memcontrol.c 146.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53
#include <net/sock.h>
M
Michal Hocko 已提交
54
#include <net/ip.h>
G
Glauber Costa 已提交
55
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
56

57 58
#include <asm/uaccess.h>

59 60
#include <trace/events/vmscan.h>

61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
62 63
EXPORT_SYMBOL(mem_cgroup_subsys);

64
#define MEM_CGROUP_RECLAIM_RETRIES	5
65
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
66

A
Andrew Morton 已提交
67
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
68
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
69
int do_swap_account __read_mostly;
70 71

/* for remember boot option*/
A
Andrew Morton 已提交
72
#ifdef CONFIG_MEMCG_SWAP_ENABLED
73 74 75 76 77
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

78
#else
79
#define do_swap_account		0
80 81 82
#endif


83 84 85 86 87 88 89 90
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
91
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
92
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
93
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
94 95 96
	MEM_CGROUP_STAT_NSTATS,
};

97 98 99 100 101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

104 105 106
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
107 108
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
109 110
	MEM_CGROUP_EVENTS_NSTATS,
};
111 112 113 114 115 116 117 118

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

119 120 121 122 123 124 125 126 127
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
128
	MEM_CGROUP_TARGET_NUMAINFO,
129 130
	MEM_CGROUP_NTARGETS,
};
131 132 133
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
134

135
struct mem_cgroup_stat_cpu {
136
	long count[MEM_CGROUP_STAT_NSTATS];
137
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
138
	unsigned long nr_page_events;
139
	unsigned long targets[MEM_CGROUP_NTARGETS];
140 141
};

142 143 144 145 146 147 148
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

149 150 151 152
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
153
	struct lruvec		lruvec;
154
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
155

156 157
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

158 159 160 161
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
162
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
163
						/* use container_of	   */
164 165 166 167 168 169 170 171 172 173
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

194 195 196 197 198
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
199
/* For threshold */
200
struct mem_cgroup_threshold_ary {
201
	/* An array index points to threshold just below or equal to usage. */
202
	int current_threshold;
203 204 205 206 207
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
208 209 210 211 212 213 214 215 216 217 218 219

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
220 221 222 223 224
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
225

226 227
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
228

B
Balbir Singh 已提交
229 230 231 232 233 234 235
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
236 237 238
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
239 240 241 242 243 244 245
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
264 265
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
266 267 268 269
		 */
		struct work_struct work_freeing;
	};

270 271 272 273
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
274
	struct mem_cgroup_lru_info info;
275 276 277
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
278 279
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
280
#endif
281 282 283 284
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
285 286 287 288

	bool		oom_lock;
	atomic_t	under_oom;

289
	atomic_t	refcnt;
290

291
	int	swappiness;
292 293
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
294

295 296 297
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

298 299 300 301
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
302
	struct mem_cgroup_thresholds thresholds;
303

304
	/* thresholds for mem+swap usage. RCU-protected */
305
	struct mem_cgroup_thresholds memsw_thresholds;
306

K
KAMEZAWA Hiroyuki 已提交
307 308
	/* For oom notifier event fd */
	struct list_head oom_notify;
309

310 311 312 313 314
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
315 316 317 318
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
319 320
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
321
	/*
322
	 * percpu counter.
323
	 */
324
	struct mem_cgroup_stat_cpu __percpu *stat;
325 326 327 328 329 330
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
331

M
Michal Hocko 已提交
332
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
333 334
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
335 336
};

337 338 339 340 341 342
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
343
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
344
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
345 346 347
	NR_MOVE_TYPE,
};

348 349
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
350
	spinlock_t	  lock; /* for from, to */
351 352 353
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
354
	unsigned long moved_charge;
355
	unsigned long moved_swap;
356 357 358
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
359
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
360 361
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
362

D
Daisuke Nishimura 已提交
363 364 365 366 367 368
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

369 370 371 372 373 374
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

375 376 377 378
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
379 380
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
381

382 383
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
384
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
385
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
386
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
387 388 389
	NR_CHARGE_TYPE,
};

390
/* for encoding cft->private value on file */
391 392 393
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
394 395
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
396
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
397 398
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
399

400 401 402 403 404 405 406 407
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

408 409
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
410

411 412 413 414 415 416
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

417 418 419 420 421
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
422
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
423
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
424 425 426

void sock_update_memcg(struct sock *sk)
{
427
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
428
		struct mem_cgroup *memcg;
429
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
430 431 432

		BUG_ON(!sk->sk_prot->proto_cgroup);

433 434 435 436 437 438 439 440 441 442 443 444 445 446
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
447 448
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
449 450
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
451
			mem_cgroup_get(memcg);
452
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
453 454 455 456 457 458 459 460
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
461
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
462 463 464 465 466 467
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
468 469 470 471 472 473 474 475 476

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
477

478 479 480 481 482 483 484 485 486 487 488 489
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

490
static void drain_all_stock_async(struct mem_cgroup *memcg);
491

492
static struct mem_cgroup_per_zone *
493
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
494
{
495
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
496 497
}

498
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
499
{
500
	return &memcg->css;
501 502
}

503
static struct mem_cgroup_per_zone *
504
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
505
{
506 507
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
508

509
	return mem_cgroup_zoneinfo(memcg, nid, zid);
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
528
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
529
				struct mem_cgroup_per_zone *mz,
530 531
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
532 533 534 535 536 537 538 539
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

540 541 542
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
559 560 561
}

static void
562
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
563 564 565 566 567 568 569 570 571
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

572
static void
573
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
574 575 576 577
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
578
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
579 580 581 582
	spin_unlock(&mctz->lock);
}


583
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
584
{
585
	unsigned long long excess;
586 587
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
588 589
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
590 591 592
	mctz = soft_limit_tree_from_page(page);

	/*
593 594
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
595
	 */
596 597 598
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
599 600 601 602
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
603
		if (excess || mz->on_tree) {
604 605 606
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
607
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
608
			/*
609 610
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
611
			 */
612
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
613 614
			spin_unlock(&mctz->lock);
		}
615 616 617
	}
}

618
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
619 620 621 622 623
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
624
	for_each_node(node) {
625
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
626
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
627
			mctz = soft_limit_tree_node_zone(node, zone);
628
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
629 630 631 632
		}
	}
}

633 634 635 636
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
637
	struct mem_cgroup_per_zone *mz;
638 639

retry:
640
	mz = NULL;
641 642 643 644 645 646 647 648 649 650
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
651 652 653
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
689
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
690
				 enum mem_cgroup_stat_index idx)
691
{
692
	long val = 0;
693 694
	int cpu;

695 696
	get_online_cpus();
	for_each_online_cpu(cpu)
697
		val += per_cpu(memcg->stat->count[idx], cpu);
698
#ifdef CONFIG_HOTPLUG_CPU
699 700 701
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
702 703
#endif
	put_online_cpus();
704 705 706
	return val;
}

707
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
708 709 710
					 bool charge)
{
	int val = (charge) ? 1 : -1;
711
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
712 713
}

714
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
715 716 717 718 719 720
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
721
		val += per_cpu(memcg->stat->events[idx], cpu);
722
#ifdef CONFIG_HOTPLUG_CPU
723 724 725
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
726 727 728 729
#endif
	return val;
}

730
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
731
					 bool anon, int nr_pages)
732
{
733 734
	preempt_disable();

735 736 737 738 739 740
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
741
				nr_pages);
742
	else
743
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
744
				nr_pages);
745

746 747
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
748
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
749
	else {
750
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
751 752
		nr_pages = -nr_pages; /* for event */
	}
753

754
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
755

756
	preempt_enable();
757 758
}

759
unsigned long
760
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
761 762 763 764 765 766 767 768
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
769
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
770
			unsigned int lru_mask)
771 772
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
773
	enum lru_list lru;
774 775
	unsigned long ret = 0;

776
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
777

H
Hugh Dickins 已提交
778 779 780
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
781 782 783 784 785
	}
	return ret;
}

static unsigned long
786
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
787 788
			int nid, unsigned int lru_mask)
{
789 790 791
	u64 total = 0;
	int zid;

792
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
793 794
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
795

796 797
	return total;
}
798

799
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
800
			unsigned int lru_mask)
801
{
802
	int nid;
803 804
	u64 total = 0;

805
	for_each_node_state(nid, N_MEMORY)
806
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
807
	return total;
808 809
}

810 811
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
812 813 814
{
	unsigned long val, next;

815
	val = __this_cpu_read(memcg->stat->nr_page_events);
816
	next = __this_cpu_read(memcg->stat->targets[target]);
817
	/* from time_after() in jiffies.h */
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
834
	}
835
	return false;
836 837 838 839 840 841
}

/*
 * Check events in order.
 *
 */
842
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
843
{
844
	preempt_disable();
845
	/* threshold event is triggered in finer grain than soft limit */
846 847
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
848 849
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
850 851 852 853 854 855 856 857 858

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

859
		mem_cgroup_threshold(memcg);
860
		if (unlikely(do_softlimit))
861
			mem_cgroup_update_tree(memcg, page);
862
#if MAX_NUMNODES > 1
863
		if (unlikely(do_numainfo))
864
			atomic_inc(&memcg->numainfo_events);
865
#endif
866 867
	} else
		preempt_enable();
868 869
}

G
Glauber Costa 已提交
870
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
871
{
872 873
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
874 875
}

876
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
877
{
878 879 880 881 882 883 884 885
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

886
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
887 888
}

889
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
890
{
891
	struct mem_cgroup *memcg = NULL;
892 893 894

	if (!mm)
		return NULL;
895 896 897 898 899 900 901
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
902 903
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
904
			break;
905
	} while (!css_tryget(&memcg->css));
906
	rcu_read_unlock();
907
	return memcg;
908 909
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
930
{
931 932
	struct mem_cgroup *memcg = NULL;
	int id = 0;
933

934 935 936
	if (mem_cgroup_disabled())
		return NULL;

937 938
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
939

940 941
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
942

943 944
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
945

946 947 948 949 950
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
951

952
	while (!memcg) {
953
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
954
		struct cgroup_subsys_state *css;
955

956 957 958 959 960 961 962 963 964 965 966
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
967

968 969 970 971
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
972
				memcg = mem_cgroup_from_css(css);
973 974
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
975 976
		rcu_read_unlock();

977 978 979 980 981 982 983
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
984 985 986 987 988

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
989
}
K
KAMEZAWA Hiroyuki 已提交
990

991 992 993 994 995 996 997
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
998 999 1000 1001 1002 1003
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1004

1005 1006 1007 1008 1009 1010
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1011
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1012
	     iter != NULL;				\
1013
	     iter = mem_cgroup_iter(root, iter, NULL))
1014

1015
#define for_each_mem_cgroup(iter)			\
1016
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1017
	     iter != NULL;				\
1018
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1019

1020
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1021
{
1022
	struct mem_cgroup *memcg;
1023 1024

	rcu_read_lock();
1025 1026
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1027 1028 1029 1030
		goto out;

	switch (idx) {
	case PGFAULT:
1031 1032 1033 1034
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1035 1036 1037 1038 1039 1040 1041
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1042
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1043

1044 1045 1046
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1047
 * @memcg: memcg of the wanted lruvec
1048 1049 1050 1051 1052 1053 1054 1055 1056
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1057
	struct lruvec *lruvec;
1058

1059 1060 1061 1062
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1063 1064

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1075 1076
}

K
KAMEZAWA Hiroyuki 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1090

1091
/**
1092
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1093
 * @page: the page
1094
 * @zone: zone of the page
1095
 */
1096
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1097 1098
{
	struct mem_cgroup_per_zone *mz;
1099 1100
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1101
	struct lruvec *lruvec;
1102

1103 1104 1105 1106
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1107

K
KAMEZAWA Hiroyuki 已提交
1108
	pc = lookup_page_cgroup(page);
1109
	memcg = pc->mem_cgroup;
1110 1111

	/*
1112
	 * Surreptitiously switch any uncharged offlist page to root:
1113 1114 1115 1116 1117 1118 1119
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1120
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1121 1122
		pc->mem_cgroup = memcg = root_mem_cgroup;

1123
	mz = page_cgroup_zoneinfo(memcg, page);
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1134
}
1135

1136
/**
1137 1138 1139 1140
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1141
 *
1142 1143
 * This function must be called when a page is added to or removed from an
 * lru list.
1144
 */
1145 1146
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1147 1148
{
	struct mem_cgroup_per_zone *mz;
1149
	unsigned long *lru_size;
1150 1151 1152 1153

	if (mem_cgroup_disabled())
		return;

1154 1155 1156 1157
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1158
}
1159

1160
/*
1161
 * Checks whether given mem is same or in the root_mem_cgroup's
1162 1163
 * hierarchy subtree
 */
1164 1165
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1166
{
1167 1168
	if (root_memcg == memcg)
		return true;
1169
	if (!root_memcg->use_hierarchy || !memcg)
1170
		return false;
1171 1172 1173 1174 1175 1176 1177 1178
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1179
	rcu_read_lock();
1180
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1181 1182
	rcu_read_unlock();
	return ret;
1183 1184
}

1185
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1186 1187
{
	int ret;
1188
	struct mem_cgroup *curr = NULL;
1189
	struct task_struct *p;
1190

1191
	p = find_lock_task_mm(task);
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1207 1208
	if (!curr)
		return 0;
1209
	/*
1210
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1211
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1212 1213
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1214
	 */
1215
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1216
	css_put(&curr->css);
1217 1218 1219
	return ret;
}

1220
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1221
{
1222
	unsigned long inactive_ratio;
1223
	unsigned long inactive;
1224
	unsigned long active;
1225
	unsigned long gb;
1226

1227 1228
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1229

1230 1231 1232 1233 1234 1235
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1236
	return inactive * inactive_ratio < active;
1237 1238
}

1239
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1240 1241 1242 1243
{
	unsigned long active;
	unsigned long inactive;

1244 1245
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1246 1247 1248 1249

	return (active > inactive);
}

1250 1251 1252
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1253
/**
1254
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1255
 * @memcg: the memory cgroup
1256
 *
1257
 * Returns the maximum amount of memory @mem can be charged with, in
1258
 * pages.
1259
 */
1260
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1261
{
1262 1263
	unsigned long long margin;

1264
	margin = res_counter_margin(&memcg->res);
1265
	if (do_swap_account)
1266
		margin = min(margin, res_counter_margin(&memcg->memsw));
1267
	return margin >> PAGE_SHIFT;
1268 1269
}

1270
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1271 1272 1273 1274 1275 1276 1277
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1278
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1279 1280
}

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1295 1296 1297 1298

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1299
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1300
{
1301
	atomic_inc(&memcg_moving);
1302
	atomic_inc(&memcg->moving_account);
1303 1304 1305
	synchronize_rcu();
}

1306
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1307
{
1308 1309 1310 1311
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1312 1313
	if (memcg) {
		atomic_dec(&memcg_moving);
1314
		atomic_dec(&memcg->moving_account);
1315
	}
1316
}
1317

1318 1319 1320
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1321 1322
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1323 1324 1325 1326 1327 1328 1329
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1330
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1331 1332
{
	VM_BUG_ON(!rcu_read_lock_held());
1333
	return atomic_read(&memcg->moving_account) > 0;
1334
}
1335

1336
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1337
{
1338 1339
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1340
	bool ret = false;
1341 1342 1343 1344 1345 1346 1347 1348 1349
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1350

1351 1352
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1353 1354
unlock:
	spin_unlock(&mc.lock);
1355 1356 1357
	return ret;
}

1358
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1359 1360
{
	if (mc.moving_task && current != mc.moving_task) {
1361
		if (mem_cgroup_under_move(memcg)) {
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1374 1375 1376 1377
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1378
 * see mem_cgroup_stolen(), too.
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1392
/**
1393
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1412
	if (!memcg || !p)
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1458 1459 1460 1461
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1462
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1463 1464
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1465 1466
	struct mem_cgroup *iter;

1467
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1468
		num++;
1469 1470 1471
	return num;
}

D
David Rientjes 已提交
1472 1473 1474
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1475
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1476 1477 1478
{
	u64 limit;

1479 1480
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1481
	/*
1482
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1483
	 */
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1498 1499
}

1500 1501
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1502 1503 1504 1505 1506 1507 1508
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1603 1604
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1605
 * @memcg: the target memcg
1606 1607 1608 1609 1610 1611 1612
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1613
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1614 1615
		int nid, bool noswap)
{
1616
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1617 1618 1619
		return true;
	if (noswap || !total_swap_pages)
		return false;
1620
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1621 1622 1623 1624
		return true;
	return false;

}
1625 1626 1627 1628 1629 1630 1631 1632
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1633
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1634 1635
{
	int nid;
1636 1637 1638 1639
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1640
	if (!atomic_read(&memcg->numainfo_events))
1641
		return;
1642
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1643 1644 1645
		return;

	/* make a nodemask where this memcg uses memory from */
1646
	memcg->scan_nodes = node_states[N_MEMORY];
1647

1648
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1649

1650 1651
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1652
	}
1653

1654 1655
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1670
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1671 1672 1673
{
	int node;

1674 1675
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1676

1677
	node = next_node(node, memcg->scan_nodes);
1678
	if (node == MAX_NUMNODES)
1679
		node = first_node(memcg->scan_nodes);
1680 1681 1682 1683 1684 1685 1686 1687 1688
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1689
	memcg->last_scanned_node = node;
1690 1691 1692
	return node;
}

1693 1694 1695 1696 1697 1698
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1699
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1700 1701 1702 1703 1704 1705 1706
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1707 1708
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1709
		     nid < MAX_NUMNODES;
1710
		     nid = next_node(nid, memcg->scan_nodes)) {
1711

1712
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1713 1714 1715 1716 1717 1718
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1719
	for_each_node_state(nid, N_MEMORY) {
1720
		if (node_isset(nid, memcg->scan_nodes))
1721
			continue;
1722
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1723 1724 1725 1726 1727
			return true;
	}
	return false;
}

1728
#else
1729
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1730 1731 1732
{
	return 0;
}
1733

1734
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1735
{
1736
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1737
}
1738 1739
#endif

1740 1741 1742 1743
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1744
{
1745
	struct mem_cgroup *victim = NULL;
1746
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1747
	int loop = 0;
1748
	unsigned long excess;
1749
	unsigned long nr_scanned;
1750 1751 1752 1753
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1754

1755
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1756

1757
	while (1) {
1758
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1759
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1760
			loop++;
1761 1762 1763 1764 1765 1766
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1767
				if (!total)
1768 1769
					break;
				/*
L
Lucas De Marchi 已提交
1770
				 * We want to do more targeted reclaim.
1771 1772 1773 1774 1775
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1776
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1777 1778
					break;
			}
1779
			continue;
1780
		}
1781
		if (!mem_cgroup_reclaimable(victim, false))
1782
			continue;
1783 1784 1785 1786
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1787
			break;
1788
	}
1789
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1790
	return total;
1791 1792
}

K
KAMEZAWA Hiroyuki 已提交
1793 1794 1795
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1796
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1797
 */
1798
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1799
{
1800
	struct mem_cgroup *iter, *failed = NULL;
1801

1802
	for_each_mem_cgroup_tree(iter, memcg) {
1803
		if (iter->oom_lock) {
1804 1805 1806 1807 1808
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1809 1810
			mem_cgroup_iter_break(memcg, iter);
			break;
1811 1812
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1813
	}
K
KAMEZAWA Hiroyuki 已提交
1814

1815
	if (!failed)
1816
		return true;
1817 1818 1819 1820 1821

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1822
	for_each_mem_cgroup_tree(iter, memcg) {
1823
		if (iter == failed) {
1824 1825
			mem_cgroup_iter_break(memcg, iter);
			break;
1826 1827 1828
		}
		iter->oom_lock = false;
	}
1829
	return false;
1830
}
1831

1832
/*
1833
 * Has to be called with memcg_oom_lock
1834
 */
1835
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1836
{
K
KAMEZAWA Hiroyuki 已提交
1837 1838
	struct mem_cgroup *iter;

1839
	for_each_mem_cgroup_tree(iter, memcg)
1840 1841 1842 1843
		iter->oom_lock = false;
	return 0;
}

1844
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1845 1846 1847
{
	struct mem_cgroup *iter;

1848
	for_each_mem_cgroup_tree(iter, memcg)
1849 1850 1851
		atomic_inc(&iter->under_oom);
}

1852
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1853 1854 1855
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1856 1857 1858 1859 1860
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1861
	for_each_mem_cgroup_tree(iter, memcg)
1862
		atomic_add_unless(&iter->under_oom, -1, 0);
1863 1864
}

1865
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1866 1867
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1868
struct oom_wait_info {
1869
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1870 1871 1872 1873 1874 1875
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1876 1877
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1878 1879 1880
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1881
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1882 1883

	/*
1884
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1885 1886
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1887 1888
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1889 1890 1891 1892
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1893
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1894
{
1895 1896
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1897 1898
}

1899
static void memcg_oom_recover(struct mem_cgroup *memcg)
1900
{
1901 1902
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1903 1904
}

K
KAMEZAWA Hiroyuki 已提交
1905 1906 1907
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1908 1909
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1910
{
K
KAMEZAWA Hiroyuki 已提交
1911
	struct oom_wait_info owait;
1912
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1913

1914
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1915 1916 1917 1918
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1919
	need_to_kill = true;
1920
	mem_cgroup_mark_under_oom(memcg);
1921

1922
	/* At first, try to OOM lock hierarchy under memcg.*/
1923
	spin_lock(&memcg_oom_lock);
1924
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1925 1926 1927 1928 1929
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1930
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1931
	if (!locked || memcg->oom_kill_disable)
1932 1933
		need_to_kill = false;
	if (locked)
1934
		mem_cgroup_oom_notify(memcg);
1935
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1936

1937 1938
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1939
		mem_cgroup_out_of_memory(memcg, mask, order);
1940
	} else {
K
KAMEZAWA Hiroyuki 已提交
1941
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1942
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1943
	}
1944
	spin_lock(&memcg_oom_lock);
1945
	if (locked)
1946 1947
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1948
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1949

1950
	mem_cgroup_unmark_under_oom(memcg);
1951

K
KAMEZAWA Hiroyuki 已提交
1952 1953 1954
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1955
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1956
	return true;
1957 1958
}

1959 1960 1961
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1979 1980
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1981
 */
1982

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
1996
	 * need to take move_lock_mem_cgroup(). Because we already hold
1997
	 * rcu_read_lock(), any calls to move_account will be delayed until
1998
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1999
	 */
2000
	if (!mem_cgroup_stolen(memcg))
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2018
	 * should take move_lock_mem_cgroup().
2019 2020 2021 2022
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2023 2024
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2025
{
2026
	struct mem_cgroup *memcg;
2027
	struct page_cgroup *pc = lookup_page_cgroup(page);
2028
	unsigned long uninitialized_var(flags);
2029

2030
	if (mem_cgroup_disabled())
2031
		return;
2032

2033 2034
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2035
		return;
2036 2037

	switch (idx) {
2038 2039
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2040 2041 2042
		break;
	default:
		BUG();
2043
	}
2044

2045
	this_cpu_add(memcg->stat->count[idx], val);
2046
}
2047

2048 2049 2050 2051
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2052
#define CHARGE_BATCH	32U
2053 2054
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2055
	unsigned int nr_pages;
2056
	struct work_struct work;
2057
	unsigned long flags;
2058
#define FLUSHING_CACHED_CHARGE	0
2059 2060
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2061
static DEFINE_MUTEX(percpu_charge_mutex);
2062

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2073
 */
2074
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2075 2076 2077 2078
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2079 2080 2081
	if (nr_pages > CHARGE_BATCH)
		return false;

2082
	stock = &get_cpu_var(memcg_stock);
2083 2084
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2098 2099 2100 2101
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2102
		if (do_swap_account)
2103 2104
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2117
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2118 2119 2120 2121
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2122
 * This will be consumed by consume_stock() function, later.
2123
 */
2124
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2125 2126 2127
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2128
	if (stock->cached != memcg) { /* reset if necessary */
2129
		drain_stock(stock);
2130
		stock->cached = memcg;
2131
	}
2132
	stock->nr_pages += nr_pages;
2133 2134 2135 2136
	put_cpu_var(memcg_stock);
}

/*
2137
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2138 2139
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2140
 */
2141
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2142
{
2143
	int cpu, curcpu;
2144

2145 2146
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2147
	curcpu = get_cpu();
2148 2149
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2150
		struct mem_cgroup *memcg;
2151

2152 2153
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2154
			continue;
2155
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2156
			continue;
2157 2158 2159 2160 2161 2162
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2163
	}
2164
	put_cpu();
2165 2166 2167 2168 2169 2170

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2171
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2172 2173 2174
			flush_work(&stock->work);
	}
out:
2175
 	put_online_cpus();
2176 2177 2178 2179 2180 2181 2182 2183
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2184
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2185
{
2186 2187 2188 2189 2190
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2191
	drain_all_stock(root_memcg, false);
2192
	mutex_unlock(&percpu_charge_mutex);
2193 2194 2195
}

/* This is a synchronous drain interface. */
2196
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2197 2198
{
	/* called when force_empty is called */
2199
	mutex_lock(&percpu_charge_mutex);
2200
	drain_all_stock(root_memcg, true);
2201
	mutex_unlock(&percpu_charge_mutex);
2202 2203
}

2204 2205 2206 2207
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2208
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2209 2210 2211
{
	int i;

2212
	spin_lock(&memcg->pcp_counter_lock);
2213
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2214
		long x = per_cpu(memcg->stat->count[i], cpu);
2215

2216 2217
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2218
	}
2219
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2220
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2221

2222 2223
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2224
	}
2225
	spin_unlock(&memcg->pcp_counter_lock);
2226 2227 2228
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2229 2230 2231 2232 2233
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2234
	struct mem_cgroup *iter;
2235

2236
	if (action == CPU_ONLINE)
2237 2238
		return NOTIFY_OK;

2239
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2240
		return NOTIFY_OK;
2241

2242
	for_each_mem_cgroup(iter)
2243 2244
		mem_cgroup_drain_pcp_counter(iter, cpu);

2245 2246 2247 2248 2249
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2260
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2261
				unsigned int nr_pages, bool oom_check)
2262
{
2263
	unsigned long csize = nr_pages * PAGE_SIZE;
2264 2265 2266 2267 2268
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2269
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2270 2271 2272 2273

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2274
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2275 2276 2277
		if (likely(!ret))
			return CHARGE_OK;

2278
		res_counter_uncharge(&memcg->res, csize);
2279 2280 2281 2282
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2283
	/*
2284 2285
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2286 2287 2288 2289
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2290
	if (nr_pages == CHARGE_BATCH)
2291 2292 2293 2294 2295
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2296
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2297
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2298
		return CHARGE_RETRY;
2299
	/*
2300 2301 2302 2303 2304 2305 2306
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2307
	 */
2308
	if (nr_pages == 1 && ret)
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2322
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2323 2324 2325 2326 2327
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2328
/*
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2348
 */
2349
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2350
				   gfp_t gfp_mask,
2351
				   unsigned int nr_pages,
2352
				   struct mem_cgroup **ptr,
2353
				   bool oom)
2354
{
2355
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2356
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2357
	struct mem_cgroup *memcg = NULL;
2358
	int ret;
2359

K
KAMEZAWA Hiroyuki 已提交
2360 2361 2362 2363 2364 2365 2366 2367
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2368

2369
	/*
2370 2371
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2372
	 * thread group leader migrates. It's possible that mm is not
2373
	 * set, if so charge the root memcg (happens for pagecache usage).
2374
	 */
2375
	if (!*ptr && !mm)
2376
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2377
again:
2378 2379 2380
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2381
			goto done;
2382
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2383
			goto done;
2384
		css_get(&memcg->css);
2385
	} else {
K
KAMEZAWA Hiroyuki 已提交
2386
		struct task_struct *p;
2387

K
KAMEZAWA Hiroyuki 已提交
2388 2389 2390
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2391
		 * Because we don't have task_lock(), "p" can exit.
2392
		 * In that case, "memcg" can point to root or p can be NULL with
2393 2394 2395 2396 2397 2398
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2399
		 */
2400
		memcg = mem_cgroup_from_task(p);
2401 2402 2403
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2404 2405 2406
			rcu_read_unlock();
			goto done;
		}
2407
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2420
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2421 2422 2423 2424 2425
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2426

2427 2428
	do {
		bool oom_check;
2429

2430
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2431
		if (fatal_signal_pending(current)) {
2432
			css_put(&memcg->css);
2433
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2434
		}
2435

2436 2437 2438 2439
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2440
		}
2441

2442
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2443 2444 2445 2446
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2447
			batch = nr_pages;
2448 2449
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2450
			goto again;
2451
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2452
			css_put(&memcg->css);
2453 2454
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2455
			if (!oom) {
2456
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2457
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2458
			}
2459 2460 2461 2462
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2463
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2464
			goto bypass;
2465
		}
2466 2467
	} while (ret != CHARGE_OK);

2468
	if (batch > nr_pages)
2469 2470
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2471
done:
2472
	*ptr = memcg;
2473 2474
	return 0;
nomem:
2475
	*ptr = NULL;
2476
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2477
bypass:
2478 2479
	*ptr = root_mem_cgroup;
	return -EINTR;
2480
}
2481

2482 2483 2484 2485 2486
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2487
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2488
				       unsigned int nr_pages)
2489
{
2490
	if (!mem_cgroup_is_root(memcg)) {
2491 2492
		unsigned long bytes = nr_pages * PAGE_SIZE;

2493
		res_counter_uncharge(&memcg->res, bytes);
2494
		if (do_swap_account)
2495
			res_counter_uncharge(&memcg->memsw, bytes);
2496
	}
2497 2498
}

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2517 2518
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2519 2520 2521
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2533
	return mem_cgroup_from_css(css);
2534 2535
}

2536
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2537
{
2538
	struct mem_cgroup *memcg = NULL;
2539
	struct page_cgroup *pc;
2540
	unsigned short id;
2541 2542
	swp_entry_t ent;

2543 2544 2545
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2546
	lock_page_cgroup(pc);
2547
	if (PageCgroupUsed(pc)) {
2548 2549 2550
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2551
	} else if (PageSwapCache(page)) {
2552
		ent.val = page_private(page);
2553
		id = lookup_swap_cgroup_id(ent);
2554
		rcu_read_lock();
2555 2556 2557
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2558
		rcu_read_unlock();
2559
	}
2560
	unlock_page_cgroup(pc);
2561
	return memcg;
2562 2563
}

2564
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2565
				       struct page *page,
2566
				       unsigned int nr_pages,
2567 2568
				       enum charge_type ctype,
				       bool lrucare)
2569
{
2570
	struct page_cgroup *pc = lookup_page_cgroup(page);
2571
	struct zone *uninitialized_var(zone);
2572
	struct lruvec *lruvec;
2573
	bool was_on_lru = false;
2574
	bool anon;
2575

2576
	lock_page_cgroup(pc);
2577
	VM_BUG_ON(PageCgroupUsed(pc));
2578 2579 2580 2581
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2582 2583 2584 2585 2586 2587 2588 2589 2590

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2591
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2592
			ClearPageLRU(page);
2593
			del_page_from_lru_list(page, lruvec, page_lru(page));
2594 2595 2596 2597
			was_on_lru = true;
		}
	}

2598
	pc->mem_cgroup = memcg;
2599 2600 2601 2602 2603 2604 2605
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2606
	smp_wmb();
2607
	SetPageCgroupUsed(pc);
2608

2609 2610
	if (lrucare) {
		if (was_on_lru) {
2611
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2612 2613
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2614
			add_page_to_lru_list(page, lruvec, page_lru(page));
2615 2616 2617 2618
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2619
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2620 2621 2622 2623 2624
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2625
	unlock_page_cgroup(pc);
2626

2627 2628 2629 2630 2631
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2632
	memcg_check_events(memcg, page);
2633
}
2634

2635 2636
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2637
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2638 2639
/*
 * Because tail pages are not marked as "used", set it. We're under
2640 2641 2642
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2643
 */
2644
void mem_cgroup_split_huge_fixup(struct page *head)
2645 2646
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2647 2648
	struct page_cgroup *pc;
	int i;
2649

2650 2651
	if (mem_cgroup_disabled())
		return;
2652 2653 2654 2655 2656 2657
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2658
}
2659
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2660

2661
/**
2662
 * mem_cgroup_move_account - move account of the page
2663
 * @page: the page
2664
 * @nr_pages: number of regular pages (>1 for huge pages)
2665 2666 2667 2668 2669
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2670
 * - page is not on LRU (isolate_page() is useful.)
2671
 * - compound_lock is held when nr_pages > 1
2672
 *
2673 2674
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2675
 */
2676 2677 2678 2679
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2680
				   struct mem_cgroup *to)
2681
{
2682 2683
	unsigned long flags;
	int ret;
2684
	bool anon = PageAnon(page);
2685

2686
	VM_BUG_ON(from == to);
2687
	VM_BUG_ON(PageLRU(page));
2688 2689 2690 2691 2692 2693 2694
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2695
	if (nr_pages > 1 && !PageTransHuge(page))
2696 2697 2698 2699 2700 2701 2702 2703
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2704
	move_lock_mem_cgroup(from, &flags);
2705

2706
	if (!anon && page_mapped(page)) {
2707 2708 2709 2710 2711
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2712
	}
2713
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2714

2715
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2716
	pc->mem_cgroup = to;
2717
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2718
	move_unlock_mem_cgroup(from, &flags);
2719 2720
	ret = 0;
unlock:
2721
	unlock_page_cgroup(pc);
2722 2723 2724
	/*
	 * check events
	 */
2725 2726
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2727
out:
2728 2729 2730
	return ret;
}

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
2751
 */
2752 2753
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2754
				  struct mem_cgroup *child)
2755 2756
{
	struct mem_cgroup *parent;
2757
	unsigned int nr_pages;
2758
	unsigned long uninitialized_var(flags);
2759 2760
	int ret;

2761
	VM_BUG_ON(mem_cgroup_is_root(child));
2762

2763 2764 2765 2766 2767
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2768

2769
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2770

2771 2772 2773 2774 2775 2776
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
2777

2778 2779
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
2780
		flags = compound_lock_irqsave(page);
2781
	}
2782

2783
	ret = mem_cgroup_move_account(page, nr_pages,
2784
				pc, child, parent);
2785 2786
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
2787

2788
	if (nr_pages > 1)
2789
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
2790
	putback_lru_page(page);
2791
put:
2792
	put_page(page);
2793
out:
2794 2795 2796
	return ret;
}

2797 2798 2799 2800 2801 2802 2803
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2804
				gfp_t gfp_mask, enum charge_type ctype)
2805
{
2806
	struct mem_cgroup *memcg = NULL;
2807
	unsigned int nr_pages = 1;
2808
	bool oom = true;
2809
	int ret;
A
Andrea Arcangeli 已提交
2810

A
Andrea Arcangeli 已提交
2811
	if (PageTransHuge(page)) {
2812
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2813
		VM_BUG_ON(!PageTransHuge(page));
2814 2815 2816 2817 2818
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2819
	}
2820

2821
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2822
	if (ret == -ENOMEM)
2823
		return ret;
2824
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2825 2826 2827
	return 0;
}

2828 2829
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2830
{
2831
	if (mem_cgroup_disabled())
2832
		return 0;
2833 2834 2835
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2836
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2837
					MEM_CGROUP_CHARGE_TYPE_ANON);
2838 2839
}

2840 2841 2842
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2843
 * struct page_cgroup is acquired. This refcnt will be consumed by
2844 2845
 * "commit()" or removed by "cancel()"
 */
2846 2847 2848 2849
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
2850
{
2851
	struct mem_cgroup *memcg;
2852
	struct page_cgroup *pc;
2853
	int ret;
2854

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
2865 2866
	if (!do_swap_account)
		goto charge_cur_mm;
2867 2868
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2869
		goto charge_cur_mm;
2870 2871
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2872
	css_put(&memcg->css);
2873 2874
	if (ret == -EINTR)
		ret = 0;
2875
	return ret;
2876
charge_cur_mm:
2877 2878 2879 2880
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2881 2882
}

2883 2884 2885 2886 2887 2888
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
2903 2904 2905
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

2906 2907 2908 2909 2910 2911 2912 2913 2914
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
2915
static void
2916
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2917
					enum charge_type ctype)
2918
{
2919
	if (mem_cgroup_disabled())
2920
		return;
2921
	if (!memcg)
2922
		return;
2923

2924
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2925 2926 2927
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2928 2929 2930
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2931
	 */
2932
	if (do_swap_account && PageSwapCache(page)) {
2933
		swp_entry_t ent = {.val = page_private(page)};
2934
		mem_cgroup_uncharge_swap(ent);
2935
	}
2936 2937
}

2938 2939
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2940
{
2941
	__mem_cgroup_commit_charge_swapin(page, memcg,
2942
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
2943 2944
}

2945 2946
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2947
{
2948 2949 2950 2951
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

2952
	if (mem_cgroup_disabled())
2953 2954 2955 2956 2957 2958 2959
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
2960 2961
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
2962 2963 2964 2965
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
2966 2967
}

2968
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2969 2970
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2971 2972 2973
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2974

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2986
		batch->memcg = memcg;
2987 2988
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2989
	 * In those cases, all pages freed continuously can be expected to be in
2990 2991 2992 2993 2994 2995 2996 2997
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2998
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2999 3000
		goto direct_uncharge;

3001 3002 3003 3004 3005
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3006
	if (batch->memcg != memcg)
3007 3008
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3009
	batch->nr_pages++;
3010
	if (uncharge_memsw)
3011
		batch->memsw_nr_pages++;
3012 3013
	return;
direct_uncharge:
3014
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3015
	if (uncharge_memsw)
3016 3017 3018
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3019
}
3020

3021
/*
3022
 * uncharge if !page_mapped(page)
3023
 */
3024
static struct mem_cgroup *
3025 3026
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3027
{
3028
	struct mem_cgroup *memcg = NULL;
3029 3030
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3031
	bool anon;
3032

3033
	if (mem_cgroup_disabled())
3034
		return NULL;
3035

3036
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
3037

A
Andrea Arcangeli 已提交
3038
	if (PageTransHuge(page)) {
3039
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3040 3041
		VM_BUG_ON(!PageTransHuge(page));
	}
3042
	/*
3043
	 * Check if our page_cgroup is valid
3044
	 */
3045
	pc = lookup_page_cgroup(page);
3046
	if (unlikely(!PageCgroupUsed(pc)))
3047
		return NULL;
3048

3049
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3050

3051
	memcg = pc->mem_cgroup;
3052

K
KAMEZAWA Hiroyuki 已提交
3053 3054 3055
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3056 3057
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3058
	switch (ctype) {
3059
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3060 3061 3062 3063 3064
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3065 3066
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3067
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3068
		/* See mem_cgroup_prepare_migration() */
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3090
	}
K
KAMEZAWA Hiroyuki 已提交
3091

3092
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3093

3094
	ClearPageCgroupUsed(pc);
3095 3096 3097 3098 3099 3100
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3101

3102
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3103
	/*
3104
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3105 3106
	 * will never be freed.
	 */
3107
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3108
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3109 3110
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3111
	}
3112 3113 3114 3115 3116 3117
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
3118
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3119

3120
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3121 3122 3123

unlock_out:
	unlock_page_cgroup(pc);
3124
	return NULL;
3125 3126
}

3127 3128
void mem_cgroup_uncharge_page(struct page *page)
{
3129 3130 3131
	/* early check. */
	if (page_mapped(page))
		return;
3132
	VM_BUG_ON(page->mapping && !PageAnon(page));
3133 3134
	if (PageSwapCache(page))
		return;
3135
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3136 3137 3138 3139 3140
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3141
	VM_BUG_ON(page->mapping);
3142
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3143 3144
}

3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3159 3160
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3181 3182 3183 3184 3185 3186
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3187
	memcg_oom_recover(batch->memcg);
3188 3189 3190 3191
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3192
#ifdef CONFIG_SWAP
3193
/*
3194
 * called after __delete_from_swap_cache() and drop "page" account.
3195 3196
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3197 3198
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3199 3200
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3201 3202 3203 3204 3205
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

3206
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3207

K
KAMEZAWA Hiroyuki 已提交
3208 3209 3210 3211 3212
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3213
		swap_cgroup_record(ent, css_id(&memcg->css));
3214
}
3215
#endif
3216

A
Andrew Morton 已提交
3217
#ifdef CONFIG_MEMCG_SWAP
3218 3219 3220 3221 3222
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3223
{
3224
	struct mem_cgroup *memcg;
3225
	unsigned short id;
3226 3227 3228 3229

	if (!do_swap_account)
		return;

3230 3231 3232
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3233
	if (memcg) {
3234 3235 3236 3237
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3238
		if (!mem_cgroup_is_root(memcg))
3239
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3240
		mem_cgroup_swap_statistics(memcg, false);
3241 3242
		mem_cgroup_put(memcg);
	}
3243
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3244
}
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3261
				struct mem_cgroup *from, struct mem_cgroup *to)
3262 3263 3264 3265 3266 3267 3268 3269
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3270
		mem_cgroup_swap_statistics(to, true);
3271
		/*
3272 3273 3274 3275 3276 3277
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3278 3279 3280 3281 3282 3283 3284 3285
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3286
				struct mem_cgroup *from, struct mem_cgroup *to)
3287 3288 3289
{
	return -EINVAL;
}
3290
#endif
K
KAMEZAWA Hiroyuki 已提交
3291

3292
/*
3293 3294
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3295
 */
3296 3297
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
3298
{
3299
	struct mem_cgroup *memcg = NULL;
3300
	unsigned int nr_pages = 1;
3301
	struct page_cgroup *pc;
3302
	enum charge_type ctype;
3303

3304
	*memcgp = NULL;
3305

3306
	if (mem_cgroup_disabled())
3307
		return;
3308

3309 3310 3311
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

3312 3313 3314
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3315 3316
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3348
	}
3349
	unlock_page_cgroup(pc);
3350 3351 3352 3353
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3354
	if (!memcg)
3355
		return;
3356

3357
	*memcgp = memcg;
3358 3359 3360 3361 3362 3363 3364
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
3365
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3366
	else
3367
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3368 3369 3370 3371 3372
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
3373
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
3374
}
3375

3376
/* remove redundant charge if migration failed*/
3377
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3378
	struct page *oldpage, struct page *newpage, bool migration_ok)
3379
{
3380
	struct page *used, *unused;
3381
	struct page_cgroup *pc;
3382
	bool anon;
3383

3384
	if (!memcg)
3385
		return;
3386

3387
	if (!migration_ok) {
3388 3389
		used = oldpage;
		unused = newpage;
3390
	} else {
3391
		used = newpage;
3392 3393
		unused = oldpage;
	}
3394
	anon = PageAnon(used);
3395 3396 3397 3398
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
3399
	css_put(&memcg->css);
3400
	/*
3401 3402 3403
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3404
	 */
3405 3406 3407 3408 3409
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

3410
	/*
3411 3412 3413 3414 3415 3416
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3417
	 */
3418
	if (anon)
3419
		mem_cgroup_uncharge_page(used);
3420
}
3421

3422 3423 3424 3425 3426 3427 3428 3429
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3430
	struct mem_cgroup *memcg = NULL;
3431 3432 3433 3434 3435 3436 3437 3438 3439
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3440 3441 3442 3443 3444
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3445 3446
	unlock_page_cgroup(pc);

3447 3448 3449 3450 3451 3452
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
3453 3454 3455 3456 3457
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3458
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3459 3460
}

3461 3462 3463 3464 3465 3466
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3467 3468 3469 3470 3471
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3491
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3492 3493 3494 3495 3496
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3497 3498
static DEFINE_MUTEX(set_limit_mutex);

3499
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3500
				unsigned long long val)
3501
{
3502
	int retry_count;
3503
	u64 memswlimit, memlimit;
3504
	int ret = 0;
3505 3506
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3507
	int enlarge;
3508 3509 3510 3511 3512 3513 3514 3515 3516

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3517

3518
	enlarge = 0;
3519
	while (retry_count) {
3520 3521 3522 3523
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3524 3525 3526
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3527
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3528 3529 3530 3531 3532 3533
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3534 3535
			break;
		}
3536 3537 3538 3539 3540

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3541
		ret = res_counter_set_limit(&memcg->res, val);
3542 3543 3544 3545 3546 3547
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3548 3549 3550 3551 3552
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3553 3554
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3555 3556 3557 3558 3559 3560
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3561
	}
3562 3563
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3564

3565 3566 3567
	return ret;
}

L
Li Zefan 已提交
3568 3569
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3570
{
3571
	int retry_count;
3572
	u64 memlimit, memswlimit, oldusage, curusage;
3573 3574
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3575
	int enlarge = 0;
3576

3577 3578 3579
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3580 3581 3582 3583 3584 3585 3586 3587
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3588
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3589 3590 3591 3592 3593 3594 3595 3596
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3597 3598 3599
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3600
		ret = res_counter_set_limit(&memcg->memsw, val);
3601 3602 3603 3604 3605 3606
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3607 3608 3609 3610 3611
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3612 3613 3614
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3615
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3616
		/* Usage is reduced ? */
3617
		if (curusage >= oldusage)
3618
			retry_count--;
3619 3620
		else
			oldusage = curusage;
3621
	}
3622 3623
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3624 3625 3626
	return ret;
}

3627
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3628 3629
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3630 3631 3632 3633 3634 3635
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3636
	unsigned long long excess;
3637
	unsigned long nr_scanned;
3638 3639 3640 3641

	if (order > 0)
		return 0;

3642
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3656
		nr_scanned = 0;
3657
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3658
						    gfp_mask, &nr_scanned);
3659
		nr_reclaimed += reclaimed;
3660
		*total_scanned += nr_scanned;
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3683
				if (next_mz == mz)
3684
					css_put(&next_mz->memcg->css);
3685
				else /* next_mz == NULL or other memcg */
3686 3687 3688
					break;
			} while (1);
		}
3689 3690
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3691 3692 3693 3694 3695 3696 3697 3698
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3699
		/* If excess == 0, no tree ops */
3700
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3701
		spin_unlock(&mctz->lock);
3702
		css_put(&mz->memcg->css);
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3715
		css_put(&next_mz->memcg->css);
3716 3717 3718
	return nr_reclaimed;
}

3719 3720 3721 3722 3723 3724 3725
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
3726
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3727 3728
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
3729
 */
3730
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3731
				int node, int zid, enum lru_list lru)
3732
{
3733
	struct lruvec *lruvec;
3734
	unsigned long flags;
3735
	struct list_head *list;
3736 3737
	struct page *busy;
	struct zone *zone;
3738

K
KAMEZAWA Hiroyuki 已提交
3739
	zone = &NODE_DATA(node)->node_zones[zid];
3740 3741
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
3742

3743
	busy = NULL;
3744
	do {
3745
		struct page_cgroup *pc;
3746 3747
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3748
		spin_lock_irqsave(&zone->lru_lock, flags);
3749
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3750
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3751
			break;
3752
		}
3753 3754 3755
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3756
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3757
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3758 3759
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3760
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3761

3762
		pc = lookup_page_cgroup(page);
3763

3764
		if (mem_cgroup_move_parent(page, pc, memcg)) {
3765
			/* found lock contention or "pc" is obsolete. */
3766
			busy = page;
3767 3768 3769
			cond_resched();
		} else
			busy = NULL;
3770
	} while (!list_empty(list));
3771 3772 3773
}

/*
3774 3775
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
3776
 * This enables deleting this mem_cgroup.
3777 3778
 *
 * Caller is responsible for holding css reference on the memcg.
3779
 */
3780
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3781
{
3782
	int node, zid;
3783

3784
	do {
3785 3786
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3787 3788
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
3789
		for_each_node_state(node, N_MEMORY) {
3790
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3791 3792
				enum lru_list lru;
				for_each_lru(lru) {
3793
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3794
							node, zid, lru);
3795
				}
3796
			}
3797
		}
3798 3799
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3800
		cond_resched();
3801

3802 3803 3804 3805 3806 3807 3808 3809
		/*
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0);
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
}

/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
3822

3823
	/* returns EBUSY if there is a task or if we come here twice. */
3824 3825 3826
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

3827 3828
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3829
	/* try to free all pages in this cgroup */
3830
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3831
		int progress;
3832

3833 3834 3835
		if (signal_pending(current))
			return -EINTR;

3836
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3837
						false);
3838
		if (!progress) {
3839
			nr_retries--;
3840
			/* maybe some writeback is necessary */
3841
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3842
		}
3843 3844

	}
K
KAMEZAWA Hiroyuki 已提交
3845
	lru_add_drain();
3846 3847 3848
	mem_cgroup_reparent_charges(memcg);

	return 0;
3849 3850
}

3851
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3852
{
3853 3854 3855
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

3856 3857
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3858 3859 3860 3861 3862
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
3863 3864 3865
}


3866 3867 3868 3869 3870 3871 3872 3873 3874
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3875
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3876
	struct cgroup *parent = cont->parent;
3877
	struct mem_cgroup *parent_memcg = NULL;
3878 3879

	if (parent)
3880
		parent_memcg = mem_cgroup_from_cont(parent);
3881 3882

	cgroup_lock();
3883 3884 3885 3886

	if (memcg->use_hierarchy == val)
		goto out;

3887
	/*
3888
	 * If parent's use_hierarchy is set, we can't make any modifications
3889 3890 3891 3892 3893 3894
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3895
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3896 3897
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3898
			memcg->use_hierarchy = val;
3899 3900 3901 3902
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3903 3904

out:
3905 3906 3907 3908 3909
	cgroup_unlock();

	return retval;
}

3910

3911
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3912
					       enum mem_cgroup_stat_index idx)
3913
{
K
KAMEZAWA Hiroyuki 已提交
3914
	struct mem_cgroup *iter;
3915
	long val = 0;
3916

3917
	/* Per-cpu values can be negative, use a signed accumulator */
3918
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3919 3920 3921 3922 3923
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3924 3925
}

3926
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3927
{
K
KAMEZAWA Hiroyuki 已提交
3928
	u64 val;
3929

3930
	if (!mem_cgroup_is_root(memcg)) {
3931
		if (!swap)
3932
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3933
		else
3934
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3935 3936
	}

3937 3938
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3939

K
KAMEZAWA Hiroyuki 已提交
3940
	if (swap)
3941
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3942 3943 3944 3945

	return val << PAGE_SHIFT;
}

3946 3947 3948
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3949
{
3950
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3951
	char str[64];
3952
	u64 val;
3953
	int type, name, len;
3954 3955 3956

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3957 3958 3959 3960

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3961 3962
	switch (type) {
	case _MEM:
3963
		if (name == RES_USAGE)
3964
			val = mem_cgroup_usage(memcg, false);
3965
		else
3966
			val = res_counter_read_u64(&memcg->res, name);
3967 3968
		break;
	case _MEMSWAP:
3969
		if (name == RES_USAGE)
3970
			val = mem_cgroup_usage(memcg, true);
3971
		else
3972
			val = res_counter_read_u64(&memcg->memsw, name);
3973 3974 3975 3976
		break;
	default:
		BUG();
	}
3977 3978 3979

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3980
}
3981 3982 3983 3984
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3985 3986
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3987
{
3988
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3989
	int type, name;
3990 3991 3992
	unsigned long long val;
	int ret;

3993 3994
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3995 3996 3997 3998

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3999
	switch (name) {
4000
	case RES_LIMIT:
4001 4002 4003 4004
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4005 4006
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4007 4008 4009
		if (ret)
			break;
		if (type == _MEM)
4010
			ret = mem_cgroup_resize_limit(memcg, val);
4011 4012
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4013
		break;
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4028 4029 4030 4031 4032
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4033 4034
}

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4062
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4063
{
4064
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4065
	int type, name;
4066

4067 4068
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4069 4070 4071 4072

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4073
	switch (name) {
4074
	case RES_MAX_USAGE:
4075
		if (type == _MEM)
4076
			res_counter_reset_max(&memcg->res);
4077
		else
4078
			res_counter_reset_max(&memcg->memsw);
4079 4080
		break;
	case RES_FAILCNT:
4081
		if (type == _MEM)
4082
			res_counter_reset_failcnt(&memcg->res);
4083
		else
4084
			res_counter_reset_failcnt(&memcg->memsw);
4085 4086
		break;
	}
4087

4088
	return 0;
4089 4090
}

4091 4092 4093 4094 4095 4096
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4097
#ifdef CONFIG_MMU
4098 4099 4100
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4101
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4102 4103 4104 4105 4106 4107 4108 4109 4110

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4111
	memcg->move_charge_at_immigrate = val;
4112 4113 4114 4115
	cgroup_unlock();

	return 0;
}
4116 4117 4118 4119 4120 4121 4122
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4123

4124
#ifdef CONFIG_NUMA
4125
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4126
				      struct seq_file *m)
4127 4128 4129 4130
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4131
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4132

4133
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4134
	seq_printf(m, "total=%lu", total_nr);
4135
	for_each_node_state(nid, N_MEMORY) {
4136
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4137 4138 4139 4140
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4141
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4142
	seq_printf(m, "file=%lu", file_nr);
4143
	for_each_node_state(nid, N_MEMORY) {
4144
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4145
				LRU_ALL_FILE);
4146 4147 4148 4149
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4150
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4151
	seq_printf(m, "anon=%lu", anon_nr);
4152
	for_each_node_state(nid, N_MEMORY) {
4153
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4154
				LRU_ALL_ANON);
4155 4156 4157 4158
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4159
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4160
	seq_printf(m, "unevictable=%lu", unevictable_nr);
4161
	for_each_node_state(nid, N_MEMORY) {
4162
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4163
				BIT(LRU_UNEVICTABLE));
4164 4165 4166 4167 4168 4169 4170
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4184
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4185
				 struct seq_file *m)
4186
{
4187
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4188 4189
	struct mem_cgroup *mi;
	unsigned int i;
4190

4191
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4192
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4193
			continue;
4194 4195
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4196
	}
L
Lee Schermerhorn 已提交
4197

4198 4199 4200 4201 4202 4203 4204 4205
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4206
	/* Hierarchical information */
4207 4208
	{
		unsigned long long limit, memsw_limit;
4209
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4210
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4211
		if (do_swap_account)
4212 4213
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4214
	}
K
KOSAKI Motohiro 已提交
4215

4216 4217 4218
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4219
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4220
			continue;
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4241
	}
K
KAMEZAWA Hiroyuki 已提交
4242

K
KOSAKI Motohiro 已提交
4243 4244 4245 4246
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4247
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4248 4249 4250 4251 4252
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4253
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4254
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4255

4256 4257 4258 4259
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4260
			}
4261 4262 4263 4264
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4265 4266 4267
	}
#endif

4268 4269 4270
	return 0;
}

K
KOSAKI Motohiro 已提交
4271 4272 4273 4274
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4275
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4276 4277 4278 4279 4280 4281 4282
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4283

K
KOSAKI Motohiro 已提交
4284 4285 4286 4287 4288 4289 4290
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4291 4292 4293

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4294 4295
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4296 4297
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4298
		return -EINVAL;
4299
	}
K
KOSAKI Motohiro 已提交
4300 4301 4302

	memcg->swappiness = val;

4303 4304
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4305 4306 4307
	return 0;
}

4308 4309 4310 4311 4312 4313 4314 4315
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4316
		t = rcu_dereference(memcg->thresholds.primary);
4317
	else
4318
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4319 4320 4321 4322 4323 4324 4325

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4326
	 * current_threshold points to threshold just below or equal to usage.
4327 4328 4329
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4330
	i = t->current_threshold;
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4354
	t->current_threshold = i - 1;
4355 4356 4357 4358 4359 4360
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4361 4362 4363 4364 4365 4366 4367
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4378
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4379 4380 4381
{
	struct mem_cgroup_eventfd_list *ev;

4382
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4383 4384 4385 4386
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4387
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4388
{
K
KAMEZAWA Hiroyuki 已提交
4389 4390
	struct mem_cgroup *iter;

4391
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4392
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4393 4394 4395 4396
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4397 4398
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4399 4400
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4401 4402
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4403
	int i, size, ret;
4404 4405 4406 4407 4408 4409

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4410

4411
	if (type == _MEM)
4412
		thresholds = &memcg->thresholds;
4413
	else if (type == _MEMSWAP)
4414
		thresholds = &memcg->memsw_thresholds;
4415 4416 4417 4418 4419 4420
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4421
	if (thresholds->primary)
4422 4423
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4424
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4425 4426

	/* Allocate memory for new array of thresholds */
4427
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4428
			GFP_KERNEL);
4429
	if (!new) {
4430 4431 4432
		ret = -ENOMEM;
		goto unlock;
	}
4433
	new->size = size;
4434 4435

	/* Copy thresholds (if any) to new array */
4436 4437
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4438
				sizeof(struct mem_cgroup_threshold));
4439 4440
	}

4441
	/* Add new threshold */
4442 4443
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4444 4445

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4446
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4447 4448 4449
			compare_thresholds, NULL);

	/* Find current threshold */
4450
	new->current_threshold = -1;
4451
	for (i = 0; i < size; i++) {
4452
		if (new->entries[i].threshold <= usage) {
4453
			/*
4454 4455
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4456 4457
			 * it here.
			 */
4458
			++new->current_threshold;
4459 4460
		} else
			break;
4461 4462
	}

4463 4464 4465 4466 4467
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4468

4469
	/* To be sure that nobody uses thresholds */
4470 4471 4472 4473 4474 4475 4476 4477
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4478
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4479
	struct cftype *cft, struct eventfd_ctx *eventfd)
4480 4481
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4482 4483
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4484 4485
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4486
	int i, j, size;
4487 4488 4489

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4490
		thresholds = &memcg->thresholds;
4491
	else if (type == _MEMSWAP)
4492
		thresholds = &memcg->memsw_thresholds;
4493 4494 4495
	else
		BUG();

4496 4497 4498
	if (!thresholds->primary)
		goto unlock;

4499 4500 4501 4502 4503 4504
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4505 4506 4507
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4508 4509 4510
			size++;
	}

4511
	new = thresholds->spare;
4512

4513 4514
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4515 4516
		kfree(new);
		new = NULL;
4517
		goto swap_buffers;
4518 4519
	}

4520
	new->size = size;
4521 4522

	/* Copy thresholds and find current threshold */
4523 4524 4525
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4526 4527
			continue;

4528
		new->entries[j] = thresholds->primary->entries[i];
4529
		if (new->entries[j].threshold <= usage) {
4530
			/*
4531
			 * new->current_threshold will not be used
4532 4533 4534
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4535
			++new->current_threshold;
4536 4537 4538 4539
		}
		j++;
	}

4540
swap_buffers:
4541 4542
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4543 4544 4545 4546 4547 4548
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4549
	rcu_assign_pointer(thresholds->primary, new);
4550

4551
	/* To be sure that nobody uses thresholds */
4552
	synchronize_rcu();
4553
unlock:
4554 4555
	mutex_unlock(&memcg->thresholds_lock);
}
4556

K
KAMEZAWA Hiroyuki 已提交
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4569
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4570 4571 4572 4573 4574

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4575
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4576
		eventfd_signal(eventfd, 1);
4577
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4578 4579 4580 4581

	return 0;
}

4582
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4583 4584
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4585
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4586 4587 4588 4589 4590
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4591
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4592

4593
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4594 4595 4596 4597 4598 4599
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4600
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4601 4602
}

4603 4604 4605
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4606
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4607

4608
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4609

4610
	if (atomic_read(&memcg->under_oom))
4611 4612 4613 4614 4615 4616 4617 4618 4619
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4620
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4632
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4633 4634 4635
		cgroup_unlock();
		return -EINVAL;
	}
4636
	memcg->oom_kill_disable = val;
4637
	if (!val)
4638
		memcg_oom_recover(memcg);
4639 4640 4641 4642
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
4643
#ifdef CONFIG_MEMCG_KMEM
4644
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4645
{
4646
	return mem_cgroup_sockets_init(memcg, ss);
4647 4648
};

4649
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4650
{
4651
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4652
}
4653
#else
4654
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4655 4656 4657
{
	return 0;
}
G
Glauber Costa 已提交
4658

4659
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4660 4661
{
}
4662 4663
#endif

B
Balbir Singh 已提交
4664 4665
static struct cftype mem_cgroup_files[] = {
	{
4666
		.name = "usage_in_bytes",
4667
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4668
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4669 4670
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4671
	},
4672 4673
	{
		.name = "max_usage_in_bytes",
4674
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4675
		.trigger = mem_cgroup_reset,
4676
		.read = mem_cgroup_read,
4677
	},
B
Balbir Singh 已提交
4678
	{
4679
		.name = "limit_in_bytes",
4680
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4681
		.write_string = mem_cgroup_write,
4682
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4683
	},
4684 4685 4686 4687
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4688
		.read = mem_cgroup_read,
4689
	},
B
Balbir Singh 已提交
4690 4691
	{
		.name = "failcnt",
4692
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4693
		.trigger = mem_cgroup_reset,
4694
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4695
	},
4696 4697
	{
		.name = "stat",
4698
		.read_seq_string = memcg_stat_show,
4699
	},
4700 4701 4702 4703
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4704 4705 4706 4707 4708
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4709 4710 4711 4712 4713
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4714 4715 4716 4717 4718
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4719 4720
	{
		.name = "oom_control",
4721 4722
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4723 4724 4725 4726
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4727 4728 4729
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4730
		.read_seq_string = memcg_numa_stat_show,
4731 4732
	},
#endif
A
Andrew Morton 已提交
4733
#ifdef CONFIG_MEMCG_SWAP
4734 4735 4736
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4737
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4738 4739
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4740 4741 4742 4743 4744
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4745
		.read = mem_cgroup_read,
4746 4747 4748 4749 4750
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4751
		.read = mem_cgroup_read,
4752 4753 4754 4755 4756
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4757
		.read = mem_cgroup_read,
4758 4759
	},
#endif
4760
	{ },	/* terminate */
4761
};
4762

4763
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4764 4765
{
	struct mem_cgroup_per_node *pn;
4766
	struct mem_cgroup_per_zone *mz;
4767
	int zone, tmp = node;
4768 4769 4770 4771 4772 4773 4774 4775
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4776 4777
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4778
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4779 4780
	if (!pn)
		return 1;
4781 4782 4783

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4784
		lruvec_init(&mz->lruvec);
4785
		mz->usage_in_excess = 0;
4786
		mz->on_tree = false;
4787
		mz->memcg = memcg;
4788
	}
4789
	memcg->info.nodeinfo[node] = pn;
4790 4791 4792
	return 0;
}

4793
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4794
{
4795
	kfree(memcg->info.nodeinfo[node]);
4796 4797
}

4798 4799
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4800
	struct mem_cgroup *memcg;
4801
	int size = sizeof(struct mem_cgroup);
4802

4803
	/* Can be very big if MAX_NUMNODES is very big */
4804
	if (size < PAGE_SIZE)
4805
		memcg = kzalloc(size, GFP_KERNEL);
4806
	else
4807
		memcg = vzalloc(size);
4808

4809
	if (!memcg)
4810 4811
		return NULL;

4812 4813
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4814
		goto out_free;
4815 4816
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4817 4818 4819

out_free:
	if (size < PAGE_SIZE)
4820
		kfree(memcg);
4821
	else
4822
		vfree(memcg);
4823
	return NULL;
4824 4825
}

4826
/*
4827
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4828 4829 4830
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
4831
static void free_work(struct work_struct *work)
4832 4833
{
	struct mem_cgroup *memcg;
4834
	int size = sizeof(struct mem_cgroup);
4835 4836

	memcg = container_of(work, struct mem_cgroup, work_freeing);
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
	disarm_sock_keys(memcg);
4849 4850 4851 4852
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
4853
}
4854 4855

static void free_rcu(struct rcu_head *rcu_head)
4856 4857 4858 4859
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4860
	INIT_WORK(&memcg->work_freeing, free_work);
4861 4862 4863
	schedule_work(&memcg->work_freeing);
}

4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4875
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4876
{
K
KAMEZAWA Hiroyuki 已提交
4877 4878
	int node;

4879 4880
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4881

B
Bob Liu 已提交
4882
	for_each_node(node)
4883
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4884

4885
	free_percpu(memcg->stat);
4886
	call_rcu(&memcg->rcu_freeing, free_rcu);
4887 4888
}

4889
static void mem_cgroup_get(struct mem_cgroup *memcg)
4890
{
4891
	atomic_inc(&memcg->refcnt);
4892 4893
}

4894
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4895
{
4896 4897 4898
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4899 4900 4901
		if (parent)
			mem_cgroup_put(parent);
	}
4902 4903
}

4904
static void mem_cgroup_put(struct mem_cgroup *memcg)
4905
{
4906
	__mem_cgroup_put(memcg, 1);
4907 4908
}

4909 4910 4911
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4912
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4913
{
4914
	if (!memcg->res.parent)
4915
		return NULL;
4916
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4917
}
G
Glauber Costa 已提交
4918
EXPORT_SYMBOL(parent_mem_cgroup);
4919

A
Andrew Morton 已提交
4920
#ifdef CONFIG_MEMCG_SWAP
4921 4922
static void __init enable_swap_cgroup(void)
{
4923
	if (!mem_cgroup_disabled() && really_do_swap_account)
4924 4925 4926 4927 4928 4929 4930 4931
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4932 4933 4934 4935 4936 4937
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4938
	for_each_node(node) {
4939 4940 4941 4942 4943
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4944
			goto err_cleanup;
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4955 4956

err_cleanup:
B
Bob Liu 已提交
4957
	for_each_node(node) {
4958 4959 4960 4961 4962 4963 4964
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4965 4966
}

L
Li Zefan 已提交
4967
static struct cgroup_subsys_state * __ref
4968
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
4969
{
4970
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4971
	long error = -ENOMEM;
4972
	int node;
B
Balbir Singh 已提交
4973

4974 4975
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4976
		return ERR_PTR(error);
4977

B
Bob Liu 已提交
4978
	for_each_node(node)
4979
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4980
			goto free_out;
4981

4982
	/* root ? */
4983
	if (cont->parent == NULL) {
4984
		int cpu;
4985
		enable_swap_cgroup();
4986
		parent = NULL;
4987 4988
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4989
		root_mem_cgroup = memcg;
4990 4991 4992 4993 4994
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4995
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4996
	} else {
4997
		parent = mem_cgroup_from_cont(cont->parent);
4998 4999
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
5000
	}
5001

5002
	if (parent && parent->use_hierarchy) {
5003 5004
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5005 5006 5007 5008 5009 5010 5011
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5012
	} else {
5013 5014
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5015 5016 5017 5018 5019 5020 5021
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
		if (parent && parent != root_mem_cgroup)
			mem_cgroup_subsys.broken_hierarchy = true;
5022
	}
5023 5024
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5025

K
KOSAKI Motohiro 已提交
5026
	if (parent)
5027 5028 5029 5030
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
5031
	spin_lock_init(&memcg->move_lock);
5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
5043
	return &memcg->css;
5044
free_out:
5045
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5046
	return ERR_PTR(error);
B
Balbir Singh 已提交
5047 5048
}

5049
static void mem_cgroup_css_offline(struct cgroup *cont)
5050
{
5051
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5052

5053
	mem_cgroup_reparent_charges(memcg);
5054 5055
}

5056
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
5057
{
5058
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5059

5060
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5061

5062
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5063 5064
}

5065
#ifdef CONFIG_MMU
5066
/* Handlers for move charge at task migration. */
5067 5068
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5069
{
5070 5071
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5072
	struct mem_cgroup *memcg = mc.to;
5073

5074
	if (mem_cgroup_is_root(memcg)) {
5075 5076 5077 5078 5079 5080 5081 5082
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5083
		 * "memcg" cannot be under rmdir() because we've already checked
5084 5085 5086 5087
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5088
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5089
			goto one_by_one;
5090
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5091
						PAGE_SIZE * count, &dummy)) {
5092
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5109 5110
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5111
		if (ret)
5112
			/* mem_cgroup_clear_mc() will do uncharge later */
5113
			return ret;
5114 5115
		mc.precharge++;
	}
5116 5117 5118 5119
	return ret;
}

/**
5120
 * get_mctgt_type - get target type of moving charge
5121 5122 5123
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5124
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5125 5126 5127 5128 5129 5130
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5131 5132 5133
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5134 5135 5136 5137 5138
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5139
	swp_entry_t	ent;
5140 5141 5142
};

enum mc_target_type {
5143
	MC_TARGET_NONE = 0,
5144
	MC_TARGET_PAGE,
5145
	MC_TARGET_SWAP,
5146 5147
};

D
Daisuke Nishimura 已提交
5148 5149
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5150
{
D
Daisuke Nishimura 已提交
5151
	struct page *page = vm_normal_page(vma, addr, ptent);
5152

D
Daisuke Nishimura 已提交
5153 5154 5155 5156
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5157
		if (!move_anon())
D
Daisuke Nishimura 已提交
5158
			return NULL;
5159 5160
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5161 5162 5163 5164 5165 5166 5167
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5168
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5169 5170 5171 5172 5173 5174 5175 5176
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5177 5178 5179 5180 5181
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5182 5183 5184 5185 5186
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5187 5188 5189 5190 5191 5192 5193
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5194

5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5214 5215 5216 5217 5218 5219
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5220
		if (do_swap_account)
5221 5222
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5223
	}
5224
#endif
5225 5226 5227
	return page;
}

5228
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5229 5230 5231 5232
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5233
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5234 5235 5236 5237 5238 5239
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5240 5241
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5242 5243

	if (!page && !ent.val)
5244
		return ret;
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5260 5261
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5262
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5263 5264 5265
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5266 5267 5268 5269
	}
	return ret;
}

5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5305 5306 5307 5308 5309 5310 5311 5312
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5313 5314 5315 5316
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5317
		return 0;
5318
	}
5319

5320 5321
	if (pmd_trans_unstable(pmd))
		return 0;
5322 5323
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5324
		if (get_mctgt_type(vma, addr, *pte, NULL))
5325 5326 5327 5328
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5329 5330 5331
	return 0;
}

5332 5333 5334 5335 5336
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5337
	down_read(&mm->mmap_sem);
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5349
	up_read(&mm->mmap_sem);
5350 5351 5352 5353 5354 5355 5356 5357 5358

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5359 5360 5361 5362 5363
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5364 5365
}

5366 5367
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5368
{
5369 5370 5371
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5372
	/* we must uncharge all the leftover precharges from mc.to */
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5384
	}
5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5419
	spin_lock(&mc.lock);
5420 5421
	mc.from = NULL;
	mc.to = NULL;
5422
	spin_unlock(&mc.lock);
5423
	mem_cgroup_end_move(from);
5424 5425
}

5426 5427
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5428
{
5429
	struct task_struct *p = cgroup_taskset_first(tset);
5430
	int ret = 0;
5431
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5432

5433
	if (memcg->move_charge_at_immigrate) {
5434 5435 5436
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5437
		VM_BUG_ON(from == memcg);
5438 5439 5440 5441 5442

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5443 5444 5445 5446
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5447
			VM_BUG_ON(mc.moved_charge);
5448
			VM_BUG_ON(mc.moved_swap);
5449
			mem_cgroup_start_move(from);
5450
			spin_lock(&mc.lock);
5451
			mc.from = from;
5452
			mc.to = memcg;
5453
			spin_unlock(&mc.lock);
5454
			/* We set mc.moving_task later */
5455 5456 5457 5458

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5459 5460
		}
		mmput(mm);
5461 5462 5463 5464
	}
	return ret;
}

5465 5466
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5467
{
5468
	mem_cgroup_clear_mc();
5469 5470
}

5471 5472 5473
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5474
{
5475 5476 5477 5478
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5479 5480 5481 5482
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5483

5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5495
		if (mc.precharge < HPAGE_PMD_NR) {
5496 5497 5498 5499 5500 5501 5502 5503 5504
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5505
							pc, mc.from, mc.to)) {
5506 5507 5508 5509 5510 5511 5512 5513
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5514
		return 0;
5515 5516
	}

5517 5518
	if (pmd_trans_unstable(pmd))
		return 0;
5519 5520 5521 5522
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5523
		swp_entry_t ent;
5524 5525 5526 5527

		if (!mc.precharge)
			break;

5528
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5529 5530 5531 5532 5533
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5534
			if (!mem_cgroup_move_account(page, 1, pc,
5535
						     mc.from, mc.to)) {
5536
				mc.precharge--;
5537 5538
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5539 5540
			}
			putback_lru_page(page);
5541
put:			/* get_mctgt_type() gets the page */
5542 5543
			put_page(page);
			break;
5544 5545
		case MC_TARGET_SWAP:
			ent = target.ent;
5546
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5547
				mc.precharge--;
5548 5549 5550
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5551
			break;
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5566
		ret = mem_cgroup_do_precharge(1);
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5610
	up_read(&mm->mmap_sem);
5611 5612
}

5613 5614
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5615
{
5616
	struct task_struct *p = cgroup_taskset_first(tset);
5617
	struct mm_struct *mm = get_task_mm(p);
5618 5619

	if (mm) {
5620 5621
		if (mc.to)
			mem_cgroup_move_charge(mm);
5622 5623
		mmput(mm);
	}
5624 5625
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5626
}
5627
#else	/* !CONFIG_MMU */
5628 5629
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5630 5631 5632
{
	return 0;
}
5633 5634
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5635 5636
{
}
5637 5638
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5639 5640 5641
{
}
#endif
B
Balbir Singh 已提交
5642

B
Balbir Singh 已提交
5643 5644 5645
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
5646 5647 5648
	.css_alloc = mem_cgroup_css_alloc,
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5649 5650
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5651
	.attach = mem_cgroup_move_task,
5652
	.base_cftypes = mem_cgroup_files,
5653
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5654
	.use_id = 1,
B
Balbir Singh 已提交
5655
};
5656

A
Andrew Morton 已提交
5657
#ifdef CONFIG_MEMCG_SWAP
5658 5659 5660
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5661
	if (!strcmp(s, "1"))
5662
		really_do_swap_account = 1;
5663
	else if (!strcmp(s, "0"))
5664 5665 5666
		really_do_swap_account = 0;
	return 1;
}
5667
__setup("swapaccount=", enable_swap_account);
5668 5669

#endif