memcontrol.c 185.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
57
#include "internal.h"
G
Glauber Costa 已提交
58
#include <net/sock.h>
M
Michal Hocko 已提交
59
#include <net/ip.h>
G
Glauber Costa 已提交
60
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
61

62 63
#include <asm/uaccess.h>

64 65
#include <trace/events/vmscan.h>

66
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 68
EXPORT_SYMBOL(mem_cgroup_subsys);

69
#define MEM_CGROUP_RECLAIM_RETRIES	5
70
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
71

A
Andrew Morton 已提交
72
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
73
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74
int do_swap_account __read_mostly;
75 76

/* for remember boot option*/
A
Andrew Morton 已提交
77
#ifdef CONFIG_MEMCG_SWAP_ENABLED
78 79 80 81 82
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

83
#else
84
#define do_swap_account		0
85 86 87
#endif


88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
95 96 97 98 99
	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
100 101 102
	MEM_CGROUP_STAT_NSTATS,
};

103 104 105
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
106
	"rss_huge",
107 108 109 110
	"mapped_file",
	"swap",
};

111 112 113
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
114 115
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
116 117
	MEM_CGROUP_EVENTS_NSTATS,
};
118 119 120 121 122 123 124 125

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

126 127 128 129 130 131 132 133
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

134 135 136 137 138 139 140 141 142
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
143
	MEM_CGROUP_TARGET_NUMAINFO,
144 145
	MEM_CGROUP_NTARGETS,
};
146 147 148
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
149

150
struct mem_cgroup_stat_cpu {
151
	long count[MEM_CGROUP_STAT_NSTATS];
152
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153
	unsigned long nr_page_events;
154
	unsigned long targets[MEM_CGROUP_NTARGETS];
155 156
};

157
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
158 159 160 161
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
162
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
163 164
	unsigned long last_dead_count;

165 166 167 168
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

169 170 171 172
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
173
	struct lruvec		lruvec;
174
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
175

176 177
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

178 179 180 181
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
182
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
183
						/* use container_of	   */
184 185 186 187 188 189
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

210 211 212 213 214
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
215
/* For threshold */
216
struct mem_cgroup_threshold_ary {
217
	/* An array index points to threshold just below or equal to usage. */
218
	int current_threshold;
219 220 221 222 223
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
224 225 226 227 228 229 230 231 232 233 234 235

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
236 237 238 239 240
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
241

242 243
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
244

B
Balbir Singh 已提交
245 246 247 248 249 250 251
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
252 253 254
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
255 256 257 258 259 260 261
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
262

263 264 265
	/* vmpressure notifications */
	struct vmpressure vmpressure;

266 267 268 269
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
270

271 272 273 274
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
275 276 277 278
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
279
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
280 281 282 283

	bool		oom_lock;
	atomic_t	under_oom;

284
	int	swappiness;
285 286
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
287

288 289 290
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

291 292 293 294
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
295
	struct mem_cgroup_thresholds thresholds;
296

297
	/* thresholds for mem+swap usage. RCU-protected */
298
	struct mem_cgroup_thresholds memsw_thresholds;
299

K
KAMEZAWA Hiroyuki 已提交
300 301
	/* For oom notifier event fd */
	struct list_head oom_notify;
302

303 304 305 306 307
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
308 309 310 311
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
312 313
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
314
	/*
315
	 * percpu counter.
316
	 */
317
	struct mem_cgroup_stat_cpu __percpu *stat;
318 319 320 321 322 323
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
324

M
Michal Hocko 已提交
325
	atomic_t	dead_count;
M
Michal Hocko 已提交
326
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
327 328
	struct tcp_memcontrol tcp_mem;
#endif
329 330 331 332 333 334 335 336
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
337 338 339 340 341 342 343

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
344

345 346
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
347 348
};

349 350 351 352 353 354
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

355 356 357
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
358
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
359
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
360 361
};

362 363 364
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
365 366 367 368 369 370

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
371 372 373 374 375 376

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

377 378 379 380 381
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

382 383 384 385 386
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

387 388
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
389 390 391 392 393
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
394 395 396 397 398 399 400 401 402
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
403 404
#endif

405 406
/* Stuffs for move charges at task migration. */
/*
407 408
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
409 410
 */
enum move_type {
411
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
412
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
413 414 415
	NR_MOVE_TYPE,
};

416 417
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
418
	spinlock_t	  lock; /* for from, to */
419 420
	struct mem_cgroup *from;
	struct mem_cgroup *to;
421
	unsigned long immigrate_flags;
422
	unsigned long precharge;
423
	unsigned long moved_charge;
424
	unsigned long moved_swap;
425 426 427
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
428
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
429 430
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
431

D
Daisuke Nishimura 已提交
432 433
static bool move_anon(void)
{
434
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
435 436
}

437 438
static bool move_file(void)
{
439
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
440 441
}

442 443 444 445
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
446 447
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
448

449 450
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
451
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
452
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
453
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
454 455 456
	NR_CHARGE_TYPE,
};

457
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
458 459 460 461
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
462
	_KMEM,
G
Glauber Costa 已提交
463 464
};

465 466
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
467
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
468 469
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
470

471 472 473 474 475 476 477 478
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

479 480 481 482 483 484 485
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

486 487
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
488
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
489 490
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

509 510 511 512 513
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
514
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
515
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
516 517 518

void sock_update_memcg(struct sock *sk)
{
519
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
520
		struct mem_cgroup *memcg;
521
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
522 523 524

		BUG_ON(!sk->sk_prot->proto_cgroup);

525 526 527 528 529 530 531 532 533 534
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
535
			css_get(&sk->sk_cgrp->memcg->css);
536 537 538
			return;
		}

G
Glauber Costa 已提交
539 540
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
541
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
542 543
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
544
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
545 546 547 548 549 550 551 552
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
553
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
554 555 556
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
557
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
558 559
	}
}
G
Glauber Costa 已提交
560 561 562 563 564 565 566 567 568

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
569

570 571 572 573 574 575 576 577 578 579 580 581
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

582
#ifdef CONFIG_MEMCG_KMEM
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
601 602
int memcg_limited_groups_array_size;

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

618 619 620 621 622 623
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
624
struct static_key memcg_kmem_enabled_key;
625
EXPORT_SYMBOL(memcg_kmem_enabled_key);
626 627 628

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
629
	if (memcg_kmem_is_active(memcg)) {
630
		static_key_slow_dec(&memcg_kmem_enabled_key);
631 632
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
633 634 635 636 637
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
638 639 640 641 642 643 644 645 646 647 648 649 650
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

651
static void drain_all_stock_async(struct mem_cgroup *memcg);
652

653
static struct mem_cgroup_per_zone *
654
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
655
{
656
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
657
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
658 659
}

660
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
661
{
662
	return &memcg->css;
663 664
}

665
static struct mem_cgroup_per_zone *
666
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
667
{
668 669
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
670

671
	return mem_cgroup_zoneinfo(memcg, nid, zid);
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
690
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
691
				struct mem_cgroup_per_zone *mz,
692 693
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
694 695 696 697 698 699 700 701
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

702 703 704
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
721 722 723
}

static void
724
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
725 726 727 728 729 730 731 732 733
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

734
static void
735
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
736 737 738 739
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
740
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
741 742 743 744
	spin_unlock(&mctz->lock);
}


745
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
746
{
747
	unsigned long long excess;
748 749
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
750 751
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
752 753 754
	mctz = soft_limit_tree_from_page(page);

	/*
755 756
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
757
	 */
758 759 760
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
761 762 763 764
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
765
		if (excess || mz->on_tree) {
766 767 768
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
769
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
770
			/*
771 772
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
773
			 */
774
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
775 776
			spin_unlock(&mctz->lock);
		}
777 778 779
	}
}

780
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
781 782 783 784 785
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
786
	for_each_node(node) {
787
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
788
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
789
			mctz = soft_limit_tree_node_zone(node, zone);
790
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
791 792 793 794
		}
	}
}

795 796 797 798
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
799
	struct mem_cgroup_per_zone *mz;
800 801

retry:
802
	mz = NULL;
803 804 805 806 807 808 809 810 811 812
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
813 814 815
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
851
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
852
				 enum mem_cgroup_stat_index idx)
853
{
854
	long val = 0;
855 856
	int cpu;

857 858
	get_online_cpus();
	for_each_online_cpu(cpu)
859
		val += per_cpu(memcg->stat->count[idx], cpu);
860
#ifdef CONFIG_HOTPLUG_CPU
861 862 863
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
864 865
#endif
	put_online_cpus();
866 867 868
	return val;
}

869
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
870 871 872
					 bool charge)
{
	int val = (charge) ? 1 : -1;
873
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
874 875
}

876
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
877 878 879 880 881 882
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
883
		val += per_cpu(memcg->stat->events[idx], cpu);
884
#ifdef CONFIG_HOTPLUG_CPU
885 886 887
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
888 889 890 891
#endif
	return val;
}

892
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
893
					 struct page *page,
894
					 bool anon, int nr_pages)
895
{
896 897
	preempt_disable();

898 899 900 901 902 903
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
904
				nr_pages);
905
	else
906
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
907
				nr_pages);
908

909 910 911 912
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

913 914
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
915
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
916
	else {
917
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
918 919
		nr_pages = -nr_pages; /* for event */
	}
920

921
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
922

923
	preempt_enable();
924 925
}

926
unsigned long
927
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
928 929 930 931 932 933 934 935
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
936
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
937
			unsigned int lru_mask)
938 939
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
940
	enum lru_list lru;
941 942
	unsigned long ret = 0;

943
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
944

H
Hugh Dickins 已提交
945 946 947
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
948 949 950 951 952
	}
	return ret;
}

static unsigned long
953
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
954 955
			int nid, unsigned int lru_mask)
{
956 957 958
	u64 total = 0;
	int zid;

959
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
960 961
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
962

963 964
	return total;
}
965

966
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
967
			unsigned int lru_mask)
968
{
969
	int nid;
970 971
	u64 total = 0;

972
	for_each_node_state(nid, N_MEMORY)
973
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
974
	return total;
975 976
}

977 978
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
979 980 981
{
	unsigned long val, next;

982
	val = __this_cpu_read(memcg->stat->nr_page_events);
983
	next = __this_cpu_read(memcg->stat->targets[target]);
984
	/* from time_after() in jiffies.h */
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1001
	}
1002
	return false;
1003 1004 1005 1006 1007 1008
}

/*
 * Check events in order.
 *
 */
1009
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1010
{
1011
	preempt_disable();
1012
	/* threshold event is triggered in finer grain than soft limit */
1013 1014
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1015 1016
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
1017 1018 1019 1020 1021 1022 1023 1024 1025

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1026
		mem_cgroup_threshold(memcg);
1027
		if (unlikely(do_softlimit))
1028
			mem_cgroup_update_tree(memcg, page);
1029
#if MAX_NUMNODES > 1
1030
		if (unlikely(do_numainfo))
1031
			atomic_inc(&memcg->numainfo_events);
1032
#endif
1033 1034
	} else
		preempt_enable();
1035 1036
}

1037
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1038
{
1039 1040 1041 1042 1043 1044 1045 1046
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1047
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1048 1049
}

1050
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1051
{
1052
	struct mem_cgroup *memcg = NULL;
1053 1054 1055

	if (!mm)
		return NULL;
1056 1057 1058 1059 1060 1061 1062
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1063 1064
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1065
			break;
1066
	} while (!css_tryget(&memcg->css));
1067
	rcu_read_unlock();
1068
	return memcg;
1069 1070
}

1071 1072 1073 1074 1075 1076 1077 1078 1079
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
		struct mem_cgroup *last_visited)
{
1080
	struct cgroup_subsys_state *prev_css, *next_css;
1081

1082
	prev_css = last_visited ? &last_visited->css : NULL;
1083
skip_node:
1084
	next_css = css_next_descendant_pre(prev_css, &root->css);
1085 1086 1087 1088 1089 1090 1091 1092

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
1093 1094 1095
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

1096 1097 1098
		if (css_tryget(&mem->css))
			return mem;
		else {
1099
			prev_css = next_css;
1100 1101 1102 1103 1104 1105 1106
			goto skip_node;
		}
	}

	return NULL;
}

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1179
{
1180
	struct mem_cgroup *memcg = NULL;
1181
	struct mem_cgroup *last_visited = NULL;
1182

1183 1184 1185
	if (mem_cgroup_disabled())
		return NULL;

1186 1187
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1188

1189
	if (prev && !reclaim)
1190
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1191

1192 1193
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1194
			goto out_css_put;
1195 1196
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1197

1198
	rcu_read_lock();
1199
	while (!memcg) {
1200
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1201
		int uninitialized_var(seq);
1202

1203 1204 1205 1206 1207 1208 1209
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1210
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1211
				iter->last_visited = NULL;
1212 1213
				goto out_unlock;
			}
M
Michal Hocko 已提交
1214

1215
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1216
		}
K
KAMEZAWA Hiroyuki 已提交
1217

1218
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1219

1220
		if (reclaim) {
1221
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1222

M
Michal Hocko 已提交
1223
			if (!memcg)
1224 1225 1226 1227
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1228

M
Michal Hocko 已提交
1229
		if (prev && !memcg)
1230
			goto out_unlock;
1231
	}
1232 1233
out_unlock:
	rcu_read_unlock();
1234 1235 1236 1237
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1238
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1239
}
K
KAMEZAWA Hiroyuki 已提交
1240

1241 1242 1243 1244 1245 1246 1247
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1248 1249 1250 1251 1252 1253
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1254

1255 1256 1257 1258 1259 1260
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1261
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1262
	     iter != NULL;				\
1263
	     iter = mem_cgroup_iter(root, iter, NULL))
1264

1265
#define for_each_mem_cgroup(iter)			\
1266
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1267
	     iter != NULL;				\
1268
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1269

1270
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1271
{
1272
	struct mem_cgroup *memcg;
1273 1274

	rcu_read_lock();
1275 1276
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1277 1278 1279 1280
		goto out;

	switch (idx) {
	case PGFAULT:
1281 1282 1283 1284
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1285 1286 1287 1288 1289 1290 1291
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1292
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1293

1294 1295 1296
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1297
 * @memcg: memcg of the wanted lruvec
1298 1299 1300 1301 1302 1303 1304 1305 1306
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1307
	struct lruvec *lruvec;
1308

1309 1310 1311 1312
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1313 1314

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1325 1326
}

K
KAMEZAWA Hiroyuki 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1340

1341
/**
1342
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1343
 * @page: the page
1344
 * @zone: zone of the page
1345
 */
1346
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1347 1348
{
	struct mem_cgroup_per_zone *mz;
1349 1350
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1351
	struct lruvec *lruvec;
1352

1353 1354 1355 1356
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1357

K
KAMEZAWA Hiroyuki 已提交
1358
	pc = lookup_page_cgroup(page);
1359
	memcg = pc->mem_cgroup;
1360 1361

	/*
1362
	 * Surreptitiously switch any uncharged offlist page to root:
1363 1364 1365 1366 1367 1368 1369
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1370
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1371 1372
		pc->mem_cgroup = memcg = root_mem_cgroup;

1373
	mz = page_cgroup_zoneinfo(memcg, page);
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1384
}
1385

1386
/**
1387 1388 1389 1390
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1391
 *
1392 1393
 * This function must be called when a page is added to or removed from an
 * lru list.
1394
 */
1395 1396
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1397 1398
{
	struct mem_cgroup_per_zone *mz;
1399
	unsigned long *lru_size;
1400 1401 1402 1403

	if (mem_cgroup_disabled())
		return;

1404 1405 1406 1407
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1408
}
1409

1410
/*
1411
 * Checks whether given mem is same or in the root_mem_cgroup's
1412 1413
 * hierarchy subtree
 */
1414 1415
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1416
{
1417 1418
	if (root_memcg == memcg)
		return true;
1419
	if (!root_memcg->use_hierarchy || !memcg)
1420
		return false;
1421 1422 1423 1424 1425 1426 1427 1428
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1429
	rcu_read_lock();
1430
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1431 1432
	rcu_read_unlock();
	return ret;
1433 1434
}

1435 1436
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1437
{
1438
	struct mem_cgroup *curr = NULL;
1439
	struct task_struct *p;
1440
	bool ret;
1441

1442
	p = find_lock_task_mm(task);
1443 1444 1445 1446 1447 1448 1449 1450 1451
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1452
		rcu_read_lock();
1453 1454 1455
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1456
		rcu_read_unlock();
1457
	}
1458
	if (!curr)
1459
		return false;
1460
	/*
1461
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1462
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1463 1464
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1465
	 */
1466
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1467
	css_put(&curr->css);
1468 1469 1470
	return ret;
}

1471
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1472
{
1473
	unsigned long inactive_ratio;
1474
	unsigned long inactive;
1475
	unsigned long active;
1476
	unsigned long gb;
1477

1478 1479
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1480

1481 1482 1483 1484 1485 1486
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1487
	return inactive * inactive_ratio < active;
1488 1489
}

1490 1491 1492
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1493
/**
1494
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1495
 * @memcg: the memory cgroup
1496
 *
1497
 * Returns the maximum amount of memory @mem can be charged with, in
1498
 * pages.
1499
 */
1500
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1501
{
1502 1503
	unsigned long long margin;

1504
	margin = res_counter_margin(&memcg->res);
1505
	if (do_swap_account)
1506
		margin = min(margin, res_counter_margin(&memcg->memsw));
1507
	return margin >> PAGE_SHIFT;
1508 1509
}

1510
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1511 1512
{
	/* root ? */
T
Tejun Heo 已提交
1513
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1514 1515
		return vm_swappiness;

1516
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1517 1518
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1533 1534 1535 1536

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1537
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1538
{
1539
	atomic_inc(&memcg_moving);
1540
	atomic_inc(&memcg->moving_account);
1541 1542 1543
	synchronize_rcu();
}

1544
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1545
{
1546 1547 1548 1549
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1550 1551
	if (memcg) {
		atomic_dec(&memcg_moving);
1552
		atomic_dec(&memcg->moving_account);
1553
	}
1554
}
1555

1556 1557 1558
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1559 1560
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1561 1562 1563 1564 1565 1566 1567
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1568
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1569 1570
{
	VM_BUG_ON(!rcu_read_lock_held());
1571
	return atomic_read(&memcg->moving_account) > 0;
1572
}
1573

1574
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1575
{
1576 1577
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1578
	bool ret = false;
1579 1580 1581 1582 1583 1584 1585 1586 1587
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1588

1589 1590
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1591 1592
unlock:
	spin_unlock(&mc.lock);
1593 1594 1595
	return ret;
}

1596
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1597 1598
{
	if (mc.moving_task && current != mc.moving_task) {
1599
		if (mem_cgroup_under_move(memcg)) {
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1612 1613 1614 1615
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1616
 * see mem_cgroup_stolen(), too.
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1630
#define K(x) ((x) << (PAGE_SHIFT-10))
1631
/**
1632
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1650 1651
	struct mem_cgroup *iter;
	unsigned int i;
1652

1653
	if (!p)
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1672
	pr_info("Task in %s killed", memcg_name);
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1685
	pr_cont(" as a result of limit of %s\n", memcg_name);
1686 1687
done:

1688
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1689 1690 1691
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1692
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1693 1694 1695
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1696
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1697 1698 1699
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1724 1725
}

1726 1727 1728 1729
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1730
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1731 1732
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1733 1734
	struct mem_cgroup *iter;

1735
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1736
		num++;
1737 1738 1739
	return num;
}

D
David Rientjes 已提交
1740 1741 1742
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1743
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1744 1745 1746
{
	u64 limit;

1747 1748
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1749
	/*
1750
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1751
	 */
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1766 1767
}

1768 1769
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1770 1771 1772 1773 1774 1775 1776
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1777
	/*
1778 1779 1780
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1781
	 */
1782
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1783 1784 1785 1786 1787
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1788 1789
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1790
		struct css_task_iter it;
1791 1792
		struct task_struct *task;

1793 1794
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1807
				css_task_iter_end(&it);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1824
		css_task_iter_end(&it);
1825 1826 1827 1828 1829 1830 1831 1832 1833
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1870 1871
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1872
 * @memcg: the target memcg
1873 1874 1875 1876 1877 1878 1879
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1880
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1881 1882
		int nid, bool noswap)
{
1883
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1884 1885 1886
		return true;
	if (noswap || !total_swap_pages)
		return false;
1887
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1888 1889 1890 1891
		return true;
	return false;

}
1892 1893 1894 1895 1896 1897 1898 1899
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1900
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1901 1902
{
	int nid;
1903 1904 1905 1906
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1907
	if (!atomic_read(&memcg->numainfo_events))
1908
		return;
1909
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1910 1911 1912
		return;

	/* make a nodemask where this memcg uses memory from */
1913
	memcg->scan_nodes = node_states[N_MEMORY];
1914

1915
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1916

1917 1918
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1919
	}
1920

1921 1922
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1937
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1938 1939 1940
{
	int node;

1941 1942
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1943

1944
	node = next_node(node, memcg->scan_nodes);
1945
	if (node == MAX_NUMNODES)
1946
		node = first_node(memcg->scan_nodes);
1947 1948 1949 1950 1951 1952 1953 1954 1955
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1956
	memcg->last_scanned_node = node;
1957 1958 1959
	return node;
}

1960 1961 1962 1963 1964 1965
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1966
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1967 1968 1969 1970 1971 1972 1973
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1974 1975
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1976
		     nid < MAX_NUMNODES;
1977
		     nid = next_node(nid, memcg->scan_nodes)) {
1978

1979
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1980 1981 1982 1983 1984 1985
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1986
	for_each_node_state(nid, N_MEMORY) {
1987
		if (node_isset(nid, memcg->scan_nodes))
1988
			continue;
1989
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1990 1991 1992 1993 1994
			return true;
	}
	return false;
}

1995
#else
1996
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1997 1998 1999
{
	return 0;
}
2000

2001
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2002
{
2003
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2004
}
2005 2006
#endif

2007 2008 2009 2010
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
2011
{
2012
	struct mem_cgroup *victim = NULL;
2013
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
2014
	int loop = 0;
2015
	unsigned long excess;
2016
	unsigned long nr_scanned;
2017 2018 2019 2020
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
2021

2022
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
2023

2024
	while (1) {
2025
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2026
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
2027
			loop++;
2028 2029 2030 2031 2032 2033
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
2034
				if (!total)
2035 2036
					break;
				/*
L
Lucas De Marchi 已提交
2037
				 * We want to do more targeted reclaim.
2038 2039 2040 2041 2042
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
2043
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2044 2045
					break;
			}
2046
			continue;
2047
		}
2048
		if (!mem_cgroup_reclaimable(victim, false))
2049
			continue;
2050 2051 2052 2053
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
2054
			break;
2055
	}
2056
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
2057
	return total;
2058 2059
}

K
KAMEZAWA Hiroyuki 已提交
2060 2061 2062
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
2063
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
2064
 */
2065
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2066
{
2067
	struct mem_cgroup *iter, *failed = NULL;
2068

2069
	for_each_mem_cgroup_tree(iter, memcg) {
2070
		if (iter->oom_lock) {
2071 2072 2073 2074 2075
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2076 2077
			mem_cgroup_iter_break(memcg, iter);
			break;
2078 2079
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2080
	}
K
KAMEZAWA Hiroyuki 已提交
2081

2082
	if (!failed)
2083
		return true;
2084 2085 2086 2087 2088

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
2089
	for_each_mem_cgroup_tree(iter, memcg) {
2090
		if (iter == failed) {
2091 2092
			mem_cgroup_iter_break(memcg, iter);
			break;
2093 2094 2095
		}
		iter->oom_lock = false;
	}
2096
	return false;
2097
}
2098

2099
/*
2100
 * Has to be called with memcg_oom_lock
2101
 */
2102
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2103
{
K
KAMEZAWA Hiroyuki 已提交
2104 2105
	struct mem_cgroup *iter;

2106
	for_each_mem_cgroup_tree(iter, memcg)
2107 2108 2109 2110
		iter->oom_lock = false;
	return 0;
}

2111
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2112 2113 2114
{
	struct mem_cgroup *iter;

2115
	for_each_mem_cgroup_tree(iter, memcg)
2116 2117 2118
		atomic_inc(&iter->under_oom);
}

2119
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2120 2121 2122
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2123 2124 2125 2126 2127
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2128
	for_each_mem_cgroup_tree(iter, memcg)
2129
		atomic_add_unless(&iter->under_oom, -1, 0);
2130 2131
}

2132
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2133 2134
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2135
struct oom_wait_info {
2136
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2137 2138 2139 2140 2141 2142
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2143 2144
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2145 2146 2147
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2148
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2149 2150

	/*
2151
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2152 2153
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2154 2155
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2156 2157 2158 2159
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2160
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2161
{
2162 2163
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2164 2165
}

2166
static void memcg_oom_recover(struct mem_cgroup *memcg)
2167
{
2168 2169
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2170 2171
}

K
KAMEZAWA Hiroyuki 已提交
2172 2173 2174
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2175 2176
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2177
{
K
KAMEZAWA Hiroyuki 已提交
2178
	struct oom_wait_info owait;
2179
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2180

2181
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2182 2183 2184 2185
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2186
	need_to_kill = true;
2187
	mem_cgroup_mark_under_oom(memcg);
2188

2189
	/* At first, try to OOM lock hierarchy under memcg.*/
2190
	spin_lock(&memcg_oom_lock);
2191
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2192 2193 2194 2195 2196
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2197
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2198
	if (!locked || memcg->oom_kill_disable)
2199 2200
		need_to_kill = false;
	if (locked)
2201
		mem_cgroup_oom_notify(memcg);
2202
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2203

2204 2205
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2206
		mem_cgroup_out_of_memory(memcg, mask, order);
2207
	} else {
K
KAMEZAWA Hiroyuki 已提交
2208
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2209
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2210
	}
2211
	spin_lock(&memcg_oom_lock);
2212
	if (locked)
2213 2214
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2215
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2216

2217
	mem_cgroup_unmark_under_oom(memcg);
2218

K
KAMEZAWA Hiroyuki 已提交
2219 2220 2221
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2222
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2223
	return true;
2224 2225
}

2226 2227 2228
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2246 2247
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2248
 */
2249

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2263
	 * need to take move_lock_mem_cgroup(). Because we already hold
2264
	 * rcu_read_lock(), any calls to move_account will be delayed until
2265
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2266
	 */
2267
	if (!mem_cgroup_stolen(memcg))
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2285
	 * should take move_lock_mem_cgroup().
2286 2287 2288 2289
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2290 2291
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2292
{
2293
	struct mem_cgroup *memcg;
2294
	struct page_cgroup *pc = lookup_page_cgroup(page);
2295
	unsigned long uninitialized_var(flags);
2296

2297
	if (mem_cgroup_disabled())
2298
		return;
2299

2300 2301
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2302
		return;
2303 2304

	switch (idx) {
2305 2306
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2307 2308 2309
		break;
	default:
		BUG();
2310
	}
2311

2312
	this_cpu_add(memcg->stat->count[idx], val);
2313
}
2314

2315 2316 2317 2318
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2319
#define CHARGE_BATCH	32U
2320 2321
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2322
	unsigned int nr_pages;
2323
	struct work_struct work;
2324
	unsigned long flags;
2325
#define FLUSHING_CACHED_CHARGE	0
2326 2327
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2328
static DEFINE_MUTEX(percpu_charge_mutex);
2329

2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2340
 */
2341
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2342 2343 2344 2345
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2346 2347 2348
	if (nr_pages > CHARGE_BATCH)
		return false;

2349
	stock = &get_cpu_var(memcg_stock);
2350 2351
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2365 2366 2367 2368
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2369
		if (do_swap_account)
2370 2371
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2384
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2385 2386
}

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2398 2399
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2400
 * This will be consumed by consume_stock() function, later.
2401
 */
2402
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2403 2404 2405
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2406
	if (stock->cached != memcg) { /* reset if necessary */
2407
		drain_stock(stock);
2408
		stock->cached = memcg;
2409
	}
2410
	stock->nr_pages += nr_pages;
2411 2412 2413 2414
	put_cpu_var(memcg_stock);
}

/*
2415
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2416 2417
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2418
 */
2419
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2420
{
2421
	int cpu, curcpu;
2422

2423 2424
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2425
	curcpu = get_cpu();
2426 2427
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2428
		struct mem_cgroup *memcg;
2429

2430 2431
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2432
			continue;
2433
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2434
			continue;
2435 2436 2437 2438 2439 2440
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2441
	}
2442
	put_cpu();
2443 2444 2445 2446 2447 2448

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2449
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2450 2451 2452
			flush_work(&stock->work);
	}
out:
2453
 	put_online_cpus();
2454 2455 2456 2457 2458 2459 2460 2461
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2462
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2463
{
2464 2465 2466 2467 2468
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2469
	drain_all_stock(root_memcg, false);
2470
	mutex_unlock(&percpu_charge_mutex);
2471 2472 2473
}

/* This is a synchronous drain interface. */
2474
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2475 2476
{
	/* called when force_empty is called */
2477
	mutex_lock(&percpu_charge_mutex);
2478
	drain_all_stock(root_memcg, true);
2479
	mutex_unlock(&percpu_charge_mutex);
2480 2481
}

2482 2483 2484 2485
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2486
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2487 2488 2489
{
	int i;

2490
	spin_lock(&memcg->pcp_counter_lock);
2491
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2492
		long x = per_cpu(memcg->stat->count[i], cpu);
2493

2494 2495
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2496
	}
2497
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2498
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2499

2500 2501
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2502
	}
2503
	spin_unlock(&memcg->pcp_counter_lock);
2504 2505
}

2506
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2507 2508 2509 2510 2511
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2512
	struct mem_cgroup *iter;
2513

2514
	if (action == CPU_ONLINE)
2515 2516
		return NOTIFY_OK;

2517
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2518
		return NOTIFY_OK;
2519

2520
	for_each_mem_cgroup(iter)
2521 2522
		mem_cgroup_drain_pcp_counter(iter, cpu);

2523 2524 2525 2526 2527
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2538
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2539 2540
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2541
{
2542
	unsigned long csize = nr_pages * PAGE_SIZE;
2543 2544 2545 2546 2547
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2548
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2549 2550 2551 2552

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2553
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2554 2555 2556
		if (likely(!ret))
			return CHARGE_OK;

2557
		res_counter_uncharge(&memcg->res, csize);
2558 2559 2560 2561
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2562 2563 2564 2565
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2566
	if (nr_pages > min_pages)
2567 2568 2569 2570 2571
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2572 2573 2574
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2575
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2576
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2577
		return CHARGE_RETRY;
2578
	/*
2579 2580 2581 2582 2583 2584 2585
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2586
	 */
2587
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2601
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2602 2603 2604 2605 2606
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2607
/*
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2627
 */
2628
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2629
				   gfp_t gfp_mask,
2630
				   unsigned int nr_pages,
2631
				   struct mem_cgroup **ptr,
2632
				   bool oom)
2633
{
2634
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2635
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2636
	struct mem_cgroup *memcg = NULL;
2637
	int ret;
2638

K
KAMEZAWA Hiroyuki 已提交
2639 2640 2641 2642 2643 2644 2645 2646
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2647

2648
	/*
2649 2650
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2651
	 * thread group leader migrates. It's possible that mm is not
2652
	 * set, if so charge the root memcg (happens for pagecache usage).
2653
	 */
2654
	if (!*ptr && !mm)
2655
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2656
again:
2657 2658 2659
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2660
			goto done;
2661
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2662
			goto done;
2663
		css_get(&memcg->css);
2664
	} else {
K
KAMEZAWA Hiroyuki 已提交
2665
		struct task_struct *p;
2666

K
KAMEZAWA Hiroyuki 已提交
2667 2668 2669
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2670
		 * Because we don't have task_lock(), "p" can exit.
2671
		 * In that case, "memcg" can point to root or p can be NULL with
2672 2673 2674 2675 2676 2677
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2678
		 */
2679
		memcg = mem_cgroup_from_task(p);
2680 2681 2682
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2683 2684 2685
			rcu_read_unlock();
			goto done;
		}
2686
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2699
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2700 2701 2702 2703 2704
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2705

2706 2707
	do {
		bool oom_check;
2708

2709
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2710
		if (fatal_signal_pending(current)) {
2711
			css_put(&memcg->css);
2712
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2713
		}
2714

2715 2716 2717 2718
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2719
		}
2720

2721 2722
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2723 2724 2725 2726
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2727
			batch = nr_pages;
2728 2729
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2730
			goto again;
2731
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2732
			css_put(&memcg->css);
2733 2734
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2735
			if (!oom) {
2736
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2737
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2738
			}
2739 2740 2741 2742
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2743
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2744
			goto bypass;
2745
		}
2746 2747
	} while (ret != CHARGE_OK);

2748
	if (batch > nr_pages)
2749 2750
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2751
done:
2752
	*ptr = memcg;
2753 2754
	return 0;
nomem:
2755
	*ptr = NULL;
2756
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2757
bypass:
2758 2759
	*ptr = root_mem_cgroup;
	return -EINTR;
2760
}
2761

2762 2763 2764 2765 2766
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2767
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2768
				       unsigned int nr_pages)
2769
{
2770
	if (!mem_cgroup_is_root(memcg)) {
2771 2772
		unsigned long bytes = nr_pages * PAGE_SIZE;

2773
		res_counter_uncharge(&memcg->res, bytes);
2774
		if (do_swap_account)
2775
			res_counter_uncharge(&memcg->memsw, bytes);
2776
	}
2777 2778
}

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2797 2798
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2799 2800 2801
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2813
	return mem_cgroup_from_css(css);
2814 2815
}

2816
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2817
{
2818
	struct mem_cgroup *memcg = NULL;
2819
	struct page_cgroup *pc;
2820
	unsigned short id;
2821 2822
	swp_entry_t ent;

2823 2824 2825
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2826
	lock_page_cgroup(pc);
2827
	if (PageCgroupUsed(pc)) {
2828 2829 2830
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2831
	} else if (PageSwapCache(page)) {
2832
		ent.val = page_private(page);
2833
		id = lookup_swap_cgroup_id(ent);
2834
		rcu_read_lock();
2835 2836 2837
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2838
		rcu_read_unlock();
2839
	}
2840
	unlock_page_cgroup(pc);
2841
	return memcg;
2842 2843
}

2844
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2845
				       struct page *page,
2846
				       unsigned int nr_pages,
2847 2848
				       enum charge_type ctype,
				       bool lrucare)
2849
{
2850
	struct page_cgroup *pc = lookup_page_cgroup(page);
2851
	struct zone *uninitialized_var(zone);
2852
	struct lruvec *lruvec;
2853
	bool was_on_lru = false;
2854
	bool anon;
2855

2856
	lock_page_cgroup(pc);
2857
	VM_BUG_ON(PageCgroupUsed(pc));
2858 2859 2860 2861
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2862 2863 2864 2865 2866 2867 2868 2869 2870

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2871
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2872
			ClearPageLRU(page);
2873
			del_page_from_lru_list(page, lruvec, page_lru(page));
2874 2875 2876 2877
			was_on_lru = true;
		}
	}

2878
	pc->mem_cgroup = memcg;
2879 2880 2881 2882 2883 2884 2885
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2886
	smp_wmb();
2887
	SetPageCgroupUsed(pc);
2888

2889 2890
	if (lrucare) {
		if (was_on_lru) {
2891
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2892 2893
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2894
			add_page_to_lru_list(page, lruvec, page_lru(page));
2895 2896 2897 2898
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2899
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2900 2901 2902 2903
		anon = true;
	else
		anon = false;

2904
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2905
	unlock_page_cgroup(pc);
2906

2907 2908 2909 2910 2911
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2912
	memcg_check_events(memcg, page);
2913
}
2914

2915 2916
static DEFINE_MUTEX(set_limit_mutex);

2917 2918 2919 2920 2921 2922 2923
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2937
#ifdef CONFIG_SLABINFO
2938 2939
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2940
{
2941
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3011 3012 3013 3014 3015

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3016 3017 3018 3019 3020 3021 3022 3023
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3024
	if (memcg_kmem_test_and_clear_dead(memcg))
3025
		css_put(&memcg->css);
3026 3027
}

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3111 3112
static void kmem_cache_destroy_work_func(struct work_struct *w);

3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3164 3165
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3166 3167 3168 3169 3170 3171
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

3172 3173 3174
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

3175 3176 3177 3178
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3179
	if (memcg) {
3180
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3181
		s->memcg_params->root_cache = root_cache;
3182 3183
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3184 3185 3186
	} else
		s->memcg_params->is_root_cache = true;

3187 3188 3189 3190 3191
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3216
	css_put(&memcg->css);
3217
out:
3218 3219 3220
	kfree(s->memcg_params);
}

3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3252 3253 3254 3255 3256 3257 3258 3259 3260
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3282 3283 3284 3285 3286 3287 3288 3289
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3310 3311 3312 3313 3314 3315 3316
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3317 3318 3319 3320 3321 3322 3323 3324 3325
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3326

3327 3328 3329
/*
 * Called with memcg_cache_mutex held
 */
3330 3331 3332 3333
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3334
	static char *tmp_name = NULL;
3335

3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3354

3355
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3356
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3357

3358 3359 3360
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3376 3377
	if (new_cachep) {
		css_put(&memcg->css);
3378
		goto out;
3379
	}
3380 3381 3382 3383

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3384
		css_put(&memcg->css);
3385 3386 3387
		goto out;
	}

G
Glauber Costa 已提交
3388
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3440
		cancel_work_sync(&c->memcg_params->destroy);
3441 3442 3443 3444 3445
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3446 3447 3448 3449 3450 3451
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3481 3482
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3483 3484 3485 3486
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3487 3488
	if (cw == NULL) {
		css_put(&memcg->css);
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3539 3540 3541
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3542 3543 3544 3545
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3546
		goto out;
3547 3548 3549 3550 3551 3552 3553 3554

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3555 3556 3557
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3558 3559
	}

3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3587 3588 3589
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
	 * 	memcg_stop_kmem_account();
	 * 	kmalloc(<large_number>)
	 * 	memcg_resume_kmem_account();
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3713 3714 3715 3716
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3717 3718
#endif /* CONFIG_MEMCG_KMEM */

3719 3720
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3721
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3722 3723
/*
 * Because tail pages are not marked as "used", set it. We're under
3724 3725 3726
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3727
 */
3728
void mem_cgroup_split_huge_fixup(struct page *head)
3729 3730
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3731
	struct page_cgroup *pc;
3732
	struct mem_cgroup *memcg;
3733
	int i;
3734

3735 3736
	if (mem_cgroup_disabled())
		return;
3737 3738

	memcg = head_pc->mem_cgroup;
3739 3740
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3741
		pc->mem_cgroup = memcg;
3742 3743 3744
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3745 3746
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3747
}
3748
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3749

3750
/**
3751
 * mem_cgroup_move_account - move account of the page
3752
 * @page: the page
3753
 * @nr_pages: number of regular pages (>1 for huge pages)
3754 3755 3756 3757 3758
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3759
 * - page is not on LRU (isolate_page() is useful.)
3760
 * - compound_lock is held when nr_pages > 1
3761
 *
3762 3763
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3764
 */
3765 3766 3767 3768
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3769
				   struct mem_cgroup *to)
3770
{
3771 3772
	unsigned long flags;
	int ret;
3773
	bool anon = PageAnon(page);
3774

3775
	VM_BUG_ON(from == to);
3776
	VM_BUG_ON(PageLRU(page));
3777 3778 3779 3780 3781 3782 3783
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3784
	if (nr_pages > 1 && !PageTransHuge(page))
3785 3786 3787 3788 3789 3790 3791 3792
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3793
	move_lock_mem_cgroup(from, &flags);
3794

3795
	if (!anon && page_mapped(page)) {
3796 3797 3798 3799 3800
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3801
	}
3802
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3803

3804
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3805
	pc->mem_cgroup = to;
3806
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3807
	move_unlock_mem_cgroup(from, &flags);
3808 3809
	ret = 0;
unlock:
3810
	unlock_page_cgroup(pc);
3811 3812 3813
	/*
	 * check events
	 */
3814 3815
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3816
out:
3817 3818 3819
	return ret;
}

3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3840
 */
3841 3842
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3843
				  struct mem_cgroup *child)
3844 3845
{
	struct mem_cgroup *parent;
3846
	unsigned int nr_pages;
3847
	unsigned long uninitialized_var(flags);
3848 3849
	int ret;

3850
	VM_BUG_ON(mem_cgroup_is_root(child));
3851

3852 3853 3854 3855 3856
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3857

3858
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3859

3860 3861 3862 3863 3864 3865
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3866

3867 3868
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3869
		flags = compound_lock_irqsave(page);
3870
	}
3871

3872
	ret = mem_cgroup_move_account(page, nr_pages,
3873
				pc, child, parent);
3874 3875
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3876

3877
	if (nr_pages > 1)
3878
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3879
	putback_lru_page(page);
3880
put:
3881
	put_page(page);
3882
out:
3883 3884 3885
	return ret;
}

3886 3887 3888 3889 3890 3891 3892
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3893
				gfp_t gfp_mask, enum charge_type ctype)
3894
{
3895
	struct mem_cgroup *memcg = NULL;
3896
	unsigned int nr_pages = 1;
3897
	bool oom = true;
3898
	int ret;
A
Andrea Arcangeli 已提交
3899

A
Andrea Arcangeli 已提交
3900
	if (PageTransHuge(page)) {
3901
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3902
		VM_BUG_ON(!PageTransHuge(page));
3903 3904 3905 3906 3907
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3908
	}
3909

3910
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3911
	if (ret == -ENOMEM)
3912
		return ret;
3913
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3914 3915 3916
	return 0;
}

3917 3918
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3919
{
3920
	if (mem_cgroup_disabled())
3921
		return 0;
3922 3923 3924
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3925
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3926
					MEM_CGROUP_CHARGE_TYPE_ANON);
3927 3928
}

3929 3930 3931
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3932
 * struct page_cgroup is acquired. This refcnt will be consumed by
3933 3934
 * "commit()" or removed by "cancel()"
 */
3935 3936 3937 3938
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3939
{
3940
	struct mem_cgroup *memcg;
3941
	struct page_cgroup *pc;
3942
	int ret;
3943

3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3954 3955
	if (!do_swap_account)
		goto charge_cur_mm;
3956 3957
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3958
		goto charge_cur_mm;
3959 3960
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3961
	css_put(&memcg->css);
3962 3963
	if (ret == -EINTR)
		ret = 0;
3964
	return ret;
3965
charge_cur_mm:
3966 3967 3968 3969
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3970 3971
}

3972 3973 3974 3975 3976 3977
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3992 3993 3994
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3995 3996 3997 3998 3999 4000 4001 4002 4003
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4004
static void
4005
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4006
					enum charge_type ctype)
4007
{
4008
	if (mem_cgroup_disabled())
4009
		return;
4010
	if (!memcg)
4011
		return;
4012

4013
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4014 4015 4016
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4017 4018 4019
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4020
	 */
4021
	if (do_swap_account && PageSwapCache(page)) {
4022
		swp_entry_t ent = {.val = page_private(page)};
4023
		mem_cgroup_uncharge_swap(ent);
4024
	}
4025 4026
}

4027 4028
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4029
{
4030
	__mem_cgroup_commit_charge_swapin(page, memcg,
4031
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4032 4033
}

4034 4035
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4036
{
4037 4038 4039 4040
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4041
	if (mem_cgroup_disabled())
4042 4043 4044 4045 4046 4047 4048
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4049 4050
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4051 4052 4053 4054
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4055 4056
}

4057
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4058 4059
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4060 4061 4062
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4063

4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4075
		batch->memcg = memcg;
4076 4077
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4078
	 * In those cases, all pages freed continuously can be expected to be in
4079 4080 4081 4082 4083 4084 4085 4086
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4087
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4088 4089
		goto direct_uncharge;

4090 4091 4092 4093 4094
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4095
	if (batch->memcg != memcg)
4096 4097
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4098
	batch->nr_pages++;
4099
	if (uncharge_memsw)
4100
		batch->memsw_nr_pages++;
4101 4102
	return;
direct_uncharge:
4103
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4104
	if (uncharge_memsw)
4105 4106 4107
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4108
}
4109

4110
/*
4111
 * uncharge if !page_mapped(page)
4112
 */
4113
static struct mem_cgroup *
4114 4115
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4116
{
4117
	struct mem_cgroup *memcg = NULL;
4118 4119
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4120
	bool anon;
4121

4122
	if (mem_cgroup_disabled())
4123
		return NULL;
4124

A
Andrea Arcangeli 已提交
4125
	if (PageTransHuge(page)) {
4126
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4127 4128
		VM_BUG_ON(!PageTransHuge(page));
	}
4129
	/*
4130
	 * Check if our page_cgroup is valid
4131
	 */
4132
	pc = lookup_page_cgroup(page);
4133
	if (unlikely(!PageCgroupUsed(pc)))
4134
		return NULL;
4135

4136
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4137

4138
	memcg = pc->mem_cgroup;
4139

K
KAMEZAWA Hiroyuki 已提交
4140 4141 4142
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4143 4144
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4145
	switch (ctype) {
4146
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4147 4148 4149 4150 4151
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4152 4153
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4154
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4155
		/* See mem_cgroup_prepare_migration() */
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4177
	}
K
KAMEZAWA Hiroyuki 已提交
4178

4179
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4180

4181
	ClearPageCgroupUsed(pc);
4182 4183 4184 4185 4186 4187
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4188

4189
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4190
	/*
4191
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4192
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4193
	 */
4194
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4195
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4196
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4197
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4198
	}
4199 4200 4201 4202 4203 4204
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4205
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4206

4207
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4208 4209 4210

unlock_out:
	unlock_page_cgroup(pc);
4211
	return NULL;
4212 4213
}

4214 4215
void mem_cgroup_uncharge_page(struct page *page)
{
4216 4217 4218
	/* early check. */
	if (page_mapped(page))
		return;
4219
	VM_BUG_ON(page->mapping && !PageAnon(page));
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4232 4233
	if (PageSwapCache(page))
		return;
4234
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4235 4236 4237 4238 4239
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4240
	VM_BUG_ON(page->mapping);
4241
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4242 4243
}

4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4258 4259
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4280 4281 4282 4283 4284 4285
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4286
	memcg_oom_recover(batch->memcg);
4287 4288 4289 4290
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4291
#ifdef CONFIG_SWAP
4292
/*
4293
 * called after __delete_from_swap_cache() and drop "page" account.
4294 4295
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4296 4297
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4298 4299
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4300 4301 4302 4303 4304
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4305
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4306

K
KAMEZAWA Hiroyuki 已提交
4307 4308
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4309
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4310 4311
	 */
	if (do_swap_account && swapout && memcg)
4312
		swap_cgroup_record(ent, css_id(&memcg->css));
4313
}
4314
#endif
4315

A
Andrew Morton 已提交
4316
#ifdef CONFIG_MEMCG_SWAP
4317 4318 4319 4320 4321
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4322
{
4323
	struct mem_cgroup *memcg;
4324
	unsigned short id;
4325 4326 4327 4328

	if (!do_swap_account)
		return;

4329 4330 4331
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4332
	if (memcg) {
4333 4334 4335 4336
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4337
		if (!mem_cgroup_is_root(memcg))
4338
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4339
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4340
		css_put(&memcg->css);
4341
	}
4342
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4343
}
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4360
				struct mem_cgroup *from, struct mem_cgroup *to)
4361 4362 4363 4364 4365 4366 4367 4368
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4369
		mem_cgroup_swap_statistics(to, true);
4370
		/*
4371 4372 4373
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4374 4375 4376 4377 4378 4379
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4380
		 */
L
Li Zefan 已提交
4381
		css_get(&to->css);
4382 4383 4384 4385 4386 4387
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4388
				struct mem_cgroup *from, struct mem_cgroup *to)
4389 4390 4391
{
	return -EINVAL;
}
4392
#endif
K
KAMEZAWA Hiroyuki 已提交
4393

4394
/*
4395 4396
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4397
 */
4398 4399
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4400
{
4401
	struct mem_cgroup *memcg = NULL;
4402
	unsigned int nr_pages = 1;
4403
	struct page_cgroup *pc;
4404
	enum charge_type ctype;
4405

4406
	*memcgp = NULL;
4407

4408
	if (mem_cgroup_disabled())
4409
		return;
4410

4411 4412 4413
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4414 4415 4416
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4417 4418
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4450
	}
4451
	unlock_page_cgroup(pc);
4452 4453 4454 4455
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4456
	if (!memcg)
4457
		return;
4458

4459
	*memcgp = memcg;
4460 4461 4462 4463 4464 4465 4466
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4467
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4468
	else
4469
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4470 4471 4472 4473 4474
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4475
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4476
}
4477

4478
/* remove redundant charge if migration failed*/
4479
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4480
	struct page *oldpage, struct page *newpage, bool migration_ok)
4481
{
4482
	struct page *used, *unused;
4483
	struct page_cgroup *pc;
4484
	bool anon;
4485

4486
	if (!memcg)
4487
		return;
4488

4489
	if (!migration_ok) {
4490 4491
		used = oldpage;
		unused = newpage;
4492
	} else {
4493
		used = newpage;
4494 4495
		unused = oldpage;
	}
4496
	anon = PageAnon(used);
4497 4498 4499 4500
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4501
	css_put(&memcg->css);
4502
	/*
4503 4504 4505
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4506
	 */
4507 4508 4509 4510 4511
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4512
	/*
4513 4514 4515 4516 4517 4518
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4519
	 */
4520
	if (anon)
4521
		mem_cgroup_uncharge_page(used);
4522
}
4523

4524 4525 4526 4527 4528 4529 4530 4531
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4532
	struct mem_cgroup *memcg = NULL;
4533 4534 4535 4536 4537 4538 4539 4540 4541
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4542 4543
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4544
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4545 4546
		ClearPageCgroupUsed(pc);
	}
4547 4548
	unlock_page_cgroup(pc);

4549 4550 4551 4552 4553 4554
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4555 4556 4557 4558 4559
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4560
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4561 4562
}

4563 4564 4565 4566 4567 4568
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4569 4570 4571 4572 4573
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4593 4594
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4595 4596 4597 4598
	}
}
#endif

4599
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4600
				unsigned long long val)
4601
{
4602
	int retry_count;
4603
	u64 memswlimit, memlimit;
4604
	int ret = 0;
4605 4606
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4607
	int enlarge;
4608 4609 4610 4611 4612 4613 4614 4615 4616

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4617

4618
	enlarge = 0;
4619
	while (retry_count) {
4620 4621 4622 4623
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4624 4625 4626
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4627
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4628 4629 4630 4631 4632 4633
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4634 4635
			break;
		}
4636 4637 4638 4639 4640

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4641
		ret = res_counter_set_limit(&memcg->res, val);
4642 4643 4644 4645 4646 4647
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4648 4649 4650 4651 4652
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4653 4654
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4655 4656 4657 4658 4659 4660
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4661
	}
4662 4663
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4664

4665 4666 4667
	return ret;
}

L
Li Zefan 已提交
4668 4669
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4670
{
4671
	int retry_count;
4672
	u64 memlimit, memswlimit, oldusage, curusage;
4673 4674
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4675
	int enlarge = 0;
4676

4677 4678 4679
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4680 4681 4682 4683 4684 4685 4686 4687
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4688
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4689 4690 4691 4692 4693 4694 4695 4696
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4697 4698 4699
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4700
		ret = res_counter_set_limit(&memcg->memsw, val);
4701 4702 4703 4704 4705 4706
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4707 4708 4709 4710 4711
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4712 4713 4714
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4715
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4716
		/* Usage is reduced ? */
4717
		if (curusage >= oldusage)
4718
			retry_count--;
4719 4720
		else
			oldusage = curusage;
4721
	}
4722 4723
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4724 4725 4726
	return ret;
}

4727
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4728 4729
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4730 4731 4732 4733 4734 4735
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4736
	unsigned long long excess;
4737
	unsigned long nr_scanned;
4738 4739 4740 4741

	if (order > 0)
		return 0;

4742
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4756
		nr_scanned = 0;
4757
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4758
						    gfp_mask, &nr_scanned);
4759
		nr_reclaimed += reclaimed;
4760
		*total_scanned += nr_scanned;
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4783
				if (next_mz == mz)
4784
					css_put(&next_mz->memcg->css);
4785
				else /* next_mz == NULL or other memcg */
4786 4787 4788
					break;
			} while (1);
		}
4789 4790
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4791 4792 4793 4794 4795 4796 4797 4798
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4799
		/* If excess == 0, no tree ops */
4800
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4801
		spin_unlock(&mctz->lock);
4802
		css_put(&mz->memcg->css);
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4815
		css_put(&next_mz->memcg->css);
4816 4817 4818
	return nr_reclaimed;
}

4819 4820 4821 4822 4823 4824 4825
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4826
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4827 4828
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4829
 */
4830
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4831
				int node, int zid, enum lru_list lru)
4832
{
4833
	struct lruvec *lruvec;
4834
	unsigned long flags;
4835
	struct list_head *list;
4836 4837
	struct page *busy;
	struct zone *zone;
4838

K
KAMEZAWA Hiroyuki 已提交
4839
	zone = &NODE_DATA(node)->node_zones[zid];
4840 4841
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4842

4843
	busy = NULL;
4844
	do {
4845
		struct page_cgroup *pc;
4846 4847
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4848
		spin_lock_irqsave(&zone->lru_lock, flags);
4849
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4850
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4851
			break;
4852
		}
4853 4854 4855
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4856
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4857
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4858 4859
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4860
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4861

4862
		pc = lookup_page_cgroup(page);
4863

4864
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4865
			/* found lock contention or "pc" is obsolete. */
4866
			busy = page;
4867 4868 4869
			cond_resched();
		} else
			busy = NULL;
4870
	} while (!list_empty(list));
4871 4872 4873
}

/*
4874 4875
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4876
 * This enables deleting this mem_cgroup.
4877 4878
 *
 * Caller is responsible for holding css reference on the memcg.
4879
 */
4880
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4881
{
4882
	int node, zid;
4883
	u64 usage;
4884

4885
	do {
4886 4887
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4888 4889
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4890
		for_each_node_state(node, N_MEMORY) {
4891
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4892 4893
				enum lru_list lru;
				for_each_lru(lru) {
4894
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4895
							node, zid, lru);
4896
				}
4897
			}
4898
		}
4899 4900
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4901
		cond_resched();
4902

4903
		/*
4904 4905 4906 4907 4908
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4909 4910 4911 4912 4913 4914
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4915 4916 4917
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4918 4919
}

4920 4921 4922 4923 4924 4925 4926
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
4927
	struct cgroup_subsys_state *pos;
4928 4929

	/* bounce at first found */
4930
	css_for_each_child(pos, &memcg->css)
4931 4932 4933 4934 4935
		return true;
	return false;
}

/*
4936 4937
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4938 4939 4940 4941 4942 4943 4944 4945 4946
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4957

4958
	/* returns EBUSY if there is a task or if we come here twice. */
4959 4960 4961
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4962 4963
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4964
	/* try to free all pages in this cgroup */
4965
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4966
		int progress;
4967

4968 4969 4970
		if (signal_pending(current))
			return -EINTR;

4971
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4972
						false);
4973
		if (!progress) {
4974
			nr_retries--;
4975
			/* maybe some writeback is necessary */
4976
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4977
		}
4978 4979

	}
K
KAMEZAWA Hiroyuki 已提交
4980
	lru_add_drain();
4981 4982 4983
	mem_cgroup_reparent_charges(memcg);

	return 0;
4984 4985
}

4986 4987
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4988
{
4989
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4990 4991
	int ret;

4992 4993
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4994 4995 4996 4997 4998
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
4999 5000 5001
}


5002 5003
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
5004
{
5005
	return mem_cgroup_from_css(css)->use_hierarchy;
5006 5007
}

5008 5009
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
5010 5011
{
	int retval = 0;
5012
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5013
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5014

5015
	mutex_lock(&memcg_create_mutex);
5016 5017 5018 5019

	if (memcg->use_hierarchy == val)
		goto out;

5020
	/*
5021
	 * If parent's use_hierarchy is set, we can't make any modifications
5022 5023 5024 5025 5026 5027
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5028
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5029
				(val == 1 || val == 0)) {
5030
		if (!__memcg_has_children(memcg))
5031
			memcg->use_hierarchy = val;
5032 5033 5034 5035
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5036 5037

out:
5038
	mutex_unlock(&memcg_create_mutex);
5039 5040 5041 5042

	return retval;
}

5043

5044
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5045
					       enum mem_cgroup_stat_index idx)
5046
{
K
KAMEZAWA Hiroyuki 已提交
5047
	struct mem_cgroup *iter;
5048
	long val = 0;
5049

5050
	/* Per-cpu values can be negative, use a signed accumulator */
5051
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5052 5053 5054 5055 5056
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5057 5058
}

5059
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5060
{
K
KAMEZAWA Hiroyuki 已提交
5061
	u64 val;
5062

5063
	if (!mem_cgroup_is_root(memcg)) {
5064
		if (!swap)
5065
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5066
		else
5067
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5068 5069
	}

5070 5071 5072 5073
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5074 5075
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5076

K
KAMEZAWA Hiroyuki 已提交
5077
	if (swap)
5078
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5079 5080 5081 5082

	return val << PAGE_SHIFT;
}

5083 5084 5085
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5086
{
5087
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5088
	char str[64];
5089
	u64 val;
G
Glauber Costa 已提交
5090 5091
	int name, len;
	enum res_type type;
5092 5093 5094

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5095

5096 5097
	switch (type) {
	case _MEM:
5098
		if (name == RES_USAGE)
5099
			val = mem_cgroup_usage(memcg, false);
5100
		else
5101
			val = res_counter_read_u64(&memcg->res, name);
5102 5103
		break;
	case _MEMSWAP:
5104
		if (name == RES_USAGE)
5105
			val = mem_cgroup_usage(memcg, true);
5106
		else
5107
			val = res_counter_read_u64(&memcg->memsw, name);
5108
		break;
5109 5110 5111
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5112 5113 5114
	default:
		BUG();
	}
5115 5116 5117

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5118
}
5119

5120
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5121 5122 5123
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
5124
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5137
	mutex_lock(&memcg_create_mutex);
5138 5139
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5140
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5141 5142 5143 5144 5145 5146
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5147 5148 5149 5150 5151
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
5152 5153 5154 5155 5156 5157
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
5158 5159 5160 5161
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5162
	mutex_unlock(&memcg_create_mutex);
5163 5164 5165 5166
#endif
	return ret;
}

5167
#ifdef CONFIG_MEMCG_KMEM
5168
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5169
{
5170
	int ret = 0;
5171 5172
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5173 5174
		goto out;

5175
	memcg->kmem_account_flags = parent->kmem_account_flags;
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5186 5187 5188 5189
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
5190 5191 5192
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5193 5194 5195 5196
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5197
	memcg_stop_kmem_account();
5198
	ret = memcg_update_cache_sizes(memcg);
5199
	memcg_resume_kmem_account();
5200 5201 5202
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5203
}
5204
#endif /* CONFIG_MEMCG_KMEM */
5205

5206 5207 5208 5209
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5210
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5211
			    const char *buffer)
B
Balbir Singh 已提交
5212
{
5213
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5214 5215
	enum res_type type;
	int name;
5216 5217 5218
	unsigned long long val;
	int ret;

5219 5220
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5221

5222
	switch (name) {
5223
	case RES_LIMIT:
5224 5225 5226 5227
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5228 5229
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5230 5231 5232
		if (ret)
			break;
		if (type == _MEM)
5233
			ret = mem_cgroup_resize_limit(memcg, val);
5234
		else if (type == _MEMSWAP)
5235
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5236
		else if (type == _KMEM)
5237
			ret = memcg_update_kmem_limit(css, val);
5238 5239
		else
			return -EINVAL;
5240
		break;
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5255 5256 5257 5258 5259
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5260 5261
}

5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5272 5273
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5286
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5287
{
5288
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5289 5290
	int name;
	enum res_type type;
5291

5292 5293
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5294

5295
	switch (name) {
5296
	case RES_MAX_USAGE:
5297
		if (type == _MEM)
5298
			res_counter_reset_max(&memcg->res);
5299
		else if (type == _MEMSWAP)
5300
			res_counter_reset_max(&memcg->memsw);
5301 5302 5303 5304
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5305 5306
		break;
	case RES_FAILCNT:
5307
		if (type == _MEM)
5308
			res_counter_reset_failcnt(&memcg->res);
5309
		else if (type == _MEMSWAP)
5310
			res_counter_reset_failcnt(&memcg->memsw);
5311 5312 5313 5314
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5315 5316
		break;
	}
5317

5318
	return 0;
5319 5320
}

5321
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5322 5323
					struct cftype *cft)
{
5324
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5325 5326
}

5327
#ifdef CONFIG_MMU
5328
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5329 5330
					struct cftype *cft, u64 val)
{
5331
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5332 5333 5334

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5335

5336
	/*
5337 5338 5339 5340
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5341
	 */
5342
	memcg->move_charge_at_immigrate = val;
5343 5344
	return 0;
}
5345
#else
5346
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5347 5348 5349 5350 5351
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5352

5353
#ifdef CONFIG_NUMA
5354 5355
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5356 5357 5358 5359
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5360
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5361

5362
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5363
	seq_printf(m, "total=%lu", total_nr);
5364
	for_each_node_state(nid, N_MEMORY) {
5365
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5366 5367 5368 5369
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5370
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5371
	seq_printf(m, "file=%lu", file_nr);
5372
	for_each_node_state(nid, N_MEMORY) {
5373
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5374
				LRU_ALL_FILE);
5375 5376 5377 5378
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5379
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5380
	seq_printf(m, "anon=%lu", anon_nr);
5381
	for_each_node_state(nid, N_MEMORY) {
5382
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5383
				LRU_ALL_ANON);
5384 5385 5386 5387
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5388
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5389
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5390
	for_each_node_state(nid, N_MEMORY) {
5391
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5392
				BIT(LRU_UNEVICTABLE));
5393 5394 5395 5396 5397 5398 5399
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5400 5401 5402 5403 5404
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5405
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5406
				 struct seq_file *m)
5407
{
5408
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5409 5410
	struct mem_cgroup *mi;
	unsigned int i;
5411

5412
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5413
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5414
			continue;
5415 5416
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5417
	}
L
Lee Schermerhorn 已提交
5418

5419 5420 5421 5422 5423 5424 5425 5426
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5427
	/* Hierarchical information */
5428 5429
	{
		unsigned long long limit, memsw_limit;
5430
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5431
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5432
		if (do_swap_account)
5433 5434
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5435
	}
K
KOSAKI Motohiro 已提交
5436

5437 5438 5439
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5440
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5441
			continue;
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5462
	}
K
KAMEZAWA Hiroyuki 已提交
5463

K
KOSAKI Motohiro 已提交
5464 5465 5466 5467
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5468
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5469 5470 5471 5472 5473
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5474
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5475
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5476

5477 5478 5479 5480
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5481
			}
5482 5483 5484 5485
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5486 5487 5488
	}
#endif

5489 5490 5491
	return 0;
}

5492 5493
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5494
{
5495
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5496

5497
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5498 5499
}

5500 5501
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5502
{
5503
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5504
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5505

T
Tejun Heo 已提交
5506
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5507 5508
		return -EINVAL;

5509
	mutex_lock(&memcg_create_mutex);
5510

K
KOSAKI Motohiro 已提交
5511
	/* If under hierarchy, only empty-root can set this value */
5512
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5513
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5514
		return -EINVAL;
5515
	}
K
KOSAKI Motohiro 已提交
5516 5517 5518

	memcg->swappiness = val;

5519
	mutex_unlock(&memcg_create_mutex);
5520

K
KOSAKI Motohiro 已提交
5521 5522 5523
	return 0;
}

5524 5525 5526 5527 5528 5529 5530 5531
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5532
		t = rcu_dereference(memcg->thresholds.primary);
5533
	else
5534
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5535 5536 5537 5538 5539 5540 5541

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5542
	 * current_threshold points to threshold just below or equal to usage.
5543 5544 5545
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5546
	i = t->current_threshold;
5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5570
	t->current_threshold = i - 1;
5571 5572 5573 5574 5575 5576
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5577 5578 5579 5580 5581 5582 5583
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5594
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5595 5596 5597
{
	struct mem_cgroup_eventfd_list *ev;

5598
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5599 5600 5601 5602
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5603
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5604
{
K
KAMEZAWA Hiroyuki 已提交
5605 5606
	struct mem_cgroup *iter;

5607
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5608
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5609 5610
}

5611
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5612
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5613
{
5614
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5615 5616
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5617
	enum res_type type = MEMFILE_TYPE(cft->private);
5618
	u64 threshold, usage;
5619
	int i, size, ret;
5620 5621 5622 5623 5624 5625

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5626

5627
	if (type == _MEM)
5628
		thresholds = &memcg->thresholds;
5629
	else if (type == _MEMSWAP)
5630
		thresholds = &memcg->memsw_thresholds;
5631 5632 5633 5634 5635 5636
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5637
	if (thresholds->primary)
5638 5639
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5640
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5641 5642

	/* Allocate memory for new array of thresholds */
5643
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5644
			GFP_KERNEL);
5645
	if (!new) {
5646 5647 5648
		ret = -ENOMEM;
		goto unlock;
	}
5649
	new->size = size;
5650 5651

	/* Copy thresholds (if any) to new array */
5652 5653
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5654
				sizeof(struct mem_cgroup_threshold));
5655 5656
	}

5657
	/* Add new threshold */
5658 5659
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5660 5661

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5662
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5663 5664 5665
			compare_thresholds, NULL);

	/* Find current threshold */
5666
	new->current_threshold = -1;
5667
	for (i = 0; i < size; i++) {
5668
		if (new->entries[i].threshold <= usage) {
5669
			/*
5670 5671
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5672 5673
			 * it here.
			 */
5674
			++new->current_threshold;
5675 5676
		} else
			break;
5677 5678
	}

5679 5680 5681 5682 5683
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5684

5685
	/* To be sure that nobody uses thresholds */
5686 5687 5688 5689 5690 5691 5692 5693
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5694
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5695
	struct cftype *cft, struct eventfd_ctx *eventfd)
5696
{
5697
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5698 5699
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5700
	enum res_type type = MEMFILE_TYPE(cft->private);
5701
	u64 usage;
5702
	int i, j, size;
5703 5704 5705

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5706
		thresholds = &memcg->thresholds;
5707
	else if (type == _MEMSWAP)
5708
		thresholds = &memcg->memsw_thresholds;
5709 5710 5711
	else
		BUG();

5712 5713 5714
	if (!thresholds->primary)
		goto unlock;

5715 5716 5717 5718 5719 5720
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5721 5722 5723
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5724 5725 5726
			size++;
	}

5727
	new = thresholds->spare;
5728

5729 5730
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5731 5732
		kfree(new);
		new = NULL;
5733
		goto swap_buffers;
5734 5735
	}

5736
	new->size = size;
5737 5738

	/* Copy thresholds and find current threshold */
5739 5740 5741
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5742 5743
			continue;

5744
		new->entries[j] = thresholds->primary->entries[i];
5745
		if (new->entries[j].threshold <= usage) {
5746
			/*
5747
			 * new->current_threshold will not be used
5748 5749 5750
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5751
			++new->current_threshold;
5752 5753 5754 5755
		}
		j++;
	}

5756
swap_buffers:
5757 5758
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5759 5760 5761 5762 5763 5764
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5765
	rcu_assign_pointer(thresholds->primary, new);
5766

5767
	/* To be sure that nobody uses thresholds */
5768
	synchronize_rcu();
5769
unlock:
5770 5771
	mutex_unlock(&memcg->thresholds_lock);
}
5772

5773
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5774 5775
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5776
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5777
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5778
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5779 5780 5781 5782 5783 5784

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5785
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5786 5787 5788 5789 5790

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5791
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5792
		eventfd_signal(eventfd, 1);
5793
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5794 5795 5796 5797

	return 0;
}

5798
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5799 5800
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5801
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5802
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5803
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5804 5805 5806

	BUG_ON(type != _OOM_TYPE);

5807
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5808

5809
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5810 5811 5812 5813 5814 5815
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5816
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5817 5818
}

5819
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5820 5821
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5822
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5823

5824
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5825

5826
	if (atomic_read(&memcg->under_oom))
5827 5828 5829 5830 5831 5832
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5833
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5834 5835
	struct cftype *cft, u64 val)
{
5836
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5837
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5838 5839

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5840
	if (!parent || !((val == 0) || (val == 1)))
5841 5842
		return -EINVAL;

5843
	mutex_lock(&memcg_create_mutex);
5844
	/* oom-kill-disable is a flag for subhierarchy. */
5845
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5846
		mutex_unlock(&memcg_create_mutex);
5847 5848
		return -EINVAL;
	}
5849
	memcg->oom_kill_disable = val;
5850
	if (!val)
5851
		memcg_oom_recover(memcg);
5852
	mutex_unlock(&memcg_create_mutex);
5853 5854 5855
	return 0;
}

A
Andrew Morton 已提交
5856
#ifdef CONFIG_MEMCG_KMEM
5857
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5858
{
5859 5860
	int ret;

5861
	memcg->kmemcg_id = -1;
5862 5863 5864
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5865

5866
	return mem_cgroup_sockets_init(memcg, ss);
5867
}
5868

5869
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5870
{
5871
	mem_cgroup_sockets_destroy(memcg);
5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5898 5899 5900 5901 5902 5903 5904

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5905
		css_put(&memcg->css);
G
Glauber Costa 已提交
5906
}
5907
#else
5908
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5909 5910 5911
{
	return 0;
}
G
Glauber Costa 已提交
5912

5913 5914 5915 5916 5917
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5918 5919
{
}
5920 5921
#endif

B
Balbir Singh 已提交
5922 5923
static struct cftype mem_cgroup_files[] = {
	{
5924
		.name = "usage_in_bytes",
5925
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5926
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5927 5928
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5929
	},
5930 5931
	{
		.name = "max_usage_in_bytes",
5932
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5933
		.trigger = mem_cgroup_reset,
5934
		.read = mem_cgroup_read,
5935
	},
B
Balbir Singh 已提交
5936
	{
5937
		.name = "limit_in_bytes",
5938
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5939
		.write_string = mem_cgroup_write,
5940
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5941
	},
5942 5943 5944 5945
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5946
		.read = mem_cgroup_read,
5947
	},
B
Balbir Singh 已提交
5948 5949
	{
		.name = "failcnt",
5950
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5951
		.trigger = mem_cgroup_reset,
5952
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5953
	},
5954 5955
	{
		.name = "stat",
5956
		.read_seq_string = memcg_stat_show,
5957
	},
5958 5959 5960 5961
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5962 5963
	{
		.name = "use_hierarchy",
5964
		.flags = CFTYPE_INSANE,
5965 5966 5967
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5968 5969 5970 5971 5972
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5973 5974 5975 5976 5977
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5978 5979
	{
		.name = "oom_control",
5980 5981
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5982 5983 5984 5985
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5986 5987 5988 5989 5990
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
5991 5992 5993
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5994
		.read_seq_string = memcg_numa_stat_show,
5995 5996
	},
#endif
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
6021 6022 6023 6024 6025 6026
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
6027
#endif
6028
	{ },	/* terminate */
6029
};
6030

6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
6061
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6062 6063
{
	struct mem_cgroup_per_node *pn;
6064
	struct mem_cgroup_per_zone *mz;
6065
	int zone, tmp = node;
6066 6067 6068 6069 6070 6071 6072 6073
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6074 6075
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6076
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6077 6078
	if (!pn)
		return 1;
6079 6080 6081

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6082
		lruvec_init(&mz->lruvec);
6083
		mz->usage_in_excess = 0;
6084
		mz->on_tree = false;
6085
		mz->memcg = memcg;
6086
	}
6087
	memcg->nodeinfo[node] = pn;
6088 6089 6090
	return 0;
}

6091
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6092
{
6093
	kfree(memcg->nodeinfo[node]);
6094 6095
}

6096 6097
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6098
	struct mem_cgroup *memcg;
6099
	size_t size = memcg_size();
6100

6101
	/* Can be very big if nr_node_ids is very big */
6102
	if (size < PAGE_SIZE)
6103
		memcg = kzalloc(size, GFP_KERNEL);
6104
	else
6105
		memcg = vzalloc(size);
6106

6107
	if (!memcg)
6108 6109
		return NULL;

6110 6111
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6112
		goto out_free;
6113 6114
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6115 6116 6117

out_free:
	if (size < PAGE_SIZE)
6118
		kfree(memcg);
6119
	else
6120
		vfree(memcg);
6121
	return NULL;
6122 6123
}

6124
/*
6125 6126 6127 6128 6129 6130 6131 6132
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6133
 */
6134 6135

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6136
{
6137
	int node;
6138
	size_t size = memcg_size();
6139

6140 6141 6142 6143 6144 6145 6146 6147
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6159
	disarm_static_keys(memcg);
6160 6161 6162 6163
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6164
}
6165

6166 6167 6168
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6169
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6170
{
6171
	if (!memcg->res.parent)
6172
		return NULL;
6173
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6174
}
G
Glauber Costa 已提交
6175
EXPORT_SYMBOL(parent_mem_cgroup);
6176

6177
static void __init mem_cgroup_soft_limit_tree_init(void)
6178 6179 6180 6181 6182
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6183
	for_each_node(node) {
6184 6185 6186 6187
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6188
		BUG_ON(!rtpn);
6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6200
static struct cgroup_subsys_state * __ref
6201
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6202
{
6203
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6204
	long error = -ENOMEM;
6205
	int node;
B
Balbir Singh 已提交
6206

6207 6208
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6209
		return ERR_PTR(error);
6210

B
Bob Liu 已提交
6211
	for_each_node(node)
6212
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6213
			goto free_out;
6214

6215
	/* root ? */
6216
	if (parent_css == NULL) {
6217
		root_mem_cgroup = memcg;
6218 6219 6220
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6221
	}
6222

6223 6224 6225 6226 6227
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6228
	vmpressure_init(&memcg->vmpressure);
6229 6230 6231 6232 6233 6234 6235 6236 6237

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6238
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6239
{
6240 6241
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6242 6243
	int error = 0;

T
Tejun Heo 已提交
6244
	if (!parent)
6245 6246
		return 0;

6247
	mutex_lock(&memcg_create_mutex);
6248 6249 6250 6251 6252 6253

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6254 6255
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6256
		res_counter_init(&memcg->kmem, &parent->kmem);
6257

6258
		/*
6259 6260
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6261
		 */
6262
	} else {
6263 6264
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6265
		res_counter_init(&memcg->kmem, NULL);
6266 6267 6268 6269 6270
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6271
		if (parent != root_mem_cgroup)
6272
			mem_cgroup_subsys.broken_hierarchy = true;
6273
	}
6274 6275

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6276
	mutex_unlock(&memcg_create_mutex);
6277
	return error;
B
Balbir Singh 已提交
6278 6279
}

M
Michal Hocko 已提交
6280 6281 6282 6283 6284 6285 6286 6287
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6288
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6289 6290 6291 6292 6293 6294

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6295
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6296 6297
}

6298
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6299
{
6300
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6301

6302 6303
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6304
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6305
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6306
	mem_cgroup_destroy_all_caches(memcg);
6307
	vmpressure_cleanup(&memcg->vmpressure);
6308 6309
}

6310
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6311
{
6312
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6313

6314
	memcg_destroy_kmem(memcg);
6315
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6316 6317
}

6318
#ifdef CONFIG_MMU
6319
/* Handlers for move charge at task migration. */
6320 6321
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6322
{
6323 6324
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6325
	struct mem_cgroup *memcg = mc.to;
6326

6327
	if (mem_cgroup_is_root(memcg)) {
6328 6329 6330 6331 6332 6333 6334 6335
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6336
		 * "memcg" cannot be under rmdir() because we've already checked
6337 6338 6339 6340
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6341
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6342
			goto one_by_one;
6343
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6344
						PAGE_SIZE * count, &dummy)) {
6345
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6362 6363
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6364
		if (ret)
6365
			/* mem_cgroup_clear_mc() will do uncharge later */
6366
			return ret;
6367 6368
		mc.precharge++;
	}
6369 6370 6371 6372
	return ret;
}

/**
6373
 * get_mctgt_type - get target type of moving charge
6374 6375 6376
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6377
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6378 6379 6380 6381 6382 6383
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6384 6385 6386
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6387 6388 6389 6390 6391
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6392
	swp_entry_t	ent;
6393 6394 6395
};

enum mc_target_type {
6396
	MC_TARGET_NONE = 0,
6397
	MC_TARGET_PAGE,
6398
	MC_TARGET_SWAP,
6399 6400
};

D
Daisuke Nishimura 已提交
6401 6402
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6403
{
D
Daisuke Nishimura 已提交
6404
	struct page *page = vm_normal_page(vma, addr, ptent);
6405

D
Daisuke Nishimura 已提交
6406 6407 6408 6409
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6410
		if (!move_anon())
D
Daisuke Nishimura 已提交
6411
			return NULL;
6412 6413
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6414 6415 6416 6417 6418 6419 6420
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6421
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6422 6423 6424 6425 6426 6427 6428 6429
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6430 6431 6432 6433
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6434
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6435 6436 6437 6438 6439
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6440 6441 6442 6443 6444 6445 6446
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6447

6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6467 6468 6469 6470 6471 6472
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6473
		if (do_swap_account)
6474
			*entry = swap;
6475
		page = find_get_page(swap_address_space(swap), swap.val);
6476
	}
6477
#endif
6478 6479 6480
	return page;
}

6481
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6482 6483 6484 6485
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6486
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6487 6488 6489 6490 6491 6492
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6493 6494
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6495 6496

	if (!page && !ent.val)
6497
		return ret;
6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6513 6514
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6515
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6516 6517 6518
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6519 6520 6521 6522
	}
	return ret;
}

6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6558 6559 6560 6561 6562 6563 6564 6565
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6566 6567 6568 6569
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6570
		return 0;
6571
	}
6572

6573 6574
	if (pmd_trans_unstable(pmd))
		return 0;
6575 6576
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6577
		if (get_mctgt_type(vma, addr, *pte, NULL))
6578 6579 6580 6581
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6582 6583 6584
	return 0;
}

6585 6586 6587 6588 6589
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6590
	down_read(&mm->mmap_sem);
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6602
	up_read(&mm->mmap_sem);
6603 6604 6605 6606 6607 6608 6609 6610 6611

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6612 6613 6614 6615 6616
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6617 6618
}

6619 6620
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6621
{
6622 6623
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6624
	int i;
6625

6626
	/* we must uncharge all the leftover precharges from mc.to */
6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6638
	}
6639 6640 6641 6642 6643 6644
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6645 6646 6647

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6648 6649 6650 6651 6652 6653 6654 6655 6656

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6657
		/* we've already done css_get(mc.to) */
6658 6659
		mc.moved_swap = 0;
	}
6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6675
	spin_lock(&mc.lock);
6676 6677
	mc.from = NULL;
	mc.to = NULL;
6678
	spin_unlock(&mc.lock);
6679
	mem_cgroup_end_move(from);
6680 6681
}

6682
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6683
				 struct cgroup_taskset *tset)
6684
{
6685
	struct task_struct *p = cgroup_taskset_first(tset);
6686
	int ret = 0;
6687
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6688
	unsigned long move_charge_at_immigrate;
6689

6690 6691 6692 6693 6694 6695 6696
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6697 6698 6699
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6700
		VM_BUG_ON(from == memcg);
6701 6702 6703 6704 6705

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6706 6707 6708 6709
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6710
			VM_BUG_ON(mc.moved_charge);
6711
			VM_BUG_ON(mc.moved_swap);
6712
			mem_cgroup_start_move(from);
6713
			spin_lock(&mc.lock);
6714
			mc.from = from;
6715
			mc.to = memcg;
6716
			mc.immigrate_flags = move_charge_at_immigrate;
6717
			spin_unlock(&mc.lock);
6718
			/* We set mc.moving_task later */
6719 6720 6721 6722

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6723 6724
		}
		mmput(mm);
6725 6726 6727 6728
	}
	return ret;
}

6729
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6730
				     struct cgroup_taskset *tset)
6731
{
6732
	mem_cgroup_clear_mc();
6733 6734
}

6735 6736 6737
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6738
{
6739 6740 6741 6742
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6743 6744 6745 6746
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6747

6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6759
		if (mc.precharge < HPAGE_PMD_NR) {
6760 6761 6762 6763 6764 6765 6766 6767 6768
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6769
							pc, mc.from, mc.to)) {
6770 6771 6772 6773 6774 6775 6776 6777
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6778
		return 0;
6779 6780
	}

6781 6782
	if (pmd_trans_unstable(pmd))
		return 0;
6783 6784 6785 6786
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6787
		swp_entry_t ent;
6788 6789 6790 6791

		if (!mc.precharge)
			break;

6792
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6793 6794 6795 6796 6797
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6798
			if (!mem_cgroup_move_account(page, 1, pc,
6799
						     mc.from, mc.to)) {
6800
				mc.precharge--;
6801 6802
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6803 6804
			}
			putback_lru_page(page);
6805
put:			/* get_mctgt_type() gets the page */
6806 6807
			put_page(page);
			break;
6808 6809
		case MC_TARGET_SWAP:
			ent = target.ent;
6810
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6811
				mc.precharge--;
6812 6813 6814
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6815
			break;
6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6830
		ret = mem_cgroup_do_precharge(1);
6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6874
	up_read(&mm->mmap_sem);
6875 6876
}

6877
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6878
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6879
{
6880
	struct task_struct *p = cgroup_taskset_first(tset);
6881
	struct mm_struct *mm = get_task_mm(p);
6882 6883

	if (mm) {
6884 6885
		if (mc.to)
			mem_cgroup_move_charge(mm);
6886 6887
		mmput(mm);
	}
6888 6889
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6890
}
6891
#else	/* !CONFIG_MMU */
6892
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6893
				 struct cgroup_taskset *tset)
6894 6895 6896
{
	return 0;
}
6897
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6898
				     struct cgroup_taskset *tset)
6899 6900
{
}
6901
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6902
				 struct cgroup_taskset *tset)
6903 6904 6905
{
}
#endif
B
Balbir Singh 已提交
6906

6907 6908 6909 6910
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6911
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6912 6913 6914 6915 6916 6917
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6918 6919
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6920 6921
}

B
Balbir Singh 已提交
6922 6923 6924
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6925
	.css_alloc = mem_cgroup_css_alloc,
6926
	.css_online = mem_cgroup_css_online,
6927 6928
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6929 6930
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6931
	.attach = mem_cgroup_move_task,
6932
	.bind = mem_cgroup_bind,
6933
	.base_cftypes = mem_cgroup_files,
6934
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6935
	.use_id = 1,
B
Balbir Singh 已提交
6936
};
6937

A
Andrew Morton 已提交
6938
#ifdef CONFIG_MEMCG_SWAP
6939 6940
static int __init enable_swap_account(char *s)
{
6941
	if (!strcmp(s, "1"))
6942
		really_do_swap_account = 1;
6943
	else if (!strcmp(s, "0"))
6944 6945 6946
		really_do_swap_account = 0;
	return 1;
}
6947
__setup("swapaccount=", enable_swap_account);
6948

6949 6950
static void __init memsw_file_init(void)
{
6951 6952 6953 6954 6955 6956 6957 6958 6959
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6960
}
6961

6962
#else
6963
static void __init enable_swap_cgroup(void)
6964 6965
{
}
6966
#endif
6967 6968

/*
6969 6970 6971 6972 6973 6974
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6975 6976 6977 6978
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6979
	enable_swap_cgroup();
6980
	mem_cgroup_soft_limit_tree_init();
6981
	memcg_stock_init();
6982 6983 6984
	return 0;
}
subsys_initcall(mem_cgroup_init);