memcontrol.c 145.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

A
Andrew Morton 已提交
64
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68

/* for remember boot option*/
A
Andrew Morton 已提交
69
#ifdef CONFIG_MEMCG_SWAP_ENABLED
70 71 72 73 74
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75
#else
76
#define do_swap_account		0
77 78 79
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97 98 99 100
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

101 102 103
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
104 105
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
106 107
	MEM_CGROUP_EVENTS_NSTATS,
};
108 109 110 111 112 113 114 115

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

116 117 118 119 120 121 122 123 124
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
125
	MEM_CGROUP_TARGET_NUMAINFO,
126 127
	MEM_CGROUP_NTARGETS,
};
128 129 130
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
131

132
struct mem_cgroup_stat_cpu {
133
	long count[MEM_CGROUP_STAT_NSTATS];
134
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135
	unsigned long nr_page_events;
136
	unsigned long targets[MEM_CGROUP_NTARGETS];
137 138
};

139 140 141 142 143 144 145
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

146 147 148 149
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
150
	struct lruvec		lruvec;
151
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
152

153 154
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

155 156 157 158
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
159
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
160
						/* use container_of	   */
161 162 163 164 165 166 167 168 169 170
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

191 192 193 194 195
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
196
/* For threshold */
197
struct mem_cgroup_threshold_ary {
198
	/* An array index points to threshold just below or equal to usage. */
199
	int current_threshold;
200 201 202 203 204
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
205 206 207 208 209 210 211 212 213 214 215 216

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
217 218 219 220 221
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
222

223 224
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
225

B
Balbir Singh 已提交
226 227 228 229 230 231 232
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 234 235
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
236 237 238 239 240 241 242
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
261 262
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
263 264 265 266
		 */
		struct work_struct work_freeing;
	};

267 268 269 270
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
271
	struct mem_cgroup_lru_info info;
272 273 274
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
275 276
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
277
#endif
278 279 280 281
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
282 283 284 285

	bool		oom_lock;
	atomic_t	under_oom;

286
	atomic_t	refcnt;
287

288
	int	swappiness;
289 290
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
291

292 293 294
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

295 296 297 298
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
299
	struct mem_cgroup_thresholds thresholds;
300

301
	/* thresholds for mem+swap usage. RCU-protected */
302
	struct mem_cgroup_thresholds memsw_thresholds;
303

K
KAMEZAWA Hiroyuki 已提交
304 305
	/* For oom notifier event fd */
	struct list_head oom_notify;
306

307 308 309 310 311
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
312 313 314 315
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
316 317
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
318
	/*
319
	 * percpu counter.
320
	 */
321
	struct mem_cgroup_stat_cpu __percpu *stat;
322 323 324 325 326 327
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
328 329 330 331

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
332 333
};

334 335 336 337 338 339
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
340
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
341
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
342 343 344
	NR_MOVE_TYPE,
};

345 346
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
347
	spinlock_t	  lock; /* for from, to */
348 349 350
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
351
	unsigned long moved_charge;
352
	unsigned long moved_swap;
353 354 355
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
356
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 358
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
359

D
Daisuke Nishimura 已提交
360 361 362 363 364 365
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

366 367 368 369 370 371
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

372 373 374 375
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
376 377
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
378

379 380
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
381
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
382
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
383
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
384 385 386
	NR_CHARGE_TYPE,
};

387
/* for encoding cft->private value on file */
388 389 390
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
391 392
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
393
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
394 395
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
396

397 398 399 400 401 402 403 404
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

405 406
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
407

408 409 410 411 412 413
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

G
Glauber Costa 已提交
414
/* Writing them here to avoid exposing memcg's inner layout */
A
Andrew Morton 已提交
415
#ifdef CONFIG_MEMCG_KMEM
G
Glauber Costa 已提交
416
#include <net/sock.h>
G
Glauber Costa 已提交
417
#include <net/ip.h>
G
Glauber Costa 已提交
418 419 420 421

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
422
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
423
		struct mem_cgroup *memcg;
424
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
425 426 427

		BUG_ON(!sk->sk_prot->proto_cgroup);

428 429 430 431 432 433 434 435 436 437 438 439 440 441
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
442 443
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
444 445
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
446
			mem_cgroup_get(memcg);
447
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
448 449 450 451 452 453 454 455
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
456
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
457 458 459 460 461 462
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
463

464
#ifdef CONFIG_INET
G
Glauber Costa 已提交
465 466 467 468 469 470 471 472
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
473
#endif /* CONFIG_INET */
A
Andrew Morton 已提交
474
#endif /* CONFIG_MEMCG_KMEM */
G
Glauber Costa 已提交
475

A
Andrew Morton 已提交
476
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
477 478 479 480 481 482 483 484 485 486 487 488
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

489
static void drain_all_stock_async(struct mem_cgroup *memcg);
490

491
static struct mem_cgroup_per_zone *
492
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
493
{
494
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
495 496
}

497
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
498
{
499
	return &memcg->css;
500 501
}

502
static struct mem_cgroup_per_zone *
503
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
504
{
505 506
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
507

508
	return mem_cgroup_zoneinfo(memcg, nid, zid);
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
527
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
528
				struct mem_cgroup_per_zone *mz,
529 530
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
531 532 533 534 535 536 537 538
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

539 540 541
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
558 559 560
}

static void
561
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
562 563 564 565 566 567 568 569 570
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

571
static void
572
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
573 574 575 576
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
577
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
578 579 580 581
	spin_unlock(&mctz->lock);
}


582
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
583
{
584
	unsigned long long excess;
585 586
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
587 588
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
589 590 591
	mctz = soft_limit_tree_from_page(page);

	/*
592 593
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
594
	 */
595 596 597
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
598 599 600 601
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
602
		if (excess || mz->on_tree) {
603 604 605
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
606
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
607
			/*
608 609
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
610
			 */
611
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
612 613
			spin_unlock(&mctz->lock);
		}
614 615 616
	}
}

617
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
618 619 620 621 622
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
623
	for_each_node(node) {
624
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
625
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
626
			mctz = soft_limit_tree_node_zone(node, zone);
627
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
628 629 630 631
		}
	}
}

632 633 634 635
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
636
	struct mem_cgroup_per_zone *mz;
637 638

retry:
639
	mz = NULL;
640 641 642 643 644 645 646 647 648 649
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
650 651 652
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
688
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
689
				 enum mem_cgroup_stat_index idx)
690
{
691
	long val = 0;
692 693
	int cpu;

694 695
	get_online_cpus();
	for_each_online_cpu(cpu)
696
		val += per_cpu(memcg->stat->count[idx], cpu);
697
#ifdef CONFIG_HOTPLUG_CPU
698 699 700
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
701 702
#endif
	put_online_cpus();
703 704 705
	return val;
}

706
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
707 708 709
					 bool charge)
{
	int val = (charge) ? 1 : -1;
710
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
711 712
}

713
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
714 715 716 717 718 719
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
720
		val += per_cpu(memcg->stat->events[idx], cpu);
721
#ifdef CONFIG_HOTPLUG_CPU
722 723 724
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
725 726 727 728
#endif
	return val;
}

729
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
730
					 bool anon, int nr_pages)
731
{
732 733
	preempt_disable();

734 735 736 737 738 739
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
740
				nr_pages);
741
	else
742
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
743
				nr_pages);
744

745 746
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
747
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
748
	else {
749
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
750 751
		nr_pages = -nr_pages; /* for event */
	}
752

753
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
754

755
	preempt_enable();
756 757
}

758
unsigned long
759
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
760 761 762 763 764 765 766 767
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
768
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
769
			unsigned int lru_mask)
770 771
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
772
	enum lru_list lru;
773 774
	unsigned long ret = 0;

775
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
776

H
Hugh Dickins 已提交
777 778 779
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
780 781 782 783 784
	}
	return ret;
}

static unsigned long
785
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
786 787
			int nid, unsigned int lru_mask)
{
788 789 790
	u64 total = 0;
	int zid;

791
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
792 793
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
794

795 796
	return total;
}
797

798
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
799
			unsigned int lru_mask)
800
{
801
	int nid;
802 803
	u64 total = 0;

804
	for_each_node_state(nid, N_HIGH_MEMORY)
805
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
806
	return total;
807 808
}

809 810
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
811 812 813
{
	unsigned long val, next;

814
	val = __this_cpu_read(memcg->stat->nr_page_events);
815
	next = __this_cpu_read(memcg->stat->targets[target]);
816
	/* from time_after() in jiffies.h */
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
833
	}
834
	return false;
835 836 837 838 839 840
}

/*
 * Check events in order.
 *
 */
841
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
842
{
843
	preempt_disable();
844
	/* threshold event is triggered in finer grain than soft limit */
845 846
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
847 848
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
849 850 851 852 853 854 855 856 857

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

858
		mem_cgroup_threshold(memcg);
859
		if (unlikely(do_softlimit))
860
			mem_cgroup_update_tree(memcg, page);
861
#if MAX_NUMNODES > 1
862
		if (unlikely(do_numainfo))
863
			atomic_inc(&memcg->numainfo_events);
864
#endif
865 866
	} else
		preempt_enable();
867 868
}

G
Glauber Costa 已提交
869
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
870
{
871 872
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
873 874
}

875
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
876
{
877 878 879 880 881 882 883 884
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

885
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
886 887
}

888
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
889
{
890
	struct mem_cgroup *memcg = NULL;
891 892 893

	if (!mm)
		return NULL;
894 895 896 897 898 899 900
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
901 902
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
903
			break;
904
	} while (!css_tryget(&memcg->css));
905
	rcu_read_unlock();
906
	return memcg;
907 908
}

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
929
{
930 931
	struct mem_cgroup *memcg = NULL;
	int id = 0;
932

933 934 935
	if (mem_cgroup_disabled())
		return NULL;

936 937
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
938

939 940
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
941

942 943
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
944

945 946 947 948 949
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
950

951
	while (!memcg) {
952
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
953
		struct cgroup_subsys_state *css;
954

955 956 957 958 959 960 961 962 963 964 965
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
966

967 968 969 970
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
971
				memcg = mem_cgroup_from_css(css);
972 973
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
974 975
		rcu_read_unlock();

976 977 978 979 980 981 982
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
983 984 985 986 987

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
988
}
K
KAMEZAWA Hiroyuki 已提交
989

990 991 992 993 994 995 996
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
997 998 999 1000 1001 1002
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1003

1004 1005 1006 1007 1008 1009
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1010
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1011
	     iter != NULL;				\
1012
	     iter = mem_cgroup_iter(root, iter, NULL))
1013

1014
#define for_each_mem_cgroup(iter)			\
1015
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1016
	     iter != NULL;				\
1017
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1018

1019
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1020
{
1021
	return (memcg == root_mem_cgroup);
1022 1023
}

1024 1025
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
1026
	struct mem_cgroup *memcg;
1027 1028 1029 1030 1031

	if (!mm)
		return;

	rcu_read_lock();
1032 1033
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1034 1035 1036 1037
		goto out;

	switch (idx) {
	case PGFAULT:
1038 1039 1040 1041
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1042 1043 1044 1045 1046 1047 1048 1049 1050
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

1051 1052 1053
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1054
 * @memcg: memcg of the wanted lruvec
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1085

1086
/**
1087
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1088
 * @page: the page
1089
 * @zone: zone of the page
1090
 */
1091
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1092 1093
{
	struct mem_cgroup_per_zone *mz;
1094 1095
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1096

1097
	if (mem_cgroup_disabled())
1098 1099
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1100
	pc = lookup_page_cgroup(page);
1101
	memcg = pc->mem_cgroup;
1102 1103

	/*
1104
	 * Surreptitiously switch any uncharged offlist page to root:
1105 1106 1107 1108 1109 1110 1111
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1112
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1113 1114
		pc->mem_cgroup = memcg = root_mem_cgroup;

1115 1116
	mz = page_cgroup_zoneinfo(memcg, page);
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1117
}
1118

1119
/**
1120 1121 1122 1123
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1124
 *
1125 1126
 * This function must be called when a page is added to or removed from an
 * lru list.
1127
 */
1128 1129
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1130 1131
{
	struct mem_cgroup_per_zone *mz;
1132
	unsigned long *lru_size;
1133 1134 1135 1136

	if (mem_cgroup_disabled())
		return;

1137 1138 1139 1140
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1141
}
1142

1143
/*
1144
 * Checks whether given mem is same or in the root_mem_cgroup's
1145 1146
 * hierarchy subtree
 */
1147 1148
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1149
{
1150 1151
	if (root_memcg == memcg)
		return true;
1152
	if (!root_memcg->use_hierarchy || !memcg)
1153
		return false;
1154 1155 1156 1157 1158 1159 1160 1161
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1162
	rcu_read_lock();
1163
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1164 1165
	rcu_read_unlock();
	return ret;
1166 1167
}

1168
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1169 1170
{
	int ret;
1171
	struct mem_cgroup *curr = NULL;
1172
	struct task_struct *p;
1173

1174
	p = find_lock_task_mm(task);
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1190 1191
	if (!curr)
		return 0;
1192
	/*
1193
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1194
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1195 1196
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1197
	 */
1198
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1199
	css_put(&curr->css);
1200 1201 1202
	return ret;
}

1203
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1204
{
1205
	unsigned long inactive_ratio;
1206
	unsigned long inactive;
1207
	unsigned long active;
1208
	unsigned long gb;
1209

1210 1211
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1212

1213 1214 1215 1216 1217 1218
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1219
	return inactive * inactive_ratio < active;
1220 1221
}

1222
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1223 1224 1225 1226
{
	unsigned long active;
	unsigned long inactive;

1227 1228
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1229 1230 1231 1232

	return (active > inactive);
}

1233 1234 1235
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1236
/**
1237
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1238
 * @memcg: the memory cgroup
1239
 *
1240
 * Returns the maximum amount of memory @mem can be charged with, in
1241
 * pages.
1242
 */
1243
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1244
{
1245 1246
	unsigned long long margin;

1247
	margin = res_counter_margin(&memcg->res);
1248
	if (do_swap_account)
1249
		margin = min(margin, res_counter_margin(&memcg->memsw));
1250
	return margin >> PAGE_SHIFT;
1251 1252
}

1253
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1254 1255 1256 1257 1258 1259 1260
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1261
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1262 1263
}

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1278 1279 1280 1281

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1282
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1283
{
1284
	atomic_inc(&memcg_moving);
1285
	atomic_inc(&memcg->moving_account);
1286 1287 1288
	synchronize_rcu();
}

1289
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1290
{
1291 1292 1293 1294
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1295 1296
	if (memcg) {
		atomic_dec(&memcg_moving);
1297
		atomic_dec(&memcg->moving_account);
1298
	}
1299
}
1300

1301 1302 1303
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1304 1305
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1306 1307 1308 1309 1310 1311 1312
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1313
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1314 1315
{
	VM_BUG_ON(!rcu_read_lock_held());
1316
	return atomic_read(&memcg->moving_account) > 0;
1317
}
1318

1319
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1320
{
1321 1322
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1323
	bool ret = false;
1324 1325 1326 1327 1328 1329 1330 1331 1332
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1333

1334 1335
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1336 1337
unlock:
	spin_unlock(&mc.lock);
1338 1339 1340
	return ret;
}

1341
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1342 1343
{
	if (mc.moving_task && current != mc.moving_task) {
1344
		if (mem_cgroup_under_move(memcg)) {
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1357 1358 1359 1360
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1361
 * see mem_cgroup_stolen(), too.
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1375
/**
1376
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1395
	if (!memcg || !p)
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1441 1442 1443 1444
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1445
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1446 1447
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1448 1449
	struct mem_cgroup *iter;

1450
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1451
		num++;
1452 1453 1454
	return num;
}

D
David Rientjes 已提交
1455 1456 1457
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1458
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1459 1460 1461 1462
{
	u64 limit;
	u64 memsw;

1463 1464 1465
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1466 1467 1468 1469 1470 1471 1472 1473
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1474 1475
void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
			      int order)
1476 1477 1478 1479 1480 1481 1482
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1577 1578
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1579
 * @memcg: the target memcg
1580 1581 1582 1583 1584 1585 1586
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1587
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1588 1589
		int nid, bool noswap)
{
1590
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1591 1592 1593
		return true;
	if (noswap || !total_swap_pages)
		return false;
1594
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1595 1596 1597 1598
		return true;
	return false;

}
1599 1600 1601 1602 1603 1604 1605 1606
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1607
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1608 1609
{
	int nid;
1610 1611 1612 1613
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1614
	if (!atomic_read(&memcg->numainfo_events))
1615
		return;
1616
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1617 1618 1619
		return;

	/* make a nodemask where this memcg uses memory from */
1620
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1621 1622 1623

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1624 1625
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1626
	}
1627

1628 1629
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1644
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1645 1646 1647
{
	int node;

1648 1649
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1650

1651
	node = next_node(node, memcg->scan_nodes);
1652
	if (node == MAX_NUMNODES)
1653
		node = first_node(memcg->scan_nodes);
1654 1655 1656 1657 1658 1659 1660 1661 1662
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1663
	memcg->last_scanned_node = node;
1664 1665 1666
	return node;
}

1667 1668 1669 1670 1671 1672
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1673
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1674 1675 1676 1677 1678 1679 1680
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1681 1682
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1683
		     nid < MAX_NUMNODES;
1684
		     nid = next_node(nid, memcg->scan_nodes)) {
1685

1686
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1687 1688 1689 1690 1691 1692 1693
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1694
		if (node_isset(nid, memcg->scan_nodes))
1695
			continue;
1696
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1697 1698 1699 1700 1701
			return true;
	}
	return false;
}

1702
#else
1703
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1704 1705 1706
{
	return 0;
}
1707

1708
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1709
{
1710
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1711
}
1712 1713
#endif

1714 1715 1716 1717
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1718
{
1719
	struct mem_cgroup *victim = NULL;
1720
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1721
	int loop = 0;
1722
	unsigned long excess;
1723
	unsigned long nr_scanned;
1724 1725 1726 1727
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1728

1729
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1730

1731
	while (1) {
1732
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1733
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1734
			loop++;
1735 1736 1737 1738 1739 1740
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1741
				if (!total)
1742 1743
					break;
				/*
L
Lucas De Marchi 已提交
1744
				 * We want to do more targeted reclaim.
1745 1746 1747 1748 1749
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1750
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1751 1752
					break;
			}
1753
			continue;
1754
		}
1755
		if (!mem_cgroup_reclaimable(victim, false))
1756
			continue;
1757 1758 1759 1760
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1761
			break;
1762
	}
1763
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1764
	return total;
1765 1766
}

K
KAMEZAWA Hiroyuki 已提交
1767 1768 1769
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1770
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1771
 */
1772
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1773
{
1774
	struct mem_cgroup *iter, *failed = NULL;
1775

1776
	for_each_mem_cgroup_tree(iter, memcg) {
1777
		if (iter->oom_lock) {
1778 1779 1780 1781 1782
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1783 1784
			mem_cgroup_iter_break(memcg, iter);
			break;
1785 1786
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1787
	}
K
KAMEZAWA Hiroyuki 已提交
1788

1789
	if (!failed)
1790
		return true;
1791 1792 1793 1794 1795

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1796
	for_each_mem_cgroup_tree(iter, memcg) {
1797
		if (iter == failed) {
1798 1799
			mem_cgroup_iter_break(memcg, iter);
			break;
1800 1801 1802
		}
		iter->oom_lock = false;
	}
1803
	return false;
1804
}
1805

1806
/*
1807
 * Has to be called with memcg_oom_lock
1808
 */
1809
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1810
{
K
KAMEZAWA Hiroyuki 已提交
1811 1812
	struct mem_cgroup *iter;

1813
	for_each_mem_cgroup_tree(iter, memcg)
1814 1815 1816 1817
		iter->oom_lock = false;
	return 0;
}

1818
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1819 1820 1821
{
	struct mem_cgroup *iter;

1822
	for_each_mem_cgroup_tree(iter, memcg)
1823 1824 1825
		atomic_inc(&iter->under_oom);
}

1826
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1827 1828 1829
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1830 1831 1832 1833 1834
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1835
	for_each_mem_cgroup_tree(iter, memcg)
1836
		atomic_add_unless(&iter->under_oom, -1, 0);
1837 1838
}

1839
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1840 1841
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1842
struct oom_wait_info {
1843
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1844 1845 1846 1847 1848 1849
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1850 1851
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1852 1853 1854
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1855
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1856 1857

	/*
1858
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1859 1860
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1861 1862
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1863 1864 1865 1866
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1867
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1868
{
1869 1870
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1871 1872
}

1873
static void memcg_oom_recover(struct mem_cgroup *memcg)
1874
{
1875 1876
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1877 1878
}

K
KAMEZAWA Hiroyuki 已提交
1879 1880 1881
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1882 1883
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1884
{
K
KAMEZAWA Hiroyuki 已提交
1885
	struct oom_wait_info owait;
1886
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1887

1888
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1889 1890 1891 1892
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1893
	need_to_kill = true;
1894
	mem_cgroup_mark_under_oom(memcg);
1895

1896
	/* At first, try to OOM lock hierarchy under memcg.*/
1897
	spin_lock(&memcg_oom_lock);
1898
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1899 1900 1901 1902 1903
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1904
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1905
	if (!locked || memcg->oom_kill_disable)
1906 1907
		need_to_kill = false;
	if (locked)
1908
		mem_cgroup_oom_notify(memcg);
1909
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1910

1911 1912
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1913
		mem_cgroup_out_of_memory(memcg, mask, order);
1914
	} else {
K
KAMEZAWA Hiroyuki 已提交
1915
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1916
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1917
	}
1918
	spin_lock(&memcg_oom_lock);
1919
	if (locked)
1920 1921
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1922
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1923

1924
	mem_cgroup_unmark_under_oom(memcg);
1925

K
KAMEZAWA Hiroyuki 已提交
1926 1927 1928
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1929
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1930
	return true;
1931 1932
}

1933 1934 1935
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1953 1954
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1955
 */
1956

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
1970
	 * need to take move_lock_mem_cgroup(). Because we already hold
1971
	 * rcu_read_lock(), any calls to move_account will be delayed until
1972
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1973
	 */
1974
	if (!mem_cgroup_stolen(memcg))
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
1992
	 * should take move_lock_mem_cgroup().
1993 1994 1995 1996
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

1997 1998
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1999
{
2000
	struct mem_cgroup *memcg;
2001
	struct page_cgroup *pc = lookup_page_cgroup(page);
2002
	unsigned long uninitialized_var(flags);
2003

2004
	if (mem_cgroup_disabled())
2005
		return;
2006

2007 2008
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2009
		return;
2010 2011

	switch (idx) {
2012 2013
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2014 2015 2016
		break;
	default:
		BUG();
2017
	}
2018

2019
	this_cpu_add(memcg->stat->count[idx], val);
2020
}
2021

2022 2023 2024 2025
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2026
#define CHARGE_BATCH	32U
2027 2028
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2029
	unsigned int nr_pages;
2030
	struct work_struct work;
2031
	unsigned long flags;
2032
#define FLUSHING_CACHED_CHARGE	0
2033 2034
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2035
static DEFINE_MUTEX(percpu_charge_mutex);
2036 2037

/*
2038
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2039 2040 2041 2042
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2043
static bool consume_stock(struct mem_cgroup *memcg)
2044 2045 2046 2047 2048
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2049
	if (memcg == stock->cached && stock->nr_pages)
2050
		stock->nr_pages--;
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2064 2065 2066 2067
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2068
		if (do_swap_account)
2069 2070
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2083
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2084 2085 2086 2087
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2088
 * This will be consumed by consume_stock() function, later.
2089
 */
2090
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2091 2092 2093
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2094
	if (stock->cached != memcg) { /* reset if necessary */
2095
		drain_stock(stock);
2096
		stock->cached = memcg;
2097
	}
2098
	stock->nr_pages += nr_pages;
2099 2100 2101 2102
	put_cpu_var(memcg_stock);
}

/*
2103
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2104 2105
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2106
 */
2107
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2108
{
2109
	int cpu, curcpu;
2110

2111 2112
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2113
	curcpu = get_cpu();
2114 2115
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2116
		struct mem_cgroup *memcg;
2117

2118 2119
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2120
			continue;
2121
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2122
			continue;
2123 2124 2125 2126 2127 2128
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2129
	}
2130
	put_cpu();
2131 2132 2133 2134 2135 2136

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2137
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2138 2139 2140
			flush_work(&stock->work);
	}
out:
2141
 	put_online_cpus();
2142 2143 2144 2145 2146 2147 2148 2149
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2150
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2151
{
2152 2153 2154 2155 2156
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2157
	drain_all_stock(root_memcg, false);
2158
	mutex_unlock(&percpu_charge_mutex);
2159 2160 2161
}

/* This is a synchronous drain interface. */
2162
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2163 2164
{
	/* called when force_empty is called */
2165
	mutex_lock(&percpu_charge_mutex);
2166
	drain_all_stock(root_memcg, true);
2167
	mutex_unlock(&percpu_charge_mutex);
2168 2169
}

2170 2171 2172 2173
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2174
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2175 2176 2177
{
	int i;

2178
	spin_lock(&memcg->pcp_counter_lock);
2179
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2180
		long x = per_cpu(memcg->stat->count[i], cpu);
2181

2182 2183
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2184
	}
2185
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2186
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2187

2188 2189
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2190
	}
2191
	spin_unlock(&memcg->pcp_counter_lock);
2192 2193 2194
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2195 2196 2197 2198 2199
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2200
	struct mem_cgroup *iter;
2201

2202
	if (action == CPU_ONLINE)
2203 2204
		return NOTIFY_OK;

2205
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2206
		return NOTIFY_OK;
2207

2208
	for_each_mem_cgroup(iter)
2209 2210
		mem_cgroup_drain_pcp_counter(iter, cpu);

2211 2212 2213 2214 2215
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2226
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2227
				unsigned int nr_pages, bool oom_check)
2228
{
2229
	unsigned long csize = nr_pages * PAGE_SIZE;
2230 2231 2232 2233 2234
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2235
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2236 2237 2238 2239

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2240
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2241 2242 2243
		if (likely(!ret))
			return CHARGE_OK;

2244
		res_counter_uncharge(&memcg->res, csize);
2245 2246 2247 2248
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2249
	/*
2250 2251
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2252 2253 2254 2255
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2256
	if (nr_pages == CHARGE_BATCH)
2257 2258 2259 2260 2261
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2262
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2263
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2264
		return CHARGE_RETRY;
2265
	/*
2266 2267 2268 2269 2270 2271 2272
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2273
	 */
2274
	if (nr_pages == 1 && ret)
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2288
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2289 2290 2291 2292 2293
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2294
/*
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2314
 */
2315
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2316
				   gfp_t gfp_mask,
2317
				   unsigned int nr_pages,
2318
				   struct mem_cgroup **ptr,
2319
				   bool oom)
2320
{
2321
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2322
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2323
	struct mem_cgroup *memcg = NULL;
2324
	int ret;
2325

K
KAMEZAWA Hiroyuki 已提交
2326 2327 2328 2329 2330 2331 2332 2333
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2334

2335
	/*
2336 2337
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2338
	 * thread group leader migrates. It's possible that mm is not
2339
	 * set, if so charge the root memcg (happens for pagecache usage).
2340
	 */
2341
	if (!*ptr && !mm)
2342
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2343
again:
2344 2345 2346 2347
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2348
			goto done;
2349
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2350
			goto done;
2351
		css_get(&memcg->css);
2352
	} else {
K
KAMEZAWA Hiroyuki 已提交
2353
		struct task_struct *p;
2354

K
KAMEZAWA Hiroyuki 已提交
2355 2356 2357
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2358
		 * Because we don't have task_lock(), "p" can exit.
2359
		 * In that case, "memcg" can point to root or p can be NULL with
2360 2361 2362 2363 2364 2365
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2366
		 */
2367
		memcg = mem_cgroup_from_task(p);
2368 2369 2370
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2371 2372 2373
			rcu_read_unlock();
			goto done;
		}
2374
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2387
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2388 2389 2390 2391 2392
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2393

2394 2395
	do {
		bool oom_check;
2396

2397
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2398
		if (fatal_signal_pending(current)) {
2399
			css_put(&memcg->css);
2400
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2401
		}
2402

2403 2404 2405 2406
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2407
		}
2408

2409
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2410 2411 2412 2413
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2414
			batch = nr_pages;
2415 2416
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2417
			goto again;
2418
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2419
			css_put(&memcg->css);
2420 2421
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2422
			if (!oom) {
2423
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2424
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2425
			}
2426 2427 2428 2429
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2430
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2431
			goto bypass;
2432
		}
2433 2434
	} while (ret != CHARGE_OK);

2435
	if (batch > nr_pages)
2436 2437
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2438
done:
2439
	*ptr = memcg;
2440 2441
	return 0;
nomem:
2442
	*ptr = NULL;
2443
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2444
bypass:
2445 2446
	*ptr = root_mem_cgroup;
	return -EINTR;
2447
}
2448

2449 2450 2451 2452 2453
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2454
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2455
				       unsigned int nr_pages)
2456
{
2457
	if (!mem_cgroup_is_root(memcg)) {
2458 2459
		unsigned long bytes = nr_pages * PAGE_SIZE;

2460
		res_counter_uncharge(&memcg->res, bytes);
2461
		if (do_swap_account)
2462
			res_counter_uncharge(&memcg->memsw, bytes);
2463
	}
2464 2465
}

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2500
	return mem_cgroup_from_css(css);
2501 2502
}

2503
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2504
{
2505
	struct mem_cgroup *memcg = NULL;
2506
	struct page_cgroup *pc;
2507
	unsigned short id;
2508 2509
	swp_entry_t ent;

2510 2511 2512
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2513
	lock_page_cgroup(pc);
2514
	if (PageCgroupUsed(pc)) {
2515 2516 2517
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2518
	} else if (PageSwapCache(page)) {
2519
		ent.val = page_private(page);
2520
		id = lookup_swap_cgroup_id(ent);
2521
		rcu_read_lock();
2522 2523 2524
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2525
		rcu_read_unlock();
2526
	}
2527
	unlock_page_cgroup(pc);
2528
	return memcg;
2529 2530
}

2531
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2532
				       struct page *page,
2533
				       unsigned int nr_pages,
2534 2535
				       enum charge_type ctype,
				       bool lrucare)
2536
{
2537
	struct page_cgroup *pc = lookup_page_cgroup(page);
2538
	struct zone *uninitialized_var(zone);
2539
	struct lruvec *lruvec;
2540
	bool was_on_lru = false;
2541
	bool anon;
2542

2543
	lock_page_cgroup(pc);
2544
	VM_BUG_ON(PageCgroupUsed(pc));
2545 2546 2547 2548
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2549 2550 2551 2552 2553 2554 2555 2556 2557

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2558
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2559
			ClearPageLRU(page);
2560
			del_page_from_lru_list(page, lruvec, page_lru(page));
2561 2562 2563 2564
			was_on_lru = true;
		}
	}

2565
	pc->mem_cgroup = memcg;
2566 2567 2568 2569 2570 2571 2572
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2573
	smp_wmb();
2574
	SetPageCgroupUsed(pc);
2575

2576 2577
	if (lrucare) {
		if (was_on_lru) {
2578
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2579 2580
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2581
			add_page_to_lru_list(page, lruvec, page_lru(page));
2582 2583 2584 2585
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2586
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2587 2588 2589 2590 2591
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2592
	unlock_page_cgroup(pc);
2593

2594 2595 2596 2597 2598
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2599
	memcg_check_events(memcg, page);
2600
}
2601

2602 2603
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2604
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2605 2606
/*
 * Because tail pages are not marked as "used", set it. We're under
2607 2608 2609
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2610
 */
2611
void mem_cgroup_split_huge_fixup(struct page *head)
2612 2613
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2614 2615
	struct page_cgroup *pc;
	int i;
2616

2617 2618
	if (mem_cgroup_disabled())
		return;
2619 2620 2621 2622 2623 2624
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2625
}
2626
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2627

2628
/**
2629
 * mem_cgroup_move_account - move account of the page
2630
 * @page: the page
2631
 * @nr_pages: number of regular pages (>1 for huge pages)
2632 2633 2634 2635 2636
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2637
 * - page is not on LRU (isolate_page() is useful.)
2638
 * - compound_lock is held when nr_pages > 1
2639
 *
2640 2641
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2642
 */
2643 2644 2645 2646
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2647
				   struct mem_cgroup *to)
2648
{
2649 2650
	unsigned long flags;
	int ret;
2651
	bool anon = PageAnon(page);
2652

2653
	VM_BUG_ON(from == to);
2654
	VM_BUG_ON(PageLRU(page));
2655 2656 2657 2658 2659 2660 2661
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2662
	if (nr_pages > 1 && !PageTransHuge(page))
2663 2664 2665 2666 2667 2668 2669 2670
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2671
	move_lock_mem_cgroup(from, &flags);
2672

2673
	if (!anon && page_mapped(page)) {
2674 2675 2676 2677 2678
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2679
	}
2680
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2681

2682
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2683
	pc->mem_cgroup = to;
2684
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2685 2686 2687
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2688
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2689
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2690
	 * status here.
2691
	 */
2692
	move_unlock_mem_cgroup(from, &flags);
2693 2694
	ret = 0;
unlock:
2695
	unlock_page_cgroup(pc);
2696 2697 2698
	/*
	 * check events
	 */
2699 2700
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2701
out:
2702 2703 2704 2705 2706 2707 2708
	return ret;
}

/*
 * move charges to its parent.
 */

2709 2710
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2711
				  struct mem_cgroup *child)
2712 2713
{
	struct mem_cgroup *parent;
2714
	unsigned int nr_pages;
2715
	unsigned long uninitialized_var(flags);
2716 2717 2718
	int ret;

	/* Is ROOT ? */
2719
	if (mem_cgroup_is_root(child))
2720 2721
		return -EINVAL;

2722 2723 2724 2725 2726
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2727

2728
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2729

2730 2731 2732 2733 2734 2735
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
2736

2737
	if (nr_pages > 1)
2738 2739
		flags = compound_lock_irqsave(page);

2740
	ret = mem_cgroup_move_account(page, nr_pages,
2741
				pc, child, parent);
2742 2743
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
2744

2745
	if (nr_pages > 1)
2746
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
2747
	putback_lru_page(page);
2748
put:
2749
	put_page(page);
2750
out:
2751 2752 2753
	return ret;
}

2754 2755 2756 2757 2758 2759 2760
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2761
				gfp_t gfp_mask, enum charge_type ctype)
2762
{
2763
	struct mem_cgroup *memcg = NULL;
2764
	unsigned int nr_pages = 1;
2765
	bool oom = true;
2766
	int ret;
A
Andrea Arcangeli 已提交
2767

A
Andrea Arcangeli 已提交
2768
	if (PageTransHuge(page)) {
2769
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2770
		VM_BUG_ON(!PageTransHuge(page));
2771 2772 2773 2774 2775
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2776
	}
2777

2778
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2779
	if (ret == -ENOMEM)
2780
		return ret;
2781
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2782 2783 2784
	return 0;
}

2785 2786
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2787
{
2788
	if (mem_cgroup_disabled())
2789
		return 0;
2790 2791 2792
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2793
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2794
					MEM_CGROUP_CHARGE_TYPE_ANON);
2795 2796
}

2797 2798 2799
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2800
 * struct page_cgroup is acquired. This refcnt will be consumed by
2801 2802
 * "commit()" or removed by "cancel()"
 */
2803 2804 2805 2806
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
2807
{
2808
	struct mem_cgroup *memcg;
2809
	struct page_cgroup *pc;
2810
	int ret;
2811

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
2822 2823
	if (!do_swap_account)
		goto charge_cur_mm;
2824 2825
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2826
		goto charge_cur_mm;
2827 2828
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2829
	css_put(&memcg->css);
2830 2831
	if (ret == -EINTR)
		ret = 0;
2832
	return ret;
2833
charge_cur_mm:
2834 2835 2836 2837
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2838 2839
}

2840 2841 2842 2843 2844 2845
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
2860 2861 2862
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

2863 2864 2865 2866 2867 2868 2869 2870 2871
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
2872
static void
2873
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2874
					enum charge_type ctype)
2875
{
2876
	if (mem_cgroup_disabled())
2877
		return;
2878
	if (!memcg)
2879
		return;
2880
	cgroup_exclude_rmdir(&memcg->css);
2881

2882
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2883 2884 2885
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2886 2887 2888
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2889
	 */
2890
	if (do_swap_account && PageSwapCache(page)) {
2891
		swp_entry_t ent = {.val = page_private(page)};
2892
		mem_cgroup_uncharge_swap(ent);
2893
	}
2894 2895 2896 2897 2898
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2899
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2900 2901
}

2902 2903
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2904
{
2905
	__mem_cgroup_commit_charge_swapin(page, memcg,
2906
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
2907 2908
}

2909 2910
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2911
{
2912 2913 2914 2915
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

2916
	if (mem_cgroup_disabled())
2917 2918 2919 2920 2921 2922 2923
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
2924 2925
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
2926 2927 2928 2929
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
2930 2931
}

2932
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2933 2934
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2935 2936 2937
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2938

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2950
		batch->memcg = memcg;
2951 2952
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2953
	 * In those cases, all pages freed continuously can be expected to be in
2954 2955 2956 2957 2958 2959 2960 2961
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2962
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2963 2964
		goto direct_uncharge;

2965 2966 2967 2968 2969
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2970
	if (batch->memcg != memcg)
2971 2972
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2973
	batch->nr_pages++;
2974
	if (uncharge_memsw)
2975
		batch->memsw_nr_pages++;
2976 2977
	return;
direct_uncharge:
2978
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2979
	if (uncharge_memsw)
2980 2981 2982
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2983
}
2984

2985
/*
2986
 * uncharge if !page_mapped(page)
2987
 */
2988
static struct mem_cgroup *
2989 2990
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
2991
{
2992
	struct mem_cgroup *memcg = NULL;
2993 2994
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2995
	bool anon;
2996

2997
	if (mem_cgroup_disabled())
2998
		return NULL;
2999

3000
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
3001

A
Andrea Arcangeli 已提交
3002
	if (PageTransHuge(page)) {
3003
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3004 3005
		VM_BUG_ON(!PageTransHuge(page));
	}
3006
	/*
3007
	 * Check if our page_cgroup is valid
3008
	 */
3009
	pc = lookup_page_cgroup(page);
3010
	if (unlikely(!PageCgroupUsed(pc)))
3011
		return NULL;
3012

3013
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3014

3015
	memcg = pc->mem_cgroup;
3016

K
KAMEZAWA Hiroyuki 已提交
3017 3018 3019
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3020 3021
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3022
	switch (ctype) {
3023
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3024 3025 3026 3027 3028
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3029 3030
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3031
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3032
		/* See mem_cgroup_prepare_migration() */
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3054
	}
K
KAMEZAWA Hiroyuki 已提交
3055

3056
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3057

3058
	ClearPageCgroupUsed(pc);
3059 3060 3061 3062 3063 3064
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3065

3066
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3067
	/*
3068
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3069 3070
	 * will never be freed.
	 */
3071
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3072
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3073 3074
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3075
	}
3076 3077 3078 3079 3080 3081
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
3082
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3083

3084
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3085 3086 3087

unlock_out:
	unlock_page_cgroup(pc);
3088
	return NULL;
3089 3090
}

3091 3092
void mem_cgroup_uncharge_page(struct page *page)
{
3093 3094 3095
	/* early check. */
	if (page_mapped(page))
		return;
3096
	VM_BUG_ON(page->mapping && !PageAnon(page));
3097 3098
	if (PageSwapCache(page))
		return;
3099
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3100 3101 3102 3103 3104
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3105
	VM_BUG_ON(page->mapping);
3106
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3107 3108
}

3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3123 3124
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3145 3146 3147 3148 3149 3150
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3151
	memcg_oom_recover(batch->memcg);
3152 3153 3154 3155
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3156
#ifdef CONFIG_SWAP
3157
/*
3158
 * called after __delete_from_swap_cache() and drop "page" account.
3159 3160
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3161 3162
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3163 3164
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3165 3166 3167 3168 3169
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

3170
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3171

K
KAMEZAWA Hiroyuki 已提交
3172 3173 3174 3175 3176
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3177
		swap_cgroup_record(ent, css_id(&memcg->css));
3178
}
3179
#endif
3180

A
Andrew Morton 已提交
3181
#ifdef CONFIG_MEMCG_SWAP
3182 3183 3184 3185 3186
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3187
{
3188
	struct mem_cgroup *memcg;
3189
	unsigned short id;
3190 3191 3192 3193

	if (!do_swap_account)
		return;

3194 3195 3196
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3197
	if (memcg) {
3198 3199 3200 3201
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3202
		if (!mem_cgroup_is_root(memcg))
3203
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3204
		mem_cgroup_swap_statistics(memcg, false);
3205 3206
		mem_cgroup_put(memcg);
	}
3207
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3208
}
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3225
				struct mem_cgroup *from, struct mem_cgroup *to)
3226 3227 3228 3229 3230 3231 3232 3233
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3234
		mem_cgroup_swap_statistics(to, true);
3235
		/*
3236 3237 3238 3239 3240 3241
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3242 3243 3244 3245 3246 3247 3248 3249
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3250
				struct mem_cgroup *from, struct mem_cgroup *to)
3251 3252 3253
{
	return -EINVAL;
}
3254
#endif
K
KAMEZAWA Hiroyuki 已提交
3255

3256
/*
3257 3258
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3259
 */
3260 3261
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
3262
{
3263
	struct mem_cgroup *memcg = NULL;
3264
	struct page_cgroup *pc;
3265
	enum charge_type ctype;
3266

3267
	*memcgp = NULL;
3268

A
Andrea Arcangeli 已提交
3269
	VM_BUG_ON(PageTransHuge(page));
3270
	if (mem_cgroup_disabled())
3271
		return;
3272

3273 3274 3275
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3276 3277
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3309
	}
3310
	unlock_page_cgroup(pc);
3311 3312 3313 3314
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3315
	if (!memcg)
3316
		return;
3317

3318
	*memcgp = memcg;
3319 3320 3321 3322 3323 3324 3325
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
3326
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3327
	else
3328
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3329 3330 3331 3332 3333
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
3334
	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3335
}
3336

3337
/* remove redundant charge if migration failed*/
3338
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3339
	struct page *oldpage, struct page *newpage, bool migration_ok)
3340
{
3341
	struct page *used, *unused;
3342
	struct page_cgroup *pc;
3343
	bool anon;
3344

3345
	if (!memcg)
3346
		return;
3347
	/* blocks rmdir() */
3348
	cgroup_exclude_rmdir(&memcg->css);
3349
	if (!migration_ok) {
3350 3351
		used = oldpage;
		unused = newpage;
3352
	} else {
3353
		used = newpage;
3354 3355
		unused = oldpage;
	}
3356
	anon = PageAnon(used);
3357 3358 3359 3360
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
3361
	css_put(&memcg->css);
3362
	/*
3363 3364 3365
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3366
	 */
3367 3368 3369 3370 3371
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

3372
	/*
3373 3374 3375 3376 3377 3378
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3379
	 */
3380
	if (anon)
3381
		mem_cgroup_uncharge_page(used);
3382
	/*
3383 3384
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3385 3386 3387
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3388
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3389
}
3390

3391 3392 3393 3394 3395 3396 3397 3398
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3399
	struct mem_cgroup *memcg = NULL;
3400 3401 3402 3403 3404 3405 3406 3407 3408
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3409 3410 3411 3412 3413
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3414 3415
	unlock_page_cgroup(pc);

3416 3417 3418 3419 3420 3421
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
3422 3423 3424 3425 3426
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3427
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3428 3429
}

3430 3431 3432 3433 3434 3435
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3436 3437 3438 3439 3440
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3460
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3461 3462 3463 3464 3465
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3466 3467
static DEFINE_MUTEX(set_limit_mutex);

3468
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3469
				unsigned long long val)
3470
{
3471
	int retry_count;
3472
	u64 memswlimit, memlimit;
3473
	int ret = 0;
3474 3475
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3476
	int enlarge;
3477 3478 3479 3480 3481 3482 3483 3484 3485

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3486

3487
	enlarge = 0;
3488
	while (retry_count) {
3489 3490 3491 3492
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3493 3494 3495
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3496
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3497 3498 3499 3500 3501 3502
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3503 3504
			break;
		}
3505 3506 3507 3508 3509

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3510
		ret = res_counter_set_limit(&memcg->res, val);
3511 3512 3513 3514 3515 3516
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3517 3518 3519 3520 3521
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3522 3523
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3524 3525 3526 3527 3528 3529
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3530
	}
3531 3532
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3533

3534 3535 3536
	return ret;
}

L
Li Zefan 已提交
3537 3538
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3539
{
3540
	int retry_count;
3541
	u64 memlimit, memswlimit, oldusage, curusage;
3542 3543
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3544
	int enlarge = 0;
3545

3546 3547 3548
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3549 3550 3551 3552 3553 3554 3555 3556
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3557
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3558 3559 3560 3561 3562 3563 3564 3565
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3566 3567 3568
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3569
		ret = res_counter_set_limit(&memcg->memsw, val);
3570 3571 3572 3573 3574 3575
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3576 3577 3578 3579 3580
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3581 3582 3583
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3584
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3585
		/* Usage is reduced ? */
3586
		if (curusage >= oldusage)
3587
			retry_count--;
3588 3589
		else
			oldusage = curusage;
3590
	}
3591 3592
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3593 3594 3595
	return ret;
}

3596
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3597 3598
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3599 3600 3601 3602 3603 3604
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3605
	unsigned long long excess;
3606
	unsigned long nr_scanned;
3607 3608 3609 3610

	if (order > 0)
		return 0;

3611
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3625
		nr_scanned = 0;
3626
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3627
						    gfp_mask, &nr_scanned);
3628
		nr_reclaimed += reclaimed;
3629
		*total_scanned += nr_scanned;
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3652
				if (next_mz == mz)
3653
					css_put(&next_mz->memcg->css);
3654
				else /* next_mz == NULL or other memcg */
3655 3656 3657
					break;
			} while (1);
		}
3658 3659
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3660 3661 3662 3663 3664 3665 3666 3667
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3668
		/* If excess == 0, no tree ops */
3669
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3670
		spin_unlock(&mctz->lock);
3671
		css_put(&mz->memcg->css);
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3684
		css_put(&next_mz->memcg->css);
3685 3686 3687
	return nr_reclaimed;
}

3688
/*
3689 3690 3691 3692
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
 * reclaim the pages page themselves - it just removes the page_cgroups.
 * Returns true if some page_cgroups were not freed, indicating that the caller
 * must retry this operation.
3693
 */
3694
static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3695
				int node, int zid, enum lru_list lru)
3696
{
K
KAMEZAWA Hiroyuki 已提交
3697 3698
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3699
	struct list_head *list;
3700 3701
	struct page *busy;
	struct zone *zone;
3702

K
KAMEZAWA Hiroyuki 已提交
3703
	zone = &NODE_DATA(node)->node_zones[zid];
3704
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3705
	list = &mz->lruvec.lists[lru];
3706

3707
	loop = mz->lru_size[lru];
3708 3709 3710 3711
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3712
		struct page_cgroup *pc;
3713 3714
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3715
		spin_lock_irqsave(&zone->lru_lock, flags);
3716
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3717
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3718
			break;
3719
		}
3720 3721 3722
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3723
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3724
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3725 3726
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3727
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3728

3729
		pc = lookup_page_cgroup(page);
3730

3731
		if (mem_cgroup_move_parent(page, pc, memcg)) {
3732
			/* found lock contention or "pc" is obsolete. */
3733
			busy = page;
3734 3735 3736
			cond_resched();
		} else
			busy = NULL;
3737
	}
3738
	return !list_empty(list);
3739 3740 3741 3742 3743 3744
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3745
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3746
{
3747 3748 3749
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3750
	struct cgroup *cgrp = memcg->css.cgroup;
3751

3752
	css_get(&memcg->css);
3753 3754

	shrink = 0;
3755 3756 3757
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3758
move_account:
3759
	do {
3760
		ret = -EBUSY;
3761 3762
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
3763 3764
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3765
		drain_all_stock_sync(memcg);
3766
		ret = 0;
3767
		mem_cgroup_start_move(memcg);
3768
		for_each_node_state(node, N_HIGH_MEMORY) {
3769
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3770 3771
				enum lru_list lru;
				for_each_lru(lru) {
3772
					ret = mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3773
							node, zid, lru);
3774 3775 3776
					if (ret)
						break;
				}
3777
			}
3778 3779 3780
			if (ret)
				break;
		}
3781 3782
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3783
		cond_resched();
3784
	/* "ret" should also be checked to ensure all lists are empty. */
3785
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3786
out:
3787
	css_put(&memcg->css);
3788
	return ret;
3789 3790

try_to_free:
3791 3792
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3793 3794 3795
		ret = -EBUSY;
		goto out;
	}
3796 3797
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3798 3799
	/* try to free all pages in this cgroup */
	shrink = 1;
3800
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3801
		int progress;
3802 3803 3804 3805 3806

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3807
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3808
						false);
3809
		if (!progress) {
3810
			nr_retries--;
3811
			/* maybe some writeback is necessary */
3812
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3813
		}
3814 3815

	}
K
KAMEZAWA Hiroyuki 已提交
3816
	lru_add_drain();
3817
	/* try move_account...there may be some *locked* pages. */
3818
	goto move_account;
3819 3820
}

3821
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3822 3823 3824 3825 3826
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3827 3828 3829 3830 3831 3832 3833 3834 3835
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3836
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3837
	struct cgroup *parent = cont->parent;
3838
	struct mem_cgroup *parent_memcg = NULL;
3839 3840

	if (parent)
3841
		parent_memcg = mem_cgroup_from_cont(parent);
3842 3843

	cgroup_lock();
3844 3845 3846 3847

	if (memcg->use_hierarchy == val)
		goto out;

3848
	/*
3849
	 * If parent's use_hierarchy is set, we can't make any modifications
3850 3851 3852 3853 3854 3855
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3856
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3857 3858
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3859
			memcg->use_hierarchy = val;
3860 3861 3862 3863
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3864 3865

out:
3866 3867 3868 3869 3870
	cgroup_unlock();

	return retval;
}

3871

3872
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3873
					       enum mem_cgroup_stat_index idx)
3874
{
K
KAMEZAWA Hiroyuki 已提交
3875
	struct mem_cgroup *iter;
3876
	long val = 0;
3877

3878
	/* Per-cpu values can be negative, use a signed accumulator */
3879
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3880 3881 3882 3883 3884
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3885 3886
}

3887
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3888
{
K
KAMEZAWA Hiroyuki 已提交
3889
	u64 val;
3890

3891
	if (!mem_cgroup_is_root(memcg)) {
3892
		if (!swap)
3893
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3894
		else
3895
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3896 3897
	}

3898 3899
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3900

K
KAMEZAWA Hiroyuki 已提交
3901
	if (swap)
3902
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3903 3904 3905 3906

	return val << PAGE_SHIFT;
}

3907 3908 3909
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3910
{
3911
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3912
	char str[64];
3913
	u64 val;
3914
	int type, name, len;
3915 3916 3917

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3918 3919 3920 3921

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3922 3923
	switch (type) {
	case _MEM:
3924
		if (name == RES_USAGE)
3925
			val = mem_cgroup_usage(memcg, false);
3926
		else
3927
			val = res_counter_read_u64(&memcg->res, name);
3928 3929
		break;
	case _MEMSWAP:
3930
		if (name == RES_USAGE)
3931
			val = mem_cgroup_usage(memcg, true);
3932
		else
3933
			val = res_counter_read_u64(&memcg->memsw, name);
3934 3935 3936 3937
		break;
	default:
		BUG();
	}
3938 3939 3940

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3941
}
3942 3943 3944 3945
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3946 3947
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3948
{
3949
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3950
	int type, name;
3951 3952 3953
	unsigned long long val;
	int ret;

3954 3955
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3956 3957 3958 3959

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3960
	switch (name) {
3961
	case RES_LIMIT:
3962 3963 3964 3965
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3966 3967
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3968 3969 3970
		if (ret)
			break;
		if (type == _MEM)
3971
			ret = mem_cgroup_resize_limit(memcg, val);
3972 3973
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3974
		break;
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3989 3990 3991 3992 3993
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3994 3995
}

3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4023
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4024
{
4025
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4026
	int type, name;
4027

4028 4029
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4030 4031 4032 4033

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4034
	switch (name) {
4035
	case RES_MAX_USAGE:
4036
		if (type == _MEM)
4037
			res_counter_reset_max(&memcg->res);
4038
		else
4039
			res_counter_reset_max(&memcg->memsw);
4040 4041
		break;
	case RES_FAILCNT:
4042
		if (type == _MEM)
4043
			res_counter_reset_failcnt(&memcg->res);
4044
		else
4045
			res_counter_reset_failcnt(&memcg->memsw);
4046 4047
		break;
	}
4048

4049
	return 0;
4050 4051
}

4052 4053 4054 4055 4056 4057
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4058
#ifdef CONFIG_MMU
4059 4060 4061
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4062
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4063 4064 4065 4066 4067 4068 4069 4070 4071

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4072
	memcg->move_charge_at_immigrate = val;
4073 4074 4075 4076
	cgroup_unlock();

	return 0;
}
4077 4078 4079 4080 4081 4082 4083
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4084

4085
#ifdef CONFIG_NUMA
4086
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4087
				      struct seq_file *m)
4088 4089 4090 4091
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4092
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4093

4094
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4095 4096
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4097
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4098 4099 4100 4101
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4102
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4103 4104
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4105
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4106
				LRU_ALL_FILE);
4107 4108 4109 4110
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4111
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4112 4113
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4114
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4115
				LRU_ALL_ANON);
4116 4117 4118 4119
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4120
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4121 4122
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4123
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4124
				BIT(LRU_UNEVICTABLE));
4125 4126 4127 4128 4129 4130 4131
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4145
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4146
				 struct seq_file *m)
4147
{
4148
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4149 4150
	struct mem_cgroup *mi;
	unsigned int i;
4151

4152
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4153
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4154
			continue;
4155 4156
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4157
	}
L
Lee Schermerhorn 已提交
4158

4159 4160 4161 4162 4163 4164 4165 4166
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4167
	/* Hierarchical information */
4168 4169
	{
		unsigned long long limit, memsw_limit;
4170
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4171
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4172
		if (do_swap_account)
4173 4174
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4175
	}
K
KOSAKI Motohiro 已提交
4176

4177 4178 4179
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4180
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4181
			continue;
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4202
	}
K
KAMEZAWA Hiroyuki 已提交
4203

K
KOSAKI Motohiro 已提交
4204 4205 4206 4207
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4208
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4209 4210 4211 4212 4213
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4214
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4215
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4216

4217 4218 4219 4220
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4221
			}
4222 4223 4224 4225
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4226 4227 4228
	}
#endif

4229 4230 4231
	return 0;
}

K
KOSAKI Motohiro 已提交
4232 4233 4234 4235
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4236
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4237 4238 4239 4240 4241 4242 4243
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4244

K
KOSAKI Motohiro 已提交
4245 4246 4247 4248 4249 4250 4251
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4252 4253 4254

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4255 4256
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4257 4258
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4259
		return -EINVAL;
4260
	}
K
KOSAKI Motohiro 已提交
4261 4262 4263

	memcg->swappiness = val;

4264 4265
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4266 4267 4268
	return 0;
}

4269 4270 4271 4272 4273 4274 4275 4276
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4277
		t = rcu_dereference(memcg->thresholds.primary);
4278
	else
4279
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4280 4281 4282 4283 4284 4285 4286

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4287
	 * current_threshold points to threshold just below or equal to usage.
4288 4289 4290
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4291
	i = t->current_threshold;
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4315
	t->current_threshold = i - 1;
4316 4317 4318 4319 4320 4321
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4322 4323 4324 4325 4326 4327 4328
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4339
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4340 4341 4342
{
	struct mem_cgroup_eventfd_list *ev;

4343
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4344 4345 4346 4347
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4348
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4349
{
K
KAMEZAWA Hiroyuki 已提交
4350 4351
	struct mem_cgroup *iter;

4352
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4353
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4354 4355 4356 4357
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4358 4359
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4360 4361
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4362 4363
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4364
	int i, size, ret;
4365 4366 4367 4368 4369 4370

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4371

4372
	if (type == _MEM)
4373
		thresholds = &memcg->thresholds;
4374
	else if (type == _MEMSWAP)
4375
		thresholds = &memcg->memsw_thresholds;
4376 4377 4378 4379 4380 4381
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4382
	if (thresholds->primary)
4383 4384
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4385
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4386 4387

	/* Allocate memory for new array of thresholds */
4388
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4389
			GFP_KERNEL);
4390
	if (!new) {
4391 4392 4393
		ret = -ENOMEM;
		goto unlock;
	}
4394
	new->size = size;
4395 4396

	/* Copy thresholds (if any) to new array */
4397 4398
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4399
				sizeof(struct mem_cgroup_threshold));
4400 4401
	}

4402
	/* Add new threshold */
4403 4404
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4405 4406

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4407
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4408 4409 4410
			compare_thresholds, NULL);

	/* Find current threshold */
4411
	new->current_threshold = -1;
4412
	for (i = 0; i < size; i++) {
4413
		if (new->entries[i].threshold <= usage) {
4414
			/*
4415 4416
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4417 4418
			 * it here.
			 */
4419
			++new->current_threshold;
4420 4421
		} else
			break;
4422 4423
	}

4424 4425 4426 4427 4428
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4429

4430
	/* To be sure that nobody uses thresholds */
4431 4432 4433 4434 4435 4436 4437 4438
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4439
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4440
	struct cftype *cft, struct eventfd_ctx *eventfd)
4441 4442
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4443 4444
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4445 4446
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4447
	int i, j, size;
4448 4449 4450

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4451
		thresholds = &memcg->thresholds;
4452
	else if (type == _MEMSWAP)
4453
		thresholds = &memcg->memsw_thresholds;
4454 4455 4456
	else
		BUG();

4457 4458 4459
	if (!thresholds->primary)
		goto unlock;

4460 4461 4462 4463 4464 4465
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4466 4467 4468
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4469 4470 4471
			size++;
	}

4472
	new = thresholds->spare;
4473

4474 4475
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4476 4477
		kfree(new);
		new = NULL;
4478
		goto swap_buffers;
4479 4480
	}

4481
	new->size = size;
4482 4483

	/* Copy thresholds and find current threshold */
4484 4485 4486
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4487 4488
			continue;

4489
		new->entries[j] = thresholds->primary->entries[i];
4490
		if (new->entries[j].threshold <= usage) {
4491
			/*
4492
			 * new->current_threshold will not be used
4493 4494 4495
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4496
			++new->current_threshold;
4497 4498 4499 4500
		}
		j++;
	}

4501
swap_buffers:
4502 4503
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4504 4505 4506 4507 4508 4509
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4510
	rcu_assign_pointer(thresholds->primary, new);
4511

4512
	/* To be sure that nobody uses thresholds */
4513
	synchronize_rcu();
4514
unlock:
4515 4516
	mutex_unlock(&memcg->thresholds_lock);
}
4517

K
KAMEZAWA Hiroyuki 已提交
4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4530
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4531 4532 4533 4534 4535

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4536
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4537
		eventfd_signal(eventfd, 1);
4538
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4539 4540 4541 4542

	return 0;
}

4543
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4544 4545
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4546
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4547 4548 4549 4550 4551
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4552
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4553

4554
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4555 4556 4557 4558 4559 4560
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4561
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4562 4563
}

4564 4565 4566
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4567
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4568

4569
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4570

4571
	if (atomic_read(&memcg->under_oom))
4572 4573 4574 4575 4576 4577 4578 4579 4580
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4581
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4593
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4594 4595 4596
		cgroup_unlock();
		return -EINVAL;
	}
4597
	memcg->oom_kill_disable = val;
4598
	if (!val)
4599
		memcg_oom_recover(memcg);
4600 4601 4602 4603
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
4604
#ifdef CONFIG_MEMCG_KMEM
4605
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4606
{
4607
	return mem_cgroup_sockets_init(memcg, ss);
4608 4609
};

4610
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4611
{
4612
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4613
}
4614
#else
4615
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4616 4617 4618
{
	return 0;
}
G
Glauber Costa 已提交
4619

4620
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4621 4622
{
}
4623 4624
#endif

B
Balbir Singh 已提交
4625 4626
static struct cftype mem_cgroup_files[] = {
	{
4627
		.name = "usage_in_bytes",
4628
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4629
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4630 4631
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4632
	},
4633 4634
	{
		.name = "max_usage_in_bytes",
4635
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4636
		.trigger = mem_cgroup_reset,
4637
		.read = mem_cgroup_read,
4638
	},
B
Balbir Singh 已提交
4639
	{
4640
		.name = "limit_in_bytes",
4641
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4642
		.write_string = mem_cgroup_write,
4643
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4644
	},
4645 4646 4647 4648
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4649
		.read = mem_cgroup_read,
4650
	},
B
Balbir Singh 已提交
4651 4652
	{
		.name = "failcnt",
4653
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4654
		.trigger = mem_cgroup_reset,
4655
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4656
	},
4657 4658
	{
		.name = "stat",
4659
		.read_seq_string = memcg_stat_show,
4660
	},
4661 4662 4663 4664
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4665 4666 4667 4668 4669
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4670 4671 4672 4673 4674
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4675 4676 4677 4678 4679
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4680 4681
	{
		.name = "oom_control",
4682 4683
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4684 4685 4686 4687
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4688 4689 4690
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4691
		.read_seq_string = memcg_numa_stat_show,
4692 4693
	},
#endif
A
Andrew Morton 已提交
4694
#ifdef CONFIG_MEMCG_SWAP
4695 4696 4697
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4698
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4699 4700
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4701 4702 4703 4704 4705
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4706
		.read = mem_cgroup_read,
4707 4708 4709 4710 4711
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4712
		.read = mem_cgroup_read,
4713 4714 4715 4716 4717
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4718
		.read = mem_cgroup_read,
4719 4720
	},
#endif
4721
	{ },	/* terminate */
4722
};
4723

4724
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4725 4726
{
	struct mem_cgroup_per_node *pn;
4727
	struct mem_cgroup_per_zone *mz;
4728
	int zone, tmp = node;
4729 4730 4731 4732 4733 4734 4735 4736
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4737 4738
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4739
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4740 4741
	if (!pn)
		return 1;
4742 4743 4744

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4745
		lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4746
		mz->usage_in_excess = 0;
4747
		mz->on_tree = false;
4748
		mz->memcg = memcg;
4749
	}
4750
	memcg->info.nodeinfo[node] = pn;
4751 4752 4753
	return 0;
}

4754
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4755
{
4756
	kfree(memcg->info.nodeinfo[node]);
4757 4758
}

4759 4760
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4761
	struct mem_cgroup *memcg;
4762
	int size = sizeof(struct mem_cgroup);
4763

4764
	/* Can be very big if MAX_NUMNODES is very big */
4765
	if (size < PAGE_SIZE)
4766
		memcg = kzalloc(size, GFP_KERNEL);
4767
	else
4768
		memcg = vzalloc(size);
4769

4770
	if (!memcg)
4771 4772
		return NULL;

4773 4774
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4775
		goto out_free;
4776 4777
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4778 4779 4780

out_free:
	if (size < PAGE_SIZE)
4781
		kfree(memcg);
4782
	else
4783
		vfree(memcg);
4784
	return NULL;
4785 4786
}

4787
/*
4788
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4789 4790 4791
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
4792
static void free_work(struct work_struct *work)
4793 4794
{
	struct mem_cgroup *memcg;
4795
	int size = sizeof(struct mem_cgroup);
4796 4797

	memcg = container_of(work, struct mem_cgroup, work_freeing);
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
	disarm_sock_keys(memcg);
4810 4811 4812 4813
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
4814
}
4815 4816

static void free_rcu(struct rcu_head *rcu_head)
4817 4818 4819 4820
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4821
	INIT_WORK(&memcg->work_freeing, free_work);
4822 4823 4824
	schedule_work(&memcg->work_freeing);
}

4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4836
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4837
{
K
KAMEZAWA Hiroyuki 已提交
4838 4839
	int node;

4840 4841
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4842

B
Bob Liu 已提交
4843
	for_each_node(node)
4844
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4845

4846
	free_percpu(memcg->stat);
4847
	call_rcu(&memcg->rcu_freeing, free_rcu);
4848 4849
}

4850
static void mem_cgroup_get(struct mem_cgroup *memcg)
4851
{
4852
	atomic_inc(&memcg->refcnt);
4853 4854
}

4855
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4856
{
4857 4858 4859
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4860 4861 4862
		if (parent)
			mem_cgroup_put(parent);
	}
4863 4864
}

4865
static void mem_cgroup_put(struct mem_cgroup *memcg)
4866
{
4867
	__mem_cgroup_put(memcg, 1);
4868 4869
}

4870 4871 4872
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4873
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4874
{
4875
	if (!memcg->res.parent)
4876
		return NULL;
4877
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4878
}
G
Glauber Costa 已提交
4879
EXPORT_SYMBOL(parent_mem_cgroup);
4880

A
Andrew Morton 已提交
4881
#ifdef CONFIG_MEMCG_SWAP
4882 4883
static void __init enable_swap_cgroup(void)
{
4884
	if (!mem_cgroup_disabled() && really_do_swap_account)
4885 4886 4887 4888 4889 4890 4891 4892
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4893 4894 4895 4896 4897 4898
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4899
	for_each_node(node) {
4900 4901 4902 4903 4904
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4905
			goto err_cleanup;
4906 4907 4908 4909 4910 4911 4912 4913 4914 4915

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4916 4917

err_cleanup:
B
Bob Liu 已提交
4918
	for_each_node(node) {
4919 4920 4921 4922 4923 4924 4925
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4926 4927
}

L
Li Zefan 已提交
4928
static struct cgroup_subsys_state * __ref
4929
mem_cgroup_create(struct cgroup *cont)
B
Balbir Singh 已提交
4930
{
4931
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4932
	long error = -ENOMEM;
4933
	int node;
B
Balbir Singh 已提交
4934

4935 4936
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4937
		return ERR_PTR(error);
4938

B
Bob Liu 已提交
4939
	for_each_node(node)
4940
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4941
			goto free_out;
4942

4943
	/* root ? */
4944
	if (cont->parent == NULL) {
4945
		int cpu;
4946
		enable_swap_cgroup();
4947
		parent = NULL;
4948 4949
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4950
		root_mem_cgroup = memcg;
4951 4952 4953 4954 4955
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4956
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4957
	} else {
4958
		parent = mem_cgroup_from_cont(cont->parent);
4959 4960
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4961
	}
4962

4963
	if (parent && parent->use_hierarchy) {
4964 4965
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4966 4967 4968 4969 4970 4971 4972
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4973
	} else {
4974 4975
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4976 4977 4978 4979 4980 4981 4982
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
		if (parent && parent != root_mem_cgroup)
			mem_cgroup_subsys.broken_hierarchy = true;
4983
	}
4984 4985
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4986

K
KOSAKI Motohiro 已提交
4987
	if (parent)
4988 4989 4990 4991
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
4992
	spin_lock_init(&memcg->move_lock);
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
5004
	return &memcg->css;
5005
free_out:
5006
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5007
	return ERR_PTR(error);
B
Balbir Singh 已提交
5008 5009
}

5010
static int mem_cgroup_pre_destroy(struct cgroup *cont)
5011
{
5012
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5013

5014
	return mem_cgroup_force_empty(memcg, false);
5015 5016
}

5017
static void mem_cgroup_destroy(struct cgroup *cont)
B
Balbir Singh 已提交
5018
{
5019
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5020

5021
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5022

5023
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5024 5025
}

5026
#ifdef CONFIG_MMU
5027
/* Handlers for move charge at task migration. */
5028 5029
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5030
{
5031 5032
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5033
	struct mem_cgroup *memcg = mc.to;
5034

5035
	if (mem_cgroup_is_root(memcg)) {
5036 5037 5038 5039 5040 5041 5042 5043
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5044
		 * "memcg" cannot be under rmdir() because we've already checked
5045 5046 5047 5048
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5049
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5050
			goto one_by_one;
5051
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5052
						PAGE_SIZE * count, &dummy)) {
5053
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5070 5071
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5072
		if (ret)
5073
			/* mem_cgroup_clear_mc() will do uncharge later */
5074
			return ret;
5075 5076
		mc.precharge++;
	}
5077 5078 5079 5080
	return ret;
}

/**
5081
 * get_mctgt_type - get target type of moving charge
5082 5083 5084
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5085
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5086 5087 5088 5089 5090 5091
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5092 5093 5094
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5095 5096 5097 5098 5099
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5100
	swp_entry_t	ent;
5101 5102 5103
};

enum mc_target_type {
5104
	MC_TARGET_NONE = 0,
5105
	MC_TARGET_PAGE,
5106
	MC_TARGET_SWAP,
5107 5108
};

D
Daisuke Nishimura 已提交
5109 5110
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5111
{
D
Daisuke Nishimura 已提交
5112
	struct page *page = vm_normal_page(vma, addr, ptent);
5113

D
Daisuke Nishimura 已提交
5114 5115 5116 5117
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5118
		if (!move_anon())
D
Daisuke Nishimura 已提交
5119
			return NULL;
5120 5121
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5122 5123 5124 5125 5126 5127 5128
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5129
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5130 5131 5132 5133 5134 5135 5136 5137
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5138 5139 5140 5141 5142
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5143 5144 5145 5146 5147
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5148 5149 5150 5151 5152 5153 5154
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5155

5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5175 5176 5177 5178 5179 5180
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5181
		if (do_swap_account)
5182 5183
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5184
	}
5185
#endif
5186 5187 5188
	return page;
}

5189
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5190 5191 5192 5193
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5194
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5195 5196 5197 5198 5199 5200
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5201 5202
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5203 5204

	if (!page && !ent.val)
5205
		return ret;
5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5221 5222
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5223
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5224 5225 5226
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5227 5228 5229 5230
	}
	return ret;
}

5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5266 5267 5268 5269 5270 5271 5272 5273
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5274 5275 5276 5277
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5278
		return 0;
5279
	}
5280

5281 5282
	if (pmd_trans_unstable(pmd))
		return 0;
5283 5284
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5285
		if (get_mctgt_type(vma, addr, *pte, NULL))
5286 5287 5288 5289
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5290 5291 5292
	return 0;
}

5293 5294 5295 5296 5297
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5298
	down_read(&mm->mmap_sem);
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5310
	up_read(&mm->mmap_sem);
5311 5312 5313 5314 5315 5316 5317 5318 5319

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5320 5321 5322 5323 5324
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5325 5326
}

5327 5328
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5329
{
5330 5331 5332
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5333
	/* we must uncharge all the leftover precharges from mc.to */
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5345
	}
5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5380
	spin_lock(&mc.lock);
5381 5382
	mc.from = NULL;
	mc.to = NULL;
5383
	spin_unlock(&mc.lock);
5384
	mem_cgroup_end_move(from);
5385 5386
}

5387 5388
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5389
{
5390
	struct task_struct *p = cgroup_taskset_first(tset);
5391
	int ret = 0;
5392
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5393

5394
	if (memcg->move_charge_at_immigrate) {
5395 5396 5397
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5398
		VM_BUG_ON(from == memcg);
5399 5400 5401 5402 5403

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5404 5405 5406 5407
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5408
			VM_BUG_ON(mc.moved_charge);
5409
			VM_BUG_ON(mc.moved_swap);
5410
			mem_cgroup_start_move(from);
5411
			spin_lock(&mc.lock);
5412
			mc.from = from;
5413
			mc.to = memcg;
5414
			spin_unlock(&mc.lock);
5415
			/* We set mc.moving_task later */
5416 5417 5418 5419

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5420 5421
		}
		mmput(mm);
5422 5423 5424 5425
	}
	return ret;
}

5426 5427
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5428
{
5429
	mem_cgroup_clear_mc();
5430 5431
}

5432 5433 5434
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5435
{
5436 5437 5438 5439
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5440 5441 5442 5443
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5444

5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5456
		if (mc.precharge < HPAGE_PMD_NR) {
5457 5458 5459 5460 5461 5462 5463 5464 5465
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5466
							pc, mc.from, mc.to)) {
5467 5468 5469 5470 5471 5472 5473 5474
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5475
		return 0;
5476 5477
	}

5478 5479
	if (pmd_trans_unstable(pmd))
		return 0;
5480 5481 5482 5483
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5484
		swp_entry_t ent;
5485 5486 5487 5488

		if (!mc.precharge)
			break;

5489
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5490 5491 5492 5493 5494
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5495
			if (!mem_cgroup_move_account(page, 1, pc,
5496
						     mc.from, mc.to)) {
5497
				mc.precharge--;
5498 5499
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5500 5501
			}
			putback_lru_page(page);
5502
put:			/* get_mctgt_type() gets the page */
5503 5504
			put_page(page);
			break;
5505 5506
		case MC_TARGET_SWAP:
			ent = target.ent;
5507
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5508
				mc.precharge--;
5509 5510 5511
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5512
			break;
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5527
		ret = mem_cgroup_do_precharge(1);
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5571
	up_read(&mm->mmap_sem);
5572 5573
}

5574 5575
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5576
{
5577
	struct task_struct *p = cgroup_taskset_first(tset);
5578
	struct mm_struct *mm = get_task_mm(p);
5579 5580

	if (mm) {
5581 5582
		if (mc.to)
			mem_cgroup_move_charge(mm);
5583 5584
		mmput(mm);
	}
5585 5586
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5587
}
5588
#else	/* !CONFIG_MMU */
5589 5590
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5591 5592 5593
{
	return 0;
}
5594 5595
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5596 5597
{
}
5598 5599
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5600 5601 5602
{
}
#endif
B
Balbir Singh 已提交
5603

B
Balbir Singh 已提交
5604 5605 5606 5607
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5608
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5609
	.destroy = mem_cgroup_destroy,
5610 5611
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5612
	.attach = mem_cgroup_move_task,
5613
	.base_cftypes = mem_cgroup_files,
5614
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5615
	.use_id = 1,
5616
	.__DEPRECATED_clear_css_refs = true,
B
Balbir Singh 已提交
5617
};
5618

A
Andrew Morton 已提交
5619
#ifdef CONFIG_MEMCG_SWAP
5620 5621 5622
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5623
	if (!strcmp(s, "1"))
5624
		really_do_swap_account = 1;
5625
	else if (!strcmp(s, "0"))
5626 5627 5628
		really_do_swap_account = 0;
	return 1;
}
5629
__setup("swapaccount=", enable_swap_account);
5630 5631

#endif