memcontrol.c 65.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
K
KAMEZAWA Hiroyuki 已提交
24
#include <linux/pagemap.h>
25
#include <linux/smp.h>
26
#include <linux/page-flags.h>
27
#include <linux/backing-dev.h>
28 29
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
30
#include <linux/limits.h>
31
#include <linux/mutex.h>
32
#include <linux/slab.h>
33 34 35
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
36
#include <linux/seq_file.h>
37
#include <linux/vmalloc.h>
38
#include <linux/mm_inline.h>
39
#include <linux/page_cgroup.h>
K
KAMEZAWA Hiroyuki 已提交
40
#include "internal.h"
B
Balbir Singh 已提交
41

42 43
#include <asm/uaccess.h>

44 45
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
46
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
47

48
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
49
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
50 51 52 53 54 55
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

56
static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
57

58 59 60 61 62 63 64 65
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
66 67
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
	MEM_CGROUP_STAT_MAPPED_FILE,  /* # of pages charged as file rss */
68 69
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
70 71 72 73 74 75 76 77 78

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
79
	struct mem_cgroup_stat_cpu cpustat[0];
80 81 82 83 84
};

/*
 * For accounting under irq disable, no need for increment preempt count.
 */
85
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
86 87
		enum mem_cgroup_stat_index idx, int val)
{
88
	stat->count[idx] += val;
89 90 91 92 93 94 95 96 97 98 99 100
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

K
KAMEZAWA Hiroyuki 已提交
101 102 103 104 105 106 107 108 109
static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
{
	s64 ret;

	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
	return ret;
}

110 111 112 113
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
114 115 116
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
117 118
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
119 120

	struct zone_reclaim_stat reclaim_stat;
121 122 123 124 125 126 127 128 129 130 131 132
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

B
Balbir Singh 已提交
133 134 135 136 137 138 139
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
140 141 142
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
143 144 145 146 147 148 149
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
150 151 152 153
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
154 155 156 157
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
158
	struct mem_cgroup_lru_info info;
159

K
KOSAKI Motohiro 已提交
160 161 162 163 164
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

165
	int	prev_priority;	/* for recording reclaim priority */
166 167 168

	/*
	 * While reclaiming in a hiearchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
169
	 * reclaimed from.
170
	 */
K
KAMEZAWA Hiroyuki 已提交
171
	int last_scanned_child;
172 173 174 175
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
176
	unsigned long	last_oom_jiffies;
177
	atomic_t	refcnt;
178

K
KOSAKI Motohiro 已提交
179 180
	unsigned int	swappiness;

181 182 183
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

184
	/*
185
	 * statistics. This must be placed at the end of memcg.
186 187
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
188 189
};

190 191 192
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
193
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
194
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
195
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
196
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
197 198 199
	NR_CHARGE_TYPE,
};

200 201 202 203
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
204 205
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
206

207 208 209 210 211 212 213 214 215
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
216
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
217

218 219 220
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
221 222 223
{
	int val = (charge)? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
224
	struct mem_cgroup_stat_cpu *cpustat;
K
KAMEZAWA Hiroyuki 已提交
225
	int cpu = get_cpu();
226

K
KAMEZAWA Hiroyuki 已提交
227
	cpustat = &stat->cpustat[cpu];
228
	if (PageCgroupCache(pc))
229
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
230
	else
231
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
232 233

	if (charge)
234
		__mem_cgroup_stat_add_safe(cpustat,
235 236
				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
	else
237
		__mem_cgroup_stat_add_safe(cpustat,
238
				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
K
KAMEZAWA Hiroyuki 已提交
239
	put_cpu();
240 241
}

242
static struct mem_cgroup_per_zone *
243 244 245 246 247
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

248
static struct mem_cgroup_per_zone *
249 250 251 252 253
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);
254

255 256 257
	if (!mem)
		return NULL;

258 259 260
	return mem_cgroup_zoneinfo(mem, nid, zid);
}

K
KAMEZAWA Hiroyuki 已提交
261
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
262
					enum lru_list idx)
263 264 265 266 267 268 269 270 271 272 273
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
274 275
}

276
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
277 278 279 280 281 282
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

283
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
284
{
285 286 287 288 289 290 291 292
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

293 294 295 296
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

297 298 299
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
300 301 302

	if (!mm)
		return NULL;
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

353 354 355 356 357
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
371

K
KAMEZAWA Hiroyuki 已提交
372 373 374 375
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
376

377
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
378 379 380
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
381
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
382
		return;
383
	VM_BUG_ON(!pc->mem_cgroup);
384 385 386 387
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
388
	mz = page_cgroup_zoneinfo(pc);
389
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
390 391 392
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
393 394
	list_del_init(&pc->lru);
	return;
395 396
}

K
KAMEZAWA Hiroyuki 已提交
397
void mem_cgroup_del_lru(struct page *page)
398
{
K
KAMEZAWA Hiroyuki 已提交
399 400
	mem_cgroup_del_lru_list(page, page_lru(page));
}
401

K
KAMEZAWA Hiroyuki 已提交
402 403 404 405
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
406

407
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
408
		return;
409

K
KAMEZAWA Hiroyuki 已提交
410
	pc = lookup_page_cgroup(page);
411 412 413 414
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
415
	smp_rmb();
416 417
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
418 419 420
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
421 422
}

K
KAMEZAWA Hiroyuki 已提交
423
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
424
{
K
KAMEZAWA Hiroyuki 已提交
425 426
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
427

428
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
429 430
		return;
	pc = lookup_page_cgroup(page);
431
	VM_BUG_ON(PageCgroupAcctLRU(pc));
432 433 434 435
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
436 437
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
438
		return;
439

K
KAMEZAWA Hiroyuki 已提交
440
	mz = page_cgroup_zoneinfo(pc);
441
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
442 443 444
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
445 446
	list_add(&pc->lru, &mz->lists[lru]);
}
447

K
KAMEZAWA Hiroyuki 已提交
448
/*
449 450 451 452 453
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
454
 */
455
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
456
{
457 458 459 460 461 462 463 464 465 466 467 468
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
469 470
}

471 472 473 474 475 476 477 478
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
479
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
480 481 482 483 484
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
485 486 487
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
488
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
489 490 491
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
492 493
}

494 495 496
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
497
	struct mem_cgroup *curr = NULL;
498 499

	task_lock(task);
500 501 502
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
503
	task_unlock(task);
504 505 506 507 508 509 510
	if (!curr)
		return 0;
	if (curr->use_hierarchy)
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
511 512 513
	return ret;
}

514 515 516 517 518
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
519 520 521 522 523 524 525
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
526 527 528 529
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
530
	spin_lock(&mem->reclaim_param_lock);
531 532
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
533
	spin_unlock(&mem->reclaim_param_lock);
534 535 536 537
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
538
	spin_lock(&mem->reclaim_param_lock);
539
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
540
	spin_unlock(&mem->reclaim_param_lock);
541 542
}

543
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
544 545 546
{
	unsigned long active;
	unsigned long inactive;
547 548
	unsigned long gb;
	unsigned long inactive_ratio;
549

K
KAMEZAWA Hiroyuki 已提交
550 551
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
552

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
580 581 582 583 584
		return 1;

	return 0;
}

585 586 587 588 589 590 591 592 593 594 595
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

596 597 598 599 600 601 602 603 604 605 606
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
627 628 629 630 631 632 633 634
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
635 636 637 638 639 640 641
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

642 643 644 645 646
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
647
					int active, int file)
648 649 650 651 652 653
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
654
	struct page_cgroup *pc, *tmp;
655 656 657
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
658
	int lru = LRU_FILE * file + active;
659
	int ret;
660

661
	BUG_ON(!mem_cont);
662
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
663
	src = &mz->lists[lru];
664

665 666
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
667
		if (scan >= nr_to_scan)
668
			break;
K
KAMEZAWA Hiroyuki 已提交
669 670

		page = pc->page;
671 672
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
673
		if (unlikely(!PageLRU(page)))
674 675
			continue;

H
Hugh Dickins 已提交
676
		scan++;
677 678 679
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
680
			list_move(&page->lru, dst);
681
			mem_cgroup_del_lru(page);
682
			nr_taken++;
683 684 685 686 687 688 689
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
690 691 692 693 694 695 696
		}
	}

	*scanned = scan;
	return nr_taken;
}

697 698 699
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

700 701 702 703 704 705 706 707 708 709 710 711
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

728 729 730 731 732 733
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

/**
 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

	if (!memcg)
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

802 803 804 805 806 807 808 809 810 811 812
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

813
/*
K
KAMEZAWA Hiroyuki 已提交
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
856 857
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
858 859 860
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
861 862
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
863 864
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
865
				   gfp_t gfp_mask, bool noswap, bool shrink)
866
{
K
KAMEZAWA Hiroyuki 已提交
867 868 869 870
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;

871 872 873 874
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

K
KAMEZAWA Hiroyuki 已提交
875 876 877 878 879 880 881
	while (loop < 2) {
		victim = mem_cgroup_select_victim(root_mem);
		if (victim == root_mem)
			loop++;
		if (!mem_cgroup_local_usage(&victim->stat)) {
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
882 883
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
884 885 886 887
		/* we use swappiness of local cgroup */
		ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
						   get_swappiness(victim));
		css_put(&victim->css);
888 889 890 891 892 893 894
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
895
		total += ret;
896
		if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
897
			return 1 + total;
898
	}
K
KAMEZAWA Hiroyuki 已提交
899
	return total;
900 901
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
bool mem_cgroup_oom_called(struct task_struct *task)
{
	bool ret = false;
	struct mem_cgroup *mem;
	struct mm_struct *mm;

	rcu_read_lock();
	mm = task->mm;
	if (!mm)
		mm = &init_mm;
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
		ret = true;
	rcu_read_unlock();
	return ret;
}
918 919 920 921 922 923 924 925 926 927 928 929

static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
{
	mem->last_oom_jiffies = jiffies;
	return 0;
}

static void record_last_oom(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
}

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
{
	struct mem_cgroup *mem;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu;
	struct page_cgroup *pc;

	if (!page_is_file_cache(page))
		return;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
	if (!mem)
		goto done;

	if (!PageCgroupUsed(pc))
		goto done;

	/*
	 * Preemption is already disabled, we don't need get_cpu()
	 */
	cpu = smp_processor_id();
	stat = &mem->stat;
	cpustat = &stat->cpustat[cpu];

	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
done:
	unlock_page_cgroup(pc);
}
968

969 970 971
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
972
 */
973
static int __mem_cgroup_try_charge(struct mm_struct *mm,
974 975
			gfp_t gfp_mask, struct mem_cgroup **memcg,
			bool oom)
976
{
977
	struct mem_cgroup *mem, *mem_over_limit;
978
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
979
	struct res_counter *fail_res;
980 981 982 983 984 985 986

	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
		/* Don't account this! */
		*memcg = NULL;
		return 0;
	}

987
	/*
988 989
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
990 991 992
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
993 994 995
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
996
		*memcg = mem;
997
	} else {
998
		css_get(&mem->css);
999
	}
1000 1001 1002
	if (unlikely(!mem))
		return 0;

1003
	VM_BUG_ON(css_is_removed(&mem->css));
1004

1005 1006 1007
	while (1) {
		int ret;
		bool noswap = false;
1008

1009
		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
1010 1011 1012
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1013 1014
			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
							&fail_res);
1015 1016 1017 1018 1019
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
			res_counter_uncharge(&mem->res, PAGE_SIZE);
			noswap = true;
1020 1021 1022 1023 1024 1025 1026
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1027
		if (!(gfp_mask & __GFP_WAIT))
1028
			goto nomem;
1029

1030
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
1031
							noswap, false);
1032 1033
		if (ret)
			continue;
1034 1035

		/*
1036 1037 1038 1039 1040
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1041
		 *
1042
		 */
1043 1044
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1045 1046

		if (!nr_retries--) {
1047
			if (oom) {
1048
				mutex_lock(&memcg_tasklist);
1049
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1050
				mutex_unlock(&memcg_tasklist);
1051
				record_last_oom(mem_over_limit);
1052
			}
1053
			goto nomem;
1054
		}
1055
	}
1056 1057 1058 1059 1060
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
}
1061

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1082 1083 1084
static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
{
	struct mem_cgroup *mem;
1085
	struct page_cgroup *pc;
1086
	unsigned short id;
1087 1088
	swp_entry_t ent;

1089 1090
	VM_BUG_ON(!PageLocked(page));

1091 1092 1093
	if (!PageSwapCache(page))
		return NULL;

1094
	pc = lookup_page_cgroup(page);
1095
	lock_page_cgroup(pc);
1096
	if (PageCgroupUsed(pc)) {
1097
		mem = pc->mem_cgroup;
1098 1099 1100
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
	} else {
1101
		ent.val = page_private(page);
1102 1103 1104 1105 1106 1107
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1108
	}
1109
	unlock_page_cgroup(pc);
1110 1111 1112
	return mem;
}

1113
/*
1114
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1125 1126 1127 1128 1129

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
		res_counter_uncharge(&mem->res, PAGE_SIZE);
1130 1131
		if (do_swap_account)
			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1132
		css_put(&mem->css);
1133
		return;
1134
	}
1135

1136
	pc->mem_cgroup = mem;
1137 1138 1139 1140 1141 1142 1143
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1144
	smp_wmb();
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1158

K
KAMEZAWA Hiroyuki 已提交
1159
	mem_cgroup_charge_statistics(mem, pc, true);
1160 1161

	unlock_page_cgroup(pc);
1162
}
1163

1164 1165 1166 1167 1168 1169 1170
/**
 * mem_cgroup_move_account - move account of the page
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1171
 * - page is not on LRU (isolate_page() is useful.)
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
 *
 * returns 0 at success,
 * returns -EBUSY when lock is busy or "pc" is unstable.
 *
 * This function does "uncharge" from old cgroup but doesn't do "charge" to
 * new cgroup. It should be done by a caller.
 */

static int mem_cgroup_move_account(struct page_cgroup *pc,
	struct mem_cgroup *from, struct mem_cgroup *to)
{
	struct mem_cgroup_per_zone *from_mz, *to_mz;
	int nid, zid;
	int ret = -EBUSY;
1186 1187 1188 1189
	struct page *page;
	int cpu;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
1190 1191

	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1192
	VM_BUG_ON(PageLRU(pc->page));
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

	nid = page_cgroup_nid(pc);
	zid = page_cgroup_zid(pc);
	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);

	if (!trylock_page_cgroup(pc))
		return ret;

	if (!PageCgroupUsed(pc))
		goto out;

	if (pc->mem_cgroup != from)
		goto out;

K
KAMEZAWA Hiroyuki 已提交
1208 1209
	res_counter_uncharge(&from->res, PAGE_SIZE);
	mem_cgroup_charge_statistics(from, pc, false);
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

	page = pc->page;
	if (page_is_file_cache(page) && page_mapped(page)) {
		cpu = smp_processor_id();
		/* Update mapped_file data for mem_cgroup "from" */
		stat = &from->stat;
		cpustat = &stat->cpustat[cpu];
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
						-1);

		/* Update mapped_file data for mem_cgroup "to" */
		stat = &to->stat;
		cpustat = &stat->cpustat[cpu];
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
						1);
	}

K
KAMEZAWA Hiroyuki 已提交
1227 1228
	if (do_swap_account)
		res_counter_uncharge(&from->memsw, PAGE_SIZE);
1229 1230 1231
	css_put(&from->css);

	css_get(&to->css);
K
KAMEZAWA Hiroyuki 已提交
1232 1233 1234
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
	ret = 0;
1235 1236
out:
	unlock_page_cgroup(pc);
1237 1238 1239 1240 1241 1242
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
	 * this function is just force_empty() and it's garanteed that
	 * "to" is never removed. So, we don't check rmdir status here.
	 */
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1254
	struct page *page = pc->page;
1255 1256 1257 1258 1259 1260 1261 1262 1263
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

K
KAMEZAWA Hiroyuki 已提交
1264

1265 1266
	parent = mem_cgroup_from_cont(pcg);

K
KAMEZAWA Hiroyuki 已提交
1267

1268
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1269
	if (ret || !parent)
1270 1271
		return ret;

1272 1273 1274 1275
	if (!get_page_unless_zero(page)) {
		ret = -EBUSY;
		goto uncharge;
	}
K
KAMEZAWA Hiroyuki 已提交
1276 1277 1278 1279 1280

	ret = isolate_lru_page(page);

	if (ret)
		goto cancel;
1281 1282 1283

	ret = mem_cgroup_move_account(pc, child, parent);

K
KAMEZAWA Hiroyuki 已提交
1284 1285 1286
	putback_lru_page(page);
	if (!ret) {
		put_page(page);
1287 1288
		/* drop extra refcnt by try_charge() */
		css_put(&parent->css);
K
KAMEZAWA Hiroyuki 已提交
1289
		return 0;
1290
	}
1291

K
KAMEZAWA Hiroyuki 已提交
1292
cancel:
1293 1294 1295 1296 1297
	put_page(page);
uncharge:
	/* drop extra refcnt by try_charge() */
	css_put(&parent->css);
	/* uncharge if move fails */
K
KAMEZAWA Hiroyuki 已提交
1298 1299 1300
	res_counter_uncharge(&parent->res, PAGE_SIZE);
	if (do_swap_account)
		res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1301 1302 1303
	return ret;
}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1325
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1326
	if (ret || !mem)
1327 1328 1329
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1330 1331 1332
	return 0;
}

1333 1334
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1335
{
1336
	if (mem_cgroup_disabled())
1337
		return 0;
1338 1339
	if (PageCompound(page))
		return 0;
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
1351
	return mem_cgroup_charge_common(page, mm, gfp_mask,
1352
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1353 1354
}

D
Daisuke Nishimura 已提交
1355 1356 1357 1358
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

1359 1360
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
1361
{
1362 1363 1364
	struct mem_cgroup *mem = NULL;
	int ret;

1365
	if (mem_cgroup_disabled())
1366
		return 0;
1367 1368
	if (PageCompound(page))
		return 0;
1369 1370 1371 1372 1373 1374 1375 1376
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
1377 1378
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
1379 1380 1381 1382
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

1383 1384 1385 1386 1387 1388 1389

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
1390 1391
			return 0;
		}
1392
		unlock_page_cgroup(pc);
1393 1394
	}

1395
	if (unlikely(!mm && !mem))
1396
		mm = &init_mm;
1397

1398 1399
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
1400
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1401

D
Daisuke Nishimura 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1411 1412

	return ret;
1413 1414
}

1415 1416 1417 1418 1419 1420
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
 * struct page_cgroup is aquired. This refcnt will be cumsumed by
 * "commit()" or removed by "cancel()"
 */
1421 1422 1423 1424 1425
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
1426
	int ret;
1427

1428
	if (mem_cgroup_disabled())
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
	 * the pte, and even removed page from swap cache: return success
	 * to go on to do_swap_page()'s pte_same() test, which should fail.
	 */
	if (!PageSwapCache(page))
		return 0;
1440
	mem = try_get_mem_cgroup_from_swapcache(page);
1441 1442
	if (!mem)
		goto charge_cur_mm;
1443
	*ptr = mem;
1444 1445 1446 1447
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
1448 1449 1450 1451 1452 1453
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
}

D
Daisuke Nishimura 已提交
1454 1455 1456
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
1457 1458 1459
{
	struct page_cgroup *pc;

1460
	if (mem_cgroup_disabled())
1461 1462 1463
		return;
	if (!ptr)
		return;
1464
	cgroup_exclude_rmdir(&ptr->css);
1465
	pc = lookup_page_cgroup(page);
1466
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
1467
	__mem_cgroup_commit_charge(ptr, pc, ctype);
1468
	mem_cgroup_lru_add_after_commit_swapcache(page);
1469 1470 1471
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
1472 1473 1474
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
1475
	 */
1476
	if (do_swap_account && PageSwapCache(page)) {
1477
		swp_entry_t ent = {.val = page_private(page)};
1478
		unsigned short id;
1479
		struct mem_cgroup *memcg;
1480 1481 1482 1483

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
1484
		if (memcg) {
1485 1486 1487 1488
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
1489 1490 1491
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
			mem_cgroup_put(memcg);
		}
1492
		rcu_read_unlock();
1493
	}
1494 1495 1496 1497 1498 1499
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
1500 1501
}

D
Daisuke Nishimura 已提交
1502 1503 1504 1505 1506 1507
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

1508 1509
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
1510
	if (mem_cgroup_disabled())
1511 1512 1513 1514
		return;
	if (!mem)
		return;
	res_counter_uncharge(&mem->res, PAGE_SIZE);
1515 1516
	if (do_swap_account)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1517 1518 1519 1520
	css_put(&mem->css);
}


1521
/*
1522
 * uncharge if !page_mapped(page)
1523
 */
1524
static struct mem_cgroup *
1525
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1526
{
H
Hugh Dickins 已提交
1527
	struct page_cgroup *pc;
1528
	struct mem_cgroup *mem = NULL;
1529
	struct mem_cgroup_per_zone *mz;
1530

1531
	if (mem_cgroup_disabled())
1532
		return NULL;
1533

K
KAMEZAWA Hiroyuki 已提交
1534
	if (PageSwapCache(page))
1535
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
1536

1537
	/*
1538
	 * Check if our page_cgroup is valid
1539
	 */
1540 1541
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
1542
		return NULL;
1543

1544
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
1545

1546 1547
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
1548 1549 1550 1551 1552
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
1553
	case MEM_CGROUP_CHARGE_TYPE_DROP:
K
KAMEZAWA Hiroyuki 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
1566
	}
K
KAMEZAWA Hiroyuki 已提交
1567

1568 1569 1570
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
1571
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
1572

1573
	ClearPageCgroupUsed(pc);
1574 1575 1576 1577 1578 1579
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
1580

1581
	mz = page_cgroup_zoneinfo(pc);
1582
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
1583

K
KAMEZAWA Hiroyuki 已提交
1584 1585 1586
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
1587

1588
	return mem;
K
KAMEZAWA Hiroyuki 已提交
1589 1590 1591

unlock_out:
	unlock_page_cgroup(pc);
1592
	return NULL;
1593 1594
}

1595 1596
void mem_cgroup_uncharge_page(struct page *page)
{
1597 1598 1599 1600 1601
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
1602 1603 1604 1605 1606 1607
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
1608
	VM_BUG_ON(page->mapping);
1609 1610 1611
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

1612
#ifdef CONFIG_SWAP
1613
/*
1614
 * called after __delete_from_swap_cache() and drop "page" account.
1615 1616
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
1617 1618
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
1619 1620
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1621 1622 1623 1624 1625 1626
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
1627 1628

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
1629
	if (do_swap_account && swapout && memcg) {
1630
		swap_cgroup_record(ent, css_id(&memcg->css));
1631 1632
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
1633
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
1634
		css_put(&memcg->css);
1635
}
1636
#endif
1637 1638 1639 1640 1641 1642 1643

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
1644
{
1645
	struct mem_cgroup *memcg;
1646
	unsigned short id;
1647 1648 1649 1650

	if (!do_swap_account)
		return;

1651 1652 1653
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
1654
	if (memcg) {
1655 1656 1657 1658
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
1659 1660 1661
		res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
		mem_cgroup_put(memcg);
	}
1662
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
1663
}
1664
#endif
K
KAMEZAWA Hiroyuki 已提交
1665

1666
/*
1667 1668
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
1669
 */
1670
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1671 1672
{
	struct page_cgroup *pc;
1673 1674
	struct mem_cgroup *mem = NULL;
	int ret = 0;
1675

1676
	if (mem_cgroup_disabled())
1677 1678
		return 0;

1679 1680 1681
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
1682 1683 1684
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
1685
	unlock_page_cgroup(pc);
1686

1687
	if (mem) {
1688
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1689 1690
		css_put(&mem->css);
	}
1691
	*ptr = mem;
1692
	return ret;
1693
}
1694

1695
/* remove redundant charge if migration failed*/
1696 1697
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
1698
{
1699 1700 1701 1702 1703 1704
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;
1705
	cgroup_exclude_rmdir(&mem->css);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
1723
	if (unused)
1724 1725 1726
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
1727
	/*
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
1742
	 */
1743 1744
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
1745 1746 1747 1748 1749 1750
	/*
	 * At migration, we may charge account against cgroup which has no tasks
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
1751
}
1752

1753
/*
1754 1755 1756 1757 1758 1759
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
1760
 */
1761
int mem_cgroup_shmem_charge_fallback(struct page *page,
1762 1763
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
1764
{
1765
	struct mem_cgroup *mem = NULL;
1766
	int ret;
1767

1768
	if (mem_cgroup_disabled())
1769
		return 0;
1770

1771 1772 1773
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
1774

1775
	return ret;
1776 1777
}

1778 1779
static DEFINE_MUTEX(set_limit_mutex);

1780
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1781
				unsigned long long val)
1782
{
1783
	int retry_count;
1784
	int progress;
1785
	u64 memswlimit;
1786
	int ret = 0;
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1798

1799
	while (retry_count) {
1800 1801 1802 1803
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
1814 1815
			break;
		}
1816
		ret = res_counter_set_limit(&memcg->res, val);
1817 1818 1819 1820 1821 1822
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
1823 1824 1825 1826 1827
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

1828
		progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1829 1830 1831 1832 1833 1834 1835
						   false, true);
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
1836
	}
1837

1838 1839 1840
	return ret;
}

L
Li Zefan 已提交
1841 1842
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
1843
{
1844
	int retry_count;
1845
	u64 memlimit, oldusage, curusage;
1846 1847
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
1848

1849 1850 1851
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
1870 1871 1872 1873 1874 1875
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
1876 1877 1878 1879 1880
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

1881
		mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
1882
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1883
		/* Usage is reduced ? */
1884
		if (curusage >= oldusage)
1885
			retry_count--;
1886 1887
		else
			oldusage = curusage;
1888 1889 1890 1891
	}
	return ret;
}

1892 1893 1894 1895
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
1896
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
1897
				int node, int zid, enum lru_list lru)
1898
{
K
KAMEZAWA Hiroyuki 已提交
1899 1900
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
1901
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
1902
	unsigned long flags, loop;
1903
	struct list_head *list;
1904
	int ret = 0;
1905

K
KAMEZAWA Hiroyuki 已提交
1906 1907
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
1908
	list = &mz->lists[lru];
1909

1910 1911 1912 1913 1914 1915
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
1916
		spin_lock_irqsave(&zone->lru_lock, flags);
1917
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
1918
			spin_unlock_irqrestore(&zone->lru_lock, flags);
1919
			break;
1920 1921 1922 1923 1924
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
			busy = 0;
K
KAMEZAWA Hiroyuki 已提交
1925
			spin_unlock_irqrestore(&zone->lru_lock, flags);
1926 1927
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1928
		spin_unlock_irqrestore(&zone->lru_lock, flags);
1929

K
KAMEZAWA Hiroyuki 已提交
1930
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1931
		if (ret == -ENOMEM)
1932
			break;
1933 1934 1935 1936 1937 1938 1939

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
1940
	}
K
KAMEZAWA Hiroyuki 已提交
1941

1942 1943 1944
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
1945 1946 1947 1948 1949 1950
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
1951
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1952
{
1953 1954 1955
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1956
	struct cgroup *cgrp = mem->css.cgroup;
1957

1958
	css_get(&mem->css);
1959 1960

	shrink = 0;
1961 1962 1963
	/* should free all ? */
	if (free_all)
		goto try_to_free;
1964
move_account:
1965
	while (mem->res.usage > 0) {
1966
		ret = -EBUSY;
1967 1968 1969 1970
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
1971
			goto out;
1972 1973
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
1974
		ret = 0;
1975
		for_each_node_state(node, N_HIGH_MEMORY) {
1976
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1977
				enum lru_list l;
1978 1979
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
1980
							node, zid, l);
1981 1982 1983
					if (ret)
						break;
				}
1984
			}
1985 1986 1987 1988 1989 1990
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
1991
		cond_resched();
1992 1993 1994 1995 1996
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
1997 1998

try_to_free:
1999 2000
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2001 2002 2003
		ret = -EBUSY;
		goto out;
	}
2004 2005
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2006 2007 2008 2009
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
2010 2011 2012 2013 2014

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
2015 2016
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
2017
		if (!progress) {
2018
			nr_retries--;
2019
			/* maybe some writeback is necessary */
2020
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2021
		}
2022 2023

	}
K
KAMEZAWA Hiroyuki 已提交
2024
	lru_add_drain();
2025 2026 2027 2028 2029
	/* try move_account...there may be some *locked* pages. */
	if (mem->res.usage)
		goto move_account;
	ret = 0;
	goto out;
2030 2031
}

2032 2033 2034 2035 2036 2037
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
	 * If parent's use_hiearchy is set, we can't make any modifications
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

2076
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
2077
{
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	u64 val = 0;
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
		val = res_counter_read_u64(&mem->res, name);
		break;
	case _MEMSWAP:
L
Li Zefan 已提交
2089
		val = res_counter_read_u64(&mem->memsw, name);
2090 2091 2092 2093 2094 2095
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
2096
}
2097 2098 2099 2100
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2101 2102
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
2103
{
2104
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2105
	int type, name;
2106 2107 2108
	unsigned long long val;
	int ret;

2109 2110 2111
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
2112
	case RES_LIMIT:
2113 2114 2115 2116
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2117 2118
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
2119 2120 2121
		if (ret)
			break;
		if (type == _MEM)
2122
			ret = mem_cgroup_resize_limit(memcg, val);
2123 2124
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2125 2126 2127 2128 2129 2130
		break;
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
2131 2132
}

2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

2161
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2162 2163
{
	struct mem_cgroup *mem;
2164
	int type, name;
2165 2166

	mem = mem_cgroup_from_cont(cont);
2167 2168 2169
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
2170
	case RES_MAX_USAGE:
2171 2172 2173 2174
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
2175 2176
		break;
	case RES_FAILCNT:
2177 2178 2179 2180
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
2181 2182
		break;
	}
2183
	return 0;
2184 2185
}

K
KAMEZAWA Hiroyuki 已提交
2186 2187 2188 2189 2190

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
2191
	MCS_MAPPED_FILE,
K
KAMEZAWA Hiroyuki 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
	MCS_PGPGIN,
	MCS_PGPGOUT,
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
2204 2205
};

K
KAMEZAWA Hiroyuki 已提交
2206 2207 2208 2209 2210 2211
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
2212
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	s->stat[MCS_RSS] += val * PAGE_SIZE;
2233 2234
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
	s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
	s->stat[MCS_PGPGIN] += val;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
	s->stat[MCS_PGPGOUT] += val;

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

2260 2261
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
2262 2263
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
2264
	struct mcs_total_stat mystat;
2265 2266
	int i;

K
KAMEZAWA Hiroyuki 已提交
2267 2268
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
2269

K
KAMEZAWA Hiroyuki 已提交
2270 2271
	for (i = 0; i < NR_MCS_STAT; i++)
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
L
Lee Schermerhorn 已提交
2272

K
KAMEZAWA Hiroyuki 已提交
2273
	/* Hierarchical information */
2274 2275 2276 2277 2278 2279 2280
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
2281

K
KAMEZAWA Hiroyuki 已提交
2282 2283 2284 2285 2286 2287
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
	for (i = 0; i < NR_MCS_STAT; i++)
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);


K
KOSAKI Motohiro 已提交
2288
#ifdef CONFIG_DEBUG_VM
2289
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

2317 2318 2319
	return 0;
}

K
KOSAKI Motohiro 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
2332

K
KOSAKI Motohiro 已提交
2333 2334 2335 2336 2337 2338 2339
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
2340 2341 2342

	cgroup_lock();

K
KOSAKI Motohiro 已提交
2343 2344
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
2345 2346
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
2347
		return -EINVAL;
2348
	}
K
KOSAKI Motohiro 已提交
2349 2350 2351 2352 2353

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

2354 2355
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
2356 2357 2358
	return 0;
}

2359

B
Balbir Singh 已提交
2360 2361
static struct cftype mem_cgroup_files[] = {
	{
2362
		.name = "usage_in_bytes",
2363
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2364
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2365
	},
2366 2367
	{
		.name = "max_usage_in_bytes",
2368
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2369
		.trigger = mem_cgroup_reset,
2370 2371
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
2372
	{
2373
		.name = "limit_in_bytes",
2374
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2375
		.write_string = mem_cgroup_write,
2376
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2377 2378 2379
	},
	{
		.name = "failcnt",
2380
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2381
		.trigger = mem_cgroup_reset,
2382
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2383
	},
2384 2385
	{
		.name = "stat",
2386
		.read_map = mem_control_stat_show,
2387
	},
2388 2389 2390 2391
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
2392 2393 2394 2395 2396
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
2397 2398 2399 2400 2401
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
B
Balbir Singh 已提交
2402 2403
};

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

2445 2446 2447
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
2448
	struct mem_cgroup_per_zone *mz;
2449
	enum lru_list l;
2450
	int zone, tmp = node;
2451 2452 2453 2454 2455 2456 2457 2458
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
2459 2460 2461
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2462 2463
	if (!pn)
		return 1;
2464

2465 2466
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
2467 2468 2469

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
2470 2471
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
2472
	}
2473 2474 2475
	return 0;
}

2476 2477 2478 2479 2480
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

2481 2482 2483 2484 2485 2486
static int mem_cgroup_size(void)
{
	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
	return sizeof(struct mem_cgroup) + cpustat_size;
}

2487 2488 2489
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
2490
	int size = mem_cgroup_size();
2491

2492 2493
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
2494
	else
2495
		mem = vmalloc(size);
2496 2497

	if (mem)
2498
		memset(mem, 0, size);
2499 2500 2501
	return mem;
}

2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

2513
static void __mem_cgroup_free(struct mem_cgroup *mem)
2514
{
K
KAMEZAWA Hiroyuki 已提交
2515 2516
	int node;

K
KAMEZAWA Hiroyuki 已提交
2517 2518
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
2519 2520 2521
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

2522
	if (mem_cgroup_size() < PAGE_SIZE)
2523 2524 2525 2526 2527
		kfree(mem);
	else
		vfree(mem);
}

2528 2529 2530 2531 2532 2533 2534
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

static void mem_cgroup_put(struct mem_cgroup *mem)
{
2535 2536
	if (atomic_dec_and_test(&mem->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
2537
		__mem_cgroup_free(mem);
2538 2539 2540
		if (parent)
			mem_cgroup_put(parent);
	}
2541 2542
}

2543 2544 2545 2546 2547 2548 2549 2550 2551
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
2552

2553 2554 2555
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
2556
	if (!mem_cgroup_disabled() && really_do_swap_account)
2557 2558 2559 2560 2561 2562 2563 2564
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

L
Li Zefan 已提交
2565
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
2566 2567
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
2568
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
2569
	long error = -ENOMEM;
2570
	int node;
B
Balbir Singh 已提交
2571

2572 2573
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
2574
		return ERR_PTR(error);
2575

2576 2577 2578
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
2579
	/* root ? */
2580
	if (cont->parent == NULL) {
2581
		enable_swap_cgroup();
2582
		parent = NULL;
2583
		root_mem_cgroup = mem;
2584
	} else {
2585
		parent = mem_cgroup_from_cont(cont->parent);
2586 2587
		mem->use_hierarchy = parent->use_hierarchy;
	}
2588

2589 2590 2591
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
2592 2593 2594 2595 2596 2597 2598
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
2599 2600 2601 2602
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
2603
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
2604
	spin_lock_init(&mem->reclaim_param_lock);
2605

K
KOSAKI Motohiro 已提交
2606 2607
	if (parent)
		mem->swappiness = get_swappiness(parent);
2608
	atomic_set(&mem->refcnt, 1);
B
Balbir Singh 已提交
2609
	return &mem->css;
2610
free_out:
2611
	__mem_cgroup_free(mem);
2612
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
2613
	return ERR_PTR(error);
B
Balbir Singh 已提交
2614 2615
}

2616
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2617 2618 2619
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2620 2621

	return mem_cgroup_force_empty(mem, false);
2622 2623
}

B
Balbir Singh 已提交
2624 2625 2626
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
2627 2628 2629
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
2630 2631 2632 2633 2634
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
2635 2636 2637 2638 2639 2640 2641 2642
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
2643 2644
}

B
Balbir Singh 已提交
2645 2646 2647
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
2648 2649
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
2650
{
2651
	mutex_lock(&memcg_tasklist);
B
Balbir Singh 已提交
2652
	/*
2653 2654
	 * FIXME: It's better to move charges of this process from old
	 * memcg to new memcg. But it's just on TODO-List now.
B
Balbir Singh 已提交
2655
	 */
2656
	mutex_unlock(&memcg_tasklist);
B
Balbir Singh 已提交
2657 2658
}

B
Balbir Singh 已提交
2659 2660 2661 2662
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
2663
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
2664 2665
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
2666
	.attach = mem_cgroup_move_task,
2667
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
2668
	.use_id = 1,
B
Balbir Singh 已提交
2669
};
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif