memcontrol.c 101.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
24
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
25
#include <linux/pagemap.h>
26
#include <linux/smp.h>
27
#include <linux/page-flags.h>
28
#include <linux/backing-dev.h>
29 30
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
31
#include <linux/limits.h>
32
#include <linux/mutex.h>
33
#include <linux/rbtree.h>
34
#include <linux/slab.h>
35
#include <linux/swap.h>
36
#include <linux/swapops.h>
37 38
#include <linux/spinlock.h>
#include <linux/fs.h>
39
#include <linux/seq_file.h>
40
#include <linux/vmalloc.h>
41
#include <linux/mm_inline.h>
42
#include <linux/page_cgroup.h>
43
#include <linux/cpu.h>
K
KAMEZAWA Hiroyuki 已提交
44
#include "internal.h"
B
Balbir Singh 已提交
45

46 47
#include <asm/uaccess.h>

48 49
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
50
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
51

52
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
53
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
54 55 56 57 58 59
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

60
#define SOFTLIMIT_EVENTS_THRESH (1000)
61

62 63 64 65 66 67 68 69
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
70
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
71
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
72 73
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
74
	MEM_CGROUP_STAT_EVENTS,	/* sum of pagein + pageout for internal use */
75
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
76 77 78 79 80 81 82 83 84

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
85
	struct mem_cgroup_stat_cpu cpustat[0];
86 87
};

88 89 90 91 92 93 94 95 96 97 98 99 100 101
static inline void
__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	stat->count[idx] = 0;
}

static inline s64
__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	return stat->count[idx];
}

102 103 104
/*
 * For accounting under irq disable, no need for increment preempt count.
 */
105
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
106 107
		enum mem_cgroup_stat_index idx, int val)
{
108
	stat->count[idx] += val;
109 110 111 112 113 114 115 116 117 118 119 120
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

K
KAMEZAWA Hiroyuki 已提交
121 122 123 124 125 126 127 128 129
static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
{
	s64 ret;

	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
	return ret;
}

130 131 132 133
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
134 135 136
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
137 138
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
139 140

	struct zone_reclaim_stat reclaim_stat;
141 142 143 144
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
145 146
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
147 148 149 150 151 152 153 154 155 156 157 158
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

B
Balbir Singh 已提交
179 180 181 182 183 184 185
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
186 187 188
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
189 190 191 192 193 194 195
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
196 197 198 199
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
200 201 202 203
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
204
	struct mem_cgroup_lru_info info;
205

K
KOSAKI Motohiro 已提交
206 207 208 209 210
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

211
	int	prev_priority;	/* for recording reclaim priority */
212 213

	/*
214
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
215
	 * reclaimed from.
216
	 */
K
KAMEZAWA Hiroyuki 已提交
217
	int last_scanned_child;
218 219 220 221
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
222
	unsigned long	last_oom_jiffies;
223
	atomic_t	refcnt;
224

K
KOSAKI Motohiro 已提交
225 226
	unsigned int	swappiness;

227 228 229
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

230 231 232 233 234 235
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;

236
	/*
237
	 * statistics. This must be placed at the end of memcg.
238 239
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
240 241
};

242 243 244 245 246 247
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
248
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
249 250 251
	NR_MOVE_TYPE,
};

252 253 254 255 256
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
257
	unsigned long moved_charge;
258
	unsigned long moved_swap;
259 260 261 262 263
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
264

265 266 267 268 269 270 271
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

272 273 274
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
275
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
276
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
277
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
278
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
279 280 281
	NR_CHARGE_TYPE,
};

282 283 284 285
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
286 287
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
288

289 290 291 292 293 294 295
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

296 297 298 299 300 301 302
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
303 304
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
305

306 307
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
308
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
309
static void drain_all_stock_async(void);
310

311 312 313 314 315 316
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

317 318 319 320 321
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
351
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
352
				struct mem_cgroup_per_zone *mz,
353 354
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
355 356 357 358 359 360 361 362
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

363 364 365
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
382 383 384 385 386 387 388 389 390 391 392 393 394
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

395 396 397 398 399 400
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
401
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
	spin_unlock(&mctz->lock);
}

static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
{
	bool ret = false;
	int cpu;
	s64 val;
	struct mem_cgroup_stat_cpu *cpustat;

	cpu = get_cpu();
	cpustat = &mem->stat.cpustat[cpu];
	val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
	if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
		__mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
		ret = true;
	}
	put_cpu();
	return ret;
}

static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
425
	unsigned long long excess;
426 427
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
428 429
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
430 431 432
	mctz = soft_limit_tree_from_page(page);

	/*
433 434
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
435
	 */
436 437
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
438
		excess = res_counter_soft_limit_excess(&mem->res);
439 440 441 442
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
443
		if (excess || mz->on_tree) {
444 445 446 447 448
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
449 450
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
451
			 */
452
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
453 454
			spin_unlock(&mctz->lock);
		}
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

473 474 475 476 477 478 479 480 481
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
482
	struct mem_cgroup_per_zone *mz;
483 484

retry:
485
	mz = NULL;
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

515 516 517 518 519 520 521 522 523 524 525 526 527
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu = get_cpu();

	cpustat = &stat->cpustat[cpu];
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
	put_cpu();
}

528 529 530
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
531
{
532
	int val = (charge) ? 1 : -1;
533
	struct mem_cgroup_stat *stat = &mem->stat;
534
	struct mem_cgroup_stat_cpu *cpustat;
K
KAMEZAWA Hiroyuki 已提交
535
	int cpu = get_cpu();
536

K
KAMEZAWA Hiroyuki 已提交
537
	cpustat = &stat->cpustat[cpu];
538
	if (PageCgroupCache(pc))
539
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
540
	else
541
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
542 543

	if (charge)
544
		__mem_cgroup_stat_add_safe(cpustat,
545 546
				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
	else
547
		__mem_cgroup_stat_add_safe(cpustat,
548
				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
549
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
K
KAMEZAWA Hiroyuki 已提交
550
	put_cpu();
551 552
}

K
KAMEZAWA Hiroyuki 已提交
553
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
554
					enum lru_list idx)
555 556 557 558 559 560 561 562 563 564 565
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
566 567
}

568
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
569 570 571 572 573 574
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

575
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
576
{
577 578 579 580 581 582 583 584
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

585 586 587 588
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

589 590 591
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
592 593 594

	if (!mm)
		return NULL;
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

645 646 647 648 649
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
663

K
KAMEZAWA Hiroyuki 已提交
664 665 666 667
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
668

669
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
670 671 672
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
673
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
674
		return;
675
	VM_BUG_ON(!pc->mem_cgroup);
676 677 678 679
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
680
	mz = page_cgroup_zoneinfo(pc);
681
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
682 683 684
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
685 686
	list_del_init(&pc->lru);
	return;
687 688
}

K
KAMEZAWA Hiroyuki 已提交
689
void mem_cgroup_del_lru(struct page *page)
690
{
K
KAMEZAWA Hiroyuki 已提交
691 692
	mem_cgroup_del_lru_list(page, page_lru(page));
}
693

K
KAMEZAWA Hiroyuki 已提交
694 695 696 697
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
698

699
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
700
		return;
701

K
KAMEZAWA Hiroyuki 已提交
702
	pc = lookup_page_cgroup(page);
703 704 705 706
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
707
	smp_rmb();
708 709
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
710 711 712
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
713 714
}

K
KAMEZAWA Hiroyuki 已提交
715
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
716
{
K
KAMEZAWA Hiroyuki 已提交
717 718
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
719

720
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
721 722
		return;
	pc = lookup_page_cgroup(page);
723
	VM_BUG_ON(PageCgroupAcctLRU(pc));
724 725 726 727
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
728 729
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
730
		return;
731

K
KAMEZAWA Hiroyuki 已提交
732
	mz = page_cgroup_zoneinfo(pc);
733
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
734 735 736
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
737 738
	list_add(&pc->lru, &mz->lists[lru]);
}
739

K
KAMEZAWA Hiroyuki 已提交
740
/*
741 742 743 744 745
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
746
 */
747
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
748
{
749 750 751 752 753 754 755 756 757 758 759 760
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
761 762
}

763 764 765 766 767 768 769 770
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
771
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
772 773 774 775 776
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
777 778 779
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
780
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
781 782 783
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
784 785
}

786 787 788
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
789
	struct mem_cgroup *curr = NULL;
790 791

	task_lock(task);
792 793 794
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
795
	task_unlock(task);
796 797
	if (!curr)
		return 0;
798 799 800 801 802 803 804
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
805 806 807 808
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
809 810 811
	return ret;
}

812 813 814 815 816
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
817 818 819 820 821 822 823
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
824 825 826 827
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
828
	spin_lock(&mem->reclaim_param_lock);
829 830
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
831
	spin_unlock(&mem->reclaim_param_lock);
832 833 834 835
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
836
	spin_lock(&mem->reclaim_param_lock);
837
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
838
	spin_unlock(&mem->reclaim_param_lock);
839 840
}

841
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
842 843 844
{
	unsigned long active;
	unsigned long inactive;
845 846
	unsigned long gb;
	unsigned long inactive_ratio;
847

K
KAMEZAWA Hiroyuki 已提交
848 849
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
850

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
878 879 880 881 882
		return 1;

	return 0;
}

883 884 885 886 887 888 889 890 891 892 893
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

894 895 896 897 898 899 900 901 902 903 904
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
925 926 927 928 929 930 931 932
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
933 934 935 936 937 938 939
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

940 941 942 943 944
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
945
					int active, int file)
946 947 948 949 950 951
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
952
	struct page_cgroup *pc, *tmp;
953 954 955
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
956
	int lru = LRU_FILE * file + active;
957
	int ret;
958

959
	BUG_ON(!mem_cont);
960
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
961
	src = &mz->lists[lru];
962

963 964
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
965
		if (scan >= nr_to_scan)
966
			break;
K
KAMEZAWA Hiroyuki 已提交
967 968

		page = pc->page;
969 970
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
971
		if (unlikely(!PageLRU(page)))
972 973
			continue;

H
Hugh Dickins 已提交
974
		scan++;
975 976 977
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
978
			list_move(&page->lru, dst);
979
			mem_cgroup_del_lru(page);
980
			nr_taken++;
981 982 983 984 985 986 987
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
988 989 990 991 992 993 994
		}
	}

	*scanned = scan;
	return nr_taken;
}

995 996 997
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1026 1027 1028 1029 1030 1031
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

/**
 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1053
	if (!memcg || !p)
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

1111
/*
K
KAMEZAWA Hiroyuki 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1154 1155
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1156 1157 1158
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1159 1160
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1161 1162
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1163
						struct zone *zone,
1164 1165
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1166
{
K
KAMEZAWA Hiroyuki 已提交
1167 1168 1169
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1170 1171
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1172 1173
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1174

1175 1176 1177 1178
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1179
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1180
		victim = mem_cgroup_select_victim(root_mem);
1181
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1182
			loop++;
1183 1184
			if (loop >= 1)
				drain_all_stock_async();
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
K
KAMEZAWA Hiroyuki 已提交
1208 1209 1210
		if (!mem_cgroup_local_usage(&victim->stat)) {
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1211 1212
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1213
		/* we use swappiness of local cgroup */
1214 1215 1216 1217 1218 1219 1220
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
				noswap, get_swappiness(victim), zone,
				zone->zone_pgdat->node_id);
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1221
		css_put(&victim->css);
1222 1223 1224 1225 1226 1227 1228
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1229
		total += ret;
1230 1231 1232 1233
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1234
			return 1 + total;
1235
	}
K
KAMEZAWA Hiroyuki 已提交
1236
	return total;
1237 1238
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
bool mem_cgroup_oom_called(struct task_struct *task)
{
	bool ret = false;
	struct mem_cgroup *mem;
	struct mm_struct *mm;

	rcu_read_lock();
	mm = task->mm;
	if (!mm)
		mm = &init_mm;
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
		ret = true;
	rcu_read_unlock();
	return ret;
}
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266

static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
{
	mem->last_oom_jiffies = jiffies;
	return 0;
}

static void record_last_oom(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
}

1267 1268 1269 1270
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
1271
void mem_cgroup_update_file_mapped(struct page *page, int val)
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
{
	struct mem_cgroup *mem;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
	if (!mem)
		goto done;

	if (!PageCgroupUsed(pc))
		goto done;

	/*
	 * Preemption is already disabled, we don't need get_cpu()
	 */
	cpu = smp_processor_id();
	stat = &mem->stat;
	cpustat = &stat->cpustat[cpu];

1298
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED, val);
1299 1300 1301
done:
	unlock_page_cgroup(pc);
}
1302

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
 * This will be consumed by consumt_stock() function, later.
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

	if (action != CPU_DEAD)
		return NOTIFY_OK;
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1430 1431 1432
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1433
 */
1434
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1435
			gfp_t gfp_mask, struct mem_cgroup **memcg,
1436
			bool oom, struct page *page)
1437
{
1438
	struct mem_cgroup *mem, *mem_over_limit;
1439
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1440
	struct res_counter *fail_res;
1441
	int csize = CHARGE_SIZE;
1442 1443 1444 1445 1446 1447 1448

	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
		/* Don't account this! */
		*memcg = NULL;
		return 0;
	}

1449
	/*
1450 1451
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1452 1453 1454
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1455 1456 1457
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
1458
		*memcg = mem;
1459
	} else {
1460
		css_get(&mem->css);
1461
	}
1462 1463 1464
	if (unlikely(!mem))
		return 0;

1465
	VM_BUG_ON(css_is_removed(&mem->css));
1466 1467
	if (mem_cgroup_is_root(mem))
		goto done;
1468

1469
	while (1) {
1470
		int ret = 0;
1471
		unsigned long flags = 0;
1472

1473 1474 1475 1476
		if (consume_stock(mem))
			goto charged;

		ret = res_counter_charge(&mem->res, csize, &fail_res);
1477 1478 1479
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1480
			ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1481 1482 1483
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
1484
			res_counter_uncharge(&mem->res, csize);
1485
			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1486 1487 1488 1489 1490 1491 1492
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1493 1494 1495 1496 1497
		/* reduce request size and retry */
		if (csize > PAGE_SIZE) {
			csize = PAGE_SIZE;
			continue;
		}
1498
		if (!(gfp_mask & __GFP_WAIT))
1499
			goto nomem;
1500

1501 1502
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
						gfp_mask, flags);
1503 1504
		if (ret)
			continue;
1505 1506

		/*
1507 1508 1509 1510 1511
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1512
		 *
1513
		 */
1514 1515
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1516

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
		/* try to avoid oom while someone is moving charge */
		if (mc.moving_task && current != mc.moving_task) {
			struct mem_cgroup *from, *to;
			bool do_continue = false;
			/*
			 * There is a small race that "from" or "to" can be
			 * freed by rmdir, so we use css_tryget().
			 */
			rcu_read_lock();
			from = mc.from;
			to = mc.to;
			if (from && css_tryget(&from->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&from->css,
							&mem_over_limit->css);
				else
					do_continue = (from == mem_over_limit);
				css_put(&from->css);
			}
			if (!do_continue && to && css_tryget(&to->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&to->css,
							&mem_over_limit->css);
				else
					do_continue = (to == mem_over_limit);
				css_put(&to->css);
			}
			rcu_read_unlock();
			if (do_continue) {
				DEFINE_WAIT(wait);
				prepare_to_wait(&mc.waitq, &wait,
							TASK_INTERRUPTIBLE);
				/* moving charge context might have finished. */
				if (mc.moving_task)
					schedule();
				finish_wait(&mc.waitq, &wait);
				continue;
			}
		}

1559
		if (!nr_retries--) {
1560
			if (oom) {
1561
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1562
				record_last_oom(mem_over_limit);
1563
			}
1564
			goto nomem;
1565
		}
1566
	}
1567 1568 1569
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
charged:
1570
	/*
1571 1572
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
1573
	 */
1574
	if (page && mem_cgroup_soft_limit_check(mem))
1575
		mem_cgroup_update_tree(mem, page);
1576
done:
1577 1578 1579 1580 1581
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
}
1582

1583 1584 1585 1586 1587
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
1588 1589
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
1590 1591
{
	if (!mem_cgroup_is_root(mem)) {
1592
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1593
		if (do_swap_account)
1594 1595 1596 1597
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_put(&mem->css, (int)count);
1598
	}
1599 1600 1601 1602 1603 1604
	/* we don't need css_put for root */
}

static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	__mem_cgroup_cancel_charge(mem, 1);
1605 1606
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1626
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1627
{
1628
	struct mem_cgroup *mem = NULL;
1629
	struct page_cgroup *pc;
1630
	unsigned short id;
1631 1632
	swp_entry_t ent;

1633 1634 1635
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
1636
	lock_page_cgroup(pc);
1637
	if (PageCgroupUsed(pc)) {
1638
		mem = pc->mem_cgroup;
1639 1640
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
1641
	} else if (PageSwapCache(page)) {
1642
		ent.val = page_private(page);
1643 1644 1645 1646 1647 1648
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1649
	}
1650
	unlock_page_cgroup(pc);
1651 1652 1653
	return mem;
}

1654
/*
1655
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1666 1667 1668 1669

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1670
		mem_cgroup_cancel_charge(mem);
1671
		return;
1672
	}
1673

1674
	pc->mem_cgroup = mem;
1675 1676 1677 1678 1679 1680 1681
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1682
	smp_wmb();
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1696

K
KAMEZAWA Hiroyuki 已提交
1697
	mem_cgroup_charge_statistics(mem, pc, true);
1698 1699

	unlock_page_cgroup(pc);
1700
}
1701

1702
/**
1703
 * __mem_cgroup_move_account - move account of the page
1704 1705 1706
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
1707
 * @uncharge: whether we should call uncharge and css_put against @from.
1708 1709
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1710
 * - page is not on LRU (isolate_page() is useful.)
1711
 * - the pc is locked, used, and ->mem_cgroup points to @from.
1712
 *
1713 1714 1715 1716
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
1717 1718
 */

1719
static void __mem_cgroup_move_account(struct page_cgroup *pc,
1720
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1721
{
1722 1723 1724 1725
	struct page *page;
	int cpu;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
1726 1727

	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1728
	VM_BUG_ON(PageLRU(pc->page));
1729 1730 1731
	VM_BUG_ON(!PageCgroupLocked(pc));
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
1732

1733
	page = pc->page;
1734
	if (page_mapped(page) && !PageAnon(page)) {
1735 1736 1737 1738
		cpu = smp_processor_id();
		/* Update mapped_file data for mem_cgroup "from" */
		stat = &from->stat;
		cpustat = &stat->cpustat[cpu];
1739
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
1740 1741 1742 1743 1744
						-1);

		/* Update mapped_file data for mem_cgroup "to" */
		stat = &to->stat;
		cpustat = &stat->cpustat[cpu];
1745
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
1746 1747
						1);
	}
1748 1749 1750 1751
	mem_cgroup_charge_statistics(from, pc, false);
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
		mem_cgroup_cancel_charge(from);
1752

1753
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
1754 1755
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
1756 1757 1758
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
1759 1760 1761
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
1762
	 */
1763 1764 1765 1766 1767 1768 1769
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
1770
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1771 1772 1773 1774
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1775
		__mem_cgroup_move_account(pc, from, to, uncharge);
1776 1777 1778
		ret = 0;
	}
	unlock_page_cgroup(pc);
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1790
	struct page *page = pc->page;
1791 1792 1793 1794 1795 1796 1797 1798 1799
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

1800 1801 1802 1803 1804
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
1805

1806
	parent = mem_cgroup_from_cont(pcg);
1807
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1808
	if (ret || !parent)
1809
		goto put_back;
1810

1811 1812 1813
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
		mem_cgroup_cancel_charge(parent);
1814
put_back:
K
KAMEZAWA Hiroyuki 已提交
1815
	putback_lru_page(page);
1816
put:
1817
	put_page(page);
1818
out:
1819 1820 1821
	return ret;
}

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1843
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1844
	if (ret || !mem)
1845 1846 1847
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1848 1849 1850
	return 0;
}

1851 1852
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1853
{
1854
	if (mem_cgroup_disabled())
1855
		return 0;
1856 1857
	if (PageCompound(page))
		return 0;
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
1869
	return mem_cgroup_charge_common(page, mm, gfp_mask,
1870
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1871 1872
}

D
Daisuke Nishimura 已提交
1873 1874 1875 1876
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

1877 1878
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
1879
{
1880 1881 1882
	struct mem_cgroup *mem = NULL;
	int ret;

1883
	if (mem_cgroup_disabled())
1884
		return 0;
1885 1886
	if (PageCompound(page))
		return 0;
1887 1888 1889 1890 1891 1892 1893 1894
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
1895 1896
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
1897 1898 1899 1900
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

1901 1902 1903 1904 1905 1906 1907

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
1908 1909
			return 0;
		}
1910
		unlock_page_cgroup(pc);
1911 1912
	}

1913
	if (unlikely(!mm && !mem))
1914
		mm = &init_mm;
1915

1916 1917
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
1918
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1919

D
Daisuke Nishimura 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1929 1930

	return ret;
1931 1932
}

1933 1934 1935
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
1936
 * struct page_cgroup is acquired. This refcnt will be consumed by
1937 1938
 * "commit()" or removed by "cancel()"
 */
1939 1940 1941 1942 1943
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
1944
	int ret;
1945

1946
	if (mem_cgroup_disabled())
1947 1948 1949 1950 1951 1952
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
1953 1954 1955
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
1956 1957
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
1958
		goto charge_cur_mm;
1959
	mem = try_get_mem_cgroup_from_page(page);
1960 1961
	if (!mem)
		goto charge_cur_mm;
1962
	*ptr = mem;
1963
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1964 1965 1966
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
1967 1968 1969
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
1970
	return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1971 1972
}

D
Daisuke Nishimura 已提交
1973 1974 1975
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
1976 1977 1978
{
	struct page_cgroup *pc;

1979
	if (mem_cgroup_disabled())
1980 1981 1982
		return;
	if (!ptr)
		return;
1983
	cgroup_exclude_rmdir(&ptr->css);
1984
	pc = lookup_page_cgroup(page);
1985
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
1986
	__mem_cgroup_commit_charge(ptr, pc, ctype);
1987
	mem_cgroup_lru_add_after_commit_swapcache(page);
1988 1989 1990
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
1991 1992 1993
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
1994
	 */
1995
	if (do_swap_account && PageSwapCache(page)) {
1996
		swp_entry_t ent = {.val = page_private(page)};
1997
		unsigned short id;
1998
		struct mem_cgroup *memcg;
1999 2000 2001 2002

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2003
		if (memcg) {
2004 2005 2006 2007
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2008
			if (!mem_cgroup_is_root(memcg))
2009
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2010
			mem_cgroup_swap_statistics(memcg, false);
2011 2012
			mem_cgroup_put(memcg);
		}
2013
		rcu_read_unlock();
2014
	}
2015 2016 2017 2018 2019 2020
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2021 2022
}

D
Daisuke Nishimura 已提交
2023 2024 2025 2026 2027 2028
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2029 2030
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2031
	if (mem_cgroup_disabled())
2032 2033 2034
		return;
	if (!mem)
		return;
2035
	mem_cgroup_cancel_charge(mem);
2036 2037
}

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */
	if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
	return;
}
2082

2083
/*
2084
 * uncharge if !page_mapped(page)
2085
 */
2086
static struct mem_cgroup *
2087
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2088
{
H
Hugh Dickins 已提交
2089
	struct page_cgroup *pc;
2090
	struct mem_cgroup *mem = NULL;
2091
	struct mem_cgroup_per_zone *mz;
2092

2093
	if (mem_cgroup_disabled())
2094
		return NULL;
2095

K
KAMEZAWA Hiroyuki 已提交
2096
	if (PageSwapCache(page))
2097
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2098

2099
	/*
2100
	 * Check if our page_cgroup is valid
2101
	 */
2102 2103
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2104
		return NULL;
2105

2106
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2107

2108 2109
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2110 2111 2112 2113 2114
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2115
	case MEM_CGROUP_CHARGE_TYPE_DROP:
K
KAMEZAWA Hiroyuki 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2128
	}
K
KAMEZAWA Hiroyuki 已提交
2129

2130 2131
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2132 2133
	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		mem_cgroup_swap_statistics(mem, true);
K
KAMEZAWA Hiroyuki 已提交
2134
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2135

2136
	ClearPageCgroupUsed(pc);
2137 2138 2139 2140 2141 2142
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2143

2144
	mz = page_cgroup_zoneinfo(pc);
2145
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
2146

2147
	if (mem_cgroup_soft_limit_check(mem))
2148
		mem_cgroup_update_tree(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2149 2150 2151
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
2152

2153
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2154 2155 2156

unlock_out:
	unlock_page_cgroup(pc);
2157
	return NULL;
2158 2159
}

2160 2161
void mem_cgroup_uncharge_page(struct page *page)
{
2162 2163 2164 2165 2166
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2167 2168 2169 2170 2171 2172
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2173
	VM_BUG_ON(page->mapping);
2174 2175 2176
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2221
#ifdef CONFIG_SWAP
2222
/*
2223
 * called after __delete_from_swap_cache() and drop "page" account.
2224 2225
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2226 2227
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2228 2229
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2230 2231 2232 2233 2234 2235
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2236 2237

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
2238
	if (do_swap_account && swapout && memcg) {
2239
		swap_cgroup_record(ent, css_id(&memcg->css));
2240 2241
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
2242
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
2243
		css_put(&memcg->css);
2244
}
2245
#endif
2246 2247 2248 2249 2250 2251 2252

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2253
{
2254
	struct mem_cgroup *memcg;
2255
	unsigned short id;
2256 2257 2258 2259

	if (!do_swap_account)
		return;

2260 2261 2262
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2263
	if (memcg) {
2264 2265 2266 2267
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2268
		if (!mem_cgroup_is_root(memcg))
2269
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2270
		mem_cgroup_swap_statistics(memcg, false);
2271 2272
		mem_cgroup_put(memcg);
	}
2273
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2274
}
2275 2276 2277 2278 2279 2280

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2281
 * @need_fixup: whether we should fixup res_counters and refcounts.
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2292
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2293 2294 2295 2296 2297 2298 2299 2300
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2301
		mem_cgroup_swap_statistics(to, true);
2302
		/*
2303 2304 2305 2306 2307 2308
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2309 2310
		 */
		mem_cgroup_get(to);
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
			css_put(&to->css);
		}
2323 2324 2325 2326 2327 2328
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2329
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2330 2331 2332
{
	return -EINVAL;
}
2333
#endif
K
KAMEZAWA Hiroyuki 已提交
2334

2335
/*
2336 2337
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2338
 */
2339
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2340 2341
{
	struct page_cgroup *pc;
2342 2343
	struct mem_cgroup *mem = NULL;
	int ret = 0;
2344

2345
	if (mem_cgroup_disabled())
2346 2347
		return 0;

2348 2349 2350
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2351 2352 2353
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
2354
	unlock_page_cgroup(pc);
2355

2356
	if (mem) {
2357 2358
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
						page);
2359 2360
		css_put(&mem->css);
	}
2361
	*ptr = mem;
2362
	return ret;
2363
}
2364

2365
/* remove redundant charge if migration failed*/
2366 2367
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
2368
{
2369 2370 2371 2372 2373 2374
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;
2375
	cgroup_exclude_rmdir(&mem->css);
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
2393
	if (unused)
2394 2395 2396
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
2397
	/*
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
2412
	 */
2413 2414
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
2415 2416 2417 2418 2419 2420
	/*
	 * At migration, we may charge account against cgroup which has no tasks
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2421
}
2422

2423
/*
2424 2425 2426 2427 2428 2429
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2430
 */
2431
int mem_cgroup_shmem_charge_fallback(struct page *page,
2432 2433
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2434
{
2435
	struct mem_cgroup *mem = NULL;
2436
	int ret;
2437

2438
	if (mem_cgroup_disabled())
2439
		return 0;
2440

2441 2442 2443
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2444

2445
	return ret;
2446 2447
}

2448 2449
static DEFINE_MUTEX(set_limit_mutex);

2450
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2451
				unsigned long long val)
2452
{
2453
	int retry_count;
2454
	u64 memswlimit;
2455
	int ret = 0;
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2467

2468
	while (retry_count) {
2469 2470 2471 2472
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2483 2484
			break;
		}
2485
		ret = res_counter_set_limit(&memcg->res, val);
2486 2487 2488 2489 2490 2491
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2492 2493 2494 2495 2496
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2497
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2498
						MEM_CGROUP_RECLAIM_SHRINK);
2499 2500 2501 2502 2503 2504
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2505
	}
2506

2507 2508 2509
	return ret;
}

L
Li Zefan 已提交
2510 2511
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2512
{
2513
	int retry_count;
2514
	u64 memlimit, oldusage, curusage;
2515 2516
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2517

2518 2519 2520
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
2539 2540 2541 2542 2543 2544
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2545 2546 2547 2548 2549
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2550
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2551 2552
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2553
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2554
		/* Usage is reduced ? */
2555
		if (curusage >= oldusage)
2556
			retry_count--;
2557 2558
		else
			oldusage = curusage;
2559 2560 2561 2562
	}
	return ret;
}

2563 2564 2565 2566 2567 2568 2569 2570 2571
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask, int nid,
						int zid)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2572
	unsigned long long excess;
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(nid, zid);
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2625
		excess = res_counter_soft_limit_excess(&mz->mem->res);
2626 2627 2628 2629 2630 2631 2632 2633
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
2634 2635
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2654 2655 2656 2657
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2658
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2659
				int node, int zid, enum lru_list lru)
2660
{
K
KAMEZAWA Hiroyuki 已提交
2661 2662
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2663
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2664
	unsigned long flags, loop;
2665
	struct list_head *list;
2666
	int ret = 0;
2667

K
KAMEZAWA Hiroyuki 已提交
2668 2669
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2670
	list = &mz->lists[lru];
2671

2672 2673 2674 2675 2676 2677
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2678
		spin_lock_irqsave(&zone->lru_lock, flags);
2679
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2680
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2681
			break;
2682 2683 2684 2685
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
2686
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
2687
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2688 2689
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2690
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2691

K
KAMEZAWA Hiroyuki 已提交
2692
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2693
		if (ret == -ENOMEM)
2694
			break;
2695 2696 2697 2698 2699 2700 2701

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2702
	}
K
KAMEZAWA Hiroyuki 已提交
2703

2704 2705 2706
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2707 2708 2709 2710 2711 2712
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2713
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2714
{
2715 2716 2717
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2718
	struct cgroup *cgrp = mem->css.cgroup;
2719

2720
	css_get(&mem->css);
2721 2722

	shrink = 0;
2723 2724 2725
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2726
move_account:
2727
	do {
2728
		ret = -EBUSY;
2729 2730 2731 2732
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
2733
			goto out;
2734 2735
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
2736
		drain_all_stock_sync();
2737
		ret = 0;
2738
		for_each_node_state(node, N_HIGH_MEMORY) {
2739
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2740
				enum lru_list l;
2741 2742
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
2743
							node, zid, l);
2744 2745 2746
					if (ret)
						break;
				}
2747
			}
2748 2749 2750 2751 2752 2753
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
2754
		cond_resched();
2755 2756
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
2757 2758 2759
out:
	css_put(&mem->css);
	return ret;
2760 2761

try_to_free:
2762 2763
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2764 2765 2766
		ret = -EBUSY;
		goto out;
	}
2767 2768
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2769 2770 2771 2772
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
2773 2774 2775 2776 2777

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
2778 2779
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
2780
		if (!progress) {
2781
			nr_retries--;
2782
			/* maybe some writeback is necessary */
2783
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2784
		}
2785 2786

	}
K
KAMEZAWA Hiroyuki 已提交
2787
	lru_add_drain();
2788
	/* try move_account...there may be some *locked* pages. */
2789
	goto move_account;
2790 2791
}

2792 2793 2794 2795 2796 2797
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
2816
	 * If parent's use_hierarchy is set, we can't make any modifications
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
	d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

2860
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
2861
{
2862
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2863
	u64 idx_val, val;
2864 2865 2866 2867 2868 2869
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_CACHE, &idx_val);
			val = idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_RSS, &idx_val);
			val += idx_val;
			val <<= PAGE_SHIFT;
		} else
			val = res_counter_read_u64(&mem->res, name);
2880 2881
		break;
	case _MEMSWAP:
2882 2883 2884 2885 2886 2887 2888 2889 2890
		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_CACHE, &idx_val);
			val = idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_RSS, &idx_val);
			val += idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
2891
			val += idx_val;
2892 2893 2894
			val <<= PAGE_SHIFT;
		} else
			val = res_counter_read_u64(&mem->memsw, name);
2895 2896 2897 2898 2899 2900
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
2901
}
2902 2903 2904 2905
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2906 2907
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
2908
{
2909
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2910
	int type, name;
2911 2912 2913
	unsigned long long val;
	int ret;

2914 2915 2916
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
2917
	case RES_LIMIT:
2918 2919 2920 2921
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2922 2923
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
2924 2925 2926
		if (ret)
			break;
		if (type == _MEM)
2927
			ret = mem_cgroup_resize_limit(memcg, val);
2928 2929
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2930
		break;
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
2945 2946 2947 2948 2949
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
2950 2951
}

2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

2980
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2981 2982
{
	struct mem_cgroup *mem;
2983
	int type, name;
2984 2985

	mem = mem_cgroup_from_cont(cont);
2986 2987 2988
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
2989
	case RES_MAX_USAGE:
2990 2991 2992 2993
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
2994 2995
		break;
	case RES_FAILCNT:
2996 2997 2998 2999
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3000 3001
		break;
	}
3002

3003
	return 0;
3004 3005
}

3006 3007 3008 3009 3010 3011
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3012
#ifdef CONFIG_MMU
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3031 3032 3033 3034 3035 3036 3037
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3038

K
KAMEZAWA Hiroyuki 已提交
3039 3040 3041 3042 3043

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3044
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3045 3046
	MCS_PGPGIN,
	MCS_PGPGOUT,
3047
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3058 3059
};

K
KAMEZAWA Hiroyuki 已提交
3060 3061 3062 3063 3064 3065
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3066
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3067 3068
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3069
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3088 3089
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_FILE_MAPPED);
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
3090 3091 3092 3093
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
	s->stat[MCS_PGPGIN] += val;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
	s->stat[MCS_PGPGOUT] += val;
3094 3095 3096 3097
	if (do_swap_account) {
		val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

3119 3120
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3121 3122
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3123
	struct mcs_total_stat mystat;
3124 3125
	int i;

K
KAMEZAWA Hiroyuki 已提交
3126 3127
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3128

3129 3130 3131
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3132
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3133
	}
L
Lee Schermerhorn 已提交
3134

K
KAMEZAWA Hiroyuki 已提交
3135
	/* Hierarchical information */
3136 3137 3138 3139 3140 3141 3142
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3143

K
KAMEZAWA Hiroyuki 已提交
3144 3145
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3146 3147 3148
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3149
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3150
	}
K
KAMEZAWA Hiroyuki 已提交
3151

K
KOSAKI Motohiro 已提交
3152
#ifdef CONFIG_DEBUG_VM
3153
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3181 3182 3183
	return 0;
}

K
KOSAKI Motohiro 已提交
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3196

K
KOSAKI Motohiro 已提交
3197 3198 3199 3200 3201 3202 3203
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3204 3205 3206

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3207 3208
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3209 3210
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3211
		return -EINVAL;
3212
	}
K
KOSAKI Motohiro 已提交
3213 3214 3215 3216 3217

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3218 3219
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3220 3221 3222
	return 0;
}

3223

B
Balbir Singh 已提交
3224 3225
static struct cftype mem_cgroup_files[] = {
	{
3226
		.name = "usage_in_bytes",
3227
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3228
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3229
	},
3230 3231
	{
		.name = "max_usage_in_bytes",
3232
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3233
		.trigger = mem_cgroup_reset,
3234 3235
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3236
	{
3237
		.name = "limit_in_bytes",
3238
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3239
		.write_string = mem_cgroup_write,
3240
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3241
	},
3242 3243 3244 3245 3246 3247
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3248 3249
	{
		.name = "failcnt",
3250
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3251
		.trigger = mem_cgroup_reset,
3252
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3253
	},
3254 3255
	{
		.name = "stat",
3256
		.read_map = mem_control_stat_show,
3257
	},
3258 3259 3260 3261
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
3262 3263 3264 3265 3266
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
3267 3268 3269 3270 3271
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3272 3273 3274 3275 3276
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
B
Balbir Singh 已提交
3277 3278
};

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

3320 3321 3322
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
3323
	struct mem_cgroup_per_zone *mz;
3324
	enum lru_list l;
3325
	int zone, tmp = node;
3326 3327 3328 3329 3330 3331 3332 3333
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
3334 3335 3336
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3337 3338
	if (!pn)
		return 1;
3339

3340 3341
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
3342 3343 3344

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
3345 3346
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
3347
		mz->usage_in_excess = 0;
3348 3349
		mz->on_tree = false;
		mz->mem = mem;
3350
	}
3351 3352 3353
	return 0;
}

3354 3355 3356 3357 3358
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

3359 3360 3361 3362 3363 3364
static int mem_cgroup_size(void)
{
	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
	return sizeof(struct mem_cgroup) + cpustat_size;
}

3365 3366 3367
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
3368
	int size = mem_cgroup_size();
3369

3370 3371
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
3372
	else
3373
		mem = vmalloc(size);
3374 3375

	if (mem)
3376
		memset(mem, 0, size);
3377 3378 3379
	return mem;
}

3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

3391
static void __mem_cgroup_free(struct mem_cgroup *mem)
3392
{
K
KAMEZAWA Hiroyuki 已提交
3393 3394
	int node;

3395
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
3396 3397
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
3398 3399 3400
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

3401
	if (mem_cgroup_size() < PAGE_SIZE)
3402 3403 3404 3405 3406
		kfree(mem);
	else
		vfree(mem);
}

3407 3408 3409 3410 3411
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

3412
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
3413
{
3414
	if (atomic_sub_and_test(count, &mem->refcnt)) {
3415
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3416
		__mem_cgroup_free(mem);
3417 3418 3419
		if (parent)
			mem_cgroup_put(parent);
	}
3420 3421
}

3422 3423 3424 3425 3426
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

3427 3428 3429 3430 3431 3432 3433 3434 3435
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
3436

3437 3438 3439
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
3440
	if (!mem_cgroup_disabled() && really_do_swap_account)
3441 3442 3443 3444 3445 3446 3447 3448
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
3474
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
3475 3476
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
3477
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
3478
	long error = -ENOMEM;
3479
	int node;
B
Balbir Singh 已提交
3480

3481 3482
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
3483
		return ERR_PTR(error);
3484

3485 3486 3487
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
3488

3489
	/* root ? */
3490
	if (cont->parent == NULL) {
3491
		int cpu;
3492
		enable_swap_cgroup();
3493
		parent = NULL;
3494
		root_mem_cgroup = mem;
3495 3496
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
3497 3498 3499 3500 3501 3502
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
		hotcpu_notifier(memcg_stock_cpu_callback, 0);
3503
	} else {
3504
		parent = mem_cgroup_from_cont(cont->parent);
3505 3506
		mem->use_hierarchy = parent->use_hierarchy;
	}
3507

3508 3509 3510
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
3511 3512 3513 3514 3515 3516 3517
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
3518 3519 3520 3521
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
3522
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
3523
	spin_lock_init(&mem->reclaim_param_lock);
3524

K
KOSAKI Motohiro 已提交
3525 3526
	if (parent)
		mem->swappiness = get_swappiness(parent);
3527
	atomic_set(&mem->refcnt, 1);
3528
	mem->move_charge_at_immigrate = 0;
B
Balbir Singh 已提交
3529
	return &mem->css;
3530
free_out:
3531
	__mem_cgroup_free(mem);
3532
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
3533
	return ERR_PTR(error);
B
Balbir Singh 已提交
3534 3535
}

3536
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3537 3538 3539
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3540 3541

	return mem_cgroup_force_empty(mem, false);
3542 3543
}

B
Balbir Singh 已提交
3544 3545 3546
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3547 3548 3549
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
3550 3551 3552 3553 3554
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3555 3556 3557 3558 3559 3560 3561 3562
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
3563 3564
}

3565
#ifdef CONFIG_MMU
3566
/* Handlers for move charge at task migration. */
3567 3568
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
3569
{
3570 3571
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
3572 3573
	struct mem_cgroup *mem = mc.to;

3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_get(&mem->css, (int)count);
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem,
								false, NULL);
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
3619 3620
	return ret;
}
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
3643 3644 3645 3646 3647 3648

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
3649
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
3650 3651 3652 3653 3654 3655
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
3656 3657 3658
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
3659 3660 3661 3662 3663
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
3664
	swp_entry_t	ent;
3665 3666 3667 3668 3669
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
3670
	MC_TARGET_SWAP,
3671 3672 3673 3674 3675
};

static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
3676
	struct page *page = NULL;
3677 3678
	struct page_cgroup *pc;
	int ret = 0;
3679 3680
	swp_entry_t ent = { .val = 0 };
	int usage_count = 0;
3681 3682 3683
	bool move_anon = test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);

3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
	if (!pte_present(ptent)) {
		/* TODO: handle swap of shmes/tmpfs */
		if (pte_none(ptent) || pte_file(ptent))
			return 0;
		else if (is_swap_pte(ptent)) {
			ent = pte_to_swp_entry(ptent);
			if (!move_anon || non_swap_entry(ent))
				return 0;
			usage_count = mem_cgroup_count_swap_user(ent, &page);
		}
	} else {
		page = vm_normal_page(vma, addr, ptent);
		if (!page || !page_mapped(page))
			return 0;
		/*
		 * TODO: We don't move charges of file(including shmem/tmpfs)
		 * pages for now.
		 */
		if (!move_anon || !PageAnon(page))
			return 0;
		if (!get_page_unless_zero(page))
			return 0;
		usage_count = page_mapcount(page);
	}
	if (usage_count > 1) {
		/*
		 * TODO: We don't move charges of shared(used by multiple
		 * processes) pages for now.
		 */
		if (page)
			put_page(page);
3715
		return 0;
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
	}
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
	/* throught */
	if (ent.val && do_swap_account && !ret &&
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
3736
		if (target)
3737
			target->ent = ent;
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

3757 3758 3759
	return 0;
}

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		/* TODO: We don't move charges of shmem/tmpfs pages for now. */
		if (vma->vm_flags & VM_SHARED)
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
	up_read(&mm->mmap_sem);

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
3790
	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
3791 3792 3793 3794 3795
}

static void mem_cgroup_clear_mc(void)
{
	/* we must uncharge all the leftover precharges from mc.to */
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
3807
	}
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		WARN_ON_ONCE(mc.moved_swap > INT_MAX);
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
			VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
			__css_put(&mc.to->css, mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */

		mc.moved_swap = 0;
	}
3831 3832
	mc.from = NULL;
	mc.to = NULL;
3833 3834
	mc.moving_task = NULL;
	wake_up_all(&mc.waitq);
3835 3836
}

3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
3855 3856 3857 3858
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
3859
			VM_BUG_ON(mc.moved_charge);
3860
			VM_BUG_ON(mc.moved_swap);
3861
			VM_BUG_ON(mc.moving_task);
3862 3863 3864
			mc.from = from;
			mc.to = mem;
			mc.precharge = 0;
3865
			mc.moved_charge = 0;
3866
			mc.moved_swap = 0;
3867
			mc.moving_task = current;
3868 3869 3870 3871 3872

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
		}
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
		mmput(mm);
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
3883
	mem_cgroup_clear_mc();
3884 3885
}

3886 3887 3888
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
3889
{
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
3903
		swp_entry_t ent;
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
3915 3916
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
3917
				mc.precharge--;
3918 3919
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
3920 3921 3922 3923 3924
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
3925 3926
		case MC_TARGET_SWAP:
			ent = target.ent;
3927 3928
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
3929
				mc.precharge--;
3930 3931 3932
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
3933
			break;
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
3948
		ret = mem_cgroup_do_precharge(1);
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		/* TODO: We don't move charges of shmem/tmpfs pages for now. */
		if (vma->vm_flags & VM_SHARED)
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
	up_read(&mm->mmap_sem);
3984 3985
}

B
Balbir Singh 已提交
3986 3987 3988
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
3989 3990
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
3991
{
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
	struct mm_struct *mm;

	if (!mc.to)
		/* no need to move charge */
		return;

	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4004 4005
}

B
Balbir Singh 已提交
4006 4007 4008 4009
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
4010
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
4011 4012
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
4013 4014
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
4015
	.attach = mem_cgroup_move_task,
4016
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
4017
	.use_id = 1,
B
Balbir Singh 已提交
4018
};
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif