

4272

4273 4274 4275
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4276
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4277
	}
L
Lee Schermerhorn 已提交
4278

K
KAMEZAWA Hiroyuki 已提交
4279
	/* Hierarchical information */
4280 4281 4282 4283 4284 4285 4286
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4287

K
KAMEZAWA Hiroyuki 已提交
4288 4289
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4290 4291 4292
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4293
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4294
	}
K
KAMEZAWA Hiroyuki 已提交
4295

K
KOSAKI Motohiro 已提交
4296
#ifdef CONFIG_DEBUG_VM
4297
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4325 4326 4327
	return 0;
}

K
KOSAKI Motohiro 已提交
4328 4329 4330 4331
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4332
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4333 4334 4335 4336 4337 4338 4339
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4340

K
KOSAKI Motohiro 已提交
4341 4342 4343 4344 4345 4346 4347
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4348 4349 4350

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4351 4352
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4353 4354
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4355
		return -EINVAL;
4356
	}
K
KOSAKI Motohiro 已提交
4357 4358 4359

	memcg->swappiness = val;

4360 4361
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4362 4363 4364
	return 0;
}

4365 4366 4367 4368 4369 4370 4371 4372
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4373
		t = rcu_dereference(memcg->thresholds.primary);
4374
	else
4375
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4387
	i = t->current_threshold;
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4411
	t->current_threshold = i - 1;
4412 4413 4414 4415 4416 4417
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4418 4419 4420 4421 4422 4423 4424
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
4435
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
4446 4447 4448 4449
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4450 4451 4452 4453
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4454 4455
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4456 4457
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4458 4459
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4460
	int i, size, ret;
4461 4462 4463 4464 4465 4466

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4467

4468
	if (type == _MEM)
4469
		thresholds = &memcg->thresholds;
4470
	else if (type == _MEMSWAP)
4471
		thresholds = &memcg->memsw_thresholds;
4472 4473 4474 4475 4476 4477
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4478
	if (thresholds->primary)
4479 4480
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4481
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4482 4483

	/* Allocate memory for new array of thresholds */
4484
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4485
			GFP_KERNEL);
4486
	if (!new) {
4487 4488 4489
		ret = -ENOMEM;
		goto unlock;
	}
4490
	new->size = size;
4491 4492

	/* Copy thresholds (if any) to new array */
4493 4494
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4495
				sizeof(struct mem_cgroup_threshold));
4496 4497
	}

4498
	/* Add new threshold */
4499 4500
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4501 4502

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4503
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4504 4505 4506
			compare_thresholds, NULL);

	/* Find current threshold */
4507
	new->current_threshold = -1;
4508
	for (i = 0; i < size; i++) {
4509
		if (new->entries[i].threshold < usage) {
4510
			/*
4511 4512
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4513 4514
			 * it here.
			 */
4515
			++new->current_threshold;
4516 4517 4518
		}
	}

4519 4520 4521 4522 4523
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4524

4525
	/* To be sure that nobody uses thresholds */
4526 4527 4528 4529 4530 4531 4532 4533
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4534
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4535
	struct cftype *cft, struct eventfd_ctx *eventfd)
4536 4537
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4538 4539
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4540 4541
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4542
	int i, j, size;
4543 4544 4545

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4546
		thresholds = &memcg->thresholds;
4547
	else if (type == _MEMSWAP)
4548
		thresholds = &memcg->memsw_thresholds;
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4564 4565 4566
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4567 4568 4569
			size++;
	}

4570
	new = thresholds->spare;
4571

4572 4573
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4574 4575
		kfree(new);
		new = NULL;
4576
		goto swap_buffers;
4577 4578
	}

4579
	new->size = size;
4580 4581

	/* Copy thresholds and find current threshold */
4582 4583 4584
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4585 4586
			continue;

4587 4588
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4589
			/*
4590
			 * new->current_threshold will not be used
4591 4592 4593
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4594
			++new->current_threshold;
4595 4596 4597 4598
		}
		j++;
	}

4599
swap_buffers:
4600 4601 4602
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4603

4604
	/* To be sure that nobody uses thresholds */
4605 4606 4607 4608
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4609

K
KAMEZAWA Hiroyuki 已提交
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4622
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4623 4624 4625 4626 4627

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4628
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4629
		eventfd_signal(eventfd, 1);
4630
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4631 4632 4633 4634

	return 0;
}

4635
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4636 4637 4638 4639 4640 4641 4642 4643
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4644
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4645 4646 4647 4648 4649 4650 4651 4652

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4653
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4654 4655
}

4656 4657 4658 4659 4660 4661 4662
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

4663
	if (atomic_read(&mem->under_oom))
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4690 4691
	if (!val)
		memcg_oom_recover(mem);
4692 4693 4694 4695
	cgroup_unlock();
	return 0;
}

4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
static int mem_cgroup_vmscan_stat_read(struct cgroup *cgrp,
				struct cftype *cft,
				struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	char string[64];
	int i;

	for (i = 0; i < NR_SCANSTATS; i++) {
		strcpy(string, scanstat_string[i]);
		strcat(string, SCANSTAT_WORD_LIMIT);
		cb->fill(cb, string,  mem->scanstat.stats[SCAN_BY_LIMIT][i]);
	}

	for (i = 0; i < NR_SCANSTATS; i++) {
		strcpy(string, scanstat_string[i]);
		strcat(string, SCANSTAT_WORD_SYSTEM);
		cb->fill(cb, string,  mem->scanstat.stats[SCAN_BY_SYSTEM][i]);
	}

	for (i = 0; i < NR_SCANSTATS; i++) {
		strcpy(string, scanstat_string[i]);
		strcat(string, SCANSTAT_WORD_LIMIT);
		strcat(string, SCANSTAT_WORD_HIERARCHY);
		cb->fill(cb, string,  mem->scanstat.rootstats[SCAN_BY_LIMIT][i]);
	}
	for (i = 0; i < NR_SCANSTATS; i++) {
		strcpy(string, scanstat_string[i]);
		strcat(string, SCANSTAT_WORD_SYSTEM);
		strcat(string, SCANSTAT_WORD_HIERARCHY);
		cb->fill(cb, string,  mem->scanstat.rootstats[SCAN_BY_SYSTEM][i]);
	}
	return 0;
}

static int mem_cgroup_reset_vmscan_stat(struct cgroup *cgrp,
				unsigned int event)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	spin_lock(&mem->scanstat.lock);
	memset(&mem->scanstat.stats, 0, sizeof(mem->scanstat.stats));
	memset(&mem->scanstat.rootstats, 0, sizeof(mem->scanstat.rootstats));
	spin_unlock(&mem->scanstat.lock);
	return 0;
}


B
Balbir Singh 已提交
4760 4761
static struct cftype mem_cgroup_files[] = {
	{
4762
		.name = "usage_in_bytes",
4763
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4764
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4765 4766
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4767
	},
4768 4769
	{
		.name = "max_usage_in_bytes",
4770
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4771
		.trigger = mem_cgroup_reset,
4772 4773
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4774
	{
4775
		.name = "limit_in_bytes",
4776
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4777
		.write_string = mem_cgroup_write,
4778
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4779
	},
4780 4781 4782 4783 4784 4785
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4786 4787
	{
		.name = "failcnt",
4788
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4789
		.trigger = mem_cgroup_reset,
4790
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4791
	},
4792 4793
	{
		.name = "stat",
4794
		.read_map = mem_control_stat_show,
4795
	},
4796 4797 4798 4799
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4800 4801 4802 4803 4804
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4805 4806 4807 4808 4809
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4810 4811 4812 4813 4814
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4815 4816
	{
		.name = "oom_control",
4817 4818
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4819 4820 4821 4822
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4823 4824 4825 4826
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4827
		.mode = S_IRUGO,
4828 4829
	},
#endif
4830 4831 4832 4833 4834
	{
		.name = "vmscan_stat",
		.read_map = mem_cgroup_vmscan_stat_read,
		.trigger = mem_cgroup_reset_vmscan_stat,
	},
B
Balbir Singh 已提交
4835 4836
};

4837 4838 4839 4840 4841 4842
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4843 4844
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4880 4881 4882
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4883
	struct mem_cgroup_per_zone *mz;
4884
	enum lru_list l;
4885
	int zone, tmp = node;
4886 4887 4888 4889 4890 4891 4892 4893
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4894 4895
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4896
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4897 4898
	if (!pn)
		return 1;
4899

4900
	mem->info.nodeinfo[node] = pn;
4901 4902
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4903 4904
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4905
		mz->usage_in_excess = 0;
4906 4907
		mz->on_tree = false;
		mz->mem = mem;
4908
	}
4909 4910 4911
	return 0;
}

4912 4913 4914 4915 4916
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4917 4918 4919
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4920
	int size = sizeof(struct mem_cgroup);
4921

4922
	/* Can be very big if MAX_NUMNODES is very big */
4923
	if (size < PAGE_SIZE)
4924
		mem = kzalloc(size, GFP_KERNEL);
4925
	else
4926
		mem = vzalloc(size);
4927

4928 4929 4930
	if (!mem)
		return NULL;

4931
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4932 4933
	if (!mem->stat)
		goto out_free;
4934
	spin_lock_init(&mem->pcp_counter_lock);
4935
	return mem;
4936 4937 4938 4939 4940 4941 4942

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4943 4944
}

4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4956
static void __mem_cgroup_free(struct mem_cgroup *mem)
4957
{
K
KAMEZAWA Hiroyuki 已提交
4958 4959
	int node;

4960
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4961 4962
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4963 4964 4965
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4966 4967
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4968 4969 4970 4971 4972
		kfree(mem);
	else
		vfree(mem);
}

4973 4974 4975 4976 4977
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4978
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4979
{
4980
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4981
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4982
		__mem_cgroup_free(mem);
4983 4984 4985
		if (parent)
			mem_cgroup_put(parent);
	}
4986 4987
}

4988 4989 4990 4991 4992
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4993 4994 4995 4996 4997 4998 4999 5000 5001
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
5002

5003 5004 5005
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
5006
	if (!mem_cgroup_disabled() && really_do_swap_account)
5007 5008 5009 5010 5011 5012 5013 5014
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
5040
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
5041 5042
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
5043
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
5044
	long error = -ENOMEM;
5045
	int node;
B
Balbir Singh 已提交
5046

5047 5048
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
5049
		return ERR_PTR(error);
5050

5051 5052 5053
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
5054

5055
	/* root ? */
5056
	if (cont->parent == NULL) {
5057
		int cpu;
5058
		enable_swap_cgroup();
5059
		parent = NULL;
5060
		root_mem_cgroup = mem;
5061 5062
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5063 5064 5065 5066 5067
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5068
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5069
	} else {
5070
		parent = mem_cgroup_from_cont(cont->parent);
5071
		mem->use_hierarchy = parent->use_hierarchy;
5072
		mem->oom_kill_disable = parent->oom_kill_disable;
5073
	}
5074

5075 5076 5077
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
5078 5079 5080 5081 5082 5083 5084
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5085 5086 5087 5088
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
5089
	mem->last_scanned_child = 0;
5090
	mem->last_scanned_node = MAX_NUMNODES;
K
KAMEZAWA Hiroyuki 已提交
5091
	INIT_LIST_HEAD(&mem->oom_notify);
5092

K
KOSAKI Motohiro 已提交
5093
	if (parent)
5094
		mem->swappiness = mem_cgroup_swappiness(parent);
5095
	atomic_set(&mem->refcnt, 1);
5096
	mem->move_charge_at_immigrate = 0;
5097
	mutex_init(&mem->thresholds_lock);
5098
	spin_lock_init(&mem->scanstat.lock);
B
Balbir Singh 已提交
5099
	return &mem->css;
5100
free_out:
5101
	__mem_cgroup_free(mem);
5102
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
5103
	return ERR_PTR(error);
B
Balbir Singh 已提交
5104 5105
}

5106
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5107 5108 5109
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5110 5111

	return mem_cgroup_force_empty(mem, false);
5112 5113
}

B
Balbir Singh 已提交
5114 5115 5116
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5117 5118 5119
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
5120 5121 5122 5123 5124
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5125 5126 5127 5128 5129 5130 5131 5132
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
5133 5134
}

5135
#ifdef CONFIG_MMU
5136
/* Handlers for move charge at task migration. */
5137 5138
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5139
{
5140 5141
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5142 5143
	struct mem_cgroup *mem = mc.to;

5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5179
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5180 5181 5182 5183 5184
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5185 5186 5187 5188 5189 5190 5191 5192
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5193
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5194 5195 5196 5197 5198 5199
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5200 5201 5202
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5203 5204 5205 5206 5207
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5208
	swp_entry_t	ent;
5209 5210 5211 5212 5213
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5214
	MC_TARGET_SWAP,
5215 5216
};

D
Daisuke Nishimura 已提交
5217 5218
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5219
{
D
Daisuke Nishimura 已提交
5220
	struct page *page = vm_normal_page(vma, addr, ptent);
5221

D
Daisuke Nishimura 已提交
5222 5223 5224 5225 5226 5227
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5228 5229
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5248 5249
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5250
		return NULL;
5251
	}
D
Daisuke Nishimura 已提交
5252 5253 5254 5255 5256 5257
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5279 5280 5281 5282 5283 5284
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5285
		if (do_swap_account)
5286 5287
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5288
	}
5289
#endif
5290 5291 5292
	return page;
}

D
Daisuke Nishimura 已提交
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5305 5306
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5307 5308 5309

	if (!page && !ent.val)
		return 0;
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5325 5326
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5327 5328 5329 5330
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5343 5344
	split_huge_page_pmd(walk->mm, pmd);

5345 5346 5347 5348 5349 5350 5351
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5352 5353 5354
	return 0;
}

5355 5356 5357 5358 5359
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5360
	down_read(&mm->mmap_sem);
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5372
	up_read(&mm->mmap_sem);
5373 5374 5375 5376 5377 5378 5379 5380 5381

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5382 5383 5384 5385 5386
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5387 5388
}

5389 5390
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5391
{
5392 5393 5394
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5395
	/* we must uncharge all the leftover precharges from mc.to */
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5407
	}
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5442
	spin_lock(&mc.lock);
5443 5444
	mc.from = NULL;
	mc.to = NULL;
5445
	spin_unlock(&mc.lock);
5446
	mem_cgroup_end_move(from);
5447 5448
}

5449 5450
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5451
				struct task_struct *p)
5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5466 5467 5468 5469
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5470
			VM_BUG_ON(mc.moved_charge);
5471
			VM_BUG_ON(mc.moved_swap);
5472
			mem_cgroup_start_move(from);
5473
			spin_lock(&mc.lock);
5474 5475
			mc.from = from;
			mc.to = mem;
5476
			spin_unlock(&mc.lock);
5477
			/* We set mc.moving_task later */
5478 5479 5480 5481

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5482 5483
		}
		mmput(mm);
5484 5485 5486 5487 5488 5489
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5490
				struct task_struct *p)
5491
{
5492
	mem_cgroup_clear_mc();
5493 5494
}

5495 5496 5497
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5498
{
5499 5500 5501 5502 5503
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5504
	split_huge_page_pmd(walk->mm, pmd);
5505 5506 5507 5508 5509 5510 5511 5512
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5513
		swp_entry_t ent;
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5525 5526
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5527
				mc.precharge--;
5528 5529
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5530 5531 5532 5533 5534
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5535 5536
		case MC_TARGET_SWAP:
			ent = target.ent;
5537 5538
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5539
				mc.precharge--;
5540 5541 5542
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5543
			break;
5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5558
		ret = mem_cgroup_do_precharge(1);
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5602
	up_read(&mm->mmap_sem);
5603 5604
}

B
Balbir Singh 已提交
5605 5606 5607
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5608
				struct task_struct *p)
B
Balbir Singh 已提交
5609
{
5610
	struct mm_struct *mm = get_task_mm(p);
5611 5612

	if (mm) {
5613 5614 5615
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5616 5617
		mmput(mm);
	}
5618 5619
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5620
}
5621 5622 5623
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5624
				struct task_struct *p)
5625 5626 5627 5628 5629
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5630
				struct task_struct *p)
5631 5632 5633 5634 5635
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5636
				struct task_struct *p)
5637 5638 5639
{
}
#endif
B
Balbir Singh 已提交
5640

B
Balbir Singh 已提交
5641 5642 5643 5644
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5645
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5646 5647
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5648 5649
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5650
	.attach = mem_cgroup_move_task,
5651
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5652
	.use_id = 1,
B
Balbir Singh 已提交
5653
};
5654 5655

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5656 5657 5658
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5659
	if (!strcmp(s, "1"))
5660
		really_do_swap_account = 1;
5661
	else if (!strcmp(s, "0"))
5662 5663 5664
		really_do_swap_account = 0;
	return 1;
}
5665
__setup("swapaccount=", enable_swap_account);
5666 5667

#endif