memcontrol.c 185.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
57
#include "internal.h"
G
Glauber Costa 已提交
58
#include <net/sock.h>
M
Michal Hocko 已提交
59
#include <net/ip.h>
G
Glauber Costa 已提交
60
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
61

62 63
#include <asm/uaccess.h>

64 65
#include <trace/events/vmscan.h>

66
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 68
EXPORT_SYMBOL(mem_cgroup_subsys);

69
#define MEM_CGROUP_RECLAIM_RETRIES	5
70
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
71

A
Andrew Morton 已提交
72
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
73
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74
int do_swap_account __read_mostly;
75 76

/* for remember boot option*/
A
Andrew Morton 已提交
77
#ifdef CONFIG_MEMCG_SWAP_ENABLED
78 79 80 81 82
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

83
#else
84
#define do_swap_account		0
85 86 87
#endif


88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
95 96 97 98 99
	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
100 101 102
	MEM_CGROUP_STAT_NSTATS,
};

103 104 105
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
106
	"rss_huge",
107 108 109 110
	"mapped_file",
	"swap",
};

111 112 113
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
114 115
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
116 117
	MEM_CGROUP_EVENTS_NSTATS,
};
118 119 120 121 122 123 124 125

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

126 127 128 129 130 131 132 133
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

134 135 136 137 138 139 140 141 142
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
143
	MEM_CGROUP_TARGET_NUMAINFO,
144 145
	MEM_CGROUP_NTARGETS,
};
146 147 148
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
149

150
struct mem_cgroup_stat_cpu {
151
	long count[MEM_CGROUP_STAT_NSTATS];
152
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153
	unsigned long nr_page_events;
154
	unsigned long targets[MEM_CGROUP_NTARGETS];
155 156
};

157
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
158 159 160 161
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
162
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
163 164
	unsigned long last_dead_count;

165 166 167 168
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

169 170 171 172
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
173
	struct lruvec		lruvec;
174
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
175

176 177
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

178 179 180 181
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
182
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
183
						/* use container_of	   */
184 185 186 187 188 189
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

210 211 212 213 214
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
215
/* For threshold */
216
struct mem_cgroup_threshold_ary {
217
	/* An array index points to threshold just below or equal to usage. */
218
	int current_threshold;
219 220 221 222 223
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
224 225 226 227 228 229 230 231 232 233 234 235

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
236 237 238 239 240
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
241

242 243
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
244

B
Balbir Singh 已提交
245 246 247 248 249 250 251
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
252 253 254
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
255 256 257 258 259 260 261
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
262

263 264 265
	/* vmpressure notifications */
	struct vmpressure vmpressure;

266 267 268 269
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
270

271 272 273 274
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
275 276 277 278
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
279
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
280 281 282 283

	bool		oom_lock;
	atomic_t	under_oom;

284
	int	swappiness;
285 286
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
287

288 289 290
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

291 292 293 294
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
295
	struct mem_cgroup_thresholds thresholds;
296

297
	/* thresholds for mem+swap usage. RCU-protected */
298
	struct mem_cgroup_thresholds memsw_thresholds;
299

K
KAMEZAWA Hiroyuki 已提交
300 301
	/* For oom notifier event fd */
	struct list_head oom_notify;
302

303 304 305 306 307
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
308 309 310 311
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
312 313
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
314
	/*
315
	 * percpu counter.
316
	 */
317
	struct mem_cgroup_stat_cpu __percpu *stat;
318 319 320 321 322 323
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
324

M
Michal Hocko 已提交
325
	atomic_t	dead_count;
M
Michal Hocko 已提交
326
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
327 328
	struct tcp_memcontrol tcp_mem;
#endif
329 330 331 332 333 334 335 336
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
337 338 339 340 341 342 343

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
344

345 346
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
347 348
};

349 350 351 352 353 354
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

355 356 357
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
358
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
359
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
360 361
};

362 363 364
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
365 366 367 368 369 370

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
371 372 373 374 375 376

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

377 378 379 380 381
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

382 383 384 385 386
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

387 388
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
389 390 391 392 393
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
394 395 396 397 398 399 400 401 402
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
403 404
#endif

405 406
/* Stuffs for move charges at task migration. */
/*
407 408
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
409 410
 */
enum move_type {
411
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
412
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
413 414 415
	NR_MOVE_TYPE,
};

416 417
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
418
	spinlock_t	  lock; /* for from, to */
419 420
	struct mem_cgroup *from;
	struct mem_cgroup *to;
421
	unsigned long immigrate_flags;
422
	unsigned long precharge;
423
	unsigned long moved_charge;
424
	unsigned long moved_swap;
425 426 427
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
428
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
429 430
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
431

D
Daisuke Nishimura 已提交
432 433
static bool move_anon(void)
{
434
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
435 436
}

437 438
static bool move_file(void)
{
439
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
440 441
}

442 443 444 445
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
446 447
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
448

449 450
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
451
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
452
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
453
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
454 455 456
	NR_CHARGE_TYPE,
};

457
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
458 459 460 461
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
462
	_KMEM,
G
Glauber Costa 已提交
463 464
};

465 466
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
467
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
468 469
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
470

471 472 473 474 475 476 477 478
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

479 480 481 482 483 484 485
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

486 487
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
488
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
489 490
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

509 510 511 512 513
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
514
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
515
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
516 517 518

void sock_update_memcg(struct sock *sk)
{
519
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
520
		struct mem_cgroup *memcg;
521
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
522 523 524

		BUG_ON(!sk->sk_prot->proto_cgroup);

525 526 527 528 529 530 531 532 533 534
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
535
			css_get(&sk->sk_cgrp->memcg->css);
536 537 538
			return;
		}

G
Glauber Costa 已提交
539 540
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
541
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
542 543
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
544
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
545 546 547 548 549 550 551 552
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
553
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
554 555 556
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
557
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
558 559
	}
}
G
Glauber Costa 已提交
560 561 562 563 564 565 566 567 568

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
569

570 571 572 573 574 575 576 577 578 579 580 581
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

582
#ifdef CONFIG_MEMCG_KMEM
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
601 602
int memcg_limited_groups_array_size;

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

618 619 620 621 622 623
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
624
struct static_key memcg_kmem_enabled_key;
625
EXPORT_SYMBOL(memcg_kmem_enabled_key);
626 627 628

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
629
	if (memcg_kmem_is_active(memcg)) {
630
		static_key_slow_dec(&memcg_kmem_enabled_key);
631 632
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
633 634 635 636 637
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
638 639 640 641 642 643 644 645 646 647 648 649 650
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

651
static void drain_all_stock_async(struct mem_cgroup *memcg);
652

653
static struct mem_cgroup_per_zone *
654
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
655
{
656
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
657
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
658 659
}

660
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
661
{
662
	return &memcg->css;
663 664
}

665
static struct mem_cgroup_per_zone *
666
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
667
{
668 669
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
670

671
	return mem_cgroup_zoneinfo(memcg, nid, zid);
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
690
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
691
				struct mem_cgroup_per_zone *mz,
692 693
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
694 695 696 697 698 699 700 701
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

702 703 704
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
721 722 723
}

static void
724
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
725 726 727 728 729 730 731 732 733
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

734
static void
735
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
736 737 738 739
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
740
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
741 742 743 744
	spin_unlock(&mctz->lock);
}


745
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
746
{
747
	unsigned long long excess;
748 749
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
750 751
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
752 753 754
	mctz = soft_limit_tree_from_page(page);

	/*
755 756
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
757
	 */
758 759 760
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
761 762 763 764
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
765
		if (excess || mz->on_tree) {
766 767 768
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
769
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
770
			/*
771 772
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
773
			 */
774
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
775 776
			spin_unlock(&mctz->lock);
		}
777 778 779
	}
}

780
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
781 782 783 784 785
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
786
	for_each_node(node) {
787
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
788
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
789
			mctz = soft_limit_tree_node_zone(node, zone);
790
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
791 792 793 794
		}
	}
}

795 796 797 798
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
799
	struct mem_cgroup_per_zone *mz;
800 801

retry:
802
	mz = NULL;
803 804 805 806 807 808 809 810 811 812
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
813 814 815
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
851
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
852
				 enum mem_cgroup_stat_index idx)
853
{
854
	long val = 0;
855 856
	int cpu;

857 858
	get_online_cpus();
	for_each_online_cpu(cpu)
859
		val += per_cpu(memcg->stat->count[idx], cpu);
860
#ifdef CONFIG_HOTPLUG_CPU
861 862 863
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
864 865
#endif
	put_online_cpus();
866 867 868
	return val;
}

869
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
870 871 872
					 bool charge)
{
	int val = (charge) ? 1 : -1;
873
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
874 875
}

876
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
877 878 879 880 881 882
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
883
		val += per_cpu(memcg->stat->events[idx], cpu);
884
#ifdef CONFIG_HOTPLUG_CPU
885 886 887
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
888 889 890 891
#endif
	return val;
}

892
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
893
					 struct page *page,
894
					 bool anon, int nr_pages)
895
{
896 897
	preempt_disable();

898 899 900 901 902 903
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
904
				nr_pages);
905
	else
906
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
907
				nr_pages);
908

909 910 911 912
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

913 914
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
915
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
916
	else {
917
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
918 919
		nr_pages = -nr_pages; /* for event */
	}
920

921
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
922

923
	preempt_enable();
924 925
}

926
unsigned long
927
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
928 929 930 931 932 933 934 935
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
936
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
937
			unsigned int lru_mask)
938 939
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
940
	enum lru_list lru;
941 942
	unsigned long ret = 0;

943
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
944

H
Hugh Dickins 已提交
945 946 947
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
948 949 950 951 952
	}
	return ret;
}

static unsigned long
953
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
954 955
			int nid, unsigned int lru_mask)
{
956 957 958
	u64 total = 0;
	int zid;

959
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
960 961
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
962

963 964
	return total;
}
965

966
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
967
			unsigned int lru_mask)
968
{
969
	int nid;
970 971
	u64 total = 0;

972
	for_each_node_state(nid, N_MEMORY)
973
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
974
	return total;
975 976
}

977 978
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
979 980 981
{
	unsigned long val, next;

982
	val = __this_cpu_read(memcg->stat->nr_page_events);
983
	next = __this_cpu_read(memcg->stat->targets[target]);
984
	/* from time_after() in jiffies.h */
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1001
	}
1002
	return false;
1003 1004 1005 1006 1007 1008
}

/*
 * Check events in order.
 *
 */
1009
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1010
{
1011
	preempt_disable();
1012
	/* threshold event is triggered in finer grain than soft limit */
1013 1014
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1015 1016
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
1017 1018 1019 1020 1021 1022 1023 1024 1025

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1026
		mem_cgroup_threshold(memcg);
1027
		if (unlikely(do_softlimit))
1028
			mem_cgroup_update_tree(memcg, page);
1029
#if MAX_NUMNODES > 1
1030
		if (unlikely(do_numainfo))
1031
			atomic_inc(&memcg->numainfo_events);
1032
#endif
1033 1034
	} else
		preempt_enable();
1035 1036
}

1037
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1038
{
1039 1040 1041 1042 1043 1044 1045 1046
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1047
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1048 1049
}

1050
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1051
{
1052
	struct mem_cgroup *memcg = NULL;
1053 1054 1055

	if (!mm)
		return NULL;
1056 1057 1058 1059 1060 1061 1062
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1063 1064
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1065
			break;
1066
	} while (!css_tryget(&memcg->css));
1067
	rcu_read_unlock();
1068
	return memcg;
1069 1070
}

1071 1072 1073 1074 1075 1076 1077 1078 1079
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
		struct mem_cgroup *last_visited)
{
1080
	struct cgroup_subsys_state *prev_css, *next_css;
1081

1082
	prev_css = last_visited ? &last_visited->css : NULL;
1083
skip_node:
1084
	next_css = css_next_descendant_pre(prev_css, &root->css);
1085 1086 1087 1088 1089 1090 1091 1092

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
1093 1094 1095
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

1096 1097 1098
		if (css_tryget(&mem->css))
			return mem;
		else {
1099
			prev_css = next_css;
1100 1101 1102 1103 1104 1105 1106
			goto skip_node;
		}
	}

	return NULL;
}

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1179
{
1180
	struct mem_cgroup *memcg = NULL;
1181
	struct mem_cgroup *last_visited = NULL;
1182

1183 1184 1185
	if (mem_cgroup_disabled())
		return NULL;

1186 1187
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1188

1189
	if (prev && !reclaim)
1190
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1191

1192 1193
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1194
			goto out_css_put;
1195 1196
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1197

1198
	rcu_read_lock();
1199
	while (!memcg) {
1200
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1201
		int uninitialized_var(seq);
1202

1203 1204 1205 1206 1207 1208 1209
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1210
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1211
				iter->last_visited = NULL;
1212 1213
				goto out_unlock;
			}
M
Michal Hocko 已提交
1214

1215
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1216
		}
K
KAMEZAWA Hiroyuki 已提交
1217

1218
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1219

1220
		if (reclaim) {
1221
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1222

M
Michal Hocko 已提交
1223
			if (!memcg)
1224 1225 1226 1227
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1228

M
Michal Hocko 已提交
1229
		if (prev && !memcg)
1230
			goto out_unlock;
1231
	}
1232 1233
out_unlock:
	rcu_read_unlock();
1234 1235 1236 1237
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1238
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1239
}
K
KAMEZAWA Hiroyuki 已提交
1240

1241 1242 1243 1244 1245 1246 1247
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1248 1249 1250 1251 1252 1253
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1254

1255 1256 1257 1258 1259 1260
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1261
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1262
	     iter != NULL;				\
1263
	     iter = mem_cgroup_iter(root, iter, NULL))
1264

1265
#define for_each_mem_cgroup(iter)			\
1266
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1267
	     iter != NULL;				\
1268
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1269

1270
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1271
{
1272
	struct mem_cgroup *memcg;
1273 1274

	rcu_read_lock();
1275 1276
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1277 1278 1279 1280
		goto out;

	switch (idx) {
	case PGFAULT:
1281 1282 1283 1284
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1285 1286 1287 1288 1289 1290 1291
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1292
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1293

1294 1295 1296
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1297
 * @memcg: memcg of the wanted lruvec
1298 1299 1300 1301 1302 1303 1304 1305 1306
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1307
	struct lruvec *lruvec;
1308

1309 1310 1311 1312
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1313 1314

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1325 1326
}

K
KAMEZAWA Hiroyuki 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1340

1341
/**
1342
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1343
 * @page: the page
1344
 * @zone: zone of the page
1345
 */
1346
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1347 1348
{
	struct mem_cgroup_per_zone *mz;
1349 1350
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1351
	struct lruvec *lruvec;
1352

1353 1354 1355 1356
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1357

K
KAMEZAWA Hiroyuki 已提交
1358
	pc = lookup_page_cgroup(page);
1359
	memcg = pc->mem_cgroup;
1360 1361

	/*
1362
	 * Surreptitiously switch any uncharged offlist page to root:
1363 1364 1365 1366 1367 1368 1369
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1370
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1371 1372
		pc->mem_cgroup = memcg = root_mem_cgroup;

1373
	mz = page_cgroup_zoneinfo(memcg, page);
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1384
}
1385

1386
/**
1387 1388 1389 1390
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1391
 *
1392 1393
 * This function must be called when a page is added to or removed from an
 * lru list.
1394
 */
1395 1396
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1397 1398
{
	struct mem_cgroup_per_zone *mz;
1399
	unsigned long *lru_size;
1400 1401 1402 1403

	if (mem_cgroup_disabled())
		return;

1404 1405 1406 1407
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1408
}
1409

1410
/*
1411
 * Checks whether given mem is same or in the root_mem_cgroup's
1412 1413
 * hierarchy subtree
 */
1414 1415
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1416
{
1417 1418
	if (root_memcg == memcg)
		return true;
1419
	if (!root_memcg->use_hierarchy || !memcg)
1420
		return false;
1421 1422 1423 1424 1425 1426 1427 1428
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1429
	rcu_read_lock();
1430
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1431 1432
	rcu_read_unlock();
	return ret;
1433 1434
}

1435 1436
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1437
{
1438
	struct mem_cgroup *curr = NULL;
1439
	struct task_struct *p;
1440
	bool ret;
1441

1442
	p = find_lock_task_mm(task);
1443 1444 1445 1446 1447 1448 1449 1450 1451
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1452
		rcu_read_lock();
1453 1454 1455
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1456
		rcu_read_unlock();
1457
	}
1458
	if (!curr)
1459
		return false;
1460
	/*
1461
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1462
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1463 1464
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1465
	 */
1466
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1467
	css_put(&curr->css);
1468 1469 1470
	return ret;
}

1471
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1472
{
1473
	unsigned long inactive_ratio;
1474
	unsigned long inactive;
1475
	unsigned long active;
1476
	unsigned long gb;
1477

1478 1479
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1480

1481 1482 1483 1484 1485 1486
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1487
	return inactive * inactive_ratio < active;
1488 1489
}

1490 1491 1492
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1493
/**
1494
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1495
 * @memcg: the memory cgroup
1496
 *
1497
 * Returns the maximum amount of memory @mem can be charged with, in
1498
 * pages.
1499
 */
1500
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1501
{
1502 1503
	unsigned long long margin;

1504
	margin = res_counter_margin(&memcg->res);
1505
	if (do_swap_account)
1506
		margin = min(margin, res_counter_margin(&memcg->memsw));
1507
	return margin >> PAGE_SHIFT;
1508 1509
}

1510
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1511 1512
{
	/* root ? */
T
Tejun Heo 已提交
1513
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1514 1515
		return vm_swappiness;

1516
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1517 1518
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1533 1534 1535 1536

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1537
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1538
{
1539
	atomic_inc(&memcg_moving);
1540
	atomic_inc(&memcg->moving_account);
1541 1542 1543
	synchronize_rcu();
}

1544
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1545
{
1546 1547 1548 1549
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1550 1551
	if (memcg) {
		atomic_dec(&memcg_moving);
1552
		atomic_dec(&memcg->moving_account);
1553
	}
1554
}
1555

1556 1557 1558
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1559 1560
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1561 1562 1563 1564 1565 1566 1567
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1568
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1569 1570
{
	VM_BUG_ON(!rcu_read_lock_held());
1571
	return atomic_read(&memcg->moving_account) > 0;
1572
}
1573

1574
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1575
{
1576 1577
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1578
	bool ret = false;
1579 1580 1581 1582 1583 1584 1585 1586 1587
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1588

1589 1590
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1591 1592
unlock:
	spin_unlock(&mc.lock);
1593 1594 1595
	return ret;
}

1596
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1597 1598
{
	if (mc.moving_task && current != mc.moving_task) {
1599
		if (mem_cgroup_under_move(memcg)) {
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1612 1613 1614 1615
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1616
 * see mem_cgroup_stolen(), too.
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1630
#define K(x) ((x) << (PAGE_SHIFT-10))
1631
/**
1632
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1650 1651
	struct mem_cgroup *iter;
	unsigned int i;
1652

1653
	if (!p)
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1672
	pr_info("Task in %s killed", memcg_name);
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1685
	pr_cont(" as a result of limit of %s\n", memcg_name);
1686 1687
done:

1688
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1689 1690 1691
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1692
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1693 1694 1695
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1696
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1697 1698 1699
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1724 1725
}

1726 1727 1728 1729
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1730
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1731 1732
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1733 1734
	struct mem_cgroup *iter;

1735
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1736
		num++;
1737 1738 1739
	return num;
}

D
David Rientjes 已提交
1740 1741 1742
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1743
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1744 1745 1746
{
	u64 limit;

1747 1748
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1749
	/*
1750
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1751
	 */
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1766 1767
}

1768 1769
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1770 1771 1772 1773 1774 1775 1776
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1777
	/*
1778 1779 1780
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1781
	 */
1782
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1783 1784 1785 1786 1787
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1788 1789
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1790
		struct css_task_iter it;
1791 1792
		struct task_struct *task;

1793 1794
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1807
				css_task_iter_end(&it);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1824
		css_task_iter_end(&it);
1825 1826 1827 1828 1829 1830 1831 1832 1833
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1870 1871
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1872
 * @memcg: the target memcg
1873 1874 1875 1876 1877 1878 1879
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1880
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1881 1882
		int nid, bool noswap)
{
1883
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1884 1885 1886
		return true;
	if (noswap || !total_swap_pages)
		return false;
1887
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1888 1889 1890 1891
		return true;
	return false;

}
1892 1893 1894 1895 1896 1897 1898 1899
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1900
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1901 1902
{
	int nid;
1903 1904 1905 1906
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1907
	if (!atomic_read(&memcg->numainfo_events))
1908
		return;
1909
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1910 1911 1912
		return;

	/* make a nodemask where this memcg uses memory from */
1913
	memcg->scan_nodes = node_states[N_MEMORY];
1914

1915
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1916

1917 1918
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1919
	}
1920

1921 1922
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1937
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1938 1939 1940
{
	int node;

1941 1942
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1943

1944
	node = next_node(node, memcg->scan_nodes);
1945
	if (node == MAX_NUMNODES)
1946
		node = first_node(memcg->scan_nodes);
1947 1948 1949 1950 1951 1952 1953 1954 1955
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1956
	memcg->last_scanned_node = node;
1957 1958 1959
	return node;
}

1960 1961 1962 1963 1964 1965
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1966
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1967 1968 1969 1970 1971 1972 1973
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1974 1975
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1976
		     nid < MAX_NUMNODES;
1977
		     nid = next_node(nid, memcg->scan_nodes)) {
1978

1979
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1980 1981 1982 1983 1984 1985
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1986
	for_each_node_state(nid, N_MEMORY) {
1987
		if (node_isset(nid, memcg->scan_nodes))
1988
			continue;
1989
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1990 1991 1992 1993 1994
			return true;
	}
	return false;
}

1995
#else
1996
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1997 1998 1999
{
	return 0;
}
2000

2001
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2002
{
2003
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2004
}
2005 2006
#endif

2007 2008 2009 2010
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
2011
{
2012
	struct mem_cgroup *victim = NULL;
2013
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
2014
	int loop = 0;
2015
	unsigned long excess;
2016
	unsigned long nr_scanned;
2017 2018 2019 2020
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
2021

2022
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
2023

2024
	while (1) {
2025
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2026
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
2027
			loop++;
2028 2029 2030 2031 2032 2033
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
2034
				if (!total)
2035 2036
					break;
				/*
L
Lucas De Marchi 已提交
2037
				 * We want to do more targeted reclaim.
2038 2039 2040 2041 2042
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
2043
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2044 2045
					break;
			}
2046
			continue;
2047
		}
2048
		if (!mem_cgroup_reclaimable(victim, false))
2049
			continue;
2050 2051 2052 2053
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
2054
			break;
2055
	}
2056
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
2057
	return total;
2058 2059
}

K
KAMEZAWA Hiroyuki 已提交
2060 2061 2062
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
2063
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
2064
 */
2065
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2066
{
2067
	struct mem_cgroup *iter, *failed = NULL;
2068

2069
	for_each_mem_cgroup_tree(iter, memcg) {
2070
		if (iter->oom_lock) {
2071 2072 2073 2074 2075
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2076 2077
			mem_cgroup_iter_break(memcg, iter);
			break;
2078 2079
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2080
	}
K
KAMEZAWA Hiroyuki 已提交
2081

2082
	if (!failed)
2083
		return true;
2084 2085 2086 2087 2088

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
2089
	for_each_mem_cgroup_tree(iter, memcg) {
2090
		if (iter == failed) {
2091 2092
			mem_cgroup_iter_break(memcg, iter);
			break;
2093 2094 2095
		}
		iter->oom_lock = false;
	}
2096
	return false;
2097
}
2098

2099
/*
2100
 * Has to be called with memcg_oom_lock
2101
 */
2102
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2103
{
K
KAMEZAWA Hiroyuki 已提交
2104 2105
	struct mem_cgroup *iter;

2106
	for_each_mem_cgroup_tree(iter, memcg)
2107 2108 2109 2110
		iter->oom_lock = false;
	return 0;
}

2111
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2112 2113 2114
{
	struct mem_cgroup *iter;

2115
	for_each_mem_cgroup_tree(iter, memcg)
2116 2117 2118
		atomic_inc(&iter->under_oom);
}

2119
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2120 2121 2122
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2123 2124 2125 2126 2127
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2128
	for_each_mem_cgroup_tree(iter, memcg)
2129
		atomic_add_unless(&iter->under_oom, -1, 0);
2130 2131
}

2132
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2133 2134
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2135
struct oom_wait_info {
2136
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2137 2138 2139 2140 2141 2142
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2143 2144
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2145 2146 2147
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2148
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2149 2150

	/*
2151
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2152 2153
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2154 2155
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2156 2157 2158 2159
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2160
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2161
{
2162 2163
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2164 2165
}

2166
static void memcg_oom_recover(struct mem_cgroup *memcg)
2167
{
2168 2169
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2170 2171
}

K
KAMEZAWA Hiroyuki 已提交
2172 2173 2174
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2175 2176
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2177
{
K
KAMEZAWA Hiroyuki 已提交
2178
	struct oom_wait_info owait;
2179
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2180

2181
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2182 2183 2184 2185
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2186
	need_to_kill = true;
2187
	mem_cgroup_mark_under_oom(memcg);
2188

2189
	/* At first, try to OOM lock hierarchy under memcg.*/
2190
	spin_lock(&memcg_oom_lock);
2191
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2192 2193 2194 2195 2196
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2197
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2198
	if (!locked || memcg->oom_kill_disable)
2199 2200
		need_to_kill = false;
	if (locked)
2201
		mem_cgroup_oom_notify(memcg);
2202
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2203

2204 2205
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2206
		mem_cgroup_out_of_memory(memcg, mask, order);
2207
	} else {
K
KAMEZAWA Hiroyuki 已提交
2208
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2209
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2210
	}
2211
	spin_lock(&memcg_oom_lock);
2212
	if (locked)
2213 2214
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2215
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2216

2217
	mem_cgroup_unmark_under_oom(memcg);
2218

K
KAMEZAWA Hiroyuki 已提交
2219 2220 2221
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2222
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2223
	return true;
2224 2225
}

2226 2227 2228
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2246 2247
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2248
 */
2249

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2263
	 * need to take move_lock_mem_cgroup(). Because we already hold
2264
	 * rcu_read_lock(), any calls to move_account will be delayed until
2265
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2266
	 */
2267
	if (!mem_cgroup_stolen(memcg))
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2285
	 * should take move_lock_mem_cgroup().
2286 2287 2288 2289
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2290 2291
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2292
{
2293
	struct mem_cgroup *memcg;
2294
	struct page_cgroup *pc = lookup_page_cgroup(page);
2295
	unsigned long uninitialized_var(flags);
2296

2297
	if (mem_cgroup_disabled())
2298
		return;
2299

2300 2301
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2302
		return;
2303 2304

	switch (idx) {
2305 2306
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2307 2308 2309
		break;
	default:
		BUG();
2310
	}
2311

2312
	this_cpu_add(memcg->stat->count[idx], val);
2313
}
2314

2315 2316 2317 2318
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2319
#define CHARGE_BATCH	32U
2320 2321
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2322
	unsigned int nr_pages;
2323
	struct work_struct work;
2324
	unsigned long flags;
2325
#define FLUSHING_CACHED_CHARGE	0
2326 2327
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2328
static DEFINE_MUTEX(percpu_charge_mutex);
2329

2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2340
 */
2341
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2342 2343 2344 2345
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2346 2347 2348
	if (nr_pages > CHARGE_BATCH)
		return false;

2349
	stock = &get_cpu_var(memcg_stock);
2350 2351
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2365 2366 2367 2368
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2369
		if (do_swap_account)
2370 2371
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2384
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2385 2386
}

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2398 2399
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2400
 * This will be consumed by consume_stock() function, later.
2401
 */
2402
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2403 2404 2405
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2406
	if (stock->cached != memcg) { /* reset if necessary */
2407
		drain_stock(stock);
2408
		stock->cached = memcg;
2409
	}
2410
	stock->nr_pages += nr_pages;
2411 2412 2413 2414
	put_cpu_var(memcg_stock);
}

/*
2415
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2416 2417
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2418
 */
2419
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2420
{
2421
	int cpu, curcpu;
2422

2423 2424
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2425
	curcpu = get_cpu();
2426 2427
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2428
		struct mem_cgroup *memcg;
2429

2430 2431
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2432
			continue;
2433
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2434
			continue;
2435 2436 2437 2438 2439 2440
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2441
	}
2442
	put_cpu();
2443 2444 2445 2446 2447 2448

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2449
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2450 2451 2452
			flush_work(&stock->work);
	}
out:
2453
 	put_online_cpus();
2454 2455 2456 2457 2458 2459 2460 2461
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2462
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2463
{
2464 2465 2466 2467 2468
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2469
	drain_all_stock(root_memcg, false);
2470
	mutex_unlock(&percpu_charge_mutex);
2471 2472 2473
}

/* This is a synchronous drain interface. */
2474
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2475 2476
{
	/* called when force_empty is called */
2477
	mutex_lock(&percpu_charge_mutex);
2478
	drain_all_stock(root_memcg, true);
2479
	mutex_unlock(&percpu_charge_mutex);
2480 2481
}

2482 2483 2484 2485
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2486
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2487 2488 2489
{
	int i;

2490
	spin_lock(&memcg->pcp_counter_lock);
2491
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2492
		long x = per_cpu(memcg->stat->count[i], cpu);
2493

2494 2495
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2496
	}
2497
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2498
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2499

2500 2501
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2502
	}
2503
	spin_unlock(&memcg->pcp_counter_lock);
2504 2505
}

2506
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2507 2508 2509 2510 2511
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2512
	struct mem_cgroup *iter;
2513

2514
	if (action == CPU_ONLINE)
2515 2516
		return NOTIFY_OK;

2517
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2518
		return NOTIFY_OK;
2519

2520
	for_each_mem_cgroup(iter)
2521 2522
		mem_cgroup_drain_pcp_counter(iter, cpu);

2523 2524 2525 2526 2527
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2538
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2539 2540
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2541
{
2542
	unsigned long csize = nr_pages * PAGE_SIZE;
2543 2544 2545 2546 2547
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2548
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2549 2550 2551 2552

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2553
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2554 2555 2556
		if (likely(!ret))
			return CHARGE_OK;

2557
		res_counter_uncharge(&memcg->res, csize);
2558 2559 2560 2561
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2562 2563 2564 2565
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2566
	if (nr_pages > min_pages)
2567 2568 2569 2570 2571
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2572 2573 2574
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2575
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2576
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2577
		return CHARGE_RETRY;
2578
	/*
2579 2580 2581 2582 2583 2584 2585
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2586
	 */
2587
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2601
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2602 2603 2604 2605 2606
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2607
/*
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2627
 */
2628
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2629
				   gfp_t gfp_mask,
2630
				   unsigned int nr_pages,
2631
				   struct mem_cgroup **ptr,
2632
				   bool oom)
2633
{
2634
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2635
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2636
	struct mem_cgroup *memcg = NULL;
2637
	int ret;
2638

K
KAMEZAWA Hiroyuki 已提交
2639 2640 2641 2642 2643 2644 2645 2646
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2647

2648
	/*
2649 2650
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2651
	 * thread group leader migrates. It's possible that mm is not
2652
	 * set, if so charge the root memcg (happens for pagecache usage).
2653
	 */
2654
	if (!*ptr && !mm)
2655
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2656
again:
2657 2658 2659
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2660
			goto done;
2661
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2662
			goto done;
2663
		css_get(&memcg->css);
2664
	} else {
K
KAMEZAWA Hiroyuki 已提交
2665
		struct task_struct *p;
2666

K
KAMEZAWA Hiroyuki 已提交
2667 2668 2669
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2670
		 * Because we don't have task_lock(), "p" can exit.
2671
		 * In that case, "memcg" can point to root or p can be NULL with
2672 2673 2674 2675 2676 2677
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2678
		 */
2679
		memcg = mem_cgroup_from_task(p);
2680 2681 2682
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2683 2684 2685
			rcu_read_unlock();
			goto done;
		}
2686
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2699
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2700 2701 2702 2703 2704
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2705

2706 2707
	do {
		bool oom_check;
2708

2709
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2710
		if (fatal_signal_pending(current)) {
2711
			css_put(&memcg->css);
2712
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2713
		}
2714

2715 2716 2717 2718
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2719
		}
2720

2721 2722
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2723 2724 2725 2726
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2727
			batch = nr_pages;
2728 2729
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2730
			goto again;
2731
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2732
			css_put(&memcg->css);
2733 2734
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2735
			if (!oom) {
2736
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2737
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2738
			}
2739 2740 2741 2742
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2743
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2744
			goto bypass;
2745
		}
2746 2747
	} while (ret != CHARGE_OK);

2748
	if (batch > nr_pages)
2749 2750
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2751
done:
2752
	*ptr = memcg;
2753 2754
	return 0;
nomem:
2755
	*ptr = NULL;
2756
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2757
bypass:
2758 2759
	*ptr = root_mem_cgroup;
	return -EINTR;
2760
}
2761

2762 2763 2764 2765 2766
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2767
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2768
				       unsigned int nr_pages)
2769
{
2770
	if (!mem_cgroup_is_root(memcg)) {
2771 2772
		unsigned long bytes = nr_pages * PAGE_SIZE;

2773
		res_counter_uncharge(&memcg->res, bytes);
2774
		if (do_swap_account)
2775
			res_counter_uncharge(&memcg->memsw, bytes);
2776
	}
2777 2778
}

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2797 2798
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2799 2800 2801
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2813
	return mem_cgroup_from_css(css);
2814 2815
}

2816
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2817
{
2818
	struct mem_cgroup *memcg = NULL;
2819
	struct page_cgroup *pc;
2820
	unsigned short id;
2821 2822
	swp_entry_t ent;

2823 2824 2825
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2826
	lock_page_cgroup(pc);
2827
	if (PageCgroupUsed(pc)) {
2828 2829 2830
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2831
	} else if (PageSwapCache(page)) {
2832
		ent.val = page_private(page);
2833
		id = lookup_swap_cgroup_id(ent);
2834
		rcu_read_lock();
2835 2836 2837
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2838
		rcu_read_unlock();
2839
	}
2840
	unlock_page_cgroup(pc);
2841
	return memcg;
2842 2843
}

2844
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2845
				       struct page *page,
2846
				       unsigned int nr_pages,
2847 2848
				       enum charge_type ctype,
				       bool lrucare)
2849
{
2850
	struct page_cgroup *pc = lookup_page_cgroup(page);
2851
	struct zone *uninitialized_var(zone);
2852
	struct lruvec *lruvec;
2853
	bool was_on_lru = false;
2854
	bool anon;
2855

2856
	lock_page_cgroup(pc);
2857
	VM_BUG_ON(PageCgroupUsed(pc));
2858 2859 2860 2861
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2862 2863 2864 2865 2866 2867 2868 2869 2870

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2871
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2872
			ClearPageLRU(page);
2873
			del_page_from_lru_list(page, lruvec, page_lru(page));
2874 2875 2876 2877
			was_on_lru = true;
		}
	}

2878
	pc->mem_cgroup = memcg;
2879 2880 2881 2882 2883 2884 2885
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2886
	smp_wmb();
2887
	SetPageCgroupUsed(pc);
2888

2889 2890
	if (lrucare) {
		if (was_on_lru) {
2891
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2892 2893
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2894
			add_page_to_lru_list(page, lruvec, page_lru(page));
2895 2896 2897 2898
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2899
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2900 2901 2902 2903
		anon = true;
	else
		anon = false;

2904
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2905
	unlock_page_cgroup(pc);
2906

2907 2908 2909 2910 2911
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2912
	memcg_check_events(memcg, page);
2913
}
2914

2915 2916
static DEFINE_MUTEX(set_limit_mutex);

2917 2918 2919 2920 2921 2922 2923
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2937
#ifdef CONFIG_SLABINFO
2938 2939
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2940
{
2941
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3011 3012 3013 3014 3015

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3016 3017 3018 3019 3020 3021 3022 3023
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3024
	if (memcg_kmem_test_and_clear_dead(memcg))
3025
		css_put(&memcg->css);
3026 3027
}

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3111 3112
static void kmem_cache_destroy_work_func(struct work_struct *w);

3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3124
		size += offsetof(struct memcg_cache_params, memcg_caches);
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3164 3165
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3166
{
3167
	size_t size;
3168 3169 3170 3171

	if (!memcg_kmem_enabled())
		return 0;

3172 3173
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3174
		size += memcg_limited_groups_array_size * sizeof(void *);
3175 3176
	} else
		size = sizeof(struct memcg_cache_params);
3177

3178 3179 3180 3181
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3182
	if (memcg) {
3183
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3184
		s->memcg_params->root_cache = root_cache;
3185 3186
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3187 3188 3189
	} else
		s->memcg_params->is_root_cache = true;

3190 3191 3192 3193 3194
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3219
	css_put(&memcg->css);
3220
out:
3221 3222 3223
	kfree(s->memcg_params);
}

3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3255 3256 3257 3258 3259 3260 3261 3262 3263
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3285 3286 3287 3288 3289 3290 3291 3292
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3313 3314 3315 3316 3317 3318 3319
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3320 3321 3322 3323 3324 3325 3326 3327 3328
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3329

3330 3331 3332
/*
 * Called with memcg_cache_mutex held
 */
3333 3334 3335 3336
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3337
	static char *tmp_name = NULL;
3338

3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3357

3358
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3359
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3360

3361 3362 3363
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3379 3380
	if (new_cachep) {
		css_put(&memcg->css);
3381
		goto out;
3382
	}
3383 3384 3385 3386

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3387
		css_put(&memcg->css);
3388 3389 3390
		goto out;
	}

G
Glauber Costa 已提交
3391
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3443
		cancel_work_sync(&c->memcg_params->destroy);
3444 3445 3446 3447 3448
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3449 3450 3451 3452 3453 3454
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3484 3485
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3486 3487 3488 3489
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3490 3491
	if (cw == NULL) {
		css_put(&memcg->css);
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3542 3543 3544
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3545 3546 3547 3548
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3549
		goto out;
3550 3551 3552 3553 3554 3555 3556 3557

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3558 3559 3560
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3561 3562
	}

3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3590 3591 3592
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
	 * 	memcg_stop_kmem_account();
	 * 	kmalloc(<large_number>)
	 * 	memcg_resume_kmem_account();
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3716 3717 3718 3719
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3720 3721
#endif /* CONFIG_MEMCG_KMEM */

3722 3723
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3724
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3725 3726
/*
 * Because tail pages are not marked as "used", set it. We're under
3727 3728 3729
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3730
 */
3731
void mem_cgroup_split_huge_fixup(struct page *head)
3732 3733
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3734
	struct page_cgroup *pc;
3735
	struct mem_cgroup *memcg;
3736
	int i;
3737

3738 3739
	if (mem_cgroup_disabled())
		return;
3740 3741

	memcg = head_pc->mem_cgroup;
3742 3743
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3744
		pc->mem_cgroup = memcg;
3745 3746 3747
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3748 3749
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3750
}
3751
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3752

3753
/**
3754
 * mem_cgroup_move_account - move account of the page
3755
 * @page: the page
3756
 * @nr_pages: number of regular pages (>1 for huge pages)
3757 3758 3759 3760 3761
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3762
 * - page is not on LRU (isolate_page() is useful.)
3763
 * - compound_lock is held when nr_pages > 1
3764
 *
3765 3766
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3767
 */
3768 3769 3770 3771
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3772
				   struct mem_cgroup *to)
3773
{
3774 3775
	unsigned long flags;
	int ret;
3776
	bool anon = PageAnon(page);
3777

3778
	VM_BUG_ON(from == to);
3779
	VM_BUG_ON(PageLRU(page));
3780 3781 3782 3783 3784 3785 3786
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3787
	if (nr_pages > 1 && !PageTransHuge(page))
3788 3789 3790 3791 3792 3793 3794 3795
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3796
	move_lock_mem_cgroup(from, &flags);
3797

3798
	if (!anon && page_mapped(page)) {
3799 3800 3801 3802 3803
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3804
	}
3805
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3806

3807
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3808
	pc->mem_cgroup = to;
3809
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3810
	move_unlock_mem_cgroup(from, &flags);
3811 3812
	ret = 0;
unlock:
3813
	unlock_page_cgroup(pc);
3814 3815 3816
	/*
	 * check events
	 */
3817 3818
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3819
out:
3820 3821 3822
	return ret;
}

3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3843
 */
3844 3845
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3846
				  struct mem_cgroup *child)
3847 3848
{
	struct mem_cgroup *parent;
3849
	unsigned int nr_pages;
3850
	unsigned long uninitialized_var(flags);
3851 3852
	int ret;

3853
	VM_BUG_ON(mem_cgroup_is_root(child));
3854

3855 3856 3857 3858 3859
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3860

3861
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3862

3863 3864 3865 3866 3867 3868
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3869

3870 3871
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3872
		flags = compound_lock_irqsave(page);
3873
	}
3874

3875
	ret = mem_cgroup_move_account(page, nr_pages,
3876
				pc, child, parent);
3877 3878
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3879

3880
	if (nr_pages > 1)
3881
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3882
	putback_lru_page(page);
3883
put:
3884
	put_page(page);
3885
out:
3886 3887 3888
	return ret;
}

3889 3890 3891 3892 3893 3894 3895
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3896
				gfp_t gfp_mask, enum charge_type ctype)
3897
{
3898
	struct mem_cgroup *memcg = NULL;
3899
	unsigned int nr_pages = 1;
3900
	bool oom = true;
3901
	int ret;
A
Andrea Arcangeli 已提交
3902

A
Andrea Arcangeli 已提交
3903
	if (PageTransHuge(page)) {
3904
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3905
		VM_BUG_ON(!PageTransHuge(page));
3906 3907 3908 3909 3910
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3911
	}
3912

3913
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3914
	if (ret == -ENOMEM)
3915
		return ret;
3916
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3917 3918 3919
	return 0;
}

3920 3921
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3922
{
3923
	if (mem_cgroup_disabled())
3924
		return 0;
3925 3926 3927
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3928
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3929
					MEM_CGROUP_CHARGE_TYPE_ANON);
3930 3931
}

3932 3933 3934
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3935
 * struct page_cgroup is acquired. This refcnt will be consumed by
3936 3937
 * "commit()" or removed by "cancel()"
 */
3938 3939 3940 3941
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3942
{
3943
	struct mem_cgroup *memcg;
3944
	struct page_cgroup *pc;
3945
	int ret;
3946

3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3957 3958
	if (!do_swap_account)
		goto charge_cur_mm;
3959 3960
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3961
		goto charge_cur_mm;
3962 3963
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3964
	css_put(&memcg->css);
3965 3966
	if (ret == -EINTR)
		ret = 0;
3967
	return ret;
3968
charge_cur_mm:
3969 3970 3971 3972
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3973 3974
}

3975 3976 3977 3978 3979 3980
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3995 3996 3997
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3998 3999 4000 4001 4002 4003 4004 4005 4006
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4007
static void
4008
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4009
					enum charge_type ctype)
4010
{
4011
	if (mem_cgroup_disabled())
4012
		return;
4013
	if (!memcg)
4014
		return;
4015

4016
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4017 4018 4019
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4020 4021 4022
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4023
	 */
4024
	if (do_swap_account && PageSwapCache(page)) {
4025
		swp_entry_t ent = {.val = page_private(page)};
4026
		mem_cgroup_uncharge_swap(ent);
4027
	}
4028 4029
}

4030 4031
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4032
{
4033
	__mem_cgroup_commit_charge_swapin(page, memcg,
4034
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4035 4036
}

4037 4038
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4039
{
4040 4041 4042 4043
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4044
	if (mem_cgroup_disabled())
4045 4046 4047 4048 4049 4050 4051
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4052 4053
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4054 4055 4056 4057
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4058 4059
}

4060
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4061 4062
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4063 4064 4065
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4066

4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4078
		batch->memcg = memcg;
4079 4080
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4081
	 * In those cases, all pages freed continuously can be expected to be in
4082 4083 4084 4085 4086 4087 4088 4089
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4090
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4091 4092
		goto direct_uncharge;

4093 4094 4095 4096 4097
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4098
	if (batch->memcg != memcg)
4099 4100
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4101
	batch->nr_pages++;
4102
	if (uncharge_memsw)
4103
		batch->memsw_nr_pages++;
4104 4105
	return;
direct_uncharge:
4106
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4107
	if (uncharge_memsw)
4108 4109 4110
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4111
}
4112

4113
/*
4114
 * uncharge if !page_mapped(page)
4115
 */
4116
static struct mem_cgroup *
4117 4118
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4119
{
4120
	struct mem_cgroup *memcg = NULL;
4121 4122
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4123
	bool anon;
4124

4125
	if (mem_cgroup_disabled())
4126
		return NULL;
4127

A
Andrea Arcangeli 已提交
4128
	if (PageTransHuge(page)) {
4129
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4130 4131
		VM_BUG_ON(!PageTransHuge(page));
	}
4132
	/*
4133
	 * Check if our page_cgroup is valid
4134
	 */
4135
	pc = lookup_page_cgroup(page);
4136
	if (unlikely(!PageCgroupUsed(pc)))
4137
		return NULL;
4138

4139
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4140

4141
	memcg = pc->mem_cgroup;
4142

K
KAMEZAWA Hiroyuki 已提交
4143 4144 4145
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4146 4147
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4148
	switch (ctype) {
4149
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4150 4151 4152 4153 4154
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4155 4156
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4157
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4158
		/* See mem_cgroup_prepare_migration() */
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4180
	}
K
KAMEZAWA Hiroyuki 已提交
4181

4182
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4183

4184
	ClearPageCgroupUsed(pc);
4185 4186 4187 4188 4189 4190
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4191

4192
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4193
	/*
4194
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4195
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4196
	 */
4197
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4198
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4199
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4200
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4201
	}
4202 4203 4204 4205 4206 4207
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4208
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4209

4210
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4211 4212 4213

unlock_out:
	unlock_page_cgroup(pc);
4214
	return NULL;
4215 4216
}

4217 4218
void mem_cgroup_uncharge_page(struct page *page)
{
4219 4220 4221
	/* early check. */
	if (page_mapped(page))
		return;
4222
	VM_BUG_ON(page->mapping && !PageAnon(page));
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4235 4236
	if (PageSwapCache(page))
		return;
4237
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4238 4239 4240 4241 4242
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4243
	VM_BUG_ON(page->mapping);
4244
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4245 4246
}

4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4261 4262
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4283 4284 4285 4286 4287 4288
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4289
	memcg_oom_recover(batch->memcg);
4290 4291 4292 4293
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4294
#ifdef CONFIG_SWAP
4295
/*
4296
 * called after __delete_from_swap_cache() and drop "page" account.
4297 4298
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4299 4300
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4301 4302
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4303 4304 4305 4306 4307
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4308
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4309

K
KAMEZAWA Hiroyuki 已提交
4310 4311
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4312
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4313 4314
	 */
	if (do_swap_account && swapout && memcg)
4315
		swap_cgroup_record(ent, css_id(&memcg->css));
4316
}
4317
#endif
4318

A
Andrew Morton 已提交
4319
#ifdef CONFIG_MEMCG_SWAP
4320 4321 4322 4323 4324
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4325
{
4326
	struct mem_cgroup *memcg;
4327
	unsigned short id;
4328 4329 4330 4331

	if (!do_swap_account)
		return;

4332 4333 4334
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4335
	if (memcg) {
4336 4337 4338 4339
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4340
		if (!mem_cgroup_is_root(memcg))
4341
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4342
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4343
		css_put(&memcg->css);
4344
	}
4345
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4346
}
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4363
				struct mem_cgroup *from, struct mem_cgroup *to)
4364 4365 4366 4367 4368 4369 4370 4371
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4372
		mem_cgroup_swap_statistics(to, true);
4373
		/*
4374 4375 4376
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4377 4378 4379 4380 4381 4382
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4383
		 */
L
Li Zefan 已提交
4384
		css_get(&to->css);
4385 4386 4387 4388 4389 4390
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4391
				struct mem_cgroup *from, struct mem_cgroup *to)
4392 4393 4394
{
	return -EINVAL;
}
4395
#endif
K
KAMEZAWA Hiroyuki 已提交
4396

4397
/*
4398 4399
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4400
 */
4401 4402
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4403
{
4404
	struct mem_cgroup *memcg = NULL;
4405
	unsigned int nr_pages = 1;
4406
	struct page_cgroup *pc;
4407
	enum charge_type ctype;
4408

4409
	*memcgp = NULL;
4410

4411
	if (mem_cgroup_disabled())
4412
		return;
4413

4414 4415 4416
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4417 4418 4419
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4420 4421
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4453
	}
4454
	unlock_page_cgroup(pc);
4455 4456 4457 4458
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4459
	if (!memcg)
4460
		return;
4461

4462
	*memcgp = memcg;
4463 4464 4465 4466 4467 4468 4469
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4470
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4471
	else
4472
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4473 4474 4475 4476 4477
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4478
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4479
}
4480

4481
/* remove redundant charge if migration failed*/
4482
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4483
	struct page *oldpage, struct page *newpage, bool migration_ok)
4484
{
4485
	struct page *used, *unused;
4486
	struct page_cgroup *pc;
4487
	bool anon;
4488

4489
	if (!memcg)
4490
		return;
4491

4492
	if (!migration_ok) {
4493 4494
		used = oldpage;
		unused = newpage;
4495
	} else {
4496
		used = newpage;
4497 4498
		unused = oldpage;
	}
4499
	anon = PageAnon(used);
4500 4501 4502 4503
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4504
	css_put(&memcg->css);
4505
	/*
4506 4507 4508
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4509
	 */
4510 4511 4512 4513 4514
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4515
	/*
4516 4517 4518 4519 4520 4521
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4522
	 */
4523
	if (anon)
4524
		mem_cgroup_uncharge_page(used);
4525
}
4526

4527 4528 4529 4530 4531 4532 4533 4534
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4535
	struct mem_cgroup *memcg = NULL;
4536 4537 4538 4539 4540 4541 4542 4543 4544
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4545 4546
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4547
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4548 4549
		ClearPageCgroupUsed(pc);
	}
4550 4551
	unlock_page_cgroup(pc);

4552 4553 4554 4555 4556 4557
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4558 4559 4560 4561 4562
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4563
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4564 4565
}

4566 4567 4568 4569 4570 4571
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4572 4573 4574 4575 4576
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4596 4597
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4598 4599 4600 4601
	}
}
#endif

4602
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4603
				unsigned long long val)
4604
{
4605
	int retry_count;
4606
	u64 memswlimit, memlimit;
4607
	int ret = 0;
4608 4609
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4610
	int enlarge;
4611 4612 4613 4614 4615 4616 4617 4618 4619

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4620

4621
	enlarge = 0;
4622
	while (retry_count) {
4623 4624 4625 4626
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4627 4628 4629
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4630
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4631 4632 4633 4634 4635 4636
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4637 4638
			break;
		}
4639 4640 4641 4642 4643

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4644
		ret = res_counter_set_limit(&memcg->res, val);
4645 4646 4647 4648 4649 4650
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4651 4652 4653 4654 4655
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4656 4657
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4658 4659 4660 4661 4662 4663
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4664
	}
4665 4666
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4667

4668 4669 4670
	return ret;
}

L
Li Zefan 已提交
4671 4672
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4673
{
4674
	int retry_count;
4675
	u64 memlimit, memswlimit, oldusage, curusage;
4676 4677
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4678
	int enlarge = 0;
4679

4680 4681 4682
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4683 4684 4685 4686 4687 4688 4689 4690
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4691
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4692 4693 4694 4695 4696 4697 4698 4699
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4700 4701 4702
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4703
		ret = res_counter_set_limit(&memcg->memsw, val);
4704 4705 4706 4707 4708 4709
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4710 4711 4712 4713 4714
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4715 4716 4717
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4718
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4719
		/* Usage is reduced ? */
4720
		if (curusage >= oldusage)
4721
			retry_count--;
4722 4723
		else
			oldusage = curusage;
4724
	}
4725 4726
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4727 4728 4729
	return ret;
}

4730
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4731 4732
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4733 4734 4735 4736 4737 4738
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4739
	unsigned long long excess;
4740
	unsigned long nr_scanned;
4741 4742 4743 4744

	if (order > 0)
		return 0;

4745
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4759
		nr_scanned = 0;
4760
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4761
						    gfp_mask, &nr_scanned);
4762
		nr_reclaimed += reclaimed;
4763
		*total_scanned += nr_scanned;
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4786
				if (next_mz == mz)
4787
					css_put(&next_mz->memcg->css);
4788
				else /* next_mz == NULL or other memcg */
4789 4790 4791
					break;
			} while (1);
		}
4792 4793
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4794 4795 4796 4797 4798 4799 4800 4801
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4802
		/* If excess == 0, no tree ops */
4803
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4804
		spin_unlock(&mctz->lock);
4805
		css_put(&mz->memcg->css);
4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4818
		css_put(&next_mz->memcg->css);
4819 4820 4821
	return nr_reclaimed;
}

4822 4823 4824 4825 4826 4827 4828
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4829
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4830 4831
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4832
 */
4833
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4834
				int node, int zid, enum lru_list lru)
4835
{
4836
	struct lruvec *lruvec;
4837
	unsigned long flags;
4838
	struct list_head *list;
4839 4840
	struct page *busy;
	struct zone *zone;
4841

K
KAMEZAWA Hiroyuki 已提交
4842
	zone = &NODE_DATA(node)->node_zones[zid];
4843 4844
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4845

4846
	busy = NULL;
4847
	do {
4848
		struct page_cgroup *pc;
4849 4850
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4851
		spin_lock_irqsave(&zone->lru_lock, flags);
4852
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4853
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4854
			break;
4855
		}
4856 4857 4858
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4859
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4860
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4861 4862
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4863
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4864

4865
		pc = lookup_page_cgroup(page);
4866

4867
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4868
			/* found lock contention or "pc" is obsolete. */
4869
			busy = page;
4870 4871 4872
			cond_resched();
		} else
			busy = NULL;
4873
	} while (!list_empty(list));
4874 4875 4876
}

/*
4877 4878
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4879
 * This enables deleting this mem_cgroup.
4880 4881
 *
 * Caller is responsible for holding css reference on the memcg.
4882
 */
4883
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4884
{
4885
	int node, zid;
4886
	u64 usage;
4887

4888
	do {
4889 4890
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4891 4892
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4893
		for_each_node_state(node, N_MEMORY) {
4894
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4895 4896
				enum lru_list lru;
				for_each_lru(lru) {
4897
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4898
							node, zid, lru);
4899
				}
4900
			}
4901
		}
4902 4903
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4904
		cond_resched();
4905

4906
		/*
4907 4908 4909 4910 4911
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4912 4913 4914 4915 4916 4917
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4918 4919 4920
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4921 4922
}

4923 4924 4925 4926 4927 4928 4929
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
4930
	struct cgroup_subsys_state *pos;
4931 4932

	/* bounce at first found */
4933
	css_for_each_child(pos, &memcg->css)
4934 4935 4936 4937 4938
		return true;
	return false;
}

/*
4939 4940
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4941 4942 4943 4944 4945 4946 4947 4948 4949
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4960

4961
	/* returns EBUSY if there is a task or if we come here twice. */
4962 4963 4964
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4965 4966
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4967
	/* try to free all pages in this cgroup */
4968
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4969
		int progress;
4970

4971 4972 4973
		if (signal_pending(current))
			return -EINTR;

4974
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4975
						false);
4976
		if (!progress) {
4977
			nr_retries--;
4978
			/* maybe some writeback is necessary */
4979
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4980
		}
4981 4982

	}
K
KAMEZAWA Hiroyuki 已提交
4983
	lru_add_drain();
4984 4985 4986
	mem_cgroup_reparent_charges(memcg);

	return 0;
4987 4988
}

4989 4990
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4991
{
4992
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4993 4994
	int ret;

4995 4996
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4997 4998 4999 5000 5001
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
5002 5003 5004
}


5005 5006
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
5007
{
5008
	return mem_cgroup_from_css(css)->use_hierarchy;
5009 5010
}

5011 5012
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
5013 5014
{
	int retval = 0;
5015
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5016
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5017

5018
	mutex_lock(&memcg_create_mutex);
5019 5020 5021 5022

	if (memcg->use_hierarchy == val)
		goto out;

5023
	/*
5024
	 * If parent's use_hierarchy is set, we can't make any modifications
5025 5026 5027 5028 5029 5030
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5031
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5032
				(val == 1 || val == 0)) {
5033
		if (!__memcg_has_children(memcg))
5034
			memcg->use_hierarchy = val;
5035 5036 5037 5038
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5039 5040

out:
5041
	mutex_unlock(&memcg_create_mutex);
5042 5043 5044 5045

	return retval;
}

5046

5047
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5048
					       enum mem_cgroup_stat_index idx)
5049
{
K
KAMEZAWA Hiroyuki 已提交
5050
	struct mem_cgroup *iter;
5051
	long val = 0;
5052

5053
	/* Per-cpu values can be negative, use a signed accumulator */
5054
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5055 5056 5057 5058 5059
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5060 5061
}

5062
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5063
{
K
KAMEZAWA Hiroyuki 已提交
5064
	u64 val;
5065

5066
	if (!mem_cgroup_is_root(memcg)) {
5067
		if (!swap)
5068
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5069
		else
5070
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5071 5072
	}

5073 5074 5075 5076
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5077 5078
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5079

K
KAMEZAWA Hiroyuki 已提交
5080
	if (swap)
5081
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5082 5083 5084 5085

	return val << PAGE_SHIFT;
}

5086 5087 5088
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5089
{
5090
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5091
	char str[64];
5092
	u64 val;
G
Glauber Costa 已提交
5093 5094
	int name, len;
	enum res_type type;
5095 5096 5097

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5098

5099 5100
	switch (type) {
	case _MEM:
5101
		if (name == RES_USAGE)
5102
			val = mem_cgroup_usage(memcg, false);
5103
		else
5104
			val = res_counter_read_u64(&memcg->res, name);
5105 5106
		break;
	case _MEMSWAP:
5107
		if (name == RES_USAGE)
5108
			val = mem_cgroup_usage(memcg, true);
5109
		else
5110
			val = res_counter_read_u64(&memcg->memsw, name);
5111
		break;
5112 5113 5114
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5115 5116 5117
	default:
		BUG();
	}
5118 5119 5120

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5121
}
5122

5123
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5124 5125 5126
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
5127
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5140
	mutex_lock(&memcg_create_mutex);
5141 5142
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5143
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5144 5145 5146 5147 5148 5149
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5150 5151 5152 5153 5154
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
5155 5156 5157 5158 5159 5160
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
5161 5162 5163 5164
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5165
	mutex_unlock(&memcg_create_mutex);
5166 5167 5168 5169
#endif
	return ret;
}

5170
#ifdef CONFIG_MEMCG_KMEM
5171
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5172
{
5173
	int ret = 0;
5174 5175
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5176 5177
		goto out;

5178
	memcg->kmem_account_flags = parent->kmem_account_flags;
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5189 5190 5191 5192
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
5193 5194 5195
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5196 5197 5198 5199
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5200
	memcg_stop_kmem_account();
5201
	ret = memcg_update_cache_sizes(memcg);
5202
	memcg_resume_kmem_account();
5203 5204 5205
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5206
}
5207
#endif /* CONFIG_MEMCG_KMEM */
5208

5209 5210 5211 5212
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5213
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5214
			    const char *buffer)
B
Balbir Singh 已提交
5215
{
5216
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5217 5218
	enum res_type type;
	int name;
5219 5220 5221
	unsigned long long val;
	int ret;

5222 5223
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5224

5225
	switch (name) {
5226
	case RES_LIMIT:
5227 5228 5229 5230
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5231 5232
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5233 5234 5235
		if (ret)
			break;
		if (type == _MEM)
5236
			ret = mem_cgroup_resize_limit(memcg, val);
5237
		else if (type == _MEMSWAP)
5238
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5239
		else if (type == _KMEM)
5240
			ret = memcg_update_kmem_limit(css, val);
5241 5242
		else
			return -EINVAL;
5243
		break;
5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5258 5259 5260 5261 5262
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5263 5264
}

5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5275 5276
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5289
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5290
{
5291
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5292 5293
	int name;
	enum res_type type;
5294

5295 5296
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5297

5298
	switch (name) {
5299
	case RES_MAX_USAGE:
5300
		if (type == _MEM)
5301
			res_counter_reset_max(&memcg->res);
5302
		else if (type == _MEMSWAP)
5303
			res_counter_reset_max(&memcg->memsw);
5304 5305 5306 5307
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5308 5309
		break;
	case RES_FAILCNT:
5310
		if (type == _MEM)
5311
			res_counter_reset_failcnt(&memcg->res);
5312
		else if (type == _MEMSWAP)
5313
			res_counter_reset_failcnt(&memcg->memsw);
5314 5315 5316 5317
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5318 5319
		break;
	}
5320

5321
	return 0;
5322 5323
}

5324
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5325 5326
					struct cftype *cft)
{
5327
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5328 5329
}

5330
#ifdef CONFIG_MMU
5331
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5332 5333
					struct cftype *cft, u64 val)
{
5334
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5335 5336 5337

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5338

5339
	/*
5340 5341 5342 5343
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5344
	 */
5345
	memcg->move_charge_at_immigrate = val;
5346 5347
	return 0;
}
5348
#else
5349
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5350 5351 5352 5353 5354
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5355

5356
#ifdef CONFIG_NUMA
5357 5358
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5359 5360 5361 5362
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5363
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5364

5365
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5366
	seq_printf(m, "total=%lu", total_nr);
5367
	for_each_node_state(nid, N_MEMORY) {
5368
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5369 5370 5371 5372
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5373
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5374
	seq_printf(m, "file=%lu", file_nr);
5375
	for_each_node_state(nid, N_MEMORY) {
5376
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5377
				LRU_ALL_FILE);
5378 5379 5380 5381
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5382
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5383
	seq_printf(m, "anon=%lu", anon_nr);
5384
	for_each_node_state(nid, N_MEMORY) {
5385
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5386
				LRU_ALL_ANON);
5387 5388 5389 5390
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5391
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5392
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5393
	for_each_node_state(nid, N_MEMORY) {
5394
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5395
				BIT(LRU_UNEVICTABLE));
5396 5397 5398 5399 5400 5401 5402
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5403 5404 5405 5406 5407
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5408
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5409
				 struct seq_file *m)
5410
{
5411
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5412 5413
	struct mem_cgroup *mi;
	unsigned int i;
5414

5415
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5416
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5417
			continue;
5418 5419
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5420
	}
L
Lee Schermerhorn 已提交
5421

5422 5423 5424 5425 5426 5427 5428 5429
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5430
	/* Hierarchical information */
5431 5432
	{
		unsigned long long limit, memsw_limit;
5433
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5434
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5435
		if (do_swap_account)
5436 5437
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5438
	}
K
KOSAKI Motohiro 已提交
5439

5440 5441 5442
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5443
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5444
			continue;
5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5465
	}
K
KAMEZAWA Hiroyuki 已提交
5466

K
KOSAKI Motohiro 已提交
5467 5468 5469 5470
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5471
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5472 5473 5474 5475 5476
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5477
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5478
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5479

5480 5481 5482 5483
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5484
			}
5485 5486 5487 5488
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5489 5490 5491
	}
#endif

5492 5493 5494
	return 0;
}

5495 5496
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5497
{
5498
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5499

5500
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5501 5502
}

5503 5504
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5505
{
5506
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5507
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5508

T
Tejun Heo 已提交
5509
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5510 5511
		return -EINVAL;

5512
	mutex_lock(&memcg_create_mutex);
5513

K
KOSAKI Motohiro 已提交
5514
	/* If under hierarchy, only empty-root can set this value */
5515
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5516
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5517
		return -EINVAL;
5518
	}
K
KOSAKI Motohiro 已提交
5519 5520 5521

	memcg->swappiness = val;

5522
	mutex_unlock(&memcg_create_mutex);
5523

K
KOSAKI Motohiro 已提交
5524 5525 5526
	return 0;
}

5527 5528 5529 5530 5531 5532 5533 5534
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5535
		t = rcu_dereference(memcg->thresholds.primary);
5536
	else
5537
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5538 5539 5540 5541 5542 5543 5544

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5545
	 * current_threshold points to threshold just below or equal to usage.
5546 5547 5548
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5549
	i = t->current_threshold;
5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5573
	t->current_threshold = i - 1;
5574 5575 5576 5577 5578 5579
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5580 5581 5582 5583 5584 5585 5586
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5597
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5598 5599 5600
{
	struct mem_cgroup_eventfd_list *ev;

5601
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5602 5603 5604 5605
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5606
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5607
{
K
KAMEZAWA Hiroyuki 已提交
5608 5609
	struct mem_cgroup *iter;

5610
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5611
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5612 5613
}

5614
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5615
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5616
{
5617
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5618 5619
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5620
	enum res_type type = MEMFILE_TYPE(cft->private);
5621
	u64 threshold, usage;
5622
	int i, size, ret;
5623 5624 5625 5626 5627 5628

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5629

5630
	if (type == _MEM)
5631
		thresholds = &memcg->thresholds;
5632
	else if (type == _MEMSWAP)
5633
		thresholds = &memcg->memsw_thresholds;
5634 5635 5636 5637 5638 5639
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5640
	if (thresholds->primary)
5641 5642
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5643
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5644 5645

	/* Allocate memory for new array of thresholds */
5646
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5647
			GFP_KERNEL);
5648
	if (!new) {
5649 5650 5651
		ret = -ENOMEM;
		goto unlock;
	}
5652
	new->size = size;
5653 5654

	/* Copy thresholds (if any) to new array */
5655 5656
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5657
				sizeof(struct mem_cgroup_threshold));
5658 5659
	}

5660
	/* Add new threshold */
5661 5662
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5663 5664

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5665
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5666 5667 5668
			compare_thresholds, NULL);

	/* Find current threshold */
5669
	new->current_threshold = -1;
5670
	for (i = 0; i < size; i++) {
5671
		if (new->entries[i].threshold <= usage) {
5672
			/*
5673 5674
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5675 5676
			 * it here.
			 */
5677
			++new->current_threshold;
5678 5679
		} else
			break;
5680 5681
	}

5682 5683 5684 5685 5686
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5687

5688
	/* To be sure that nobody uses thresholds */
5689 5690 5691 5692 5693 5694 5695 5696
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5697
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5698
	struct cftype *cft, struct eventfd_ctx *eventfd)
5699
{
5700
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5701 5702
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5703
	enum res_type type = MEMFILE_TYPE(cft->private);
5704
	u64 usage;
5705
	int i, j, size;
5706 5707 5708

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5709
		thresholds = &memcg->thresholds;
5710
	else if (type == _MEMSWAP)
5711
		thresholds = &memcg->memsw_thresholds;
5712 5713 5714
	else
		BUG();

5715 5716 5717
	if (!thresholds->primary)
		goto unlock;

5718 5719 5720 5721 5722 5723
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5724 5725 5726
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5727 5728 5729
			size++;
	}

5730
	new = thresholds->spare;
5731

5732 5733
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5734 5735
		kfree(new);
		new = NULL;
5736
		goto swap_buffers;
5737 5738
	}

5739
	new->size = size;
5740 5741

	/* Copy thresholds and find current threshold */
5742 5743 5744
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5745 5746
			continue;

5747
		new->entries[j] = thresholds->primary->entries[i];
5748
		if (new->entries[j].threshold <= usage) {
5749
			/*
5750
			 * new->current_threshold will not be used
5751 5752 5753
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5754
			++new->current_threshold;
5755 5756 5757 5758
		}
		j++;
	}

5759
swap_buffers:
5760 5761
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5762 5763 5764 5765 5766 5767
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5768
	rcu_assign_pointer(thresholds->primary, new);
5769

5770
	/* To be sure that nobody uses thresholds */
5771
	synchronize_rcu();
5772
unlock:
5773 5774
	mutex_unlock(&memcg->thresholds_lock);
}
5775

5776
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5777 5778
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5779
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5780
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5781
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5782 5783 5784 5785 5786 5787

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5788
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5789 5790 5791 5792 5793

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5794
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5795
		eventfd_signal(eventfd, 1);
5796
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5797 5798 5799 5800

	return 0;
}

5801
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5802 5803
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5804
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5805
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5806
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5807 5808 5809

	BUG_ON(type != _OOM_TYPE);

5810
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5811

5812
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5813 5814 5815 5816 5817 5818
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5819
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5820 5821
}

5822
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5823 5824
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5825
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5826

5827
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5828

5829
	if (atomic_read(&memcg->under_oom))
5830 5831 5832 5833 5834 5835
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5836
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5837 5838
	struct cftype *cft, u64 val)
{
5839
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5840
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5841 5842

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5843
	if (!parent || !((val == 0) || (val == 1)))
5844 5845
		return -EINVAL;

5846
	mutex_lock(&memcg_create_mutex);
5847
	/* oom-kill-disable is a flag for subhierarchy. */
5848
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5849
		mutex_unlock(&memcg_create_mutex);
5850 5851
		return -EINVAL;
	}
5852
	memcg->oom_kill_disable = val;
5853
	if (!val)
5854
		memcg_oom_recover(memcg);
5855
	mutex_unlock(&memcg_create_mutex);
5856 5857 5858
	return 0;
}

A
Andrew Morton 已提交
5859
#ifdef CONFIG_MEMCG_KMEM
5860
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5861
{
5862 5863
	int ret;

5864
	memcg->kmemcg_id = -1;
5865 5866 5867
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5868

5869
	return mem_cgroup_sockets_init(memcg, ss);
5870
}
5871

5872
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5873
{
5874
	mem_cgroup_sockets_destroy(memcg);
5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5901 5902 5903 5904 5905 5906 5907

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5908
		css_put(&memcg->css);
G
Glauber Costa 已提交
5909
}
5910
#else
5911
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5912 5913 5914
{
	return 0;
}
G
Glauber Costa 已提交
5915

5916 5917 5918 5919 5920
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5921 5922
{
}
5923 5924
#endif

B
Balbir Singh 已提交
5925 5926
static struct cftype mem_cgroup_files[] = {
	{
5927
		.name = "usage_in_bytes",
5928
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5929
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5930 5931
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5932
	},
5933 5934
	{
		.name = "max_usage_in_bytes",
5935
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5936
		.trigger = mem_cgroup_reset,
5937
		.read = mem_cgroup_read,
5938
	},
B
Balbir Singh 已提交
5939
	{
5940
		.name = "limit_in_bytes",
5941
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5942
		.write_string = mem_cgroup_write,
5943
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5944
	},
5945 5946 5947 5948
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5949
		.read = mem_cgroup_read,
5950
	},
B
Balbir Singh 已提交
5951 5952
	{
		.name = "failcnt",
5953
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5954
		.trigger = mem_cgroup_reset,
5955
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5956
	},
5957 5958
	{
		.name = "stat",
5959
		.read_seq_string = memcg_stat_show,
5960
	},
5961 5962 5963 5964
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5965 5966
	{
		.name = "use_hierarchy",
5967
		.flags = CFTYPE_INSANE,
5968 5969 5970
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5971 5972 5973 5974 5975
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5976 5977 5978 5979 5980
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5981 5982
	{
		.name = "oom_control",
5983 5984
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5985 5986 5987 5988
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5989 5990 5991 5992 5993
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
5994 5995 5996
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5997
		.read_seq_string = memcg_numa_stat_show,
5998 5999
	},
#endif
6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
6024 6025 6026 6027 6028 6029
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
6030
#endif
6031
	{ },	/* terminate */
6032
};
6033

6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
6064
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6065 6066
{
	struct mem_cgroup_per_node *pn;
6067
	struct mem_cgroup_per_zone *mz;
6068
	int zone, tmp = node;
6069 6070 6071 6072 6073 6074 6075 6076
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6077 6078
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6079
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6080 6081
	if (!pn)
		return 1;
6082 6083 6084

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6085
		lruvec_init(&mz->lruvec);
6086
		mz->usage_in_excess = 0;
6087
		mz->on_tree = false;
6088
		mz->memcg = memcg;
6089
	}
6090
	memcg->nodeinfo[node] = pn;
6091 6092 6093
	return 0;
}

6094
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6095
{
6096
	kfree(memcg->nodeinfo[node]);
6097 6098
}

6099 6100
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6101
	struct mem_cgroup *memcg;
6102
	size_t size = memcg_size();
6103

6104
	/* Can be very big if nr_node_ids is very big */
6105
	if (size < PAGE_SIZE)
6106
		memcg = kzalloc(size, GFP_KERNEL);
6107
	else
6108
		memcg = vzalloc(size);
6109

6110
	if (!memcg)
6111 6112
		return NULL;

6113 6114
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6115
		goto out_free;
6116 6117
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6118 6119 6120

out_free:
	if (size < PAGE_SIZE)
6121
		kfree(memcg);
6122
	else
6123
		vfree(memcg);
6124
	return NULL;
6125 6126
}

6127
/*
6128 6129 6130 6131 6132 6133 6134 6135
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6136
 */
6137 6138

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6139
{
6140
	int node;
6141
	size_t size = memcg_size();
6142

6143 6144 6145 6146 6147 6148 6149 6150
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6162
	disarm_static_keys(memcg);
6163 6164 6165 6166
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6167
}
6168

6169 6170 6171
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6172
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6173
{
6174
	if (!memcg->res.parent)
6175
		return NULL;
6176
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6177
}
G
Glauber Costa 已提交
6178
EXPORT_SYMBOL(parent_mem_cgroup);
6179

6180
static void __init mem_cgroup_soft_limit_tree_init(void)
6181 6182 6183 6184 6185
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6186
	for_each_node(node) {
6187 6188 6189 6190
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6191
		BUG_ON(!rtpn);
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6203
static struct cgroup_subsys_state * __ref
6204
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6205
{
6206
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6207
	long error = -ENOMEM;
6208
	int node;
B
Balbir Singh 已提交
6209

6210 6211
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6212
		return ERR_PTR(error);
6213

B
Bob Liu 已提交
6214
	for_each_node(node)
6215
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6216
			goto free_out;
6217

6218
	/* root ? */
6219
	if (parent_css == NULL) {
6220
		root_mem_cgroup = memcg;
6221 6222 6223
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6224
	}
6225

6226 6227 6228 6229 6230
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6231
	vmpressure_init(&memcg->vmpressure);
6232 6233 6234 6235 6236 6237 6238 6239 6240

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6241
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6242
{
6243 6244
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6245 6246
	int error = 0;

T
Tejun Heo 已提交
6247
	if (!parent)
6248 6249
		return 0;

6250
	mutex_lock(&memcg_create_mutex);
6251 6252 6253 6254 6255 6256

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6257 6258
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6259
		res_counter_init(&memcg->kmem, &parent->kmem);
6260

6261
		/*
6262 6263
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6264
		 */
6265
	} else {
6266 6267
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6268
		res_counter_init(&memcg->kmem, NULL);
6269 6270 6271 6272 6273
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6274
		if (parent != root_mem_cgroup)
6275
			mem_cgroup_subsys.broken_hierarchy = true;
6276
	}
6277 6278

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6279
	mutex_unlock(&memcg_create_mutex);
6280
	return error;
B
Balbir Singh 已提交
6281 6282
}

M
Michal Hocko 已提交
6283 6284 6285 6286 6287 6288 6289 6290
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6291
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6292 6293 6294 6295 6296 6297

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6298
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6299 6300
}

6301
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6302
{
6303
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6304

6305 6306
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6307
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6308
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6309
	mem_cgroup_destroy_all_caches(memcg);
6310
	vmpressure_cleanup(&memcg->vmpressure);
6311 6312
}

6313
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6314
{
6315
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6316

6317
	memcg_destroy_kmem(memcg);
6318
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6319 6320
}

6321
#ifdef CONFIG_MMU
6322
/* Handlers for move charge at task migration. */
6323 6324
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6325
{
6326 6327
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6328
	struct mem_cgroup *memcg = mc.to;
6329

6330
	if (mem_cgroup_is_root(memcg)) {
6331 6332 6333 6334 6335 6336 6337 6338
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6339
		 * "memcg" cannot be under rmdir() because we've already checked
6340 6341 6342 6343
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6344
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6345
			goto one_by_one;
6346
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6347
						PAGE_SIZE * count, &dummy)) {
6348
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6365 6366
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6367
		if (ret)
6368
			/* mem_cgroup_clear_mc() will do uncharge later */
6369
			return ret;
6370 6371
		mc.precharge++;
	}
6372 6373 6374 6375
	return ret;
}

/**
6376
 * get_mctgt_type - get target type of moving charge
6377 6378 6379
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6380
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6381 6382 6383 6384 6385 6386
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6387 6388 6389
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6390 6391 6392 6393 6394
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6395
	swp_entry_t	ent;
6396 6397 6398
};

enum mc_target_type {
6399
	MC_TARGET_NONE = 0,
6400
	MC_TARGET_PAGE,
6401
	MC_TARGET_SWAP,
6402 6403
};

D
Daisuke Nishimura 已提交
6404 6405
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6406
{
D
Daisuke Nishimura 已提交
6407
	struct page *page = vm_normal_page(vma, addr, ptent);
6408

D
Daisuke Nishimura 已提交
6409 6410 6411 6412
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6413
		if (!move_anon())
D
Daisuke Nishimura 已提交
6414
			return NULL;
6415 6416
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6417 6418 6419 6420 6421 6422 6423
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6424
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6425 6426 6427 6428 6429 6430 6431 6432
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6433 6434 6435 6436
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6437
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6438 6439 6440 6441 6442
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6443 6444 6445 6446 6447 6448 6449
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6450

6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6470 6471 6472 6473 6474 6475
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6476
		if (do_swap_account)
6477
			*entry = swap;
6478
		page = find_get_page(swap_address_space(swap), swap.val);
6479
	}
6480
#endif
6481 6482 6483
	return page;
}

6484
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6485 6486 6487 6488
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6489
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6490 6491 6492 6493 6494 6495
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6496 6497
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6498 6499

	if (!page && !ent.val)
6500
		return ret;
6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6516 6517
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6518
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6519 6520 6521
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6522 6523 6524 6525
	}
	return ret;
}

6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6561 6562 6563 6564 6565 6566 6567 6568
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6569 6570 6571 6572
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6573
		return 0;
6574
	}
6575

6576 6577
	if (pmd_trans_unstable(pmd))
		return 0;
6578 6579
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6580
		if (get_mctgt_type(vma, addr, *pte, NULL))
6581 6582 6583 6584
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6585 6586 6587
	return 0;
}

6588 6589 6590 6591 6592
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6593
	down_read(&mm->mmap_sem);
6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6605
	up_read(&mm->mmap_sem);
6606 6607 6608 6609 6610 6611 6612 6613 6614

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6615 6616 6617 6618 6619
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6620 6621
}

6622 6623
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6624
{
6625 6626
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6627
	int i;
6628

6629
	/* we must uncharge all the leftover precharges from mc.to */
6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6641
	}
6642 6643 6644 6645 6646 6647
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6648 6649 6650

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6651 6652 6653 6654 6655 6656 6657 6658 6659

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6660
		/* we've already done css_get(mc.to) */
6661 6662
		mc.moved_swap = 0;
	}
6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6678
	spin_lock(&mc.lock);
6679 6680
	mc.from = NULL;
	mc.to = NULL;
6681
	spin_unlock(&mc.lock);
6682
	mem_cgroup_end_move(from);
6683 6684
}

6685
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6686
				 struct cgroup_taskset *tset)
6687
{
6688
	struct task_struct *p = cgroup_taskset_first(tset);
6689
	int ret = 0;
6690
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6691
	unsigned long move_charge_at_immigrate;
6692

6693 6694 6695 6696 6697 6698 6699
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6700 6701 6702
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6703
		VM_BUG_ON(from == memcg);
6704 6705 6706 6707 6708

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6709 6710 6711 6712
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6713
			VM_BUG_ON(mc.moved_charge);
6714
			VM_BUG_ON(mc.moved_swap);
6715
			mem_cgroup_start_move(from);
6716
			spin_lock(&mc.lock);
6717
			mc.from = from;
6718
			mc.to = memcg;
6719
			mc.immigrate_flags = move_charge_at_immigrate;
6720
			spin_unlock(&mc.lock);
6721
			/* We set mc.moving_task later */
6722 6723 6724 6725

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6726 6727
		}
		mmput(mm);
6728 6729 6730 6731
	}
	return ret;
}

6732
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6733
				     struct cgroup_taskset *tset)
6734
{
6735
	mem_cgroup_clear_mc();
6736 6737
}

6738 6739 6740
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6741
{
6742 6743 6744 6745
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6746 6747 6748 6749
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6750

6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6762
		if (mc.precharge < HPAGE_PMD_NR) {
6763 6764 6765 6766 6767 6768 6769 6770 6771
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6772
							pc, mc.from, mc.to)) {
6773 6774 6775 6776 6777 6778 6779 6780
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6781
		return 0;
6782 6783
	}

6784 6785
	if (pmd_trans_unstable(pmd))
		return 0;
6786 6787 6788 6789
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6790
		swp_entry_t ent;
6791 6792 6793 6794

		if (!mc.precharge)
			break;

6795
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6796 6797 6798 6799 6800
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6801
			if (!mem_cgroup_move_account(page, 1, pc,
6802
						     mc.from, mc.to)) {
6803
				mc.precharge--;
6804 6805
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6806 6807
			}
			putback_lru_page(page);
6808
put:			/* get_mctgt_type() gets the page */
6809 6810
			put_page(page);
			break;
6811 6812
		case MC_TARGET_SWAP:
			ent = target.ent;
6813
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6814
				mc.precharge--;
6815 6816 6817
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6818
			break;
6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6833
		ret = mem_cgroup_do_precharge(1);
6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6877
	up_read(&mm->mmap_sem);
6878 6879
}

6880
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6881
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6882
{
6883
	struct task_struct *p = cgroup_taskset_first(tset);
6884
	struct mm_struct *mm = get_task_mm(p);
6885 6886

	if (mm) {
6887 6888
		if (mc.to)
			mem_cgroup_move_charge(mm);
6889 6890
		mmput(mm);
	}
6891 6892
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6893
}
6894
#else	/* !CONFIG_MMU */
6895
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6896
				 struct cgroup_taskset *tset)
6897 6898 6899
{
	return 0;
}
6900
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6901
				     struct cgroup_taskset *tset)
6902 6903
{
}
6904
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6905
				 struct cgroup_taskset *tset)
6906 6907 6908
{
}
#endif
B
Balbir Singh 已提交
6909

6910 6911 6912 6913
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6914
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6915 6916 6917 6918 6919 6920
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6921 6922
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6923 6924
}

B
Balbir Singh 已提交
6925 6926 6927
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6928
	.css_alloc = mem_cgroup_css_alloc,
6929
	.css_online = mem_cgroup_css_online,
6930 6931
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6932 6933
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6934
	.attach = mem_cgroup_move_task,
6935
	.bind = mem_cgroup_bind,
6936
	.base_cftypes = mem_cgroup_files,
6937
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6938
	.use_id = 1,
B
Balbir Singh 已提交
6939
};
6940

A
Andrew Morton 已提交
6941
#ifdef CONFIG_MEMCG_SWAP
6942 6943
static int __init enable_swap_account(char *s)
{
6944
	if (!strcmp(s, "1"))
6945
		really_do_swap_account = 1;
6946
	else if (!strcmp(s, "0"))
6947 6948 6949
		really_do_swap_account = 0;
	return 1;
}
6950
__setup("swapaccount=", enable_swap_account);
6951

6952 6953
static void __init memsw_file_init(void)
{
6954 6955 6956 6957 6958 6959 6960 6961 6962
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6963
}
6964

6965
#else
6966
static void __init enable_swap_cgroup(void)
6967 6968
{
}
6969
#endif
6970 6971

/*
6972 6973 6974 6975 6976 6977
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6978 6979 6980 6981
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6982
	enable_swap_cgroup();
6983
	mem_cgroup_soft_limit_tree_init();
6984
	memcg_stock_init();
6985 6986 6987
	return 0;
}
subsys_initcall(mem_cgroup_init);