memcontrol.c 126.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63
int do_swap_account __read_mostly;
64 65 66 67 68 69 70 71

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

72 73 74 75
#else
#define do_swap_account		(0)
#endif

76 77 78 79 80 81 82 83 84
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85

86 87 88 89 90 91 92 93
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96 97
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 100 101
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
	/* incremented at every  pagein/pageout */
	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103 104 105 106 107 108 109 110

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

111 112 113 114
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
115 116 117
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
118 119
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
120 121

	struct zone_reclaim_stat reclaim_stat;
122 123 124 125
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
126 127
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
128 129 130 131 132 133 134 135 136 137 138 139
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

160 161 162 163 164
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
165
/* For threshold */
166 167
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
168
	int current_threshold;
169 170 171 172 173
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
174 175 176 177 178 179 180 181 182 183 184 185

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
186 187 188 189 190
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
191 192

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
193
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194

B
Balbir Singh 已提交
195 196 197 198 199 200 201
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 203 204
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
205 206 207 208 209 210 211
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
212 213 214 215
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
216 217 218 219
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
220
	struct mem_cgroup_lru_info info;
221

K
KOSAKI Motohiro 已提交
222 223 224 225 226
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

227
	/*
228
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
229
	 * reclaimed from.
230
	 */
K
KAMEZAWA Hiroyuki 已提交
231
	int last_scanned_child;
232 233 234 235
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
236
	atomic_t	oom_lock;
237
	atomic_t	refcnt;
238

K
KOSAKI Motohiro 已提交
239
	unsigned int	swappiness;
240 241
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
242

243 244 245
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

246 247 248 249
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
250
	struct mem_cgroup_thresholds thresholds;
251

252
	/* thresholds for mem+swap usage. RCU-protected */
253
	struct mem_cgroup_thresholds memsw_thresholds;
254

K
KAMEZAWA Hiroyuki 已提交
255 256 257
	/* For oom notifier event fd */
	struct list_head oom_notify;

258 259 260 261 262
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
263
	/*
264
	 * percpu counter.
265
	 */
266
	struct mem_cgroup_stat_cpu *stat;
267 268 269 270 271 272
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
273 274
};

275 276 277 278 279 280
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
281
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
282
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
283 284 285
	NR_MOVE_TYPE,
};

286 287
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
288
	spinlock_t	  lock; /* for from, to */
289 290 291
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
292
	unsigned long moved_charge;
293
	unsigned long moved_swap;
294
	struct task_struct *moving_task;	/* a task moving charges */
295
	struct mm_struct *mm;
296 297
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
298
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
299 300
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
301

D
Daisuke Nishimura 已提交
302 303 304 305 306 307
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

308 309 310 311 312 313
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

314 315 316 317 318 319 320
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

321 322 323
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
324
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
325
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
326
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
327
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
328 329 330
	NR_CHARGE_TYPE,
};

331 332 333 334
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
335 336
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
337

338 339 340
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
341
#define _OOM_TYPE		(2)
342 343 344
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
345 346
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
347

348 349 350 351 352 353 354
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
355 356
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
357

358 359
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
360
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
361
static void drain_all_stock_async(void);
362

363 364 365 366 367 368
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

369 370 371 372 373
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
403
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
404
				struct mem_cgroup_per_zone *mz,
405 406
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
407 408 409 410 411 412 413 414
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

415 416 417
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
434 435 436 437 438 439 440 441 442 443 444 445 446
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

447 448 449 450 451 452
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
453
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
454 455 456 457 458 459
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
460
	unsigned long long excess;
461 462
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
463 464
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
465 466 467
	mctz = soft_limit_tree_from_page(page);

	/*
468 469
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
470
	 */
471 472
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
473
		excess = res_counter_soft_limit_excess(&mem->res);
474 475 476 477
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
478
		if (excess || mz->on_tree) {
479 480 481 482 483
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
484 485
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
486
			 */
487
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
488 489
			spin_unlock(&mctz->lock);
		}
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

508 509 510 511 512 513 514 515 516
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
517
	struct mem_cgroup_per_zone *mz;
518 519

retry:
520
	mz = NULL;
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
569 570 571 572 573 574
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

575 576
	get_online_cpus();
	for_each_online_cpu(cpu)
577
		val += per_cpu(mem->stat->count[idx], cpu);
578 579 580 581 582 583
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
584 585 586 587 588 589 590 591 592 593 594 595
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

596 597 598 599
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
600
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
601 602
}

603 604 605
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
606
{
607
	int val = (charge) ? 1 : -1;
608

609 610
	preempt_disable();

611
	if (PageCgroupCache(pc))
612
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
613
	else
614
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
615 616

	if (charge)
617
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
618
	else
619
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
620
	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
621

622
	preempt_enable();
623 624
}

K
KAMEZAWA Hiroyuki 已提交
625
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
626
					enum lru_list idx)
627 628 629 630 631 632 633 634 635 636 637
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
638 639
}

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

663
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
664 665 666 667 668 669
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

670
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
671
{
672 673 674 675 676 677 678 679
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

680 681 682 683
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

684 685 686
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
687 688 689

	if (!mm)
		return NULL;
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
705 706
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
707
{
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
730 731 732 733 734 735 736 737 738
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
739 740
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
741
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
742

K
KAMEZAWA Hiroyuki 已提交
743
	css_put(&iter->css);
744 745
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
746
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
747

748 749 750
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
751 752
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
753
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
754 755 756

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
757
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
758
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
759
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
760
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
761
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
762
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
763

K
KAMEZAWA Hiroyuki 已提交
764
	return iter;
K
KAMEZAWA Hiroyuki 已提交
765
}
K
KAMEZAWA Hiroyuki 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

779 780 781
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
782

783 784 785 786 787
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
801

K
KAMEZAWA Hiroyuki 已提交
802 803 804 805
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
806

807
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
808 809 810
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
811
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
812
		return;
813
	VM_BUG_ON(!pc->mem_cgroup);
814 815 816 817
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
818
	mz = page_cgroup_zoneinfo(pc);
819
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
820 821 822
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
823 824
	list_del_init(&pc->lru);
	return;
825 826
}

K
KAMEZAWA Hiroyuki 已提交
827
void mem_cgroup_del_lru(struct page *page)
828
{
K
KAMEZAWA Hiroyuki 已提交
829 830
	mem_cgroup_del_lru_list(page, page_lru(page));
}
831

K
KAMEZAWA Hiroyuki 已提交
832 833 834 835
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
836

837
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
838
		return;
839

K
KAMEZAWA Hiroyuki 已提交
840
	pc = lookup_page_cgroup(page);
841 842 843 844
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
845
	smp_rmb();
846 847
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
848 849 850
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
851 852
}

K
KAMEZAWA Hiroyuki 已提交
853
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
854
{
K
KAMEZAWA Hiroyuki 已提交
855 856
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
857

858
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
859 860
		return;
	pc = lookup_page_cgroup(page);
861
	VM_BUG_ON(PageCgroupAcctLRU(pc));
862 863 864 865
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
866 867
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
868
		return;
869

K
KAMEZAWA Hiroyuki 已提交
870
	mz = page_cgroup_zoneinfo(pc);
871
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
872 873 874
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
875 876
	list_add(&pc->lru, &mz->lists[lru]);
}
877

K
KAMEZAWA Hiroyuki 已提交
878
/*
879 880 881 882 883
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
884
 */
885
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
886
{
887 888 889 890 891 892 893 894 895 896 897 898
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
899 900
}

901 902 903 904 905 906 907 908
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
909
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
910 911 912 913 914
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
915 916 917
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
918
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
919 920 921
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
922 923
}

924 925 926
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
927
	struct mem_cgroup *curr = NULL;
928
	struct task_struct *p;
929

930 931 932 933 934
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
935 936
	if (!curr)
		return 0;
937 938 939 940 941 942 943
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
944 945 946 947
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
948 949 950
	return ret;
}

951
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
952 953 954
{
	unsigned long active;
	unsigned long inactive;
955 956
	unsigned long gb;
	unsigned long inactive_ratio;
957

K
KAMEZAWA Hiroyuki 已提交
958 959
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
960

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
988 989 990 991 992
		return 1;

	return 0;
}

993 994 995 996 997 998 999 1000 1001 1002 1003
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

1004 1005 1006 1007
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
1008
	int nid = zone_to_nid(zone);
1009 1010 1011 1012 1013 1014
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
1015 1016 1017
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1018
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1035 1036 1037 1038 1039 1040 1041 1042
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
1043 1044 1045 1046 1047 1048 1049
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

1050 1051 1052 1053 1054
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1055
					int active, int file)
1056 1057 1058 1059 1060 1061
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1062
	struct page_cgroup *pc, *tmp;
1063
	int nid = zone_to_nid(z);
1064 1065
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1066
	int lru = LRU_FILE * file + active;
1067
	int ret;
1068

1069
	BUG_ON(!mem_cont);
1070
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1071
	src = &mz->lists[lru];
1072

1073 1074
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1075
		if (scan >= nr_to_scan)
1076
			break;
K
KAMEZAWA Hiroyuki 已提交
1077 1078

		page = pc->page;
1079 1080
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
1081
		if (unlikely(!PageLRU(page)))
1082 1083
			continue;

H
Hugh Dickins 已提交
1084
		scan++;
1085 1086 1087
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1088
			list_move(&page->lru, dst);
1089
			mem_cgroup_del_lru(page);
1090
			nr_taken++;
1091 1092 1093 1094 1095 1096 1097
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1098 1099 1100 1101
		}
	}

	*scanned = scan;
1102 1103 1104 1105

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1106 1107 1108
	return nr_taken;
}

1109 1110 1111
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1140 1141 1142
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1143 1144 1145 1146

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1147
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1148 1149 1150
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1161 1162 1163
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1164
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1165 1166 1167
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1186 1187 1188

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1189 1190
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1191
	bool ret = false;
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1226
/**
1227
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1246
	if (!memcg || !p)
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1293 1294 1295 1296 1297 1298 1299
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1300 1301 1302 1303
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1304 1305 1306
	return num;
}

D
David Rientjes 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

	limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
			total_swap_pages;
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1325
/*
K
KAMEZAWA Hiroyuki 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1368 1369
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1370 1371 1372
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1373 1374
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1375 1376
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1377
						struct zone *zone,
1378 1379
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1380
{
K
KAMEZAWA Hiroyuki 已提交
1381 1382 1383
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1384 1385
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1386 1387
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1388

1389 1390 1391 1392
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1393
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1394
		victim = mem_cgroup_select_victim(root_mem);
1395
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1396
			loop++;
1397 1398
			if (loop >= 1)
				drain_all_stock_async();
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1422
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1423 1424
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1425 1426
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1427
		/* we use swappiness of local cgroup */
1428 1429
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1430
				noswap, get_swappiness(victim), zone);
1431 1432 1433
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1434
		css_put(&victim->css);
1435 1436 1437 1438 1439 1440 1441
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1442
		total += ret;
1443 1444 1445 1446
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1447
			return 1 + total;
1448
	}
K
KAMEZAWA Hiroyuki 已提交
1449
	return total;
1450 1451
}

K
KAMEZAWA Hiroyuki 已提交
1452 1453 1454 1455 1456 1457
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1458 1459
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1460

K
KAMEZAWA Hiroyuki 已提交
1461 1462 1463 1464
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1465 1466 1467 1468

	if (lock_count == 1)
		return true;
	return false;
1469
}
1470

K
KAMEZAWA Hiroyuki 已提交
1471
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1472
{
K
KAMEZAWA Hiroyuki 已提交
1473 1474
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1475 1476 1477 1478 1479
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1480 1481
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1482 1483 1484
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1485 1486 1487 1488

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1525 1526
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1527
	if (mem && atomic_read(&mem->oom_lock))
1528 1529 1530
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1531 1532 1533 1534
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1535
{
K
KAMEZAWA Hiroyuki 已提交
1536
	struct oom_wait_info owait;
1537
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1538

K
KAMEZAWA Hiroyuki 已提交
1539 1540 1541 1542 1543
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1544
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1545 1546 1547 1548 1549 1550 1551 1552
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1553 1554 1555 1556
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1557
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1558 1559
	mutex_unlock(&memcg_oom_mutex);

1560 1561
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1562
		mem_cgroup_out_of_memory(mem, mask);
1563
	} else {
K
KAMEZAWA Hiroyuki 已提交
1564
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1565
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1566 1567 1568
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1569
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1570 1571 1572 1573 1574 1575 1576
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1577 1578
}

1579 1580 1581
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1601
 */
1602 1603

static void mem_cgroup_update_file_stat(struct page *page, int idx, int val)
1604 1605
{
	struct mem_cgroup *mem;
1606 1607
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1608 1609 1610 1611

	if (unlikely(!pc))
		return;

1612
	rcu_read_lock();
1613
	mem = pc->mem_cgroup;
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
	if (unlikely(mem_cgroup_stealed(mem))) {
		/* take a lock against to access pc->mem_cgroup */
		lock_page_cgroup(pc);
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1625 1626 1627 1628 1629 1630 1631 1632

	this_cpu_add(mem->stat->count[idx], val);

	switch (idx) {
	case MEM_CGROUP_STAT_FILE_MAPPED:
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1633
			ClearPageCgroupFileMapped(pc);
1634 1635 1636
		break;
	default:
		BUG();
1637
	}
1638

1639 1640 1641 1642 1643
out:
	if (unlikely(need_unlock))
		unlock_page_cgroup(pc);
	rcu_read_unlock();
	return;
1644
}
1645

1646 1647 1648 1649 1650
void mem_cgroup_update_file_mapped(struct page *page, int val)
{
	mem_cgroup_update_file_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, val);
}

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1712
 * This will be consumed by consume_stock() function, later.
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
		s64 x = per_cpu(mem->stat->count[i], cpu);

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1790 1791 1792 1793
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1794 1795 1796 1797 1798
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
1799
	struct mem_cgroup *iter;
1800

1801 1802 1803 1804 1805 1806
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

1807
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1808
		return NOTIFY_OK;
1809 1810 1811 1812

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

1813 1814 1815 1816 1817
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				int csize, bool oom_check)
{
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);

	if (csize > PAGE_SIZE) /* change csize and retry */
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
					gfp_mask, flags);
	/*
	 * try_to_free_mem_cgroup_pages() might not give us a full
	 * picture of reclaim. Some pages are reclaimed and might be
	 * moved to swap cache or just unmapped from the cgroup.
	 * Check the limit again to see if the reclaim reduced the
	 * current usage of the cgroup before giving up
	 */
	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

1885 1886 1887
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1888
 */
1889
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1890
		gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1891
{
1892 1893 1894
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
1895
	int csize = CHARGE_SIZE;
1896

K
KAMEZAWA Hiroyuki 已提交
1897 1898 1899 1900 1901 1902 1903 1904
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1905

1906
	/*
1907 1908
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1909 1910 1911
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
1912 1913 1914 1915
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
1916
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
1917 1918 1919 1920 1921
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
		if (consume_stock(mem))
			goto done;
1922 1923
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
1924
		struct task_struct *p;
1925

K
KAMEZAWA Hiroyuki 已提交
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		VM_BUG_ON(!p);
		/*
		 * because we don't have task_lock(), "p" can exit while
		 * we're here. In that case, "mem" can point to root
		 * cgroup but never be NULL. (and task_struct itself is freed
		 * by RCU, cgroup itself is RCU safe.) Then, we have small
		 * risk here to get wrong cgroup. But such kind of mis-account
		 * by race always happens because we don't have cgroup_mutex().
		 * It's overkill and we allow that small race, here.
		 */
		mem = mem_cgroup_from_task(p);
		VM_BUG_ON(!mem);
		if (mem_cgroup_is_root(mem)) {
			rcu_read_unlock();
			goto done;
		}
		if (consume_stock(mem)) {
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
1963

1964 1965
	do {
		bool oom_check;
1966

1967
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
1968 1969
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
1970
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
1971
		}
1972

1973 1974 1975 1976
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1977
		}
1978

1979
		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1980

1981 1982 1983 1984 1985
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
			csize = PAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
1986 1987 1988
			css_put(&mem->css);
			mem = NULL;
			goto again;
1989
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
1990
			css_put(&mem->css);
1991 1992
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
1993 1994
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
1995
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
1996
			}
1997 1998 1999 2000
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2001
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2002
			goto bypass;
2003
		}
2004 2005
	} while (ret != CHARGE_OK);

2006 2007
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
2008
	css_put(&mem->css);
2009
done:
K
KAMEZAWA Hiroyuki 已提交
2010
	*memcg = mem;
2011 2012
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2013
	*memcg = NULL;
2014
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2015 2016 2017
bypass:
	*memcg = NULL;
	return 0;
2018
}
2019

2020 2021 2022 2023 2024
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2025 2026
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
2027 2028
{
	if (!mem_cgroup_is_root(mem)) {
2029
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2030
		if (do_swap_account)
2031
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2032
	}
2033 2034 2035 2036 2037
}

static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	__mem_cgroup_cancel_charge(mem, 1);
2038 2039
}

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2059
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2060
{
2061
	struct mem_cgroup *mem = NULL;
2062
	struct page_cgroup *pc;
2063
	unsigned short id;
2064 2065
	swp_entry_t ent;

2066 2067 2068
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2069
	lock_page_cgroup(pc);
2070
	if (PageCgroupUsed(pc)) {
2071
		mem = pc->mem_cgroup;
2072 2073
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2074
	} else if (PageSwapCache(page)) {
2075
		ent.val = page_private(page);
2076 2077 2078 2079 2080 2081
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2082
	}
2083
	unlock_page_cgroup(pc);
2084 2085 2086
	return mem;
}

2087
/*
2088
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
2099 2100 2101 2102

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2103
		mem_cgroup_cancel_charge(mem);
2104
		return;
2105
	}
2106

2107
	pc->mem_cgroup = mem;
2108 2109 2110 2111 2112 2113 2114
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2115
	smp_wmb();
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2129

K
KAMEZAWA Hiroyuki 已提交
2130
	mem_cgroup_charge_statistics(mem, pc, true);
2131 2132

	unlock_page_cgroup(pc);
2133 2134 2135 2136 2137
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2138
	memcg_check_events(mem, pc->page);
2139
}
2140

2141
/**
2142
 * __mem_cgroup_move_account - move account of the page
2143 2144 2145
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2146
 * @uncharge: whether we should call uncharge and css_put against @from.
2147 2148
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2149
 * - page is not on LRU (isolate_page() is useful.)
2150
 * - the pc is locked, used, and ->mem_cgroup points to @from.
2151
 *
2152 2153 2154 2155
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2156 2157
 */

2158
static void __mem_cgroup_move_account(struct page_cgroup *pc,
2159
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2160 2161
{
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
2162
	VM_BUG_ON(PageLRU(pc->page));
2163
	VM_BUG_ON(!page_is_cgroup_locked(pc));
2164 2165
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
2166

2167
	if (PageCgroupFileMapped(pc)) {
2168 2169 2170 2171 2172
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2173
	}
2174 2175 2176 2177
	mem_cgroup_charge_statistics(from, pc, false);
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
		mem_cgroup_cancel_charge(from);
2178

2179
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2180 2181
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
2182 2183 2184
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2185 2186 2187
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
2188
	 */
2189 2190 2191 2192 2193 2194 2195
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
2196
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2197 2198 2199 2200
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2201
		__mem_cgroup_move_account(pc, from, to, uncharge);
2202 2203 2204
		ret = 0;
	}
	unlock_page_cgroup(pc);
2205 2206 2207 2208 2209
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
2221
	struct page *page = pc->page;
2222 2223 2224 2225 2226 2227 2228 2229 2230
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2231 2232 2233 2234 2235
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
2236

2237
	parent = mem_cgroup_from_cont(pcg);
2238
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
2239
	if (ret || !parent)
2240
		goto put_back;
2241

2242 2243 2244
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
		mem_cgroup_cancel_charge(parent);
2245
put_back:
K
KAMEZAWA Hiroyuki 已提交
2246
	putback_lru_page(page);
2247
put:
2248
	put_page(page);
2249
out:
2250 2251 2252
	return ret;
}

2253 2254 2255 2256 2257 2258 2259
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2260
				gfp_t gfp_mask, enum charge_type ctype)
2261
{
2262
	struct mem_cgroup *mem = NULL;
2263 2264 2265 2266 2267 2268 2269 2270 2271
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

2272
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
2273
	if (ret || !mem)
2274 2275 2276
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
2277 2278 2279
	return 0;
}

2280 2281
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2282
{
2283
	if (mem_cgroup_disabled())
2284
		return 0;
2285 2286
	if (PageCompound(page))
		return 0;
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2298
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2299
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2300 2301
}

D
Daisuke Nishimura 已提交
2302 2303 2304 2305
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2306 2307
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2308
{
2309 2310
	int ret;

2311
	if (mem_cgroup_disabled())
2312
		return 0;
2313 2314
	if (PageCompound(page))
		return 0;
2315 2316 2317 2318 2319 2320 2321 2322
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2323 2324
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2325 2326 2327 2328
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2329 2330 2331 2332 2333 2334
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2335 2336
			return 0;
		}
2337
		unlock_page_cgroup(pc);
2338 2339
	}

2340
	if (unlikely(!mm))
2341
		mm = &init_mm;
2342

2343 2344
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2345
				MEM_CGROUP_CHARGE_TYPE_CACHE);
2346

D
Daisuke Nishimura 已提交
2347 2348
	/* shmem */
	if (PageSwapCache(page)) {
2349 2350
		struct mem_cgroup *mem = NULL;

D
Daisuke Nishimura 已提交
2351 2352 2353 2354 2355 2356
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2357
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2358 2359

	return ret;
2360 2361
}

2362 2363 2364
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2365
 * struct page_cgroup is acquired. This refcnt will be consumed by
2366 2367
 * "commit()" or removed by "cancel()"
 */
2368 2369 2370 2371 2372
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2373
	int ret;
2374

2375
	if (mem_cgroup_disabled())
2376 2377 2378 2379 2380 2381
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2382 2383 2384
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2385 2386
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2387
		goto charge_cur_mm;
2388
	mem = try_get_mem_cgroup_from_page(page);
2389 2390
	if (!mem)
		goto charge_cur_mm;
2391
	*ptr = mem;
2392
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2393 2394
	css_put(&mem->css);
	return ret;
2395 2396 2397
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2398
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2399 2400
}

D
Daisuke Nishimura 已提交
2401 2402 2403
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2404 2405 2406
{
	struct page_cgroup *pc;

2407
	if (mem_cgroup_disabled())
2408 2409 2410
		return;
	if (!ptr)
		return;
2411
	cgroup_exclude_rmdir(&ptr->css);
2412
	pc = lookup_page_cgroup(page);
2413
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
2414
	__mem_cgroup_commit_charge(ptr, pc, ctype);
2415
	mem_cgroup_lru_add_after_commit_swapcache(page);
2416 2417 2418
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2419 2420 2421
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2422
	 */
2423
	if (do_swap_account && PageSwapCache(page)) {
2424
		swp_entry_t ent = {.val = page_private(page)};
2425
		unsigned short id;
2426
		struct mem_cgroup *memcg;
2427 2428 2429 2430

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2431
		if (memcg) {
2432 2433 2434 2435
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2436
			if (!mem_cgroup_is_root(memcg))
2437
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2438
			mem_cgroup_swap_statistics(memcg, false);
2439 2440
			mem_cgroup_put(memcg);
		}
2441
		rcu_read_unlock();
2442
	}
2443 2444 2445 2446 2447 2448
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2449 2450
}

D
Daisuke Nishimura 已提交
2451 2452 2453 2454 2455 2456
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2457 2458
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2459
	if (mem_cgroup_disabled())
2460 2461 2462
		return;
	if (!mem)
		return;
2463
	mem_cgroup_cancel_charge(mem);
2464 2465
}

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2510 2511
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2512 2513
	return;
}
2514

2515
/*
2516
 * uncharge if !page_mapped(page)
2517
 */
2518
static struct mem_cgroup *
2519
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2520
{
H
Hugh Dickins 已提交
2521
	struct page_cgroup *pc;
2522
	struct mem_cgroup *mem = NULL;
2523

2524
	if (mem_cgroup_disabled())
2525
		return NULL;
2526

K
KAMEZAWA Hiroyuki 已提交
2527
	if (PageSwapCache(page))
2528
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2529

2530
	/*
2531
	 * Check if our page_cgroup is valid
2532
	 */
2533 2534
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2535
		return NULL;
2536

2537
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2538

2539 2540
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2541 2542 2543 2544 2545
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2546
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2547 2548
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2560
	}
K
KAMEZAWA Hiroyuki 已提交
2561

K
KAMEZAWA Hiroyuki 已提交
2562
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2563

2564
	ClearPageCgroupUsed(pc);
2565 2566 2567 2568 2569 2570
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2571

2572
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2573 2574 2575 2576
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
2577
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2578 2579 2580 2581 2582 2583
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2584

2585
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2586 2587 2588

unlock_out:
	unlock_page_cgroup(pc);
2589
	return NULL;
2590 2591
}

2592 2593
void mem_cgroup_uncharge_page(struct page *page)
{
2594 2595 2596 2597 2598
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2599 2600 2601 2602 2603 2604
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2605
	VM_BUG_ON(page->mapping);
2606 2607 2608
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2649
	memcg_oom_recover(batch->memcg);
2650 2651 2652 2653
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2654
#ifdef CONFIG_SWAP
2655
/*
2656
 * called after __delete_from_swap_cache() and drop "page" account.
2657 2658
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2659 2660
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2661 2662
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2663 2664 2665 2666 2667 2668
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2669

K
KAMEZAWA Hiroyuki 已提交
2670 2671 2672 2673 2674
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
2675
		swap_cgroup_record(ent, css_id(&memcg->css));
2676
}
2677
#endif
2678 2679 2680 2681 2682 2683 2684

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2685
{
2686
	struct mem_cgroup *memcg;
2687
	unsigned short id;
2688 2689 2690 2691

	if (!do_swap_account)
		return;

2692 2693 2694
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2695
	if (memcg) {
2696 2697 2698 2699
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2700
		if (!mem_cgroup_is_root(memcg))
2701
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2702
		mem_cgroup_swap_statistics(memcg, false);
2703 2704
		mem_cgroup_put(memcg);
	}
2705
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2706
}
2707 2708 2709 2710 2711 2712

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2713
 * @need_fixup: whether we should fixup res_counters and refcounts.
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2724
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2725 2726 2727 2728 2729 2730 2731 2732
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2733
		mem_cgroup_swap_statistics(to, true);
2734
		/*
2735 2736 2737 2738 2739 2740
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2741 2742
		 */
		mem_cgroup_get(to);
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
2754 2755 2756 2757 2758 2759
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2760
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2761 2762 2763
{
	return -EINVAL;
}
2764
#endif
K
KAMEZAWA Hiroyuki 已提交
2765

2766
/*
2767 2768
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2769
 */
2770 2771
int mem_cgroup_prepare_migration(struct page *page,
	struct page *newpage, struct mem_cgroup **ptr)
2772 2773
{
	struct page_cgroup *pc;
2774
	struct mem_cgroup *mem = NULL;
2775
	enum charge_type ctype;
2776
	int ret = 0;
2777

2778
	if (mem_cgroup_disabled())
2779 2780
		return 0;

2781 2782 2783
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2784 2785
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2817
	}
2818
	unlock_page_cgroup(pc);
2819 2820 2821 2822 2823 2824
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2825

A
Andrea Arcangeli 已提交
2826
	*ptr = mem;
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2840
	}
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
	__mem_cgroup_commit_charge(mem, pc, ctype);
2855
	return ret;
2856
}
2857

2858
/* remove redundant charge if migration failed*/
2859
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2860
	struct page *oldpage, struct page *newpage)
2861
{
2862
	struct page *used, *unused;
2863 2864 2865 2866
	struct page_cgroup *pc;

	if (!mem)
		return;
2867
	/* blocks rmdir() */
2868
	cgroup_exclude_rmdir(&mem->css);
2869 2870
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
2871 2872
		used = oldpage;
		unused = newpage;
2873
	} else {
2874
		used = newpage;
2875 2876
		unused = oldpage;
	}
2877
	/*
2878 2879 2880
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2881
	 */
2882 2883 2884 2885
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
2886

2887 2888
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

2889
	/*
2890 2891 2892 2893 2894 2895
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
2896
	 */
2897 2898
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
2899
	/*
2900 2901
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
2902 2903 2904 2905
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2906
}
2907

2908
/*
2909 2910 2911 2912 2913 2914
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2915
 */
2916
int mem_cgroup_shmem_charge_fallback(struct page *page,
2917 2918
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2919
{
2920
	struct mem_cgroup *mem = NULL;
2921
	int ret;
2922

2923
	if (mem_cgroup_disabled())
2924
		return 0;
2925

2926 2927 2928
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2929

2930
	return ret;
2931 2932
}

2933 2934
static DEFINE_MUTEX(set_limit_mutex);

2935
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2936
				unsigned long long val)
2937
{
2938
	int retry_count;
2939
	u64 memswlimit, memlimit;
2940
	int ret = 0;
2941 2942
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
2943
	int enlarge;
2944 2945 2946 2947 2948 2949 2950 2951 2952

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2953

2954
	enlarge = 0;
2955
	while (retry_count) {
2956 2957 2958 2959
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2970 2971
			break;
		}
2972 2973 2974 2975 2976

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

2977
		ret = res_counter_set_limit(&memcg->res, val);
2978 2979 2980 2981 2982 2983
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2984 2985 2986 2987 2988
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2989
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2990
						MEM_CGROUP_RECLAIM_SHRINK);
2991 2992 2993 2994 2995 2996
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2997
	}
2998 2999
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3000

3001 3002 3003
	return ret;
}

L
Li Zefan 已提交
3004 3005
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3006
{
3007
	int retry_count;
3008
	u64 memlimit, memswlimit, oldusage, curusage;
3009 3010
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3011
	int enlarge = 0;
3012

3013 3014 3015
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3033 3034 3035
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3036
		ret = res_counter_set_limit(&memcg->memsw, val);
3037 3038 3039 3040 3041 3042
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3043 3044 3045 3046 3047
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3048
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3049 3050
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
3051
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3052
		/* Usage is reduced ? */
3053
		if (curusage >= oldusage)
3054
			retry_count--;
3055 3056
		else
			oldusage = curusage;
3057
	}
3058 3059
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3060 3061 3062
	return ret;
}

3063
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3064
					    gfp_t gfp_mask)
3065 3066 3067 3068 3069 3070
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3071
	unsigned long long excess;
3072 3073 3074 3075

	if (order > 0)
		return 0;

3076
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3124
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3125 3126 3127 3128 3129 3130 3131 3132
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3133 3134
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3153 3154 3155 3156
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3157
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3158
				int node, int zid, enum lru_list lru)
3159
{
K
KAMEZAWA Hiroyuki 已提交
3160 3161
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3162
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3163
	unsigned long flags, loop;
3164
	struct list_head *list;
3165
	int ret = 0;
3166

K
KAMEZAWA Hiroyuki 已提交
3167 3168
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3169
	list = &mz->lists[lru];
3170

3171 3172 3173 3174 3175 3176
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3177
		spin_lock_irqsave(&zone->lru_lock, flags);
3178
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3179
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3180
			break;
3181 3182 3183 3184
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3185
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3186
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3187 3188
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3189
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3190

K
KAMEZAWA Hiroyuki 已提交
3191
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3192
		if (ret == -ENOMEM)
3193
			break;
3194 3195 3196 3197 3198 3199 3200

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3201
	}
K
KAMEZAWA Hiroyuki 已提交
3202

3203 3204 3205
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3206 3207 3208 3209 3210 3211
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3212
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3213
{
3214 3215 3216
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3217
	struct cgroup *cgrp = mem->css.cgroup;
3218

3219
	css_get(&mem->css);
3220 3221

	shrink = 0;
3222 3223 3224
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3225
move_account:
3226
	do {
3227
		ret = -EBUSY;
3228 3229 3230 3231
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3232
			goto out;
3233 3234
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3235
		drain_all_stock_sync();
3236
		ret = 0;
3237
		mem_cgroup_start_move(mem);
3238
		for_each_node_state(node, N_HIGH_MEMORY) {
3239
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3240
				enum lru_list l;
3241 3242
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3243
							node, zid, l);
3244 3245 3246
					if (ret)
						break;
				}
3247
			}
3248 3249 3250
			if (ret)
				break;
		}
3251
		mem_cgroup_end_move(mem);
3252
		memcg_oom_recover(mem);
3253 3254 3255
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3256
		cond_resched();
3257 3258
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3259 3260 3261
out:
	css_put(&mem->css);
	return ret;
3262 3263

try_to_free:
3264 3265
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3266 3267 3268
		ret = -EBUSY;
		goto out;
	}
3269 3270
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3271 3272 3273 3274
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3275 3276 3277 3278 3279

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3280 3281
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3282
		if (!progress) {
3283
			nr_retries--;
3284
			/* maybe some writeback is necessary */
3285
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3286
		}
3287 3288

	}
K
KAMEZAWA Hiroyuki 已提交
3289
	lru_add_drain();
3290
	/* try move_account...there may be some *locked* pages. */
3291
	goto move_account;
3292 3293
}

3294 3295 3296 3297 3298 3299
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3318
	 * If parent's use_hierarchy is set, we can't make any modifications
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3338

K
KAMEZAWA Hiroyuki 已提交
3339 3340
static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx)
3341
{
K
KAMEZAWA Hiroyuki 已提交
3342 3343
	struct mem_cgroup *iter;
	s64 val = 0;
3344

K
KAMEZAWA Hiroyuki 已提交
3345 3346 3347 3348 3349 3350 3351
	/* each per cpu's value can be minus.Then, use s64 */
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3352 3353
}

3354 3355
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3356
	u64 val;
3357 3358 3359 3360 3361 3362 3363 3364

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

K
KAMEZAWA Hiroyuki 已提交
3365 3366
	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3367

K
KAMEZAWA Hiroyuki 已提交
3368 3369 3370
	if (swap)
		val += mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT);
3371 3372 3373 3374

	return val << PAGE_SHIFT;
}

3375
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3376
{
3377
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3378
	u64 val;
3379 3380 3381 3382 3383 3384
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3385 3386 3387
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3388
			val = res_counter_read_u64(&mem->res, name);
3389 3390
		break;
	case _MEMSWAP:
3391 3392 3393
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3394
			val = res_counter_read_u64(&mem->memsw, name);
3395 3396 3397 3398 3399 3400
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3401
}
3402 3403 3404 3405
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3406 3407
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3408
{
3409
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3410
	int type, name;
3411 3412 3413
	unsigned long long val;
	int ret;

3414 3415 3416
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3417
	case RES_LIMIT:
3418 3419 3420 3421
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3422 3423
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3424 3425 3426
		if (ret)
			break;
		if (type == _MEM)
3427
			ret = mem_cgroup_resize_limit(memcg, val);
3428 3429
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3430
		break;
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3445 3446 3447 3448 3449
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3450 3451
}

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3480
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3481 3482
{
	struct mem_cgroup *mem;
3483
	int type, name;
3484 3485

	mem = mem_cgroup_from_cont(cont);
3486 3487 3488
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3489
	case RES_MAX_USAGE:
3490 3491 3492 3493
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3494 3495
		break;
	case RES_FAILCNT:
3496 3497 3498 3499
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3500 3501
		break;
	}
3502

3503
	return 0;
3504 3505
}

3506 3507 3508 3509 3510 3511
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3512
#ifdef CONFIG_MMU
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3531 3532 3533 3534 3535 3536 3537
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3538

K
KAMEZAWA Hiroyuki 已提交
3539 3540 3541 3542 3543

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3544
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3545 3546
	MCS_PGPGIN,
	MCS_PGPGOUT,
3547
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3558 3559
};

K
KAMEZAWA Hiroyuki 已提交
3560 3561 3562 3563 3564 3565
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3566
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3567 3568
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3569
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3570 3571 3572 3573 3574 3575 3576 3577
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
3578 3579
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
3580 3581 3582 3583
{
	s64 val;

	/* per cpu stat */
3584
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3585
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3586
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3587
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3588
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3589
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3590
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3591
	s->stat[MCS_PGPGIN] += val;
3592
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3593
	s->stat[MCS_PGPGOUT] += val;
3594
	if (do_swap_account) {
3595
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3596 3597
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
3615 3616 3617 3618
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
3619 3620
}

3621 3622
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3623 3624
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3625
	struct mcs_total_stat mystat;
3626 3627
	int i;

K
KAMEZAWA Hiroyuki 已提交
3628 3629
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3630

3631 3632 3633
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3634
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3635
	}
L
Lee Schermerhorn 已提交
3636

K
KAMEZAWA Hiroyuki 已提交
3637
	/* Hierarchical information */
3638 3639 3640 3641 3642 3643 3644
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3645

K
KAMEZAWA Hiroyuki 已提交
3646 3647
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3648 3649 3650
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3651
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3652
	}
K
KAMEZAWA Hiroyuki 已提交
3653

K
KOSAKI Motohiro 已提交
3654
#ifdef CONFIG_DEBUG_VM
3655
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3683 3684 3685
	return 0;
}

K
KOSAKI Motohiro 已提交
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3698

K
KOSAKI Motohiro 已提交
3699 3700 3701 3702 3703 3704 3705
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3706 3707 3708

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3709 3710
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3711 3712
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3713
		return -EINVAL;
3714
	}
K
KOSAKI Motohiro 已提交
3715 3716 3717 3718 3719

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3720 3721
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3722 3723 3724
	return 0;
}

3725 3726 3727 3728 3729 3730 3731 3732
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3733
		t = rcu_dereference(memcg->thresholds.primary);
3734
	else
3735
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3747
	i = t->current_threshold;
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3771
	t->current_threshold = i - 1;
3772 3773 3774 3775 3776 3777
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3778 3779 3780 3781 3782 3783 3784
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3795
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
3806 3807 3808 3809
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3810 3811 3812 3813
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3814 3815
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3816 3817
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3818 3819
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3820
	int i, size, ret;
3821 3822 3823 3824 3825 3826

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3827

3828
	if (type == _MEM)
3829
		thresholds = &memcg->thresholds;
3830
	else if (type == _MEMSWAP)
3831
		thresholds = &memcg->memsw_thresholds;
3832 3833 3834 3835 3836 3837
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3838
	if (thresholds->primary)
3839 3840
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3841
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3842 3843

	/* Allocate memory for new array of thresholds */
3844
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3845
			GFP_KERNEL);
3846
	if (!new) {
3847 3848 3849
		ret = -ENOMEM;
		goto unlock;
	}
3850
	new->size = size;
3851 3852

	/* Copy thresholds (if any) to new array */
3853 3854
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3855
				sizeof(struct mem_cgroup_threshold));
3856 3857
	}

3858
	/* Add new threshold */
3859 3860
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3861 3862

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3863
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3864 3865 3866
			compare_thresholds, NULL);

	/* Find current threshold */
3867
	new->current_threshold = -1;
3868
	for (i = 0; i < size; i++) {
3869
		if (new->entries[i].threshold < usage) {
3870
			/*
3871 3872
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3873 3874
			 * it here.
			 */
3875
			++new->current_threshold;
3876 3877 3878
		}
	}

3879 3880 3881 3882 3883
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3884

3885
	/* To be sure that nobody uses thresholds */
3886 3887 3888 3889 3890 3891 3892 3893
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3894
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3895
	struct cftype *cft, struct eventfd_ctx *eventfd)
3896 3897
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3898 3899
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3900 3901
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
3902
	int i, j, size;
3903 3904 3905

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
3906
		thresholds = &memcg->thresholds;
3907
	else if (type == _MEMSWAP)
3908
		thresholds = &memcg->memsw_thresholds;
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3924 3925 3926
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3927 3928 3929
			size++;
	}

3930
	new = thresholds->spare;
3931

3932 3933
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3934 3935
		kfree(new);
		new = NULL;
3936
		goto swap_buffers;
3937 3938
	}

3939
	new->size = size;
3940 3941

	/* Copy thresholds and find current threshold */
3942 3943 3944
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3945 3946
			continue;

3947 3948
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
3949
			/*
3950
			 * new->current_threshold will not be used
3951 3952 3953
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3954
			++new->current_threshold;
3955 3956 3957 3958
		}
		j++;
	}

3959
swap_buffers:
3960 3961 3962
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
3963

3964
	/* To be sure that nobody uses thresholds */
3965 3966 3967 3968
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
3969

K
KAMEZAWA Hiroyuki 已提交
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

3995
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4050 4051
	if (!val)
		memcg_oom_recover(mem);
4052 4053 4054 4055
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
4056 4057
static struct cftype mem_cgroup_files[] = {
	{
4058
		.name = "usage_in_bytes",
4059
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4060
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4061 4062
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4063
	},
4064 4065
	{
		.name = "max_usage_in_bytes",
4066
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4067
		.trigger = mem_cgroup_reset,
4068 4069
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4070
	{
4071
		.name = "limit_in_bytes",
4072
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4073
		.write_string = mem_cgroup_write,
4074
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4075
	},
4076 4077 4078 4079 4080 4081
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4082 4083
	{
		.name = "failcnt",
4084
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4085
		.trigger = mem_cgroup_reset,
4086
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4087
	},
4088 4089
	{
		.name = "stat",
4090
		.read_map = mem_control_stat_show,
4091
	},
4092 4093 4094 4095
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4096 4097 4098 4099 4100
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4101 4102 4103 4104 4105
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4106 4107 4108 4109 4110
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4111 4112
	{
		.name = "oom_control",
4113 4114
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4115 4116 4117 4118
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
4119 4120
};

4121 4122 4123 4124 4125 4126
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4127 4128
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4164 4165 4166
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4167
	struct mem_cgroup_per_zone *mz;
4168
	enum lru_list l;
4169
	int zone, tmp = node;
4170 4171 4172 4173 4174 4175 4176 4177
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4178 4179 4180
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4181 4182
	if (!pn)
		return 1;
4183

4184 4185
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
4186 4187 4188

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4189 4190
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4191
		mz->usage_in_excess = 0;
4192 4193
		mz->on_tree = false;
		mz->mem = mem;
4194
	}
4195 4196 4197
	return 0;
}

4198 4199 4200 4201 4202
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4203 4204 4205
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4206
	int size = sizeof(struct mem_cgroup);
4207

4208
	/* Can be very big if MAX_NUMNODES is very big */
4209 4210
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
4211
	else
4212
		mem = vmalloc(size);
4213

4214 4215 4216 4217
	if (!mem)
		return NULL;

	memset(mem, 0, size);
4218
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4219 4220
	if (!mem->stat)
		goto out_free;
4221
	spin_lock_init(&mem->pcp_counter_lock);
4222
	return mem;
4223 4224 4225 4226 4227 4228 4229

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4230 4231
}

4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4243
static void __mem_cgroup_free(struct mem_cgroup *mem)
4244
{
K
KAMEZAWA Hiroyuki 已提交
4245 4246
	int node;

4247
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4248 4249
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4250 4251 4252
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4253 4254
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4255 4256 4257 4258 4259
		kfree(mem);
	else
		vfree(mem);
}

4260 4261 4262 4263 4264
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4265
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4266
{
4267
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4268
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4269
		__mem_cgroup_free(mem);
4270 4271 4272
		if (parent)
			mem_cgroup_put(parent);
	}
4273 4274
}

4275 4276 4277 4278 4279
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4280 4281 4282 4283 4284 4285 4286 4287 4288
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4289

4290 4291 4292
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4293
	if (!mem_cgroup_disabled() && really_do_swap_account)
4294 4295 4296 4297 4298 4299 4300 4301
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4327
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4328 4329
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4330
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4331
	long error = -ENOMEM;
4332
	int node;
B
Balbir Singh 已提交
4333

4334 4335
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4336
		return ERR_PTR(error);
4337

4338 4339 4340
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4341

4342
	/* root ? */
4343
	if (cont->parent == NULL) {
4344
		int cpu;
4345
		enable_swap_cgroup();
4346
		parent = NULL;
4347
		root_mem_cgroup = mem;
4348 4349
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4350 4351 4352 4353 4354
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4355
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4356
	} else {
4357
		parent = mem_cgroup_from_cont(cont->parent);
4358
		mem->use_hierarchy = parent->use_hierarchy;
4359
		mem->oom_kill_disable = parent->oom_kill_disable;
4360
	}
4361

4362 4363 4364
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4365 4366 4367 4368 4369 4370 4371
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4372 4373 4374 4375
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4376
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4377
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4378
	INIT_LIST_HEAD(&mem->oom_notify);
4379

K
KOSAKI Motohiro 已提交
4380 4381
	if (parent)
		mem->swappiness = get_swappiness(parent);
4382
	atomic_set(&mem->refcnt, 1);
4383
	mem->move_charge_at_immigrate = 0;
4384
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4385
	return &mem->css;
4386
free_out:
4387
	__mem_cgroup_free(mem);
4388
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4389
	return ERR_PTR(error);
B
Balbir Singh 已提交
4390 4391
}

4392
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4393 4394 4395
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4396 4397

	return mem_cgroup_force_empty(mem, false);
4398 4399
}

B
Balbir Singh 已提交
4400 4401 4402
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4403 4404 4405
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4406 4407 4408 4409 4410
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4411 4412 4413 4414 4415 4416 4417 4418
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4419 4420
}

4421
#ifdef CONFIG_MMU
4422
/* Handlers for move charge at task migration. */
4423 4424
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4425
{
4426 4427
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4428 4429
	struct mem_cgroup *mem = mc.to;

4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
4465
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4466 4467 4468 4469 4470
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4471 4472 4473 4474 4475 4476 4477 4478
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4479
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4480 4481 4482 4483 4484 4485
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4486 4487 4488
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4489 4490 4491 4492 4493
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4494
	swp_entry_t	ent;
4495 4496 4497 4498 4499
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4500
	MC_TARGET_SWAP,
4501 4502
};

D
Daisuke Nishimura 已提交
4503 4504
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4505
{
D
Daisuke Nishimura 已提交
4506
	struct page *page = vm_normal_page(vma, addr, ptent);
4507

D
Daisuke Nishimura 已提交
4508 4509 4510 4511 4512 4513
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4514 4515
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4534 4535
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4536
		return NULL;
4537
	}
D
Daisuke Nishimura 已提交
4538 4539 4540 4541 4542 4543
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4589 4590
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4591 4592 4593

	if (!page && !ent.val)
		return 0;
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4609 4610
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4611 4612 4613 4614
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4634 4635 4636
	return 0;
}

4637 4638 4639 4640 4641
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

4642
	/* We've already held the mmap_sem */
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4663
	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4664 4665 4666 4667
}

static void mem_cgroup_clear_mc(void)
{
4668 4669 4670
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4671
	/* we must uncharge all the leftover precharges from mc.to */
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4683
	}
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */

		mc.moved_swap = 0;
	}
4704 4705 4706 4707
	if (mc.mm) {
		up_read(&mc.mm->mmap_sem);
		mmput(mc.mm);
	}
4708
	spin_lock(&mc.lock);
4709 4710
	mc.from = NULL;
	mc.to = NULL;
4711
	spin_unlock(&mc.lock);
4712 4713
	mc.moving_task = NULL;
	mc.mm = NULL;
4714
	mem_cgroup_end_move(from);
4715 4716
	memcg_oom_recover(from);
	memcg_oom_recover(to);
4717
	wake_up_all(&mc.waitq);
4718 4719
}

4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4738
		if (mm->owner == p) {
4739 4740 4741 4742 4743 4744 4745
			/*
			 * We do all the move charge works under one mmap_sem to
			 * avoid deadlock with down_write(&mmap_sem)
			 * -> try_charge() -> if (mc.moving_task) -> sleep.
			 */
			down_read(&mm->mmap_sem);

4746 4747 4748
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4749
			VM_BUG_ON(mc.moved_charge);
4750
			VM_BUG_ON(mc.moved_swap);
4751
			VM_BUG_ON(mc.moving_task);
4752 4753
			VM_BUG_ON(mc.mm);

4754
			mem_cgroup_start_move(from);
4755
			spin_lock(&mc.lock);
4756 4757 4758
			mc.from = from;
			mc.to = mem;
			mc.precharge = 0;
4759
			mc.moved_charge = 0;
4760
			mc.moved_swap = 0;
4761
			spin_unlock(&mc.lock);
4762 4763
			mc.moving_task = current;
			mc.mm = mm;
4764 4765 4766 4767

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
4768 4769 4770
			/* We call up_read() and mmput() in clear_mc(). */
		} else
			mmput(mm);
4771 4772 4773 4774 4775 4776 4777 4778 4779
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4780
	mem_cgroup_clear_mc();
4781 4782
}

4783 4784 4785
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4786
{
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4800
		swp_entry_t ent;
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4812 4813
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
4814
				mc.precharge--;
4815 4816
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4817 4818 4819 4820 4821
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4822 4823
		case MC_TARGET_SWAP:
			ent = target.ent;
4824 4825
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4826
				mc.precharge--;
4827 4828 4829
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4830
			break;
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4845
		ret = mem_cgroup_do_precharge(1);
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
4858
	/* We've already held the mmap_sem */
4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
4877 4878
}

B
Balbir Singh 已提交
4879 4880 4881
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4882 4883
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4884
{
4885
	if (!mc.mm)
4886 4887 4888
		/* no need to move charge */
		return;

4889
	mem_cgroup_move_charge(mc.mm);
4890
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4891
}
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
4914

B
Balbir Singh 已提交
4915 4916 4917 4918
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
4919
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
4920 4921
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
4922 4923
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
4924
	.attach = mem_cgroup_move_task,
4925
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
4926
	.use_id = 1,
B
Balbir Singh 已提交
4927
};
4928 4929

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
	if (!s || !strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount", enable_swap_account);
4940 4941 4942

static int __init disable_swap_account(char *s)
{
4943
	enable_swap_account("0");
4944 4945 4946 4947
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif