memcontrol.c 179.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
95
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
96
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
97
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 99 100
	MEM_CGROUP_STAT_NSTATS,
};

101 102 103 104 105 106 107
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

108 109 110
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
111 112
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
113 114
	MEM_CGROUP_EVENTS_NSTATS,
};
115 116 117 118 119 120 121 122

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

123 124 125 126 127 128 129 130
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

131 132 133 134 135 136 137 138 139
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
140
	MEM_CGROUP_TARGET_NUMAINFO,
141 142
	MEM_CGROUP_NTARGETS,
};
143 144 145
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
146

147
struct mem_cgroup_stat_cpu {
148
	long count[MEM_CGROUP_STAT_NSTATS];
149
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
150
	unsigned long nr_page_events;
151
	unsigned long targets[MEM_CGROUP_NTARGETS];
152 153
};

154 155 156 157 158 159 160
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

161 162 163 164
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
165
	struct lruvec		lruvec;
166
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
167

168 169
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

170 171 172 173
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
174
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
175
						/* use container_of	   */
176 177 178 179 180 181 182 183 184 185
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

206 207 208 209 210
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
211
/* For threshold */
212
struct mem_cgroup_threshold_ary {
213
	/* An array index points to threshold just below or equal to usage. */
214
	int current_threshold;
215 216 217 218 219
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
220 221 222 223 224 225 226 227 228 229 230 231

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
232 233 234 235 236
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
237

238 239
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
240

B
Balbir Singh 已提交
241 242 243 244 245 246 247
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
248 249 250
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
251 252 253 254 255 256 257
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
276 277
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
278 279 280 281
		 */
		struct work_struct work_freeing;
	};

282 283 284 285
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
286 287 288 289
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
290
	struct mem_cgroup_lru_info info;
291 292 293
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
294 295
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
296
#endif
297 298 299 300
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
301
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
302 303 304 305

	bool		oom_lock;
	atomic_t	under_oom;

306
	atomic_t	refcnt;
307

308
	int	swappiness;
309 310
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
311

312 313 314
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

315 316 317 318
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
319
	struct mem_cgroup_thresholds thresholds;
320

321
	/* thresholds for mem+swap usage. RCU-protected */
322
	struct mem_cgroup_thresholds memsw_thresholds;
323

K
KAMEZAWA Hiroyuki 已提交
324 325
	/* For oom notifier event fd */
	struct list_head oom_notify;
326

327 328 329 330 331
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
332 333 334 335
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
336 337
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
338
	/*
339
	 * percpu counter.
340
	 */
341
	struct mem_cgroup_stat_cpu __percpu *stat;
342 343 344 345 346 347
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
348

M
Michal Hocko 已提交
349
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
350 351
	struct tcp_memcontrol tcp_mem;
#endif
352 353 354 355 356 357 358 359
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
B
Balbir Singh 已提交
360 361
};

362 363 364
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
365
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
366
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
367 368
};

369 370 371
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
372 373 374 375 376 377

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
378 379 380 381 382 383

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

384 385 386 387 388
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

389 390 391 392 393
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

394 395 396 397 398 399 400 401 402 403 404
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
405 406
#endif

407 408 409 410 411 412
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
413
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
414
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
415 416 417
	NR_MOVE_TYPE,
};

418 419
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
420
	spinlock_t	  lock; /* for from, to */
421 422 423
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
424
	unsigned long moved_charge;
425
	unsigned long moved_swap;
426 427 428
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
429
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
430 431
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
432

D
Daisuke Nishimura 已提交
433 434 435 436 437 438
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

439 440 441 442 443 444
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

445 446 447 448
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
449 450
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
451

452 453
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
454
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
455
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
456
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
457 458 459
	NR_CHARGE_TYPE,
};

460
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
461 462 463 464
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
465
	_KMEM,
G
Glauber Costa 已提交
466 467
};

468 469
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
470
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
471 472
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
473

474 475 476 477 478 479 480 481
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

482 483
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
484

485 486 487 488 489 490
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

491 492 493 494 495
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
496
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
497
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
498 499 500

void sock_update_memcg(struct sock *sk)
{
501
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
502
		struct mem_cgroup *memcg;
503
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
504 505 506

		BUG_ON(!sk->sk_prot->proto_cgroup);

507 508 509 510 511 512 513 514 515 516 517 518 519 520
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
521 522
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
523 524
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
525
			mem_cgroup_get(memcg);
526
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
527 528 529 530 531 532 533 534
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
535
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
536 537 538 539 540 541
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
542 543 544 545 546 547 548 549 550

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
551

552 553 554 555 556 557 558 559 560 561 562 563
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

564
#ifdef CONFIG_MEMCG_KMEM
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
583 584
int memcg_limited_groups_array_size;

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

600 601 602 603 604 605
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
606
struct static_key memcg_kmem_enabled_key;
607
EXPORT_SYMBOL(memcg_kmem_enabled_key);
608 609 610

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
611
	if (memcg_kmem_is_active(memcg)) {
612
		static_key_slow_dec(&memcg_kmem_enabled_key);
613 614
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
615 616 617 618 619
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
620 621 622 623 624 625 626 627 628 629 630 631 632
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

633
static void drain_all_stock_async(struct mem_cgroup *memcg);
634

635
static struct mem_cgroup_per_zone *
636
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
637
{
638
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
639 640
}

641
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
642
{
643
	return &memcg->css;
644 645
}

646
static struct mem_cgroup_per_zone *
647
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
648
{
649 650
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
651

652
	return mem_cgroup_zoneinfo(memcg, nid, zid);
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
671
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
672
				struct mem_cgroup_per_zone *mz,
673 674
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
675 676 677 678 679 680 681 682
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

683 684 685
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
702 703 704
}

static void
705
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
706 707 708 709 710 711 712 713 714
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

715
static void
716
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
717 718 719 720
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
721
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
722 723 724 725
	spin_unlock(&mctz->lock);
}


726
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
727
{
728
	unsigned long long excess;
729 730
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
731 732
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
733 734 735
	mctz = soft_limit_tree_from_page(page);

	/*
736 737
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
738
	 */
739 740 741
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
742 743 744 745
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
746
		if (excess || mz->on_tree) {
747 748 749
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
750
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
751
			/*
752 753
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
754
			 */
755
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
756 757
			spin_unlock(&mctz->lock);
		}
758 759 760
	}
}

761
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
762 763 764 765 766
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
767
	for_each_node(node) {
768
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
769
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
770
			mctz = soft_limit_tree_node_zone(node, zone);
771
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
772 773 774 775
		}
	}
}

776 777 778 779
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
780
	struct mem_cgroup_per_zone *mz;
781 782

retry:
783
	mz = NULL;
784 785 786 787 788 789 790 791 792 793
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
794 795 796
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
832
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
833
				 enum mem_cgroup_stat_index idx)
834
{
835
	long val = 0;
836 837
	int cpu;

838 839
	get_online_cpus();
	for_each_online_cpu(cpu)
840
		val += per_cpu(memcg->stat->count[idx], cpu);
841
#ifdef CONFIG_HOTPLUG_CPU
842 843 844
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
845 846
#endif
	put_online_cpus();
847 848 849
	return val;
}

850
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
851 852 853
					 bool charge)
{
	int val = (charge) ? 1 : -1;
854
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
855 856
}

857
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
858 859 860 861 862 863
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
864
		val += per_cpu(memcg->stat->events[idx], cpu);
865
#ifdef CONFIG_HOTPLUG_CPU
866 867 868
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
869 870 871 872
#endif
	return val;
}

873
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
874
					 bool anon, int nr_pages)
875
{
876 877
	preempt_disable();

878 879 880 881 882 883
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
884
				nr_pages);
885
	else
886
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
887
				nr_pages);
888

889 890
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
891
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
892
	else {
893
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
894 895
		nr_pages = -nr_pages; /* for event */
	}
896

897
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
898

899
	preempt_enable();
900 901
}

902
unsigned long
903
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
904 905 906 907 908 909 910 911
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
912
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
913
			unsigned int lru_mask)
914 915
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
916
	enum lru_list lru;
917 918
	unsigned long ret = 0;

919
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
920

H
Hugh Dickins 已提交
921 922 923
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
924 925 926 927 928
	}
	return ret;
}

static unsigned long
929
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
930 931
			int nid, unsigned int lru_mask)
{
932 933 934
	u64 total = 0;
	int zid;

935
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
936 937
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
938

939 940
	return total;
}
941

942
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
943
			unsigned int lru_mask)
944
{
945
	int nid;
946 947
	u64 total = 0;

948
	for_each_node_state(nid, N_MEMORY)
949
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
950
	return total;
951 952
}

953 954
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
955 956 957
{
	unsigned long val, next;

958
	val = __this_cpu_read(memcg->stat->nr_page_events);
959
	next = __this_cpu_read(memcg->stat->targets[target]);
960
	/* from time_after() in jiffies.h */
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
977
	}
978
	return false;
979 980 981 982 983 984
}

/*
 * Check events in order.
 *
 */
985
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
986
{
987
	preempt_disable();
988
	/* threshold event is triggered in finer grain than soft limit */
989 990
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
991 992
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
993 994 995 996 997 998 999 1000 1001

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1002
		mem_cgroup_threshold(memcg);
1003
		if (unlikely(do_softlimit))
1004
			mem_cgroup_update_tree(memcg, page);
1005
#if MAX_NUMNODES > 1
1006
		if (unlikely(do_numainfo))
1007
			atomic_inc(&memcg->numainfo_events);
1008
#endif
1009 1010
	} else
		preempt_enable();
1011 1012
}

G
Glauber Costa 已提交
1013
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
1014
{
1015 1016
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
1017 1018
}

1019
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1020
{
1021 1022 1023 1024 1025 1026 1027 1028
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1029
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1030 1031
}

1032
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1033
{
1034
	struct mem_cgroup *memcg = NULL;
1035 1036 1037

	if (!mm)
		return NULL;
1038 1039 1040 1041 1042 1043 1044
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1045 1046
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1047
			break;
1048
	} while (!css_tryget(&memcg->css));
1049
	rcu_read_unlock();
1050
	return memcg;
1051 1052
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1073
{
1074 1075
	struct mem_cgroup *memcg = NULL;
	int id = 0;
1076

1077 1078 1079
	if (mem_cgroup_disabled())
		return NULL;

1080 1081
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1082

1083 1084
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1085

1086 1087
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1088

1089 1090 1091 1092 1093
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1094

1095
	while (!memcg) {
1096
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1097
		struct cgroup_subsys_state *css;
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
1110

1111 1112 1113 1114
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
1115
				memcg = mem_cgroup_from_css(css);
1116 1117
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
1118 1119
		rcu_read_unlock();

1120 1121 1122 1123 1124 1125 1126
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1127 1128 1129 1130 1131

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1132
}
K
KAMEZAWA Hiroyuki 已提交
1133

1134 1135 1136 1137 1138 1139 1140
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1141 1142 1143 1144 1145 1146
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1147

1148 1149 1150 1151 1152 1153
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1154
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1155
	     iter != NULL;				\
1156
	     iter = mem_cgroup_iter(root, iter, NULL))
1157

1158
#define for_each_mem_cgroup(iter)			\
1159
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1160
	     iter != NULL;				\
1161
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1162

1163
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1164
{
1165
	struct mem_cgroup *memcg;
1166 1167

	rcu_read_lock();
1168 1169
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1170 1171 1172 1173
		goto out;

	switch (idx) {
	case PGFAULT:
1174 1175 1176 1177
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1178 1179 1180 1181 1182 1183 1184
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1185
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1186

1187 1188 1189
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1190
 * @memcg: memcg of the wanted lruvec
1191 1192 1193 1194 1195 1196 1197 1198 1199
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1200
	struct lruvec *lruvec;
1201

1202 1203 1204 1205
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1206 1207

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1218 1219
}

K
KAMEZAWA Hiroyuki 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1233

1234
/**
1235
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1236
 * @page: the page
1237
 * @zone: zone of the page
1238
 */
1239
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1240 1241
{
	struct mem_cgroup_per_zone *mz;
1242 1243
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1244
	struct lruvec *lruvec;
1245

1246 1247 1248 1249
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1250

K
KAMEZAWA Hiroyuki 已提交
1251
	pc = lookup_page_cgroup(page);
1252
	memcg = pc->mem_cgroup;
1253 1254

	/*
1255
	 * Surreptitiously switch any uncharged offlist page to root:
1256 1257 1258 1259 1260 1261 1262
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1263
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1264 1265
		pc->mem_cgroup = memcg = root_mem_cgroup;

1266
	mz = page_cgroup_zoneinfo(memcg, page);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1277
}
1278

1279
/**
1280 1281 1282 1283
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1284
 *
1285 1286
 * This function must be called when a page is added to or removed from an
 * lru list.
1287
 */
1288 1289
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1290 1291
{
	struct mem_cgroup_per_zone *mz;
1292
	unsigned long *lru_size;
1293 1294 1295 1296

	if (mem_cgroup_disabled())
		return;

1297 1298 1299 1300
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1301
}
1302

1303
/*
1304
 * Checks whether given mem is same or in the root_mem_cgroup's
1305 1306
 * hierarchy subtree
 */
1307 1308
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1309
{
1310 1311
	if (root_memcg == memcg)
		return true;
1312
	if (!root_memcg->use_hierarchy || !memcg)
1313
		return false;
1314 1315 1316 1317 1318 1319 1320 1321
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1322
	rcu_read_lock();
1323
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1324 1325
	rcu_read_unlock();
	return ret;
1326 1327
}

1328
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1329 1330
{
	int ret;
1331
	struct mem_cgroup *curr = NULL;
1332
	struct task_struct *p;
1333

1334
	p = find_lock_task_mm(task);
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1350 1351
	if (!curr)
		return 0;
1352
	/*
1353
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1354
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1355 1356
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1357
	 */
1358
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1359
	css_put(&curr->css);
1360 1361 1362
	return ret;
}

1363
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1364
{
1365
	unsigned long inactive_ratio;
1366
	unsigned long inactive;
1367
	unsigned long active;
1368
	unsigned long gb;
1369

1370 1371
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1372

1373 1374 1375 1376 1377 1378
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1379
	return inactive * inactive_ratio < active;
1380 1381
}

1382
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1383 1384 1385 1386
{
	unsigned long active;
	unsigned long inactive;

1387 1388
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1389 1390 1391 1392

	return (active > inactive);
}

1393 1394 1395
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1396
/**
1397
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1398
 * @memcg: the memory cgroup
1399
 *
1400
 * Returns the maximum amount of memory @mem can be charged with, in
1401
 * pages.
1402
 */
1403
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1404
{
1405 1406
	unsigned long long margin;

1407
	margin = res_counter_margin(&memcg->res);
1408
	if (do_swap_account)
1409
		margin = min(margin, res_counter_margin(&memcg->memsw));
1410
	return margin >> PAGE_SHIFT;
1411 1412
}

1413
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1414 1415 1416 1417 1418 1419 1420
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1421
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1422 1423
}

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1438 1439 1440 1441

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1442
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1443
{
1444
	atomic_inc(&memcg_moving);
1445
	atomic_inc(&memcg->moving_account);
1446 1447 1448
	synchronize_rcu();
}

1449
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1450
{
1451 1452 1453 1454
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1455 1456
	if (memcg) {
		atomic_dec(&memcg_moving);
1457
		atomic_dec(&memcg->moving_account);
1458
	}
1459
}
1460

1461 1462 1463
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1464 1465
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1466 1467 1468 1469 1470 1471 1472
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1473
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1474 1475
{
	VM_BUG_ON(!rcu_read_lock_held());
1476
	return atomic_read(&memcg->moving_account) > 0;
1477
}
1478

1479
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1480
{
1481 1482
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1483
	bool ret = false;
1484 1485 1486 1487 1488 1489 1490 1491 1492
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1493

1494 1495
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1496 1497
unlock:
	spin_unlock(&mc.lock);
1498 1499 1500
	return ret;
}

1501
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1502 1503
{
	if (mc.moving_task && current != mc.moving_task) {
1504
		if (mem_cgroup_under_move(memcg)) {
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1517 1518 1519 1520
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1521
 * see mem_cgroup_stolen(), too.
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1535
#define K(x) ((x) << (PAGE_SHIFT-10))
1536
/**
1537
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1555 1556
	struct mem_cgroup *iter;
	unsigned int i;
1557

1558
	if (!p)
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1602 1603 1604 1605
	printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1630 1631
}

1632 1633 1634 1635
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1636
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1637 1638
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1639 1640
	struct mem_cgroup *iter;

1641
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1642
		num++;
1643 1644 1645
	return num;
}

D
David Rientjes 已提交
1646 1647 1648
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1649
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1650 1651 1652
{
	u64 limit;

1653 1654
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1655
	/*
1656
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1657
	 */
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1672 1673
}

1674 1675
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1676 1677 1678 1679 1680 1681 1682
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1777 1778
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1779
 * @memcg: the target memcg
1780 1781 1782 1783 1784 1785 1786
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1787
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1788 1789
		int nid, bool noswap)
{
1790
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1791 1792 1793
		return true;
	if (noswap || !total_swap_pages)
		return false;
1794
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1795 1796 1797 1798
		return true;
	return false;

}
1799 1800 1801 1802 1803 1804 1805 1806
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1807
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1808 1809
{
	int nid;
1810 1811 1812 1813
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1814
	if (!atomic_read(&memcg->numainfo_events))
1815
		return;
1816
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1817 1818 1819
		return;

	/* make a nodemask where this memcg uses memory from */
1820
	memcg->scan_nodes = node_states[N_MEMORY];
1821

1822
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1823

1824 1825
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1826
	}
1827

1828 1829
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1844
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1845 1846 1847
{
	int node;

1848 1849
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1850

1851
	node = next_node(node, memcg->scan_nodes);
1852
	if (node == MAX_NUMNODES)
1853
		node = first_node(memcg->scan_nodes);
1854 1855 1856 1857 1858 1859 1860 1861 1862
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1863
	memcg->last_scanned_node = node;
1864 1865 1866
	return node;
}

1867 1868 1869 1870 1871 1872
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1873
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1874 1875 1876 1877 1878 1879 1880
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1881 1882
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1883
		     nid < MAX_NUMNODES;
1884
		     nid = next_node(nid, memcg->scan_nodes)) {
1885

1886
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1887 1888 1889 1890 1891 1892
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1893
	for_each_node_state(nid, N_MEMORY) {
1894
		if (node_isset(nid, memcg->scan_nodes))
1895
			continue;
1896
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1897 1898 1899 1900 1901
			return true;
	}
	return false;
}

1902
#else
1903
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1904 1905 1906
{
	return 0;
}
1907

1908
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1909
{
1910
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1911
}
1912 1913
#endif

1914 1915 1916 1917
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1918
{
1919
	struct mem_cgroup *victim = NULL;
1920
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1921
	int loop = 0;
1922
	unsigned long excess;
1923
	unsigned long nr_scanned;
1924 1925 1926 1927
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1928

1929
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1930

1931
	while (1) {
1932
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1933
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1934
			loop++;
1935 1936 1937 1938 1939 1940
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1941
				if (!total)
1942 1943
					break;
				/*
L
Lucas De Marchi 已提交
1944
				 * We want to do more targeted reclaim.
1945 1946 1947 1948 1949
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1950
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1951 1952
					break;
			}
1953
			continue;
1954
		}
1955
		if (!mem_cgroup_reclaimable(victim, false))
1956
			continue;
1957 1958 1959 1960
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1961
			break;
1962
	}
1963
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1964
	return total;
1965 1966
}

K
KAMEZAWA Hiroyuki 已提交
1967 1968 1969
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1970
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1971
 */
1972
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1973
{
1974
	struct mem_cgroup *iter, *failed = NULL;
1975

1976
	for_each_mem_cgroup_tree(iter, memcg) {
1977
		if (iter->oom_lock) {
1978 1979 1980 1981 1982
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1983 1984
			mem_cgroup_iter_break(memcg, iter);
			break;
1985 1986
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1987
	}
K
KAMEZAWA Hiroyuki 已提交
1988

1989
	if (!failed)
1990
		return true;
1991 1992 1993 1994 1995

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1996
	for_each_mem_cgroup_tree(iter, memcg) {
1997
		if (iter == failed) {
1998 1999
			mem_cgroup_iter_break(memcg, iter);
			break;
2000 2001 2002
		}
		iter->oom_lock = false;
	}
2003
	return false;
2004
}
2005

2006
/*
2007
 * Has to be called with memcg_oom_lock
2008
 */
2009
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2010
{
K
KAMEZAWA Hiroyuki 已提交
2011 2012
	struct mem_cgroup *iter;

2013
	for_each_mem_cgroup_tree(iter, memcg)
2014 2015 2016 2017
		iter->oom_lock = false;
	return 0;
}

2018
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2019 2020 2021
{
	struct mem_cgroup *iter;

2022
	for_each_mem_cgroup_tree(iter, memcg)
2023 2024 2025
		atomic_inc(&iter->under_oom);
}

2026
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2027 2028 2029
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2030 2031 2032 2033 2034
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2035
	for_each_mem_cgroup_tree(iter, memcg)
2036
		atomic_add_unless(&iter->under_oom, -1, 0);
2037 2038
}

2039
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2040 2041
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2042
struct oom_wait_info {
2043
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2044 2045 2046 2047 2048 2049
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2050 2051
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2052 2053 2054
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2055
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2056 2057

	/*
2058
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2059 2060
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2061 2062
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2063 2064 2065 2066
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2067
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2068
{
2069 2070
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2071 2072
}

2073
static void memcg_oom_recover(struct mem_cgroup *memcg)
2074
{
2075 2076
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2077 2078
}

K
KAMEZAWA Hiroyuki 已提交
2079 2080 2081
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2082 2083
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2084
{
K
KAMEZAWA Hiroyuki 已提交
2085
	struct oom_wait_info owait;
2086
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2087

2088
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2089 2090 2091 2092
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2093
	need_to_kill = true;
2094
	mem_cgroup_mark_under_oom(memcg);
2095

2096
	/* At first, try to OOM lock hierarchy under memcg.*/
2097
	spin_lock(&memcg_oom_lock);
2098
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2099 2100 2101 2102 2103
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2104
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2105
	if (!locked || memcg->oom_kill_disable)
2106 2107
		need_to_kill = false;
	if (locked)
2108
		mem_cgroup_oom_notify(memcg);
2109
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2110

2111 2112
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2113
		mem_cgroup_out_of_memory(memcg, mask, order);
2114
	} else {
K
KAMEZAWA Hiroyuki 已提交
2115
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2116
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2117
	}
2118
	spin_lock(&memcg_oom_lock);
2119
	if (locked)
2120 2121
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2122
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2123

2124
	mem_cgroup_unmark_under_oom(memcg);
2125

K
KAMEZAWA Hiroyuki 已提交
2126 2127 2128
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2129
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2130
	return true;
2131 2132
}

2133 2134 2135
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2153 2154
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2155
 */
2156

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2170
	 * need to take move_lock_mem_cgroup(). Because we already hold
2171
	 * rcu_read_lock(), any calls to move_account will be delayed until
2172
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2173
	 */
2174
	if (!mem_cgroup_stolen(memcg))
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2192
	 * should take move_lock_mem_cgroup().
2193 2194 2195 2196
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2197 2198
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2199
{
2200
	struct mem_cgroup *memcg;
2201
	struct page_cgroup *pc = lookup_page_cgroup(page);
2202
	unsigned long uninitialized_var(flags);
2203

2204
	if (mem_cgroup_disabled())
2205
		return;
2206

2207 2208
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2209
		return;
2210 2211

	switch (idx) {
2212 2213
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2214 2215 2216
		break;
	default:
		BUG();
2217
	}
2218

2219
	this_cpu_add(memcg->stat->count[idx], val);
2220
}
2221

2222 2223 2224 2225
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2226
#define CHARGE_BATCH	32U
2227 2228
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2229
	unsigned int nr_pages;
2230
	struct work_struct work;
2231
	unsigned long flags;
2232
#define FLUSHING_CACHED_CHARGE	0
2233 2234
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2235
static DEFINE_MUTEX(percpu_charge_mutex);
2236

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2247
 */
2248
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2249 2250 2251 2252
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2253 2254 2255
	if (nr_pages > CHARGE_BATCH)
		return false;

2256
	stock = &get_cpu_var(memcg_stock);
2257 2258
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2272 2273 2274 2275
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2276
		if (do_swap_account)
2277 2278
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2291
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2292 2293 2294 2295
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2296
 * This will be consumed by consume_stock() function, later.
2297
 */
2298
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2299 2300 2301
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2302
	if (stock->cached != memcg) { /* reset if necessary */
2303
		drain_stock(stock);
2304
		stock->cached = memcg;
2305
	}
2306
	stock->nr_pages += nr_pages;
2307 2308 2309 2310
	put_cpu_var(memcg_stock);
}

/*
2311
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2312 2313
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2314
 */
2315
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2316
{
2317
	int cpu, curcpu;
2318

2319 2320
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2321
	curcpu = get_cpu();
2322 2323
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2324
		struct mem_cgroup *memcg;
2325

2326 2327
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2328
			continue;
2329
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2330
			continue;
2331 2332 2333 2334 2335 2336
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2337
	}
2338
	put_cpu();
2339 2340 2341 2342 2343 2344

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2345
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2346 2347 2348
			flush_work(&stock->work);
	}
out:
2349
 	put_online_cpus();
2350 2351 2352 2353 2354 2355 2356 2357
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2358
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2359
{
2360 2361 2362 2363 2364
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2365
	drain_all_stock(root_memcg, false);
2366
	mutex_unlock(&percpu_charge_mutex);
2367 2368 2369
}

/* This is a synchronous drain interface. */
2370
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2371 2372
{
	/* called when force_empty is called */
2373
	mutex_lock(&percpu_charge_mutex);
2374
	drain_all_stock(root_memcg, true);
2375
	mutex_unlock(&percpu_charge_mutex);
2376 2377
}

2378 2379 2380 2381
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2382
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2383 2384 2385
{
	int i;

2386
	spin_lock(&memcg->pcp_counter_lock);
2387
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2388
		long x = per_cpu(memcg->stat->count[i], cpu);
2389

2390 2391
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2392
	}
2393
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2394
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2395

2396 2397
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2398
	}
2399
	spin_unlock(&memcg->pcp_counter_lock);
2400 2401 2402
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2403 2404 2405 2406 2407
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2408
	struct mem_cgroup *iter;
2409

2410
	if (action == CPU_ONLINE)
2411 2412
		return NOTIFY_OK;

2413
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2414
		return NOTIFY_OK;
2415

2416
	for_each_mem_cgroup(iter)
2417 2418
		mem_cgroup_drain_pcp_counter(iter, cpu);

2419 2420 2421 2422 2423
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2434
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2435 2436
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2437
{
2438
	unsigned long csize = nr_pages * PAGE_SIZE;
2439 2440 2441 2442 2443
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2444
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2445 2446 2447 2448

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2449
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2450 2451 2452
		if (likely(!ret))
			return CHARGE_OK;

2453
		res_counter_uncharge(&memcg->res, csize);
2454 2455 2456 2457
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2458 2459 2460 2461
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2462
	if (nr_pages > min_pages)
2463 2464 2465 2466 2467
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2468 2469 2470
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2471
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2472
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2473
		return CHARGE_RETRY;
2474
	/*
2475 2476 2477 2478 2479 2480 2481
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2482
	 */
2483
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2497
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2498 2499 2500 2501 2502
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2503
/*
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2523
 */
2524
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2525
				   gfp_t gfp_mask,
2526
				   unsigned int nr_pages,
2527
				   struct mem_cgroup **ptr,
2528
				   bool oom)
2529
{
2530
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2531
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2532
	struct mem_cgroup *memcg = NULL;
2533
	int ret;
2534

K
KAMEZAWA Hiroyuki 已提交
2535 2536 2537 2538 2539 2540 2541 2542
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2543

2544
	/*
2545 2546
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2547
	 * thread group leader migrates. It's possible that mm is not
2548
	 * set, if so charge the root memcg (happens for pagecache usage).
2549
	 */
2550
	if (!*ptr && !mm)
2551
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2552
again:
2553 2554 2555
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2556
			goto done;
2557
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2558
			goto done;
2559
		css_get(&memcg->css);
2560
	} else {
K
KAMEZAWA Hiroyuki 已提交
2561
		struct task_struct *p;
2562

K
KAMEZAWA Hiroyuki 已提交
2563 2564 2565
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2566
		 * Because we don't have task_lock(), "p" can exit.
2567
		 * In that case, "memcg" can point to root or p can be NULL with
2568 2569 2570 2571 2572 2573
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2574
		 */
2575
		memcg = mem_cgroup_from_task(p);
2576 2577 2578
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2579 2580 2581
			rcu_read_unlock();
			goto done;
		}
2582
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2595
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2596 2597 2598 2599 2600
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2601

2602 2603
	do {
		bool oom_check;
2604

2605
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2606
		if (fatal_signal_pending(current)) {
2607
			css_put(&memcg->css);
2608
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2609
		}
2610

2611 2612 2613 2614
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2615
		}
2616

2617 2618
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2619 2620 2621 2622
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2623
			batch = nr_pages;
2624 2625
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2626
			goto again;
2627
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2628
			css_put(&memcg->css);
2629 2630
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2631
			if (!oom) {
2632
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2633
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2634
			}
2635 2636 2637 2638
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2639
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2640
			goto bypass;
2641
		}
2642 2643
	} while (ret != CHARGE_OK);

2644
	if (batch > nr_pages)
2645 2646
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2647
done:
2648
	*ptr = memcg;
2649 2650
	return 0;
nomem:
2651
	*ptr = NULL;
2652
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2653
bypass:
2654 2655
	*ptr = root_mem_cgroup;
	return -EINTR;
2656
}
2657

2658 2659 2660 2661 2662
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2663
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2664
				       unsigned int nr_pages)
2665
{
2666
	if (!mem_cgroup_is_root(memcg)) {
2667 2668
		unsigned long bytes = nr_pages * PAGE_SIZE;

2669
		res_counter_uncharge(&memcg->res, bytes);
2670
		if (do_swap_account)
2671
			res_counter_uncharge(&memcg->memsw, bytes);
2672
	}
2673 2674
}

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2693 2694
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2695 2696 2697
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2709
	return mem_cgroup_from_css(css);
2710 2711
}

2712
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2713
{
2714
	struct mem_cgroup *memcg = NULL;
2715
	struct page_cgroup *pc;
2716
	unsigned short id;
2717 2718
	swp_entry_t ent;

2719 2720 2721
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2722
	lock_page_cgroup(pc);
2723
	if (PageCgroupUsed(pc)) {
2724 2725 2726
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2727
	} else if (PageSwapCache(page)) {
2728
		ent.val = page_private(page);
2729
		id = lookup_swap_cgroup_id(ent);
2730
		rcu_read_lock();
2731 2732 2733
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2734
		rcu_read_unlock();
2735
	}
2736
	unlock_page_cgroup(pc);
2737
	return memcg;
2738 2739
}

2740
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2741
				       struct page *page,
2742
				       unsigned int nr_pages,
2743 2744
				       enum charge_type ctype,
				       bool lrucare)
2745
{
2746
	struct page_cgroup *pc = lookup_page_cgroup(page);
2747
	struct zone *uninitialized_var(zone);
2748
	struct lruvec *lruvec;
2749
	bool was_on_lru = false;
2750
	bool anon;
2751

2752
	lock_page_cgroup(pc);
2753
	VM_BUG_ON(PageCgroupUsed(pc));
2754 2755 2756 2757
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2758 2759 2760 2761 2762 2763 2764 2765 2766

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2767
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2768
			ClearPageLRU(page);
2769
			del_page_from_lru_list(page, lruvec, page_lru(page));
2770 2771 2772 2773
			was_on_lru = true;
		}
	}

2774
	pc->mem_cgroup = memcg;
2775 2776 2777 2778 2779 2780 2781
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2782
	smp_wmb();
2783
	SetPageCgroupUsed(pc);
2784

2785 2786
	if (lrucare) {
		if (was_on_lru) {
2787
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2788 2789
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2790
			add_page_to_lru_list(page, lruvec, page_lru(page));
2791 2792 2793 2794
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2795
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2796 2797 2798 2799 2800
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2801
	unlock_page_cgroup(pc);
2802

2803 2804 2805 2806 2807
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2808
	memcg_check_events(memcg, page);
2809
}
2810

2811 2812
static DEFINE_MUTEX(set_limit_mutex);

2813 2814 2815 2816 2817 2818 2819
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
#ifdef CONFIG_SLABINFO
static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
					struct seq_file *m)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2907 2908 2909 2910 2911 2912 2913

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
2914 2915
}

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3050 3051
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3052 3053 3054 3055 3056 3057
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

3058 3059 3060
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

3061 3062 3063 3064
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3065
	if (memcg) {
3066
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3067
		s->memcg_params->root_cache = root_cache;
3068 3069 3070
	} else
		s->memcg_params->is_root_cache = true;

3071 3072 3073 3074 3075
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;
	mem_cgroup_put(memcg);

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

out:
3102 3103 3104
	kfree(s->memcg_params);
}

3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3136 3137 3138 3139 3140 3141 3142 3143 3144
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3166 3167 3168 3169 3170 3171 3172 3173
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3194 3195 3196 3197 3198 3199 3200
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
{
	char *name;
	struct dentry *dentry;

	rcu_read_lock();
	dentry = rcu_dereference(memcg->css.cgroup->dentry);
	rcu_read_unlock();

	BUG_ON(dentry == NULL);

	name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), dentry->d_name.name);

	return name;
}

static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	char *name;
	struct kmem_cache *new;

	name = memcg_cache_name(memcg, s);
	if (!name)
		return NULL;

	new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
G
Glauber Costa 已提交
3229
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3230

3231 3232 3233
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
	kfree(name);
	return new;
}

/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
	if (new_cachep)
		goto out;

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
		goto out;
	}

	mem_cgroup_get(memcg);
G
Glauber Costa 已提交
3269
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3321
		cancel_work_sync(&c->memcg_params->destroy);
3322 3323 3324 3325 3326
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3327 3328 3329 3330 3331 3332
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		INIT_WORK(&cachep->memcg_params->destroy,
G
Glauber Costa 已提交
3346
				  kmem_cache_destroy_work_func);
G
Glauber Costa 已提交
3347 3348 3349 3350 3351
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	/* Drop the reference gotten when we enqueued. */
	css_put(&cw->memcg->css);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 * Called with rcu_read_lock.
 */
3367 3368
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
	if (cw == NULL)
		return;

	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css)) {
		kfree(cw);
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3429 3430 3431
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
	rcu_read_unlock();

	if (!memcg_can_account_kmem(memcg))
		return cachep;

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
	if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
		/*
		 * If we are in a safe context (can wait, and not in interrupt
		 * context), we could be be predictable and return right away.
		 * This would guarantee that the allocation being performed
		 * already belongs in the new cache.
		 *
		 * However, there are some clashes that can arrive from locking.
		 * For instance, because we acquire the slab_mutex while doing
		 * kmem_cache_dup, this means no further allocation could happen
		 * with the slab_mutex held.
		 *
		 * Also, because cache creation issue get_online_cpus(), this
		 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
		 * that ends up reversed during cpu hotplug. (cpuset allocates
		 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
		 * better to defer everything.
		 */
		memcg_create_cache_enqueue(memcg, cachep);
		return cachep;
	}

	return cachep->memcg_params->memcg_caches[idx];
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3567 3568 3569 3570
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3571 3572
#endif /* CONFIG_MEMCG_KMEM */

3573 3574
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3575
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3576 3577
/*
 * Because tail pages are not marked as "used", set it. We're under
3578 3579 3580
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3581
 */
3582
void mem_cgroup_split_huge_fixup(struct page *head)
3583 3584
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3585 3586
	struct page_cgroup *pc;
	int i;
3587

3588 3589
	if (mem_cgroup_disabled())
		return;
3590 3591 3592 3593 3594 3595
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3596
}
3597
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3598

3599
/**
3600
 * mem_cgroup_move_account - move account of the page
3601
 * @page: the page
3602
 * @nr_pages: number of regular pages (>1 for huge pages)
3603 3604 3605 3606 3607
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3608
 * - page is not on LRU (isolate_page() is useful.)
3609
 * - compound_lock is held when nr_pages > 1
3610
 *
3611 3612
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3613
 */
3614 3615 3616 3617
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3618
				   struct mem_cgroup *to)
3619
{
3620 3621
	unsigned long flags;
	int ret;
3622
	bool anon = PageAnon(page);
3623

3624
	VM_BUG_ON(from == to);
3625
	VM_BUG_ON(PageLRU(page));
3626 3627 3628 3629 3630 3631 3632
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3633
	if (nr_pages > 1 && !PageTransHuge(page))
3634 3635 3636 3637 3638 3639 3640 3641
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3642
	move_lock_mem_cgroup(from, &flags);
3643

3644
	if (!anon && page_mapped(page)) {
3645 3646 3647 3648 3649
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3650
	}
3651
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
3652

3653
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3654
	pc->mem_cgroup = to;
3655
	mem_cgroup_charge_statistics(to, anon, nr_pages);
3656
	move_unlock_mem_cgroup(from, &flags);
3657 3658
	ret = 0;
unlock:
3659
	unlock_page_cgroup(pc);
3660 3661 3662
	/*
	 * check events
	 */
3663 3664
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3665
out:
3666 3667 3668
	return ret;
}

3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3689
 */
3690 3691
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3692
				  struct mem_cgroup *child)
3693 3694
{
	struct mem_cgroup *parent;
3695
	unsigned int nr_pages;
3696
	unsigned long uninitialized_var(flags);
3697 3698
	int ret;

3699
	VM_BUG_ON(mem_cgroup_is_root(child));
3700

3701 3702 3703 3704 3705
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3706

3707
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3708

3709 3710 3711 3712 3713 3714
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3715

3716 3717
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3718
		flags = compound_lock_irqsave(page);
3719
	}
3720

3721
	ret = mem_cgroup_move_account(page, nr_pages,
3722
				pc, child, parent);
3723 3724
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3725

3726
	if (nr_pages > 1)
3727
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3728
	putback_lru_page(page);
3729
put:
3730
	put_page(page);
3731
out:
3732 3733 3734
	return ret;
}

3735 3736 3737 3738 3739 3740 3741
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3742
				gfp_t gfp_mask, enum charge_type ctype)
3743
{
3744
	struct mem_cgroup *memcg = NULL;
3745
	unsigned int nr_pages = 1;
3746
	bool oom = true;
3747
	int ret;
A
Andrea Arcangeli 已提交
3748

A
Andrea Arcangeli 已提交
3749
	if (PageTransHuge(page)) {
3750
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3751
		VM_BUG_ON(!PageTransHuge(page));
3752 3753 3754 3755 3756
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3757
	}
3758

3759
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3760
	if (ret == -ENOMEM)
3761
		return ret;
3762
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3763 3764 3765
	return 0;
}

3766 3767
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3768
{
3769
	if (mem_cgroup_disabled())
3770
		return 0;
3771 3772 3773
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3774
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3775
					MEM_CGROUP_CHARGE_TYPE_ANON);
3776 3777
}

3778 3779 3780
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3781
 * struct page_cgroup is acquired. This refcnt will be consumed by
3782 3783
 * "commit()" or removed by "cancel()"
 */
3784 3785 3786 3787
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3788
{
3789
	struct mem_cgroup *memcg;
3790
	struct page_cgroup *pc;
3791
	int ret;
3792

3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3803 3804
	if (!do_swap_account)
		goto charge_cur_mm;
3805 3806
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3807
		goto charge_cur_mm;
3808 3809
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3810
	css_put(&memcg->css);
3811 3812
	if (ret == -EINTR)
		ret = 0;
3813
	return ret;
3814
charge_cur_mm:
3815 3816 3817 3818
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3819 3820
}

3821 3822 3823 3824 3825 3826
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3841 3842 3843
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3844 3845 3846 3847 3848 3849 3850 3851 3852
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3853
static void
3854
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3855
					enum charge_type ctype)
3856
{
3857
	if (mem_cgroup_disabled())
3858
		return;
3859
	if (!memcg)
3860
		return;
3861

3862
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3863 3864 3865
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3866 3867 3868
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3869
	 */
3870
	if (do_swap_account && PageSwapCache(page)) {
3871
		swp_entry_t ent = {.val = page_private(page)};
3872
		mem_cgroup_uncharge_swap(ent);
3873
	}
3874 3875
}

3876 3877
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3878
{
3879
	__mem_cgroup_commit_charge_swapin(page, memcg,
3880
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3881 3882
}

3883 3884
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3885
{
3886 3887 3888 3889
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3890
	if (mem_cgroup_disabled())
3891 3892 3893 3894 3895 3896 3897
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3898 3899
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3900 3901 3902 3903
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3904 3905
}

3906
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3907 3908
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3909 3910 3911
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3912

3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3924
		batch->memcg = memcg;
3925 3926
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3927
	 * In those cases, all pages freed continuously can be expected to be in
3928 3929 3930 3931 3932 3933 3934 3935
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3936
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3937 3938
		goto direct_uncharge;

3939 3940 3941 3942 3943
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3944
	if (batch->memcg != memcg)
3945 3946
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3947
	batch->nr_pages++;
3948
	if (uncharge_memsw)
3949
		batch->memsw_nr_pages++;
3950 3951
	return;
direct_uncharge:
3952
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3953
	if (uncharge_memsw)
3954 3955 3956
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3957
}
3958

3959
/*
3960
 * uncharge if !page_mapped(page)
3961
 */
3962
static struct mem_cgroup *
3963 3964
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3965
{
3966
	struct mem_cgroup *memcg = NULL;
3967 3968
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3969
	bool anon;
3970

3971
	if (mem_cgroup_disabled())
3972
		return NULL;
3973

3974
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
3975

A
Andrea Arcangeli 已提交
3976
	if (PageTransHuge(page)) {
3977
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3978 3979
		VM_BUG_ON(!PageTransHuge(page));
	}
3980
	/*
3981
	 * Check if our page_cgroup is valid
3982
	 */
3983
	pc = lookup_page_cgroup(page);
3984
	if (unlikely(!PageCgroupUsed(pc)))
3985
		return NULL;
3986

3987
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3988

3989
	memcg = pc->mem_cgroup;
3990

K
KAMEZAWA Hiroyuki 已提交
3991 3992 3993
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3994 3995
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3996
	switch (ctype) {
3997
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3998 3999 4000 4001 4002
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4003 4004
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4005
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4006
		/* See mem_cgroup_prepare_migration() */
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4028
	}
K
KAMEZAWA Hiroyuki 已提交
4029

4030
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4031

4032
	ClearPageCgroupUsed(pc);
4033 4034 4035 4036 4037 4038
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4039

4040
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4041
	/*
4042
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
4043 4044
	 * will never be freed.
	 */
4045
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4046
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4047 4048
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
4049
	}
4050 4051 4052 4053 4054 4055
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4056
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4057

4058
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4059 4060 4061

unlock_out:
	unlock_page_cgroup(pc);
4062
	return NULL;
4063 4064
}

4065 4066
void mem_cgroup_uncharge_page(struct page *page)
{
4067 4068 4069
	/* early check. */
	if (page_mapped(page))
		return;
4070
	VM_BUG_ON(page->mapping && !PageAnon(page));
4071 4072
	if (PageSwapCache(page))
		return;
4073
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4074 4075 4076 4077 4078
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4079
	VM_BUG_ON(page->mapping);
4080
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4081 4082
}

4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4097 4098
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4119 4120 4121 4122 4123 4124
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4125
	memcg_oom_recover(batch->memcg);
4126 4127 4128 4129
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4130
#ifdef CONFIG_SWAP
4131
/*
4132
 * called after __delete_from_swap_cache() and drop "page" account.
4133 4134
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4135 4136
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4137 4138
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4139 4140 4141 4142 4143
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4144
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4145

K
KAMEZAWA Hiroyuki 已提交
4146 4147 4148 4149 4150
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
4151
		swap_cgroup_record(ent, css_id(&memcg->css));
4152
}
4153
#endif
4154

A
Andrew Morton 已提交
4155
#ifdef CONFIG_MEMCG_SWAP
4156 4157 4158 4159 4160
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4161
{
4162
	struct mem_cgroup *memcg;
4163
	unsigned short id;
4164 4165 4166 4167

	if (!do_swap_account)
		return;

4168 4169 4170
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4171
	if (memcg) {
4172 4173 4174 4175
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4176
		if (!mem_cgroup_is_root(memcg))
4177
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4178
		mem_cgroup_swap_statistics(memcg, false);
4179 4180
		mem_cgroup_put(memcg);
	}
4181
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4182
}
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4199
				struct mem_cgroup *from, struct mem_cgroup *to)
4200 4201 4202 4203 4204 4205 4206 4207
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4208
		mem_cgroup_swap_statistics(to, true);
4209
		/*
4210 4211 4212 4213 4214 4215
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
4216 4217 4218 4219 4220 4221 4222 4223
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4224
				struct mem_cgroup *from, struct mem_cgroup *to)
4225 4226 4227
{
	return -EINVAL;
}
4228
#endif
K
KAMEZAWA Hiroyuki 已提交
4229

4230
/*
4231 4232
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4233
 */
4234 4235
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4236
{
4237
	struct mem_cgroup *memcg = NULL;
4238
	unsigned int nr_pages = 1;
4239
	struct page_cgroup *pc;
4240
	enum charge_type ctype;
4241

4242
	*memcgp = NULL;
4243

4244
	if (mem_cgroup_disabled())
4245
		return;
4246

4247 4248 4249
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4250 4251 4252
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4253 4254
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4286
	}
4287
	unlock_page_cgroup(pc);
4288 4289 4290 4291
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4292
	if (!memcg)
4293
		return;
4294

4295
	*memcgp = memcg;
4296 4297 4298 4299 4300 4301 4302
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4303
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4304
	else
4305
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4306 4307 4308 4309 4310
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4311
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4312
}
4313

4314
/* remove redundant charge if migration failed*/
4315
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4316
	struct page *oldpage, struct page *newpage, bool migration_ok)
4317
{
4318
	struct page *used, *unused;
4319
	struct page_cgroup *pc;
4320
	bool anon;
4321

4322
	if (!memcg)
4323
		return;
4324

4325
	if (!migration_ok) {
4326 4327
		used = oldpage;
		unused = newpage;
4328
	} else {
4329
		used = newpage;
4330 4331
		unused = oldpage;
	}
4332
	anon = PageAnon(used);
4333 4334 4335 4336
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4337
	css_put(&memcg->css);
4338
	/*
4339 4340 4341
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4342
	 */
4343 4344 4345 4346 4347
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4348
	/*
4349 4350 4351 4352 4353 4354
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4355
	 */
4356
	if (anon)
4357
		mem_cgroup_uncharge_page(used);
4358
}
4359

4360 4361 4362 4363 4364 4365 4366 4367
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4368
	struct mem_cgroup *memcg = NULL;
4369 4370 4371 4372 4373 4374 4375 4376 4377
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4378 4379 4380 4381 4382
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
4383 4384
	unlock_page_cgroup(pc);

4385 4386 4387 4388 4389 4390
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4391 4392 4393 4394 4395
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4396
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4397 4398
}

4399 4400 4401 4402 4403 4404
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4405 4406 4407 4408 4409
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4429
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4430 4431 4432 4433 4434
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

4435
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4436
				unsigned long long val)
4437
{
4438
	int retry_count;
4439
	u64 memswlimit, memlimit;
4440
	int ret = 0;
4441 4442
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4443
	int enlarge;
4444 4445 4446 4447 4448 4449 4450 4451 4452

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4453

4454
	enlarge = 0;
4455
	while (retry_count) {
4456 4457 4458 4459
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4460 4461 4462
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4463
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4464 4465 4466 4467 4468 4469
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4470 4471
			break;
		}
4472 4473 4474 4475 4476

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4477
		ret = res_counter_set_limit(&memcg->res, val);
4478 4479 4480 4481 4482 4483
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4484 4485 4486 4487 4488
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4489 4490
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4491 4492 4493 4494 4495 4496
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4497
	}
4498 4499
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4500

4501 4502 4503
	return ret;
}

L
Li Zefan 已提交
4504 4505
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4506
{
4507
	int retry_count;
4508
	u64 memlimit, memswlimit, oldusage, curusage;
4509 4510
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4511
	int enlarge = 0;
4512

4513 4514 4515
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4516 4517 4518 4519 4520 4521 4522 4523
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4524
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4525 4526 4527 4528 4529 4530 4531 4532
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4533 4534 4535
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4536
		ret = res_counter_set_limit(&memcg->memsw, val);
4537 4538 4539 4540 4541 4542
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4543 4544 4545 4546 4547
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4548 4549 4550
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4551
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4552
		/* Usage is reduced ? */
4553
		if (curusage >= oldusage)
4554
			retry_count--;
4555 4556
		else
			oldusage = curusage;
4557
	}
4558 4559
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4560 4561 4562
	return ret;
}

4563
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4564 4565
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4566 4567 4568 4569 4570 4571
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4572
	unsigned long long excess;
4573
	unsigned long nr_scanned;
4574 4575 4576 4577

	if (order > 0)
		return 0;

4578
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4592
		nr_scanned = 0;
4593
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4594
						    gfp_mask, &nr_scanned);
4595
		nr_reclaimed += reclaimed;
4596
		*total_scanned += nr_scanned;
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4619
				if (next_mz == mz)
4620
					css_put(&next_mz->memcg->css);
4621
				else /* next_mz == NULL or other memcg */
4622 4623 4624
					break;
			} while (1);
		}
4625 4626
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4627 4628 4629 4630 4631 4632 4633 4634
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4635
		/* If excess == 0, no tree ops */
4636
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4637
		spin_unlock(&mctz->lock);
4638
		css_put(&mz->memcg->css);
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4651
		css_put(&next_mz->memcg->css);
4652 4653 4654
	return nr_reclaimed;
}

4655 4656 4657 4658 4659 4660 4661
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4662
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4663 4664
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4665
 */
4666
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4667
				int node, int zid, enum lru_list lru)
4668
{
4669
	struct lruvec *lruvec;
4670
	unsigned long flags;
4671
	struct list_head *list;
4672 4673
	struct page *busy;
	struct zone *zone;
4674

K
KAMEZAWA Hiroyuki 已提交
4675
	zone = &NODE_DATA(node)->node_zones[zid];
4676 4677
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4678

4679
	busy = NULL;
4680
	do {
4681
		struct page_cgroup *pc;
4682 4683
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4684
		spin_lock_irqsave(&zone->lru_lock, flags);
4685
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4686
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4687
			break;
4688
		}
4689 4690 4691
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4692
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4693
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4694 4695
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4696
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4697

4698
		pc = lookup_page_cgroup(page);
4699

4700
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4701
			/* found lock contention or "pc" is obsolete. */
4702
			busy = page;
4703 4704 4705
			cond_resched();
		} else
			busy = NULL;
4706
	} while (!list_empty(list));
4707 4708 4709
}

/*
4710 4711
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4712
 * This enables deleting this mem_cgroup.
4713 4714
 *
 * Caller is responsible for holding css reference on the memcg.
4715
 */
4716
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4717
{
4718
	int node, zid;
4719
	u64 usage;
4720

4721
	do {
4722 4723
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4724 4725
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4726
		for_each_node_state(node, N_MEMORY) {
4727
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4728 4729
				enum lru_list lru;
				for_each_lru(lru) {
4730
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4731
							node, zid, lru);
4732
				}
4733
			}
4734
		}
4735 4736
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4737
		cond_resched();
4738

4739
		/*
4740 4741 4742 4743 4744
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4745 4746 4747 4748 4749 4750
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4751 4752 4753
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
}

/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4766

4767
	/* returns EBUSY if there is a task or if we come here twice. */
4768 4769 4770
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4771 4772
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4773
	/* try to free all pages in this cgroup */
4774
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4775
		int progress;
4776

4777 4778 4779
		if (signal_pending(current))
			return -EINTR;

4780
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4781
						false);
4782
		if (!progress) {
4783
			nr_retries--;
4784
			/* maybe some writeback is necessary */
4785
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4786
		}
4787 4788

	}
K
KAMEZAWA Hiroyuki 已提交
4789
	lru_add_drain();
4790 4791 4792
	mem_cgroup_reparent_charges(memcg);

	return 0;
4793 4794
}

4795
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4796
{
4797 4798 4799
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

4800 4801
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4802 4803 4804 4805 4806
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
4807 4808 4809
}


4810 4811 4812 4813 4814 4815 4816 4817 4818
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
4819
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4820
	struct cgroup *parent = cont->parent;
4821
	struct mem_cgroup *parent_memcg = NULL;
4822 4823

	if (parent)
4824
		parent_memcg = mem_cgroup_from_cont(parent);
4825 4826

	cgroup_lock();
4827 4828 4829 4830

	if (memcg->use_hierarchy == val)
		goto out;

4831
	/*
4832
	 * If parent's use_hierarchy is set, we can't make any modifications
4833 4834 4835 4836 4837 4838
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4839
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4840 4841
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
4842
			memcg->use_hierarchy = val;
4843 4844 4845 4846
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4847 4848

out:
4849 4850 4851 4852 4853
	cgroup_unlock();

	return retval;
}

4854

4855
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4856
					       enum mem_cgroup_stat_index idx)
4857
{
K
KAMEZAWA Hiroyuki 已提交
4858
	struct mem_cgroup *iter;
4859
	long val = 0;
4860

4861
	/* Per-cpu values can be negative, use a signed accumulator */
4862
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4863 4864 4865 4866 4867
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4868 4869
}

4870
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4871
{
K
KAMEZAWA Hiroyuki 已提交
4872
	u64 val;
4873

4874
	if (!mem_cgroup_is_root(memcg)) {
4875
		if (!swap)
4876
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4877
		else
4878
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4879 4880
	}

4881 4882
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4883

K
KAMEZAWA Hiroyuki 已提交
4884
	if (swap)
4885
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4886 4887 4888 4889

	return val << PAGE_SHIFT;
}

4890 4891 4892
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4893
{
4894
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4895
	char str[64];
4896
	u64 val;
G
Glauber Costa 已提交
4897 4898
	int name, len;
	enum res_type type;
4899 4900 4901

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4902 4903 4904 4905

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4906 4907
	switch (type) {
	case _MEM:
4908
		if (name == RES_USAGE)
4909
			val = mem_cgroup_usage(memcg, false);
4910
		else
4911
			val = res_counter_read_u64(&memcg->res, name);
4912 4913
		break;
	case _MEMSWAP:
4914
		if (name == RES_USAGE)
4915
			val = mem_cgroup_usage(memcg, true);
4916
		else
4917
			val = res_counter_read_u64(&memcg->memsw, name);
4918
		break;
4919 4920 4921
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4922 4923 4924
	default:
		BUG();
	}
4925 4926 4927

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4928
}
4929 4930 4931 4932 4933

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
4934 4935
	bool must_inc_static_branch = false;

4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 *
	 * Taking the cgroup_lock is really offensive, but it is so far the only
	 * way to guarantee that no children will appear. There are plenty of
	 * other offenders, and they should all go away. Fine grained locking
	 * is probably the way to go here. When we are fully hierarchical, we
	 * can also get rid of the use_hierarchy check.
	 */
	cgroup_lock();
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
		if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
						!list_empty(&cont->children))) {
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

4966 4967 4968 4969 4970
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
4971
		must_inc_static_branch = true;
4972 4973 4974 4975 4976 4977 4978
		/*
		 * kmem charges can outlive the cgroup. In the case of slab
		 * pages, for instance, a page contain objects from various
		 * processes, so it is unfeasible to migrate them away. We
		 * need to reference count the memcg because of that.
		 */
		mem_cgroup_get(memcg);
4979 4980 4981 4982 4983
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
	cgroup_unlock();
4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004

	/*
	 * We are by now familiar with the fact that we can't inc the static
	 * branch inside cgroup_lock. See disarm functions for details. A
	 * worker here is overkill, but also wrong: After the limit is set, we
	 * must start accounting right away. Since this operation can't fail,
	 * we can safely defer it to here - no rollback will be needed.
	 *
	 * The boolean used to control this is also safe, because
	 * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
	 * able to set it to true;
	 */
	if (must_inc_static_branch) {
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
	}

5005 5006 5007 5008
#endif
	return ret;
}

5009
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5010
{
5011
	int ret = 0;
5012 5013
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5014 5015
		goto out;

5016
	memcg->kmem_account_flags = parent->kmem_account_flags;
5017
#ifdef CONFIG_MEMCG_KMEM
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
	 * destroy(), called if we fail, will issue static_key_slow_inc() and
	 * mem_cgroup_put() if kmem is enabled. We have to either call them
	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
	 * this more consistent, since it always leads to the same destroy path
	 */
	mem_cgroup_get(memcg);
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
	ret = memcg_update_cache_sizes(memcg);
	mutex_unlock(&set_limit_mutex);
5043
#endif
5044 5045
out:
	return ret;
5046 5047
}

5048 5049 5050 5051
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5052 5053
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
5054
{
5055
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5056 5057
	enum res_type type;
	int name;
5058 5059 5060
	unsigned long long val;
	int ret;

5061 5062
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5063 5064 5065 5066

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5067
	switch (name) {
5068
	case RES_LIMIT:
5069 5070 5071 5072
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5073 5074
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5075 5076 5077
		if (ret)
			break;
		if (type == _MEM)
5078
			ret = mem_cgroup_resize_limit(memcg, val);
5079
		else if (type == _MEMSWAP)
5080
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5081 5082 5083 5084
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
5085
		break;
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5100 5101 5102 5103 5104
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5105 5106
}

5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5134
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5135
{
5136
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5137 5138
	int name;
	enum res_type type;
5139

5140 5141
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5142 5143 5144 5145

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5146
	switch (name) {
5147
	case RES_MAX_USAGE:
5148
		if (type == _MEM)
5149
			res_counter_reset_max(&memcg->res);
5150
		else if (type == _MEMSWAP)
5151
			res_counter_reset_max(&memcg->memsw);
5152 5153 5154 5155
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5156 5157
		break;
	case RES_FAILCNT:
5158
		if (type == _MEM)
5159
			res_counter_reset_failcnt(&memcg->res);
5160
		else if (type == _MEMSWAP)
5161
			res_counter_reset_failcnt(&memcg->memsw);
5162 5163 5164 5165
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5166 5167
		break;
	}
5168

5169
	return 0;
5170 5171
}

5172 5173 5174 5175 5176 5177
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

5178
#ifdef CONFIG_MMU
5179 5180 5181
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
5182
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5183 5184 5185 5186 5187 5188 5189 5190 5191

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
5192
	memcg->move_charge_at_immigrate = val;
5193 5194 5195 5196
	cgroup_unlock();

	return 0;
}
5197 5198 5199 5200 5201 5202 5203
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5204

5205
#ifdef CONFIG_NUMA
5206
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5207
				      struct seq_file *m)
5208 5209 5210 5211
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5212
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5213

5214
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5215
	seq_printf(m, "total=%lu", total_nr);
5216
	for_each_node_state(nid, N_MEMORY) {
5217
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5218 5219 5220 5221
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5222
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5223
	seq_printf(m, "file=%lu", file_nr);
5224
	for_each_node_state(nid, N_MEMORY) {
5225
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5226
				LRU_ALL_FILE);
5227 5228 5229 5230
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5231
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5232
	seq_printf(m, "anon=%lu", anon_nr);
5233
	for_each_node_state(nid, N_MEMORY) {
5234
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5235
				LRU_ALL_ANON);
5236 5237 5238 5239
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5240
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5241
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5242
	for_each_node_state(nid, N_MEMORY) {
5243
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5244
				BIT(LRU_UNEVICTABLE));
5245 5246 5247 5248 5249 5250 5251
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5252 5253 5254 5255 5256
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5257
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5258
				 struct seq_file *m)
5259
{
5260
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5261 5262
	struct mem_cgroup *mi;
	unsigned int i;
5263

5264
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5265
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5266
			continue;
5267 5268
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5269
	}
L
Lee Schermerhorn 已提交
5270

5271 5272 5273 5274 5275 5276 5277 5278
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5279
	/* Hierarchical information */
5280 5281
	{
		unsigned long long limit, memsw_limit;
5282
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5283
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5284
		if (do_swap_account)
5285 5286
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5287
	}
K
KOSAKI Motohiro 已提交
5288

5289 5290 5291
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5292
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5293
			continue;
5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5314
	}
K
KAMEZAWA Hiroyuki 已提交
5315

K
KOSAKI Motohiro 已提交
5316 5317 5318 5319
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5320
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5321 5322 5323 5324 5325
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5326
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5327
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5328

5329 5330 5331 5332
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5333
			}
5334 5335 5336 5337
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5338 5339 5340
	}
#endif

5341 5342 5343
	return 0;
}

K
KOSAKI Motohiro 已提交
5344 5345 5346 5347
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

5348
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5349 5350 5351 5352 5353 5354 5355
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
5356

K
KOSAKI Motohiro 已提交
5357 5358 5359 5360 5361 5362 5363
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
5364 5365 5366

	cgroup_lock();

K
KOSAKI Motohiro 已提交
5367 5368
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
5369 5370
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
5371
		return -EINVAL;
5372
	}
K
KOSAKI Motohiro 已提交
5373 5374 5375

	memcg->swappiness = val;

5376 5377
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
5378 5379 5380
	return 0;
}

5381 5382 5383 5384 5385 5386 5387 5388
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5389
		t = rcu_dereference(memcg->thresholds.primary);
5390
	else
5391
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5392 5393 5394 5395 5396 5397 5398

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5399
	 * current_threshold points to threshold just below or equal to usage.
5400 5401 5402
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5403
	i = t->current_threshold;
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5427
	t->current_threshold = i - 1;
5428 5429 5430 5431 5432 5433
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5434 5435 5436 5437 5438 5439 5440
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5451
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5452 5453 5454
{
	struct mem_cgroup_eventfd_list *ev;

5455
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5456 5457 5458 5459
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5460
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5461
{
K
KAMEZAWA Hiroyuki 已提交
5462 5463
	struct mem_cgroup *iter;

5464
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5465
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5466 5467 5468 5469
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5470 5471
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5472 5473
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5474
	enum res_type type = MEMFILE_TYPE(cft->private);
5475
	u64 threshold, usage;
5476
	int i, size, ret;
5477 5478 5479 5480 5481 5482

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5483

5484
	if (type == _MEM)
5485
		thresholds = &memcg->thresholds;
5486
	else if (type == _MEMSWAP)
5487
		thresholds = &memcg->memsw_thresholds;
5488 5489 5490 5491 5492 5493
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5494
	if (thresholds->primary)
5495 5496
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5497
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5498 5499

	/* Allocate memory for new array of thresholds */
5500
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5501
			GFP_KERNEL);
5502
	if (!new) {
5503 5504 5505
		ret = -ENOMEM;
		goto unlock;
	}
5506
	new->size = size;
5507 5508

	/* Copy thresholds (if any) to new array */
5509 5510
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5511
				sizeof(struct mem_cgroup_threshold));
5512 5513
	}

5514
	/* Add new threshold */
5515 5516
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5517 5518

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5519
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5520 5521 5522
			compare_thresholds, NULL);

	/* Find current threshold */
5523
	new->current_threshold = -1;
5524
	for (i = 0; i < size; i++) {
5525
		if (new->entries[i].threshold <= usage) {
5526
			/*
5527 5528
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5529 5530
			 * it here.
			 */
5531
			++new->current_threshold;
5532 5533
		} else
			break;
5534 5535
	}

5536 5537 5538 5539 5540
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5541

5542
	/* To be sure that nobody uses thresholds */
5543 5544 5545 5546 5547 5548 5549 5550
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5551
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5552
	struct cftype *cft, struct eventfd_ctx *eventfd)
5553 5554
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5555 5556
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5557
	enum res_type type = MEMFILE_TYPE(cft->private);
5558
	u64 usage;
5559
	int i, j, size;
5560 5561 5562

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5563
		thresholds = &memcg->thresholds;
5564
	else if (type == _MEMSWAP)
5565
		thresholds = &memcg->memsw_thresholds;
5566 5567 5568
	else
		BUG();

5569 5570 5571
	if (!thresholds->primary)
		goto unlock;

5572 5573 5574 5575 5576 5577
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5578 5579 5580
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5581 5582 5583
			size++;
	}

5584
	new = thresholds->spare;
5585

5586 5587
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5588 5589
		kfree(new);
		new = NULL;
5590
		goto swap_buffers;
5591 5592
	}

5593
	new->size = size;
5594 5595

	/* Copy thresholds and find current threshold */
5596 5597 5598
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5599 5600
			continue;

5601
		new->entries[j] = thresholds->primary->entries[i];
5602
		if (new->entries[j].threshold <= usage) {
5603
			/*
5604
			 * new->current_threshold will not be used
5605 5606 5607
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5608
			++new->current_threshold;
5609 5610 5611 5612
		}
		j++;
	}

5613
swap_buffers:
5614 5615
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5616 5617 5618 5619 5620 5621
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5622
	rcu_assign_pointer(thresholds->primary, new);
5623

5624
	/* To be sure that nobody uses thresholds */
5625
	synchronize_rcu();
5626
unlock:
5627 5628
	mutex_unlock(&memcg->thresholds_lock);
}
5629

K
KAMEZAWA Hiroyuki 已提交
5630 5631 5632 5633 5634
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5635
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5636 5637 5638 5639 5640 5641

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5642
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5643 5644 5645 5646 5647

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5648
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5649
		eventfd_signal(eventfd, 1);
5650
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5651 5652 5653 5654

	return 0;
}

5655
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5656 5657
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5658
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
5659
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5660
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5661 5662 5663

	BUG_ON(type != _OOM_TYPE);

5664
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5665

5666
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5667 5668 5669 5670 5671 5672
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5673
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5674 5675
}

5676 5677 5678
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5679
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5680

5681
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5682

5683
	if (atomic_read(&memcg->under_oom))
5684 5685 5686 5687 5688 5689 5690 5691 5692
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
5693
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
5705
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
5706 5707 5708
		cgroup_unlock();
		return -EINVAL;
	}
5709
	memcg->oom_kill_disable = val;
5710
	if (!val)
5711
		memcg_oom_recover(memcg);
5712 5713 5714 5715
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
5716
#ifdef CONFIG_MEMCG_KMEM
5717
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5718
{
5719 5720
	int ret;

5721
	memcg->kmemcg_id = -1;
5722 5723 5724
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5725

5726
	return mem_cgroup_sockets_init(memcg, ss);
5727 5728
};

5729
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5730
{
5731
	mem_cgroup_sockets_destroy(memcg);
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	/*
	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
	 * path here, being careful not to race with memcg_uncharge_kmem: it is
	 * possible that the charges went down to 0 between mark_dead and the
	 * res_counter read, so in that case, we don't need the put
	 */
	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
G
Glauber Costa 已提交
5746
}
5747
#else
5748
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5749 5750 5751
{
	return 0;
}
G
Glauber Costa 已提交
5752

5753
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5754 5755
{
}
5756 5757
#endif

B
Balbir Singh 已提交
5758 5759
static struct cftype mem_cgroup_files[] = {
	{
5760
		.name = "usage_in_bytes",
5761
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5762
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5763 5764
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5765
	},
5766 5767
	{
		.name = "max_usage_in_bytes",
5768
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5769
		.trigger = mem_cgroup_reset,
5770
		.read = mem_cgroup_read,
5771
	},
B
Balbir Singh 已提交
5772
	{
5773
		.name = "limit_in_bytes",
5774
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5775
		.write_string = mem_cgroup_write,
5776
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5777
	},
5778 5779 5780 5781
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5782
		.read = mem_cgroup_read,
5783
	},
B
Balbir Singh 已提交
5784 5785
	{
		.name = "failcnt",
5786
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5787
		.trigger = mem_cgroup_reset,
5788
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5789
	},
5790 5791
	{
		.name = "stat",
5792
		.read_seq_string = memcg_stat_show,
5793
	},
5794 5795 5796 5797
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5798 5799 5800 5801 5802
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5803 5804 5805 5806 5807
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5808 5809 5810 5811 5812
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5813 5814
	{
		.name = "oom_control",
5815 5816
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5817 5818 5819 5820
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5821 5822 5823
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5824
		.read_seq_string = memcg_numa_stat_show,
5825 5826
	},
#endif
A
Andrew Morton 已提交
5827
#ifdef CONFIG_MEMCG_SWAP
5828 5829 5830
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5831
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5832 5833
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
5834 5835 5836 5837 5838
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
5839
		.read = mem_cgroup_read,
5840 5841 5842 5843 5844
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
5845
		.read = mem_cgroup_read,
5846 5847 5848 5849 5850
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
5851
		.read = mem_cgroup_read,
5852
	},
5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877
#endif
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5878 5879 5880 5881 5882 5883
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5884
#endif
5885
	{ },	/* terminate */
5886
};
5887

5888
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5889 5890
{
	struct mem_cgroup_per_node *pn;
5891
	struct mem_cgroup_per_zone *mz;
5892
	int zone, tmp = node;
5893 5894 5895 5896 5897 5898 5899 5900
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5901 5902
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5903
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5904 5905
	if (!pn)
		return 1;
5906 5907 5908

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5909
		lruvec_init(&mz->lruvec);
5910
		mz->usage_in_excess = 0;
5911
		mz->on_tree = false;
5912
		mz->memcg = memcg;
5913
	}
5914
	memcg->info.nodeinfo[node] = pn;
5915 5916 5917
	return 0;
}

5918
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5919
{
5920
	kfree(memcg->info.nodeinfo[node]);
5921 5922
}

5923 5924
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5925
	struct mem_cgroup *memcg;
5926
	int size = sizeof(struct mem_cgroup);
5927

5928
	/* Can be very big if MAX_NUMNODES is very big */
5929
	if (size < PAGE_SIZE)
5930
		memcg = kzalloc(size, GFP_KERNEL);
5931
	else
5932
		memcg = vzalloc(size);
5933

5934
	if (!memcg)
5935 5936
		return NULL;

5937 5938
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5939
		goto out_free;
5940 5941
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5942 5943 5944

out_free:
	if (size < PAGE_SIZE)
5945
		kfree(memcg);
5946
	else
5947
		vfree(memcg);
5948
	return NULL;
5949 5950
}

5951
/*
5952 5953 5954 5955 5956 5957 5958 5959
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5960
 */
5961 5962

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5963
{
5964
	int node;
5965
	int size = sizeof(struct mem_cgroup);
5966

5967 5968 5969 5970 5971 5972 5973 5974
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5986
	disarm_static_keys(memcg);
5987 5988 5989 5990
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
5991
}
5992

5993

5994
/*
5995 5996 5997
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
5998
 */
5999
static void free_work(struct work_struct *work)
6000
{
6001
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6002

6003 6004 6005
	memcg = container_of(work, struct mem_cgroup, work_freeing);
	__mem_cgroup_free(memcg);
}
K
KAMEZAWA Hiroyuki 已提交
6006

6007 6008 6009
static void free_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6010

6011 6012 6013
	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, free_work);
	schedule_work(&memcg->work_freeing);
6014 6015
}

6016
static void mem_cgroup_get(struct mem_cgroup *memcg)
6017
{
6018
	atomic_inc(&memcg->refcnt);
6019 6020
}

6021
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6022
{
6023 6024
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6025
		call_rcu(&memcg->rcu_freeing, free_rcu);
6026 6027 6028
		if (parent)
			mem_cgroup_put(parent);
	}
6029 6030
}

6031
static void mem_cgroup_put(struct mem_cgroup *memcg)
6032
{
6033
	__mem_cgroup_put(memcg, 1);
6034 6035
}

6036 6037 6038
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6039
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6040
{
6041
	if (!memcg->res.parent)
6042
		return NULL;
6043
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6044
}
G
Glauber Costa 已提交
6045
EXPORT_SYMBOL(parent_mem_cgroup);
6046

A
Andrew Morton 已提交
6047
#ifdef CONFIG_MEMCG_SWAP
6048 6049
static void __init enable_swap_cgroup(void)
{
6050
	if (!mem_cgroup_disabled() && really_do_swap_account)
6051 6052 6053 6054 6055 6056 6057 6058
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

6059 6060 6061 6062 6063 6064
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6065
	for_each_node(node) {
6066 6067 6068 6069 6070
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
6071
			goto err_cleanup;
6072 6073 6074 6075 6076 6077 6078 6079 6080 6081

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
6082 6083

err_cleanup:
B
Bob Liu 已提交
6084
	for_each_node(node) {
6085 6086 6087 6088 6089 6090 6091
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

6092 6093
}

L
Li Zefan 已提交
6094
static struct cgroup_subsys_state * __ref
6095
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
6096
{
6097
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
6098
	long error = -ENOMEM;
6099
	int node;
B
Balbir Singh 已提交
6100

6101 6102
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6103
		return ERR_PTR(error);
6104

B
Bob Liu 已提交
6105
	for_each_node(node)
6106
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6107
			goto free_out;
6108

6109
	/* root ? */
6110
	if (cont->parent == NULL) {
6111
		int cpu;
6112
		enable_swap_cgroup();
6113
		parent = NULL;
6114 6115
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
6116
		root_mem_cgroup = memcg;
6117 6118 6119 6120 6121
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
6122
	} else {
6123
		parent = mem_cgroup_from_cont(cont->parent);
6124 6125
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
6126
	}
6127

6128
	if (parent && parent->use_hierarchy) {
6129 6130
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6131
		res_counter_init(&memcg->kmem, &parent->kmem);
6132

6133 6134 6135 6136 6137 6138 6139
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
6140
	} else {
6141 6142
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6143
		res_counter_init(&memcg->kmem, NULL);
6144 6145 6146 6147 6148 6149 6150
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
		if (parent && parent != root_mem_cgroup)
			mem_cgroup_subsys.broken_hierarchy = true;
6151
	}
6152 6153
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
6154

K
KOSAKI Motohiro 已提交
6155
	if (parent)
6156 6157 6158 6159
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
6160
	spin_lock_init(&memcg->move_lock);
6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
6172
	return &memcg->css;
6173
free_out:
6174
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
6175
	return ERR_PTR(error);
B
Balbir Singh 已提交
6176 6177
}

6178
static void mem_cgroup_css_offline(struct cgroup *cont)
6179
{
6180
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6181

6182
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6183
	mem_cgroup_destroy_all_caches(memcg);
6184 6185
}

6186
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
6187
{
6188
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6189

6190
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
6191

6192
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
6193 6194
}

6195
#ifdef CONFIG_MMU
6196
/* Handlers for move charge at task migration. */
6197 6198
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6199
{
6200 6201
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6202
	struct mem_cgroup *memcg = mc.to;
6203

6204
	if (mem_cgroup_is_root(memcg)) {
6205 6206 6207 6208 6209 6210 6211 6212
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6213
		 * "memcg" cannot be under rmdir() because we've already checked
6214 6215 6216 6217
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6218
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6219
			goto one_by_one;
6220
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6221
						PAGE_SIZE * count, &dummy)) {
6222
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6239 6240
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6241
		if (ret)
6242
			/* mem_cgroup_clear_mc() will do uncharge later */
6243
			return ret;
6244 6245
		mc.precharge++;
	}
6246 6247 6248 6249
	return ret;
}

/**
6250
 * get_mctgt_type - get target type of moving charge
6251 6252 6253
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6254
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6255 6256 6257 6258 6259 6260
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6261 6262 6263
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6264 6265 6266 6267 6268
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6269
	swp_entry_t	ent;
6270 6271 6272
};

enum mc_target_type {
6273
	MC_TARGET_NONE = 0,
6274
	MC_TARGET_PAGE,
6275
	MC_TARGET_SWAP,
6276 6277
};

D
Daisuke Nishimura 已提交
6278 6279
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6280
{
D
Daisuke Nishimura 已提交
6281
	struct page *page = vm_normal_page(vma, addr, ptent);
6282

D
Daisuke Nishimura 已提交
6283 6284 6285 6286
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6287
		if (!move_anon())
D
Daisuke Nishimura 已提交
6288
			return NULL;
6289 6290
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6291 6292 6293 6294 6295 6296 6297
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6298
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6299 6300 6301 6302 6303 6304 6305 6306
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6307 6308 6309 6310 6311
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
6312 6313 6314 6315 6316
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6317 6318 6319 6320 6321 6322 6323
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6324

6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6344 6345 6346 6347 6348 6349
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6350
		if (do_swap_account)
6351 6352
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
6353
	}
6354
#endif
6355 6356 6357
	return page;
}

6358
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6359 6360 6361 6362
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6363
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6364 6365 6366 6367 6368 6369
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6370 6371
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6372 6373

	if (!page && !ent.val)
6374
		return ret;
6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6390 6391
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6392
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6393 6394 6395
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6396 6397 6398 6399
	}
	return ret;
}

6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6435 6436 6437 6438 6439 6440 6441 6442
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6443 6444 6445 6446
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6447
		return 0;
6448
	}
6449

6450 6451
	if (pmd_trans_unstable(pmd))
		return 0;
6452 6453
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6454
		if (get_mctgt_type(vma, addr, *pte, NULL))
6455 6456 6457 6458
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6459 6460 6461
	return 0;
}

6462 6463 6464 6465 6466
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6467
	down_read(&mm->mmap_sem);
6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6479
	up_read(&mm->mmap_sem);
6480 6481 6482 6483 6484 6485 6486 6487 6488

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6489 6490 6491 6492 6493
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6494 6495
}

6496 6497
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6498
{
6499 6500 6501
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

6502
	/* we must uncharge all the leftover precharges from mc.to */
6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6514
	}
6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6549
	spin_lock(&mc.lock);
6550 6551
	mc.from = NULL;
	mc.to = NULL;
6552
	spin_unlock(&mc.lock);
6553
	mem_cgroup_end_move(from);
6554 6555
}

6556 6557
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6558
{
6559
	struct task_struct *p = cgroup_taskset_first(tset);
6560
	int ret = 0;
6561
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6562

6563
	if (memcg->move_charge_at_immigrate) {
6564 6565 6566
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6567
		VM_BUG_ON(from == memcg);
6568 6569 6570 6571 6572

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6573 6574 6575 6576
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6577
			VM_BUG_ON(mc.moved_charge);
6578
			VM_BUG_ON(mc.moved_swap);
6579
			mem_cgroup_start_move(from);
6580
			spin_lock(&mc.lock);
6581
			mc.from = from;
6582
			mc.to = memcg;
6583
			spin_unlock(&mc.lock);
6584
			/* We set mc.moving_task later */
6585 6586 6587 6588

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6589 6590
		}
		mmput(mm);
6591 6592 6593 6594
	}
	return ret;
}

6595 6596
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6597
{
6598
	mem_cgroup_clear_mc();
6599 6600
}

6601 6602 6603
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6604
{
6605 6606 6607 6608
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6609 6610 6611 6612
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6613

6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6625
		if (mc.precharge < HPAGE_PMD_NR) {
6626 6627 6628 6629 6630 6631 6632 6633 6634
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6635
							pc, mc.from, mc.to)) {
6636 6637 6638 6639 6640 6641 6642 6643
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6644
		return 0;
6645 6646
	}

6647 6648
	if (pmd_trans_unstable(pmd))
		return 0;
6649 6650 6651 6652
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6653
		swp_entry_t ent;
6654 6655 6656 6657

		if (!mc.precharge)
			break;

6658
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6659 6660 6661 6662 6663
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6664
			if (!mem_cgroup_move_account(page, 1, pc,
6665
						     mc.from, mc.to)) {
6666
				mc.precharge--;
6667 6668
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6669 6670
			}
			putback_lru_page(page);
6671
put:			/* get_mctgt_type() gets the page */
6672 6673
			put_page(page);
			break;
6674 6675
		case MC_TARGET_SWAP:
			ent = target.ent;
6676
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6677
				mc.precharge--;
6678 6679 6680
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6681
			break;
6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6696
		ret = mem_cgroup_do_precharge(1);
6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6740
	up_read(&mm->mmap_sem);
6741 6742
}

6743 6744
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6745
{
6746
	struct task_struct *p = cgroup_taskset_first(tset);
6747
	struct mm_struct *mm = get_task_mm(p);
6748 6749

	if (mm) {
6750 6751
		if (mc.to)
			mem_cgroup_move_charge(mm);
6752 6753
		mmput(mm);
	}
6754 6755
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6756
}
6757
#else	/* !CONFIG_MMU */
6758 6759
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6760 6761 6762
{
	return 0;
}
6763 6764
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6765 6766
{
}
6767 6768
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
6769 6770 6771
{
}
#endif
B
Balbir Singh 已提交
6772

B
Balbir Singh 已提交
6773 6774 6775
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6776 6777 6778
	.css_alloc = mem_cgroup_css_alloc,
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6779 6780
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6781
	.attach = mem_cgroup_move_task,
6782
	.base_cftypes = mem_cgroup_files,
6783
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6784
	.use_id = 1,
B
Balbir Singh 已提交
6785
};
6786

6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799
/*
 * The rest of init is performed during ->css_alloc() for root css which
 * happens before initcalls.  hotcpu_notifier() can't be done together as
 * it would introduce circular locking by adding cgroup_lock -> cpu hotplug
 * dependency.  Do it from a subsys_initcall().
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
	return 0;
}
subsys_initcall(mem_cgroup_init);

A
Andrew Morton 已提交
6800
#ifdef CONFIG_MEMCG_SWAP
6801 6802 6803
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6804
	if (!strcmp(s, "1"))
6805
		really_do_swap_account = 1;
6806
	else if (!strcmp(s, "0"))
6807 6808 6809
		really_do_swap_account = 0;
	return 1;
}
6810
__setup("swapaccount=", enable_swap_account);
6811 6812

#endif